1
|
Yin Q, Song S, Liu Z. Novel nanoemulsion adjuvant stabilized by TPGS possesses equivalent physicochemical properties, Turbiscan stability, and adjuvanticity to AS03 for eliciting robust immunogenicity of subunit vaccines in mice. Hum Vaccin Immunother 2025; 21:2486635. [PMID: 40172023 PMCID: PMC11970742 DOI: 10.1080/21645515.2025.2486635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/05/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025] Open
Abstract
Emulsion-based antigen delivery systems have emerged as a novel approach to enhance the effectiveness of subunit vaccines. This study presents the development of a newly formulated oil-in-water (o/w) nanoemulsion adjuvant (NEA) composed of squalene oil and α-tocopheryl polyethylene glycol 1000 succinate (TPGS), which serves dual roles as an emulsifier and an immunostimulator. In comparison to AS03, an FDA-approved emulsion adjuvant that includes α-tocopherol, squalene, and polysorbate 80, NEA is devoid of α-tocopherol and exhibits comparable physicochemical properties, including particle size, polydispersity index, morphology, pH, zeta potential, and viscosity. Stability assessments conducted using Turbiscan Lab indicated that NEA undergoes an uplift process without experiencing flocculation, agglomeration or delamination. Model subunit antigens of recombinant glycoprotein E (gE) targeting the varicella-zoster virus (VZV) and highly purified hemagglutinin (HA) protein against trivalent seasonal influenza viruses (TIV) were employed to assess the adjuvanticity of NEA. It was revealed that the specific anti-gE IgG titers induced by the gE/NEA were markedly higher than those generated by gE alone, with titers of 13,000 vs 3,000 for the primary vaccination, and 5 × 106 vs 5 × 104 for the booster vaccination. Additionally, the TIV/NEA group exhibited a significantly improved immunogenic response relative to TIV alone across all three HA antigens at six-week after immunization, as evidenced by anti-HA titers of 256 vs 32. Furthermore, the NEA demonstrated no significant difference in efficacy compared to AS03 in both the VZV and TIV vaccines. Consequently, NEA presents a promising alternative to AS03 for the development of effective subunit vaccines.
Collapse
Affiliation(s)
- Quanyi Yin
- Department of Research & Development, Yither Biotech Co. Ltd, Shanghai, China
| | - Shuoyao Song
- Department of Research & Development, Yither Biotech Co. Ltd, Shanghai, China
| | - Zhilei Liu
- Department of Research & Development, Yither Biotech Co. Ltd, Shanghai, China
| |
Collapse
|
2
|
Taylor JM, Gerton KH, Conboy JC. Does vitamin E behave like cholesterol? An examination of vitamin E's effects on phospholipid membrane structure and dynamics through sum-frequency vibrational spectroscopy. Biophys J 2025; 124:1226-1244. [PMID: 40055893 PMCID: PMC12044400 DOI: 10.1016/j.bpj.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/17/2025] [Accepted: 02/28/2025] [Indexed: 03/21/2025] Open
Abstract
Vitamin E (VE) has historically been described as an antioxidant and its roles in radical species scavenging and nutrition are well studied. VE has been proposed to have secondary roles within the membrane but these roles are not as well characterized, with contradictory results emerging throughout the literature. Due to similar structural motifs, comparisons between VE and cholesterol (CHO), another membrane component, have been commonly made. Despite these comparisons showing that phospholipid-CHO and phospholipid-VE interactions may behave similarly, VE's potential influence on phospholipid flip-flop specifically is not as well studied when compared with CHO's influence. Here, we show through the use of sum-frequency vibrational spectroscopy that VE at both biological (0.5-1.5 mol %) and supraphysiological (2.5-5 mol %) concentrations shows similar characteristics to that of CHO in its ability to induce alkyl chain ordering of phospholipids within planar supported lipid bilayers of the saturated lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. In addition to chain ordering, the introduction of VE accelerates phospholipid flip-flop by approximately three times (0.5-2.5 mol %) with rates approaching an order-of-magnitude increase (5 mol %) at high VE content. The increase in phospholipid flip-flop rates is attributed to the decrease in the molar compression modulus of the membrane. These results suggest that VE influences the ordering and compressibility of the membrane similar to CHO.
Collapse
Affiliation(s)
- Joshua M Taylor
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Kai H Gerton
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - John C Conboy
- Department of Chemistry, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
3
|
Chen M, Ghelfi M, Poon JF, Jeon N, Boccalon N, Rubsamen M, Valentino S, Mehta V, Stamper M, Tariq H, Zunica E, Ulatowski L, Chung S, Fritz C, Cameron M, Cameron C, Pratt DA, Atkinson J, Finno CJ, Manor D. Antioxidant-independent activities of alpha-tocopherol. J Biol Chem 2025; 301:108327. [PMID: 39978678 PMCID: PMC11968272 DOI: 10.1016/j.jbc.2025.108327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025] Open
Abstract
Alpha-tocopherol (vitamin E) is a plant-derived dietary lipid that is essential for the health of most animals, including humans. Originally discovered as a fertility factor in rodents, the primary health-promoting properties of the vitamin in humans was shown to be protection of neuromuscular functions. Heritable vitamin E deficiency manifests in spinocerebellar ataxia that can be stabilized by timely supplementation with high-dose α-tocopherol. The molecular basis for α-tocopherol's biological activities has been attributed primarily to the vitamin's efficacy in preventing lipid peroxidation in membranes and lipoproteins, but the possibility that the vitamin possesses additional biological activities has been postulated and debated in the literature without conclusive resolution. We designed and synthesized a novel analog of α-tocopherol, 6-hydroxymethyl α-tocopherol (6-HMTC), which retains most of the vitamin's structural, physical, and biochemical properties, yet lacks measurable radical-trapping antioxidant activity. 6-HMTC bound to the tocopherol transfer protein with high (nanomolar) affinity, like that of the natural vitamin, attesting to the analog's preservation of structural integrity. Yet, 6-HMTC did not inhibit lipid peroxidation or associated ferroptotic cell death. Notably, 6-HMTC modulated the expression of some genes in a manner essentially identical to that exhibited by α-tocopherol. These findings support the notion that α-tocopherol modulates gene expression via an antioxidant-independent mechanism.
Collapse
Affiliation(s)
- Matthew Chen
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mikel Ghelfi
- Department of Chemistry, Brock University, Ontario, Canada
| | - Jia-Fei Poon
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nayeon Jeon
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Michael Rubsamen
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stephen Valentino
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vansh Mehta
- Department of Chemistry, Brock University, Ontario, Canada
| | - Michaela Stamper
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hamza Tariq
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
| | - Elizabeth Zunica
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lynn Ulatowski
- Department of Biology, Ursuline College, Pepper Pike, Ohio, USA
| | - Stacey Chung
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
| | - Claire Fritz
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
| | - Cheryl Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Danny Manor
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
4
|
Srivastava D, Patra N. Improving the Computational Efficiency of the Adaptive Biasing Force Sampling by Leveraging the Telescopic-Solvation Scheme. J Chem Theory Comput 2024; 20:10952-10960. [PMID: 39644229 DOI: 10.1021/acs.jctc.4c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The number of solvent molecules present in the system during molecular dynamics is the balancing act between the need to remove the boundary effects present in the system and the computational cost. Application of the telescopic-solvation box scheme during the estimation of the potential of mean force (PMF) can be advantageous in situations where the contribution of solvent far from the site of interest toward the whole PMF is negligible, as previously demonstrated in the case of adaptive steered molecular dynamics and umbrella sampling. This work explores the application of the telescopic-solvation box scheme during enhanced sampling by the stratified adaptive biasing force (ABF) family of methods, including ABF, extended ABF, well-tempered-metadynamics extended ABF, and multiwalker extended ABF. During this scheme, the number of water molecules differed in each stratified window, whose number depended on the value of the collective variable being sampled in that window. Two systems were used to verify the viability of the telescopic scheme: unfolding (Ala)10 peptide in water and insertion of α-tocopherol in a bilayer membrane. In the first system, the 1D and 2D PMFs obtained by the telescopic-solvation scheme matched well with the benchmark PMFs estimated with a standard solvation box. The minimal energy path connecting the α-helical and extended conformational states revealed that the unfolding process of (Ala)10 in water involved multiple closely spaced metastable states. As for the second system, the PMF, equilibrium location of α-tocopherol, and the free energy associated with the desorption and flipping of α-tocopherol obtained within the scope of the telescopic-solvation box scheme agreed with their standard solvation box values. Enhanced sampling with ABF and its variants in conjunction with the telescopic-solvation scheme results in a similar quality of the estimated PMF compared to sampling with a standard solvation box, albeit with reduced computational cost.
Collapse
Affiliation(s)
- Diship Srivastava
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
5
|
Detopoulou P, Papandreou P, Skouroliakou M. The Ratio of Body Weight/Length Squared Relates to Low Serum α-Tocopherol in Preterm Infants. Cureus 2024; 16:e76575. [PMID: 39881931 PMCID: PMC11774624 DOI: 10.7759/cureus.76575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 01/31/2025] Open
Abstract
INTRODUCTION Preterm infants are at high risk of developing α-tocopherol deficiency, since fat depots are low, intake may be insufficient, malabsorption may coexist, and dietary needs are high. Data on predictors of low α-tocopherol are still limited. Thus, this study aimed to assess the levels of α-tocopherol in preterm infants at birth and explore its anthropometric predictors. METHODS Preterm infants (n=84) from a neonatal intensive care unit were studied. Weight, length, head circumference, and gestational age were recorded. The measurement of α-tocopherol levels was performed in the first 24 hours with high-performance liquid chromatography (HPLC). RESULTS Logistic regression models were applied to identify factors related to low α-tocopherol levels (<1.5 mg/L). The median gestational age was 29.5 weeks and the mean birth weight was 1254 g. Most neonates were of very low birth weight (~89%). About 31% of preterm infants had α-tocopherol deficiency (cutoff <1.5 mg/L). In logistic regression analysis, a newly proposed index, i.e., weight/length2 (measured in g/cm2), was related to low vitamin status. More particularly, a ratio >0.81 g/cm2 was related to α-tocopherol deficiency independently of other covariates. CONCLUSION Further studies are needed to prove the usefulness of this "easy-to-measure" proposed index in the early detection of α-tocopherol deficiency.
Collapse
Affiliation(s)
- Paraskevi Detopoulou
- Department of Nutritional Sciences and Dietetics, University of Peloponnese, Kalamata, GRC
| | | | - Maria Skouroliakou
- Department of Nutrition and Dietetics, Harokopio University, Athens, GRC
| |
Collapse
|
6
|
Sahin A, Demirel-Yalciner T, Sozen E, Ozer NK. Protective effect of alpha-tocopherol on lipogenesis and oxysterol production in hypercholesterolemia-induced nonalcoholic steatohepatitis. Free Radic Res 2024; 58:630-640. [PMID: 39475691 DOI: 10.1080/10715762.2024.2421173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024]
Abstract
Despite limited number of studies, oxysterols are known to contribute to the progression of nonalcoholic steatohepatitis (NASH) by affecting lipid/cholesterol metabolism and elevating proinflammatory and profibrotic processes. Accordingly, we used a high cholesterol-mediated in vivo NASH model and aimed to determine alterations in fatty acid content and oxysterol levels together with their effects on cholesterol/lipid metabolism during the progression of the disease. We further investigated the beneficial role of α-tocopherol. To this end, in our hypercholesterolemic rabbit model, we determined fatty acid profile by GC-MS while 25-, 27-, 4β-, 7α, and 24(S)-Hydroxycholesterol levels by means of LC-MS/MS. Additionally, lipid (SREBP-1c, PPARα, PPARγ) and cholesterol metabolism-related proteins (LXRα, SREBP2 and ABCA1) were determined by immunoblotting. In conclusion, the present findings provide a complete analysis of the hepatic alterations in lipid and oxysterol profiles mediated by a high-cholesterol diet. In addition, this study explains the protective effect of α-tocopherol on lipogenesis and oxysterol production in hypercholesterolemia-induced NASH. We believe that present study will guide to novel theories in the progression and therapeutic targeting of fatty liver diseases.
Collapse
Affiliation(s)
- Ali Sahin
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Maltepe, Istanbul, Turkey
| | - Tugce Demirel-Yalciner
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul, Turkey
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, Turkey
- Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul, Turkey
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, Turkey
- Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul, Turkey
| |
Collapse
|
7
|
Vlasiou MC, Nikolaou G, Spanoudes K, Mavrides DE. β-Tocotrienol and δ-Tocotrienol as Additional Inhibitors of the Main Protease of Feline Infectious Peritonitis Virus: An In Silico Analysis. Vet Sci 2024; 11:424. [PMID: 39330803 PMCID: PMC11435718 DOI: 10.3390/vetsci11090424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a severe and invariably fatal disease affecting both domestic and wild felines with limited effective therapeutic options available. By considering the significant immunomodulatory effects of vitamin E observed in both animal and human models under physiological and pathological conditions, we have provided a full in silico investigation of vitamin E and related compounds and their effect on the crystal structure of feline infectious peritonitis virus 3C-like protease (FIPV-3CLpro). This work revealed the β-tocotrienol and δ-tocotrienol analogs as inhibitor candidates for this protein, suggesting their potential as possible drug compounds against FIP or their supplementary use with current medicines against this disease.
Collapse
Affiliation(s)
- Manos C Vlasiou
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414 Nicosia, Cyprus
| | - Georgios Nikolaou
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414 Nicosia, Cyprus
| | - Kyriakos Spanoudes
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414 Nicosia, Cyprus
| | - Daphne E Mavrides
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414 Nicosia, Cyprus
| |
Collapse
|
8
|
Baschieri A, Jin Z, Amorati R, Vasa K, Baroncelli A, Menichetti S, Viglianisi C. Kinetic study of the reaction of thiophene-tocopherols with peroxyl radicals enlightenings the role of O˙⋯S noncovalent interactions in H-atom transfer. Org Biomol Chem 2024; 22:5965-5976. [PMID: 38984438 DOI: 10.1039/d4ob00944d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Three new α-tocopherol thiophene derivatives were efficiently synthesized, characterized and used for the first time as chain-breaking antioxidants for the inhibition of the autoxidation of reference oxidizable substrates. The rate constant of the reaction with alkylperoxyl (ROO˙) radicals and the stoichiometry of radical trapping (n) for the thiophene-tocopherol compounds were determined by measuring the oxygen consumption during the autoxidation of styrene or isopropylbenzene, using a differential pressure transducer. The measurement of the reaction with ROO˙ radicals in an apolar solvent at 30 °C showed inhibition rate constants (kinh) in the order of 104 M-1 s-1. To rationalise the kinetic results, the effect of the thiophene ring on the H-atom donation by O-H groups of the functionalized tocopherols was investigated by theoretical calculations. The importance of noncovalent interactions (including an unusual O˙⋯S bond) for the stability of the conformers has been shown, and the O-H bond dissociation enthalpy (BDE(OH)) of these derivatives was determined. Finally, the photophysical properties of these new compounds were investigated to understand if the addition of thiophene groups changes the absorption or emission spectra of the tocopherol skeleton for their possible application as luminescent molecular probes.
Collapse
Affiliation(s)
- Andrea Baschieri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy.
| | - Zongxin Jin
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Kristian Vasa
- Department of Chemistry "Ugo Schiff" - DICUS, University of Florence, Via Della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Allegra Baroncelli
- Department of Chemistry "Ugo Schiff" - DICUS, University of Florence, Via Della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Stefano Menichetti
- Department of Chemistry "Ugo Schiff" - DICUS, University of Florence, Via Della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Caterina Viglianisi
- Department of Chemistry "Ugo Schiff" - DICUS, University of Florence, Via Della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
9
|
Samrit T, Osotprasit S, Chaiwichien A, Suksomboon P, Chansap S, Athipornchai A, Changklungmoa N, Kueakhai P. Cold-Pressed Sacha Inchi Oil: High in Omega-3 and Prevents Fat Accumulation in the Liver. Pharmaceuticals (Basel) 2024; 17:220. [PMID: 38399435 PMCID: PMC10892392 DOI: 10.3390/ph17020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The ability of oil supplementation to inhibit various metabolic syndromes has been recognized. However, there are currently no studies determining the effects of oil supplements on healthy conditions. Plukenetia volubilis L., also known as Sacha inchi, is a seed rich in essential unsaturated fatty acids that improves metabolic syndrome diseases, such as obesity and nonalcoholic fatty liver. However, the health benefits and effects of Sacha inchi oil (SIO) supplementation remain unclear. This study aims to evaluate the chemical effects and properties of Sacha inchi oil. The results of the chemical compound analysis showed that Sacha inchi is an abundant source of ω-3 fatty acids, with a content of 44.73%, and exhibits scavenging activity of 240.53 ± 11.74 and 272.41 ± 6.95 µg Trolox/g, determined via DPPH and ABTS assays, respectively, while both olive and lard oils exhibited lower scavenging activities compared with Sacha inchi. Regarding liver histology, rats given Sacha inchi supplements showed lower TG accumulation and fat droplet distribution in the liver than those given lard supplements, with fat areas of approximately 14.19 ± 6.49% and 8.15 ± 2.40%, respectively. In conclusion, our findings suggest that Sacha inchi oil is a plant source of ω-3 fatty acids and antioxidants and does not induce fatty liver and pathology in the kidney, pancreas, and spleen. Therefore, it has the potential to be used as a dietary supplement to improve metabolic syndrome diseases.
Collapse
Affiliation(s)
- Tepparit Samrit
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Supawadee Osotprasit
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Athit Chaiwichien
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Phawiya Suksomboon
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Supanan Chansap
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Anan Athipornchai
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand;
| | - Narin Changklungmoa
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Pornanan Kueakhai
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| |
Collapse
|
10
|
Zingg JM. Finding vitamin Ex ‡. Free Radic Biol Med 2024; 211:171-173. [PMID: 38081438 DOI: 10.1016/j.freeradbiomed.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 12/25/2023]
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136-6129, USA; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136-6129, USA.
| |
Collapse
|
11
|
Sordini B, Urbani S, Esposto S, Selvaggini R, Daidone L, Veneziani G, Servili M, Taticchi A. Evaluation of the Effect of an Olive Phenolic Extract on the Secondary Shelf Life of a Fresh Pesto. Antioxidants (Basel) 2024; 13:128. [PMID: 38275653 PMCID: PMC10813149 DOI: 10.3390/antiox13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Recent advances in the olive oil sector aim to develop sustainable strategies for the valorisation of mechanical extraction co-products as a rich source of bioactive compounds with antioxidant and antimicrobial activities. In this work, we studied the effectiveness of a phenolic extract (PE) from olive vegetation water (OVW) as a new antioxidant of natural origin for improving the quality and extending the secondary shelf life (SSL) of a fresh basil pesto sold as a served loose product at the deli counter, simulating the storage conditions after packaging, opening, and serving. For that, the PE was mixed with the oily phase of fresh pesto in two different concentrations and compared to a control pesto (CTRL) made with the addition of common additives (ascorbic acid (E300) and sorbic acid (E200)). The physicochemical parameters, phenolic and volatile composition, sensory profiles, and antioxidant capacity of the experimental pesto samples were evaluated after opening. The results proved that the enrichment with the PE improved the stability of the pesto and, hence, its overall quality. The PE provided higher protection than the CTRL against primary and secondary oxidation at both concentrations tested and delayed the accumulation of the volatile compounds responsible for the 'rancid' off-flavour up to 7 days after first opening, while also preserving higher levels of the pesto phytonutrients (such as the rosmarinic, caffeic, and chicoric acids and α-tocopherol). These results show that the generation of food waste in households, catering chains, retail, and/or restaurants can be reduced, improving the sustainability of the food industry and the competitiveness of the olive oil sector.
Collapse
Affiliation(s)
| | | | - Sonia Esposto
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via San Costanzo s.n.c., 06126 Perugia, Italy; (B.S.); (S.U.); (R.S.); (L.D.); (G.V.); (M.S.); (A.T.)
| | | | | | | | | | | |
Collapse
|
12
|
Srivastava D, Patra N. Telescoping-Solvation-Box Protocol-Based Umbrella Sampling Method for Potential Mean Force Estimation. J Chem Inf Model 2023; 63:6109-6117. [PMID: 37715712 DOI: 10.1021/acs.jcim.3c01072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
Previously, it was shown that the telescoping box scheme, in combination with adaptive steered molecule dynamics (ASMD), can be used to estimate the potential of mean force (PMF) with a decrease in computational cost associated with large solvation boxes. Since ASMD reduces to umbrella sampling (US) in the limit of infinitely slow pulling velocity, a hypothesis was made that the telescoping box scheme can be extended to include the US method. The hypothesis was tested using the unfolding pathway of a polyalanine peptide in a water box and translocation of α-tocopherol through the human membrane. Two different approaches were tried: telescoping US (TELUS), in which the number of solvent molecules was linearly coupled to the reaction coordinate, and Block-TELUS, which was a compromise between the fixed solvation box of the US and the window-wise variable solvation box of TELUS. In the case of polyalanine peptide in a water box, both approaches gave overlapping potential of mean force (PMF) concerning the benchmark US-PMF. Window-wise comparison of properties like root-mean-square inner product, Ramachandran plot, α-helix content, and hydrogen bond formation was used to verify that both approaches captured the same dynamics as the US method. Applying the Block-TELUS protocol in the system with diffusing α-tocopherol through the bilayer resulted in overlapping PMF to its US benchmark. A comparison between the window-wise orientation of the chromanol headgroup also produced almost identical results. This study concluded that with the careful application of telescoping solvation boxes, a less computationally expensive US could be performed for systems where the effect of distant solvent molecules on the configurational space sampled in the window depends on the value of the reaction coordinate.
Collapse
Affiliation(s)
- Diship Srivastava
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
13
|
Lu X, Wang Z, Chen L, Wei X, Ma Y, Tu Y. Efficacy and safety of selenium or vitamin E administration alone or in combination in ICU patients: A systematic review and meta-analysis. Clin Nutr ESPEN 2023; 57:550-560. [PMID: 37739705 DOI: 10.1016/j.clnesp.2023.07.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Micronutrient administration that contributes to antioxidant defense has been extensively studied in critically ill patients, but consensus remains elusive. Selenium and vitamin E are two important micronutrients that have synergistic antioxidant effects. This meta-analysis aimed to assess the effect of selenium or vitamin E administration alone and the combination of both on clinical outcomes in patients hospitalized in the ICU. METHODS After electronic searches on PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), SinoMed, VIP database and Wanfang data, initially 1767 papers were found, and 30 interventional studies were included in this analysis. We assessed the risk-difference between treatment and control (standard treatment) groups by pooling available data on length of stay (ICU length of stay and hospital length of stay), mortality (ICU mortality, hospital mortality, 28-day mortality, 6-month mortality and all-cause mortality), duration of mechanical ventilation, adverse events and new infections. RESULTS By analyzing the included studies, we found no significant effect of selenium administration alone on mortality, mechanical ventilation duration, or adverse events in ICU patients. However, after excluding studies with high heterogeneity, the meta-analysis showed that selenium alone reduced the length of hospital stay (MD: -1.38; 95% CI: -2.52, -0.23; I-square: 0%). Vitamin E administration alone had no significant effect on mortality, duration of mechanical ventilation, or adverse events in ICU patients. However, after excluding studies with high heterogeneity, the meta-analysis showed that vitamin E alone could reduce the length of ICU stay (MD: -1.27; 95% CI: -1.86, -0.67; I-square: 16%). Combined administration of selenium and vitamin E had no significant effect on primary outcomes in ICU patients. CONCLUSIONS Selenium administration alone may shorten the length of hospital stay, while vitamin E alone may reduce the length of ICU stay. The putative synergistic beneficial effect of combined administration of selenium and vitamin E in ICU patients has not been observed, but more clinical studies are pending to confirm it further.
Collapse
Affiliation(s)
- Xin Lu
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Zhibin Wang
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Linlin Chen
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Xin Wei
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yabin Ma
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
14
|
Loesel H, Shakiba N, Wenck S, Le Tan P, Karstens TO, Creydt M, Seifert S, Hackl T, Fischer M. Food Monitoring: Limitations of Accelerated Storage to Predict Molecular Changes in Hazelnuts ( Corylus avellana L.) under Realistic Conditions Using UPLC-ESI-IM-QTOF-MS. Metabolites 2023; 13:1031. [PMID: 37887356 PMCID: PMC10608644 DOI: 10.3390/metabo13101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Accelerated storage is routinely used with pharmaceuticals to predict stability and degradation patterns over time. The aim of this is to assess the shelf life and quality under harsher conditions, providing crucial insights into their long-term stability and potential storage issues. This study explores the potential of transferring this approach to food matrices for shelf-life estimation. Therefore, hazelnuts were stored under accelerated short-term and realistic long-term conditions. Subsequently, they were analyzed with high resolution mass spectrometry, focusing on the lipid profile. LC-MS analysis has shown that many unique processes take place under accelerated conditions that do not occur or occur much more slowly under realistic conditions. This mainly involved the degradation of membrane lipids such as phospholipids, ceramides, and digalactosyldiacylglycerides, while oxidation processes occurred at different rates in both conditions. It can be concluded that a food matrix is far too complex and heterogeneous compared to pharmaceuticals, so that many more processes take place during accelerated storage, which is why the results cannot be used to predict molecular changes in hazelnuts stored under realistic conditions.
Collapse
Affiliation(s)
- Henri Loesel
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
| | - Navid Shakiba
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Soeren Wenck
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
| | - Phat Le Tan
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
| | - Tim-Oliver Karstens
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
| | - Marina Creydt
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
| | - Stephan Seifert
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
| | - Thomas Hackl
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
| |
Collapse
|
15
|
Zheng J, Lee J, Byun J, Yu D, Ha JH. Partial replacement of high-fat diet with n-3 PUFAs enhanced beef tallow attenuates dyslipidemia and endoplasmic reticulum stress in tunicamycin-injected rats. Front Nutr 2023; 10:1155436. [PMID: 37006935 PMCID: PMC10060633 DOI: 10.3389/fnut.2023.1155436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Metabolic syndrome (MetS) is considered as a complex, intertwined multiple risk factors that directly increase the risk of various metabolic diseases, especially cardiovascular atherosclerotic diseases and diabetes mellitus type 2. While lifestyle changes, including dietary intervention are effective in mitigating or preventing MetS, there are no specific therapies against MetS. Typical western diets comprise of high saturated fatty acid, cholesterol, and simple sugar; consequently their consumption may increase the potential pathological developmental risk of MetS. Partial replacement of dietary fatty acids with polyunsaturated fatty acids (PUFAs) is widely recommended measure to manage MetS-related disorders. Methods In the present study, we used rat model to investigate the role of n-3 PUFA enriched beef tallows (BT) on MetS and tunicamycin (TM)-induced endoplasmic reticulum (ER) stress, by partially replacing dietary fat (lard) with equal amounts of two different BTs; regular BT or n-3 PUFA-enriched BT. The experimental rats were randomly assigned to three different dietary groups (n = 16 per group): (1) high-fat and high-cholesterol diet (HFCD); (2) HFCD partially replaced with regular BT (HFCD + BT1); (3) HFCD partially replaced with n-3 enhanced BT (w/w) (HFCD + BT2). After 10 weeks of dietary intervention, each experimental rodent was intraperitoneally injected with either phosphate-buffered saline or 1 mg/kg body weight of TM. Results HFCD + BT2 showed improved dyslipidemia before TM injection, and increased serum high-density lipoprotein cholesterol (HDL-C) levels after TM injection. BT replacement groups had significantly reduced hepatic triglyceride (TG) levels, and decreased total cholesterol (TC) and TG levels in epididymal adipose tissue (EAT). Furthermore, BT replacement remarkably attenuated TM-induced unfolded protein responses (UPRs) in liver, showing reduced ER stress, with BT2 being more effective in the EAT. Discussion Therefore, our findings suggest that partially replacing dietary fats with n-3 PUFA to lower the ratio of n-6/n-3 PUFAs is beneficial in preventing pathological features of MetS by alleviating HFCD- and/or TM-induced dyslipidemia and ER stress.
Collapse
Affiliation(s)
- Jiaxiang Zheng
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
| | - Jisu Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
| | - Jaemin Byun
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Daeung Yu
- Department of Food and Nutrition, Changwon National University, Changwon, Republic of Korea
- Interdisciplinary Program in Senior Human-Ecology, Major in Food and Nutrition, Changwon National University, Changwon, Republic of Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin, Republic of Korea
| |
Collapse
|
16
|
Charlton NC, Mastyugin M, Török B, Török M. Structural Features of Small Molecule Antioxidants and Strategic Modifications to Improve Potential Bioactivity. Molecules 2023; 28:molecules28031057. [PMID: 36770724 PMCID: PMC9920158 DOI: 10.3390/molecules28031057] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
This review surveys the major structural features in various groups of small molecules that are considered to be antioxidants, including natural and synthetic compounds alike. Recent advances in the strategic modification of known small molecule antioxidants are also described. The highlight is placed on changing major physicochemical parameters, including log p, bond dissociation energy, ionization potential, and others which result in improved antioxidant activity.
Collapse
|
17
|
Distributions of α- and δ-TOCopherol in Intact Olive and Soybean Oil-in-Water Emulsions at Various Acidities: A Test of the Sensitivity of the Pseudophase Kinetic Model. Antioxidants (Basel) 2022; 11:antiox11122477. [PMID: 36552687 PMCID: PMC9774782 DOI: 10.3390/antiox11122477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
During the last years, the formalism of the pseudophase kinetic model (PKM) has been successfully applied to determine the distributions of antioxidants and their effective interfacial concentrations, and to assess the relative importance of emulsion and antioxidant properties (oil and surfactant nature, temperature, acidity, chemical structure, hydrophilic-liphophilic balance (HLB), etc.) on their efficiency in intact lipid-based emulsions. The PKM permits separating the contributions of the medium and of the concentration to the overall rate of the reaction. In this paper, we report the results of a specifically designed experiment to further test the suitability of the PKM to evaluate the distributions of antioxidants among the various regions of intact lipid-based emulsions and provide insights into their chemical reactivity in multiphasic systems. For this purpose, we employed the antioxidants α- and δ-TOCopherol (α- and δ-TOC, respectively) and determined, at different acidities well below their pKa, the interfacial rate constants kI for the reaction between 16-ArN2+ and α- and δ-TOC, and the antioxidant distributions in intact emulsions prepared with olive and soybean oils. Results show that the effective interfacial concentration of δ-TOC is higher than that of α-TOC in 1:9 (v/v) soybean and 1:9 olive oil emulsions. The effective interfacial concentrations of tocopherols are much higher (15-96-fold) than the stoichiometric concentrations, as the effective interfacial concentrations of both δ-TOC and α-TOC in soybean oil emulsions are higher (2-fold) than those in olive oil emulsions. Overall, the results demonstrate that the PKM grants an effective separation of the medium and concentration effects, demonstrating that the PKM constitutes a powerful non-destructive tool to determine antioxidant concentrations in intact emulsions and to assess the effects of various factors affecting them.
Collapse
|
18
|
DiPasquale M, Nguyen MHL, Castillo SR, Dib IJ, Kelley EG, Marquardt D. Vitamin E Does Not Disturb Polyunsaturated Fatty Acid Lipid Domains. Biochemistry 2022; 61:2366-2376. [PMID: 36227768 DOI: 10.1021/acs.biochem.2c00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The function of vitamin E in biomembranes remains a prominent topic of discussion. As its limitations as an antioxidant persist and novel functions are discovered, our understanding of the role of vitamin E becomes increasingly enigmatic. As a group of lipophilic molecules (tocopherols and tocotrienols), vitamin E has been shown to influence the properties of its host membrane, and a wealth of research has connected vitamin E to polyunsaturated fatty acid (PUFA) lipids. Here, we use contrast-matched small-angle neutron scattering and differential scanning calorimetry to integrate these fields by examining the influence of vitamin E on lipid domain stability in PUFA-based lipid mixtures. The influence of α-tocopherol, γ-tocopherol, and α-tocopherylquinone on the lateral organization of a 1:1 lipid mixture of saturated distearoylphosphatidylcholine (DSPC) and polyunsaturated palmitoyl-linoleoylphosphatidylcholine (PLiPC) with cholesterol provides a complement to our growing understanding of the influence of tocopherol on lipid phases. Characterization of domain melting suggests a slight depression in the transition temperature and a decrease in transition cooperativity. Tocopherol concentrations that are an order of magnitude higher than anticipated physiological concentrations (2 mol percent) do not significantly perturb lipid domains; however, addition of 10 mol percent is able to destabilize domains and promote lipid mixing. In contrast to this behavior, increasing concentrations of the oxidized product of α-tocopherol (α-tocopherylquinone) induces a proportional increase in domain stabilization. We speculate how the contrasting effect of the oxidized product may supplement the antioxidant response of vitamin E.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Isabelle J Dib
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland20878, United States
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada.,Department of Physics, University of Windsor, Windsor, OntarioN9B3P4, Canada
| |
Collapse
|
19
|
Webster RD. Electrochemical and Spectroscopic Characterization of Oxidized Intermediate Forms of Vitamin E. Molecules 2022; 27:6194. [PMID: 36234726 PMCID: PMC9571374 DOI: 10.3390/molecules27196194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin E, a collection of lipophilic phenolic compounds based on chroman-6-ol, has a rich and fascinating oxidative chemistry involving a range of intermediate forms, some of which are proposed to be important in its biological functions. In this review, the available electrochemical and spectroscopic data on these oxidized intermediates are summarized, along with a discussion on how their lifetimes and chemical stability are either typical of similar phenolic and chroman-6-ol derived compounds, or atypical and unique to the specific oxidized isomeric form of vitamin E. The overall electrochemical oxidation mechanism for vitamin E can be summarized as involving the loss of two-electrons and one-proton, although the electron transfer and chemical steps can be controlled to progress along different pathways to prolong the lifetimes of discreet intermediates by modifying the experimental conditions (applied electrochemical potential, aqueous or non-aqueous solvent, and pH). Depending on the environment, the electrochemical reactions can involve single electron transfer (SET), proton-coupled electron transfer (PCET), as well as homogeneous disproportionation and comproportionation steps. The intermediate species produced via chemical or electrochemical oxidation include phenolates, phenol cation radicals, phenoxyl neutral radicals, dications, diamagnetic cations (phenoxeniums) and para-quinone methides. The cation radicals of all the tocopherols are atypically long-lived compared to the cation radicals of other phenols, due to their relatively weak acidity. The diamagnetic cation derived from α-tocopherol is exceptionally long-lived compared to the diamagnetic cations from the other β-, γ- and δ-isomers of vitamin E and compared with other phenoxenium cations derived from phenolic compounds. In contrast, the lifetime of the phenoxyl radical derived from α-tocopherol, which is considered to be critical in biological reactions, is typical for what is expected for a compound with its structural features. Over longer times via hydrolysis reactions, hydroxy para-quinone hemiketals and quinones can be formed from the oxidized intermediates, which can themselves undergo reduction processes to form intermediate anion radicals and dianions. Methods for generating the oxidized intermediates by chemical, photochemical and electrochemical methods are discussed, along with a summary of how the final products vary depending on the method used for oxidation. Since the intermediates mainly only survive in solution, they are most often monitored using UV-vis spectroscopy, FTIR or Raman spectroscopies, and EPR spectroscopy, with the spectroscopic techniques sometimes combined with fast photoinitiated excitation and time-resolved spectroscopy for detection of short-lived species.
Collapse
Affiliation(s)
- Richard D. Webster
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore;
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore 637141, Singapore
| |
Collapse
|
20
|
DiPasquale M, Nguyen MHL, Pabst G, Marquardt D. Partial Volumes of Phosphatidylcholines and Vitamin E: α-Tocopherol Prefers Disordered Membranes. J Phys Chem B 2022; 126:6691-6699. [PMID: 36027485 DOI: 10.1021/acs.jpcb.2c04209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite its discovery over 95 years ago, the biological and nutritional roles of vitamin E remain subjects of much controversy. Though it is known to possess antioxidant properties, recent assertions have implied that vitamin E may not be limited to this function in living systems. Through densitometry measurements and small-angle X-ray scattering we observe favorable interactions between α-tocopherol and unsaturated phospholipids, with more favorable interactions correlating to an increase in lipid chain unsaturation. Our data provide evidence that vitamin E may preferentially associate with oxygen sensitive lipids─an association that is considered innate for a viable membrane antioxidant.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, Graz 8010, Austria.,BioTechMed-Graz, Graz 8010, Austria
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.,Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
21
|
The diabetogenic effects of chronic supplementation of vitamin C or E in rats: Interplay between liver and adipose tissues transcriptional machinery of lipid metabolism. Life Sci 2022; 306:120812. [PMID: 35863427 DOI: 10.1016/j.lfs.2022.120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022]
Abstract
AIM The chronic administration of vitamin C and E can differentially disrupt hepatic insulin molecular pathway in rats. Hence, this study evaluated their effects on lipogenesis in the liver and adipose tissue and investigated the possible involvement of microRNA (miR)-22/29a/27a in the induced impaired glucose tolerance. MAIN METHODS Wistar rats were orally supplemented with vitamin C (100, 200, and 500 mg/kg) or vitamin E (50, 100, and 200 mg/kg) for eight months. KEY FINDINGS Vitamin C or E at the highest doses significantly altered liver weight and index, serum and hepatic lipids, adiponectin, and liver enzymes; besides their reported unfavorable effect on glucose homeostasis. Vitamin C and E negatively affected peroxisome proliferator-activated receptor coactivator-1 (PGC-1α), sterol regulatory element-binding protein (SREBP)-1c/-2, miR-22/29a/27a expression, and adipose perilipin 1 to different extents, effects that were supported by the histopathological examination. SIGNIFICANCE The current study provides a deeper insight into the findings of our previous study and highlights the detrimental effects of chronic vitamins supplementation on lipid metabolism. Overall, these findings emphasize the damage caused by the mindless use of supplements and reinforce the role of strict medical monitoring, particularly during the new COVID-19 era during which numerous commercial supplements are claiming to improve immunity.
Collapse
|
22
|
Gangopadhyay D, Ray M, Sinha S. Comparison of amino acid profiles and vitamin contents of male and female prepupae and pupae of eri silkworm, Samia ricini. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Likittrakulwong W, Poolprasert P, Hanthongkul W, Roytrakul S. Effects of Intramuscular Injections of Vitamins AD3E and C in Combination on Fertility, Immunity, and Proteomic and Transcriptomic Analyses of Dairy Cows during Early Gestation. BIOTECH 2022; 11:20. [PMID: 35822793 PMCID: PMC9264402 DOI: 10.3390/biotech11020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
This research aimed to investigate the effects of the intramuscular injection of vitamins AD3E and C in combination immediately before the estrus synchronization program (the Ovsynch program) on conception and pregnancy rates, blood parameters, serum biochemical properties, immune systems, antioxidant parameters, and proteomic and transcriptomic analyses during early gestation in dairy cows. Forty nonlactating multiparous cows were randomly assigned to one of four treatments: (1) C: control with normal saline injection; (2) VAD3E: a single intramuscular injection (I/M) of vitamin AD3E; (3) VAD3EC: injection of both vitamins AD3E and C; (4) VC: a single dose of vitamin C. Blood and serum samples were taken immediately at day 0 (before AI), day 7, and day 14 (after AI for 5 days) from the coccygeal vein. Generally, injections of AD3E and C in combination had no effect on the rate of conception or pregnancy. However, they improved hematological parameters and immune and antioxidant activities. Serum samples were analyzed using LC-MS/MS, and 8190 proteins were identified. Five proteins were successfully validated using the quantitative real-time reverse transcription PCR (qRT-PCR) method. This study found that lymphocyte-specific protein 1 (LSP1, A0A3Q1M894) could be used as a protein biomarker for cows administrated with vitamins AD3E and C.
Collapse
Affiliation(s)
- Wirot Likittrakulwong
- Animal Science Program, Faculty of Food and Agricultural Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand
| | - Pisit Poolprasert
- Biology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand;
| | - Worawatt Hanthongkul
- Phitsanulok Artificial Insemination and Biotechnology Research Center, Ban krang, Mueang Phitsanulok, Phitsanulok 65000, Thailand;
| | - Sittiruk Roytrakul
- National Center for Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12100, Thailand;
| |
Collapse
|
24
|
Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. BIOLOGY 2022; 11:biology11020155. [PMID: 35205022 PMCID: PMC8869449 DOI: 10.3390/biology11020155] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022]
Abstract
Simple Summary Environmental conditions are subject to unprecedented changes due to recent progressive anthropogenic activities on our planet. Plants, as the frontline of food security, are susceptible to these changes, resulting in the generation of unavoidable byproducts of metabolism (ROS), which eventually affect their productivity. The response of plants to these unfavorable conditions is highly intricate and depends on several factors, among them are the species/genotype tolerance level, intensity, and duration of stress factors. Defensive mechanisms in plant systems, by nature, are concerned primarily with generating enzymatic and non-enzymatic antioxidants. In addition to this, plant-microbe interactions have been found to improve immune systems in plants suffering from drought and salinity stress. Abstract Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided.
Collapse
|
25
|
Schubert M, Kluge S, Brunner E, Pace S, Birringer M, Werz O, Lorkowski S. The α-tocopherol-derived long-chain metabolite α-13'-COOH mediates endotoxin tolerance and modulates the inflammatory response via MAPK and NFκB pathways. Free Radic Biol Med 2022; 178:83-96. [PMID: 34848369 DOI: 10.1016/j.freeradbiomed.2021.11.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022]
Abstract
SCOPE The long-chain metabolites of (LCM) vitamin E are proposed as the active regulatory metabolites of vitamin E providing, with their anti-inflammatory properties, an explanatory approach for the inconsistent effects of vitamin E on inflammatory-driven diseases. We examined the modulation of cytokine expression and release from macrophages, a fundamental process in many diseases, to gain insights into the anti-inflammatory mechanisms of the α-tocopherol-derived LCM α-13'-COOH. METHODS AND RESULTS Suppressed gene expression of C-C motif chemokine ligand 2 (Ccl2), tumor necrosis factor (Tnf), and interleukin (Il) 6 in response to lipopolysaccharides by 24 h pre-treatment with α-13'-COOH in RAW264.7 macrophages was revealed using quantitative reverse transcription PCR. Further, reduced secretion of IL1β and CCL2 was found in this setup using flow cytometry. In contrast, 1 h pre-treatment suppressed only CCL2. Consequent gene expression analysis within 24 h of α-13'-COOH treatment revealed the induction of mitogen-activated protein kinases (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) negative feedback regulators including the 'master regulators' dual-specificity phosphatase 1 (Dusp1/Mkp1) and tumor necrosis factor induced protein 3 (Tnfaip3/A20). Approaches with immunoblots and chemical antagonists suggest a feedback induction via activation of extracellular-signal regulated kinase (ERK), p38 MAPK and NFκB pathways. CONCLUSIONS CCL2 is suppressed in murine macrophages by α-13'-COOH and the indirect suppression of MAPK and NFκB pathways is likely a relevant process contributing to anti-inflammatory actions of α-13'-COOH. These results improve the understanding of the effects of α-13'-COOH and provide a basis for new research strategies in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Martin Schubert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Stefan Kluge
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Elena Brunner
- Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Simona Pace
- Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, Germany; Regionales Innovationszentrum Gesundheit und Lebensqualität (RIGL), Fulda, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.
| |
Collapse
|
26
|
Head B, Traber MG. Expanding role of vitamin E in protection against metabolic dysregulation: Insights gained from model systems, especially the developing nervous system of zebrafish embryos. Free Radic Biol Med 2021; 176:80-91. [PMID: 34555455 DOI: 10.1016/j.freeradbiomed.2021.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
This review discusses why the embryo requires vitamin E (VitE) and shows that its lack causes metabolic dysregulation and impacts morphological changes at very early stages in development, which occur prior to when a woman knows she is pregnant. VitE halts the chain reactions of lipid peroxidation (LPO). Metabolomic analyses indicate that thiols become depleted in E- embryos because LPO generates products that require compensation using limited amino acids and methyl donors that are also developmentally relevant. Thus, VitE protects metabolic networks and the integrated gene expression networks that control development. VitE is critical especially for neurodevelopment, which is dependent on trafficking by the α-tocopherol transfer protein (TTPa). VitE-deficient (E-) zebrafish embryos initially appear normal, but by 12 and 24 h post-fertilization (hpf) E- embryos are developmentally abnormal with expression of pax2a and sox10 mis-localized in the midbrain-hindbrain boundary, neural crest cells and throughout the spinal neurons. These patterning defects indicate cells that are especially in need of VitE-protection. They precede obvious morphological abnormalities (cranial-facial malformation, pericardial edema, yolksac edema, skewed body-axis) and impaired behavioral responses to locomotor activity tests. The TTPA gene (ttpa) is expressed at the leading edges of the brain ventricle border. Ttpa knockdown using morpholinos is 100% lethal by 24 hpf, while E- embryo brains are often over- or under-inflated at 24 hpf. Further, E- embryos prior to 24 hpf have increased expression of genes involved in glycolysis and the pentose phosphate pathway, and decreased expression of genes involved in anabolic pathways and transcription. Combined data from both gene expression and the metabolome in E- embryos at 24 hpf suggest that the activity of the mechanistic Target of Rapamycin (mTOR) signaling pathway is decreased, which may impact both metabolism and neurodevelopment. Further evaluation of VitE deficiency in neurogenesis and its subsequent impact on learning and behavior is needed.
Collapse
Affiliation(s)
- Brian Head
- Linus Pauling Institute, Corvallis, OR, USA; Molecular and Cell Biology Program, Corvallis, OR, USA
| | - Maret G Traber
- Linus Pauling Institute, Corvallis, OR, USA; School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
27
|
Atkinson J, Marquardt D, DiPasquale M, Harroun T. From fat to bilayers: Understanding where and how vitamin E works. Free Radic Biol Med 2021; 176:73-79. [PMID: 34555454 DOI: 10.1016/j.freeradbiomed.2021.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022]
Abstract
Vitamin E was one of the last fat-soluble vitamins to be discovered. We provide here an historical review of the discovery and the increasingly more detailed understanding of the role of α-tocopherol both as an antioxidant and as a structural component of phospholipid bilayer membranes. Despite the detailed descriptions now available of the orientation, location, and dynamics of α-tocopherol in lipid bilayers, there are still gaps in our knowledge of the effect of α-tocopherol and its potential receptors than control gene transcription.
Collapse
Affiliation(s)
- Jeffrey Atkinson
- Department of Chemistry, Brock University, St. Catharines, ON, L2S3A1, Canada.
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, Windsor, ON, N9B 3P4, Canada; Department of Physics, Windsor, ON, N9B 3P4, Canada
| | | | - Thad Harroun
- Department of Physics, and Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S3A1, Canada
| |
Collapse
|
28
|
Szewczyk K, Chojnacka A, Górnicka M. Tocopherols and Tocotrienols-Bioactive Dietary Compounds; What Is Certain, What Is Doubt? Int J Mol Sci 2021; 22:6222. [PMID: 34207571 PMCID: PMC8227182 DOI: 10.3390/ijms22126222] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022] Open
Abstract
Tocopherols and tocotrienols are natural compounds of plant origin, available in the nature. They are supplied in various amounts in a diet, mainly from vegetable oils, some oilseeds, and nuts. The main forms in the diet are α- and γ-tocopherol, due to the highest content in food products. Nevertheless, α-tocopherol is the main form of vitamin E with the highest tissue concentration. The α- forms of both tocopherols and tocotrienols are considered as the most metabolically active. Currently, research results indicate also a greater antioxidant potential of tocotrienols than tocopherols. Moreover, the biological role of vitamin E metabolites have received increasing interest. The aim of this review is to update the knowledge of tocopherol and tocotrienol bioactivity, with a particular focus on their bioavailability, distribution, and metabolism determinants in humans. Almost one hundred years after the start of research on α-tocopherol, its biological properties are still under investigation. For several decades, researchers' interest in the biological importance of other forms of vitamin E has also been growing. Some of the functions, for instance the antioxidant functions of α- and γ-tocopherols, have been confirmed in humans, while others, such as the relationship with metabolic disorders, are still under investigation. Some studies, which analyzed the biological role and mechanisms of tocopherols and tocotrienols over the past few years described new and even unexpected cellular and molecular properties that will be the subject of future research.
Collapse
Affiliation(s)
- Kacper Szewczyk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland
| | - Aleksandra Chojnacka
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland
| | - Magdalena Górnicka
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland
| |
Collapse
|
29
|
Alpha2-Adrenoblockers Regulate Development of Oxidative Stress and Cognitive Behaviour of Rats under Chronic Acoustic Stress Conditions. Pharmaceuticals (Basel) 2021; 14:ph14060529. [PMID: 34199400 PMCID: PMC8228817 DOI: 10.3390/ph14060529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
Noise is a wide-spread stress factor in modern life produced by urbanization, traffic, and an industrialized environment. Noise stress causes dysfunction and neurotransmission impairment in the central nervous system, as well as changes in hormone levels. In this study, we have examined the level of α-Tocopherol (α-T) and malondialdehyde (MDA) in plasma and the erythrocytes’ membrane (EM), as well as the behavioral characteristics of a noise-induced stress model in rats. In addition, the modulating effect of α2-adrenoblockers, beditin, and mesedin on the aforementioned parameters has been investigated. For these purposes, albino male rats were divided into four groups: (1) untreated; (2) noise-exposed, (3) noise-exposed and beditin-treated (2 mg/kg, i.p.), and (4) noise-exposed and mesedin-treated (10 mg/kg, i.p.) animals. Noise-exposed groups were treated with 91dBA noise on 60 days with a daily duration of 8 h. Increased MDA and decreased α-T levels in plasma and EM were observed upon chronic high-level noise exposure. Locomotor and behavioral activity assessed with a Y-maze revealed disorientation and increased anxiety under chronic noise exposure. Prominently, α2-adrenoblockers alleviated both behavioral deficits and oxidative stress, providing evidence for the involvement of α2-adrenoceptor in the pathophysiology of noise-induced stress.
Collapse
|
30
|
Ahmadkhaniha R, Yousefian F, Rastkari N. Impact of smoking on oxidant/antioxidant status and oxidative stress index levels in serum of the university students. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1043-1046. [PMID: 34150292 PMCID: PMC8172765 DOI: 10.1007/s40201-021-00669-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Despite frequent warnings of irreversible side effects of smoking in public media, the consumption of cigarette is increasing dramatically in both developed and developing countries. Cigarette smoke contains different kinds of chemicals, which all capable of inducing free radical production. There are studies supporting the idea that these free radicals have adverse effects in body and causing oxidative stress. Total antioxidant capacity (TAC) is considered as the total effect of all antioxidants and total oxidant status (TOS) shows the total effect of all oxidants existing in body fluids. Therefore, this research focused on the measurement and comparison of these markers in the serum of university students. METHODS This study designed to determine the total antioxidant capacity, total oxidant status and oxidative stress index levels in the serum of active smokers, passive smokers and non-smokers in university students. A total of 150 participants were included in the study. The study population consisted of 50 smokers, 50 passive smokers and 50 nonsmokers. In serum samples, the levels of TAC and TOS were measured by spectrophotometric method using Rel Assay Diagnostics kit. Oxidative stress index was calculated through the TOS/TAC formula in three groups. RESULTS The mean value TAC levels in serum samples of the three groups of smokers, passive smokers and nonsmokers were 1.096, 1.220 and 1.844 mmol Trolox equivalent/L, respectively, which were significantly greater in nonsmokers than smokers and passive smokers. The mean value TOS levels in serum samples of the three groups of smokers, passive smokers and nonsmokers were 13.747, 11.099 and 7.6510 µmol H2O2 equivalent/L, respectively, which were significantly lower in nonsmokers than two other groups. OSI values in smokers and passive smokers were significantly higher than the control group. CONCLUSIONS According to our findings, the antioxidant capacity in all smokers (active and inactive) was less than the control group (non-smokers). The results of this study showed that smoking reduces the activity of the antioxidant defense system and activates the oxidative stress system in the body. Based on these findings, it can be clearly concluded that the decrease in antioxidant capacity in smokers is associated with increased production of oxidants and free radicals.
Collapse
Affiliation(s)
- Reza Ahmadkhaniha
- Department of Human Ecology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yousefian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Rastkari
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, 1417993359 Iran
- Center for water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Shaikh A, Chandel P, Chandel D. Genotoxic risk in occupational exposure to petrol and its amelioration by vitamin C and vitamin E. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2021; 77:446-454. [PMID: 34002680 DOI: 10.1080/19338244.2021.1926214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Petrol contains mixture of mutagens and carcinogens which have potential health risk after prolonged occupational exposure. We have compared genotoxicity and its amelioration in blood samples from 70 petrol pump attendants, working in congested area of the Ahmedabad city, India and similar number (n = 70) of Control samples from office workers dwelling in less polluted areas of the city. The cytokinesis-block micronucleus assay showed highly significant frequencies of micronucleus in Exposed than in the Controls. The sister chromatid exchanges were also significantly increased while the cell cycle proliferative index was significantly decreased in the Exposed individuals than the Controls. Addition of standardized doses of vitamin C and vitamin E in the lymphocyte cultures (in vitro) significantly improved all the biomarkers. The long-term occupational petrol exposure causes genotoxic effects and use of vitamins C and E for protection should be further explored in randomized controlled studies.
Collapse
Affiliation(s)
- Amrin Shaikh
- Department of Zoology, BMT and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Puranjay Chandel
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-Pilani), Pilani, India
| | - Divya Chandel
- Department of Zoology, BMT and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
32
|
Ziegler M, Wallert M, Lorkowski S, Peter K. Cardiovascular and Metabolic Protection by Vitamin E: A Matter of Treatment Strategy? Antioxidants (Basel) 2020; 9:E935. [PMID: 33003543 PMCID: PMC7600583 DOI: 10.3390/antiox9100935] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) cause about 1/3 of global deaths. Therefore, new strategies for the prevention and treatment of cardiovascular events are highly sought-after. Vitamin E is known for significant antioxidative and anti-inflammatory properties, and has been studied in the prevention of CVD, supported by findings that vitamin E deficiency is associated with increased risk of cardiovascular events. However, randomized controlled trials in humans reveal conflicting and ultimately disappointing results regarding the reduction of cardiovascular events with vitamin E supplementation. As we discuss in detail, this outcome is strongly affected by study design, cohort selection, co-morbidities, genetic variations, age, and gender. For effective chronic primary and secondary prevention by vitamin E, oxidative and inflammatory status might not have been sufficiently antagonized. In contrast, acute administration of vitamin E may be more translatable into positive clinical outcomes. In patients with myocardial infarction (MI), which is associated with severe oxidative and inflammatory reactions, decreased plasma levels of vitamin E have been found. The offsetting of this acute vitamin E deficiency via short-term treatment in MI has shown promising results, and, thus, acute medication, rather than chronic supplementation, with vitamin E might revitalize vitamin E therapy and even provide positive clinical outcomes.
Collapse
Affiliation(s)
- Melanie Ziegler
- Department of Cardiology and Angiology, Internal Medicine III, University Clinic of Tübingen, 72076 Tübingen, Germany;
| | - Maria Wallert
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany; (M.W.); (S.L.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany; (M.W.); (S.L.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Department of Medicine and Immunology, Monash University, Melbourne, VIC 3800, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3800, Australia
- Department of Cardiology, The Alfred Hospital, Melbourne, VIC 3800, Australia
| |
Collapse
|
33
|
Espinosa-Paredes DA, Cornejo-Garrido J, Moreno-Eutimio MA, Martínez-Rodríguez OP, Jaramillo-Flores ME, Ordaz-Pichardo C. Echinacea Angustifolia DC Extract Induces Apoptosis and Cell Cycle Arrest and Synergizes with Paclitaxel in the MDA-MB-231 and MCF-7 Human Breast Cancer Cell Lines. Nutr Cancer 2020; 73:2287-2305. [PMID: 32959676 DOI: 10.1080/01635581.2020.1817956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Echinacea spp. displays different biological activities, such as antiviral, immunomodulatory, and anticancer activities. Currently, high sales of hydroalcoholic extracts of Echinacea have been reported; hence, the importance of studies on Echinacea. AIM To establish the effects of Echinacea angustifolia DC extract obtained with ethyl acetate (Ea-AcOEt) in breast cancer cell lines. METHODS Cytotoxicity, cell cycle arrest, and cell death were evaluated. Besides, the safety of the extract, as well as its effect in combination with paclitaxel were investigated. RESULTS The echinacoside and caffeic acid content in the Ea-AcOEt extract were quantified by HPLC, and its antioxidant activity was assessed. The Ea-AcOEt extract showed cytotoxic activity on breast cancer MDA-MB-231 cells (IC50 28.18 ± 1.14 µg/ml) and MCF-7 cells (19.97 ± 2.31 µg/ml). No effect was observed in normal breast MCF-10 cells. The Ea-AcOEt extract induced cell cycle arrest in the G1 phase and caspase-mediated apoptosis. No genotoxicity was found in vitro or in vivo, and the extract showed no signs of toxicity or death at 2,000 mg/kg in rodents. In vitro, the combination of Ea-AcOEt extract and paclitaxel showed a synergistic effect on both cancer cell lines. CONCLUSION The Ea-AcOEt extract is a potential candidate for breast cancer treatment.
Collapse
Affiliation(s)
- Daniel Abraham Espinosa-Paredes
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Alcaldía Gustavo A. Madero, CDMX, México
| | - Jorge Cornejo-Garrido
- Laboratorio de Fitoquímica, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Alcaldía Gustavo A. Madero, CDMX, México
| | | | - Oswaldo Pablo Martínez-Rodríguez
- Laboratorio de Biopolímeros, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN); Av. Wilfrido Massieu Esq. Cda. Manuel Stampa S/N Col. Unidad Profesional López Mateos, Alcaldía Gustavo A. Madero, CDMX, México
| | - María Eugenia Jaramillo-Flores
- Laboratorio de Biopolímeros, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN); Av. Wilfrido Massieu Esq. Cda. Manuel Stampa S/N Col. Unidad Profesional López Mateos, Alcaldía Gustavo A. Madero, CDMX, México
| | - Cynthia Ordaz-Pichardo
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Alcaldía Gustavo A. Madero, CDMX, México
| |
Collapse
|
34
|
Salimi A, Jamali Z, Atashbar S, Khezri S, Ghorbanpour AM, Etefaghi N. Pathogenic Mechanisms and Therapeutic Implication in Nickel-Induced Cell Damage. Endocr Metab Immune Disord Drug Targets 2020; 20:968-984. [DOI: 10.2174/1871530320666200214123118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/24/2019] [Accepted: 03/07/2019] [Indexed: 11/22/2022]
Abstract
Background:
Nickel (Ni) is mostly applied in a number of industrial areas such as printing
inks, welding, alloys, electronics and electrical professions. Occupational or environmental exposure to
nickel may lead to cancer, allergy reaction, nephrotoxicity, hepatotoxicity, neurotoxicity, as well as
cell damage, apoptosis and oxidative stress.
Methods:
In here, we focused on published studies about cell death, carcinogenicity, allergy reactions
and neurotoxicity, and promising agents for the prevention and treatment of the toxicity by Ni.
Results:
Our review showed that in the last few years, more researches have focused on reactive oxygen
species formation, oxidative stress, DNA damages, apoptosis, interaction with involving receptors
in allergy and mitochondrial damages in neuron induced by Ni.
Conclusion:
The collected data in this paper provide useful information about the main toxicities induced
by Ni, also, their fundamental mechanisms, and how to discover new ameliorative agents for
prevention and treatment by reviewing agents with protective and therapeutic consequences on Ni
induced toxicity.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saman Atashbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir M. Ghorbanpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nahid Etefaghi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
35
|
Izzo L, Pacifico S, Piccolella S, Castaldo L, Narváez A, Grosso M, Ritieni A. Chemical Analysis of Minor Bioactive Components and Cannabidiolic Acid in Commercial Hemp Seed Oil. Molecules 2020; 25:E3710. [PMID: 32823936 PMCID: PMC7464709 DOI: 10.3390/molecules25163710] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Although hemp seed (HS) oil is characterized by more than 80% polyunsaturated fatty acids (PUFAs), a very high ω-6-to-ω-3 ratio is not a popular commodity. The aim of this work was to provide useful data about the bioactive components and cannabidiolic acid content in thirteen different commercial hemp seed oils. The investigated HS oils showed a good ω-6/ω-3 ratio, ranging from 1.71 to 2.27, massively differed in their chlorophylls (0.041-2.64 µg/g) and carotenoids contents (0.29-1.73 µg/g), as well as in total phenols (22.1-160.8 mg Gallic Acid Equivalents (GAE)/g) and tocopherols (3.47-13.25 mg/100 g). Since the high content of PUFAs in HS oils, photo-oxidative stability was investigated by determining the Thiobarbituric Acid Reactive Substances (TBARS) assay and extinction coefficient K232 and K270 after the photo-oxidative test. The percentage of increase in K232 and K270 ranged from 1.2 to 8.5% and from 3.7 to 26.0%, respectively, indicating good oxidative stability, but TBARS showed a 1.5- to 2.5-fold increase in oxidative behavior when compared to the initial values. Therefore, the diversity in bioactive compounds in HS oils, and their high nutritional value, suggest the need for a disciplinary booklet that well defines agronomic and post-harvest management conditions for achieving a good food objective.
Collapse
Affiliation(s)
- Luana Izzo
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy; (L.C.); (A.N.); (A.R.)
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.P.); (S.P.)
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.P.); (S.P.)
| | - Luigi Castaldo
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy; (L.C.); (A.N.); (A.R.)
| | - Alfonso Narváez
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy; (L.C.); (A.N.); (A.R.)
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples “Federico II”, CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy;
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy; (L.C.); (A.N.); (A.R.)
- Health Education and Sustainable Development, “Federico II” University, 80131 Naples, Italy
| |
Collapse
|
36
|
Yamabe S, Tsuchida N, Yamazaki S. A DFT Study on Transition States of Inhibition of Oxidation by α‐Tocopherol. ChemistrySelect 2020. [DOI: 10.1002/slct.202002139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shinichi Yamabe
- Department of ChemistryNara University of Education, Takabatake-cho Nara 630-8528 Japan
| | - Noriko Tsuchida
- Department of Liberal ArtsFaculty of MedicineSaitama Medical University 38 Morohongo Moroyama-machi Iruma-gun Saitama 350-0495 Japan
| | - Shoko Yamazaki
- Department of ChemistryNara University of Education, Takabatake-cho Nara 630-8528 Japan
| |
Collapse
|
37
|
Soto ME, Guarner-Lans V, Soria-Castro E, Manzano Pech L, Pérez-Torres I. Is Antioxidant Therapy a Useful Complementary Measure for Covid-19 Treatment? An Algorithm for Its Application. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E386. [PMID: 32752010 PMCID: PMC7466376 DOI: 10.3390/medicina56080386] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes the corona virus disease-19 which is accompanied by severe pneumonia, pulmonary alveolar collapses and which stops oxygen exchange. Viral transmissibility and pathogenesis depend on recognition by a receptor in the host, protease cleavage of the host membrane and fusion. SARS-CoV-2 binds to the angiotensin converting enzyme 2 receptor. Here, we discuss the general characteristics of the virus, its mechanism of action and the way in which the mechanism correlates with the comorbidities that increase the death rate. We also discuss the currently proposed therapeutic measures and propose the use of antioxidant drugs to help patients infected with the SARS-CoV-2. Oxidizing agents come from phagocytic leukocytes such as neutrophils, monocytes, macrophages and eosinophils that invade tissue. Free radicals promote cytotoxicity thus injuring cells. They also trigger the mechanism of inflammation by mediating the activation of NFkB and inducing the transcription of cytokine production genes. Release of cytokines enhances the inflammatory response. Oxidative stress is elevated during critical illnesses and contributes to organ failure. In corona virus disease-19 there is an intense inflammatory response known as a cytokine storm that could be mediated by oxidative stress. Although antioxidant therapy has not been tested in corona virus disease-19, the consequences of antioxidant therapy in sepsis, acute respiratory distress syndrome and acute lung injury are known. It improves oxygenation rates, glutathione levels and strengthens the immune response. It reduces mechanical ventilation time, the length of stay in the intensive care unit, multiple organ dysfunctions and the length of stay in the hospital and mortality rates in acute lung injury/acute respiratory distress syndrome and could thus help patients with corona virus disease-19.
Collapse
Affiliation(s)
- María Elena Soto
- Immunology Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Verónica Guarner-Lans
- Physiology Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Elizabeth Soria-Castro
- Vascular Biomedicine Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (E.S.-C.); (L.M.P.)
| | - Linaloe Manzano Pech
- Vascular Biomedicine Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (E.S.-C.); (L.M.P.)
| | - Israel Pérez-Torres
- Vascular Biomedicine Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (E.S.-C.); (L.M.P.)
| |
Collapse
|
38
|
Wallert M, Börmel L, Lorkowski S. Inflammatory Diseases and Vitamin E-What Do We Know and Where Do We Go? Mol Nutr Food Res 2020; 65:e2000097. [PMID: 32692879 DOI: 10.1002/mnfr.202000097] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Inflammation-driven diseases and related comorbidities, such as the metabolic syndrome, obesity, fatty liver disease, and cardiovascular diseases cause significant global burden. There is a growing body of evidence that nutrients alter inflammatory responses and can therefore make a decisive contribution to the treatment of these diseases. Recently, the inflammasome, a cytosolic multiprotein complex, has been identified as a key player in inflammation and the development of various inflammation-mediated disorders, with nucleotide-binding domain and leucine-rich repeat pyrin domain (NLRP) 3 being the inflammasome of interest. Here an overview about the cellular signaling pathways underlying nuclear factor "kappa-light-chain-enhancer" of activated B-cells (NF-κB)- and NLRP3-mediated inflammatory processes, and the pathogenesis of the inflammatory diseases atherosclerosis and non-alcoholic fatty liver disease (NAFLD) is provided; next, the current state of knowledge for drug-based and dietary-based interventions for treating cardiovascular diseases and NAFLD is discussed. To date, one of the most important antioxidants in the human diet is vitamin E. Various in vitro and in vivo studies suggest that the different forms of vitamin E and also their derivatives have anti-inflammatory activity. Recent publications suggest that vitamin E-and possibly metabolites of vitamin E-are a promising therapeutic approach for treating inflammatory diseases such as NAFLD.
Collapse
Affiliation(s)
- Maria Wallert
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University Jena, Jena, 07743, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Lisa Börmel
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University Jena, Jena, 07743, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University Jena, Jena, 07743, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| |
Collapse
|
39
|
Zakharova IO, Akhmetshina AO, Bayunova LV, Kizhaeva LR, Avrova NF. The Effect of Alpha-Tocopherol on
Viability of PC12 Cells during Oxidative Stress and Expression of
Genes Encoding Pro- and Anti-Apoptotic Mitochondrial Proteins, SOD2
and Transcription Factors NRF-1, NRF-2 and TFAM. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020030084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Loukou I, Moustaki M, Sardeli O, Plyta M, Douros K. No association between alpha-tocopherol levels with pulmonary function or exacerbations in cystic fibrosis. Acta Paediatr 2020; 109:1489-1490. [PMID: 31925826 DOI: 10.1111/apa.15169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ioanna Loukou
- Cystic Fibrosis Department Agia Sofia Children's Hospital Athens Greece
| | - Maria Moustaki
- Cystic Fibrosis Department Agia Sofia Children's Hospital Athens Greece
| | - Olympia Sardeli
- Pediatric Allergy and Respiratory Unit 3rd Department of Pediatrics “Attikon” University Hospital School of Medicine National and Kapodistrian University of Athens Athens Greece
| | - Marina Plyta
- Cystic Fibrosis Department Agia Sofia Children's Hospital Athens Greece
| | - Konstantinos Douros
- Pediatric Allergy and Respiratory Unit 3rd Department of Pediatrics “Attikon” University Hospital School of Medicine National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
41
|
Alkadi H. A Review on Free Radicals and Antioxidants. Infect Disord Drug Targets 2020; 20:16-26. [PMID: 29952268 DOI: 10.2174/1871526518666180628124323] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 05/16/2023]
Abstract
Free radicals are generated in our body by several systems. A balance among free radicals and antioxidants is an important matter for appropriate physiological function. If free radicals become greater than the ability of the body to control them, a case known as oxidative stress appears, as a result of that, a number of human diseases spread in the body. Antioxidants can contribute to facingthis oxidative stress. The present review provides a brief overview of free radicals, oxidative stress, some natural antioxidants and the relationship between them.
Collapse
Affiliation(s)
- Hourieh Alkadi
- Department of Pharmaceutical Chemistry & Drug Control, Faculty of Pharmacy, Arab International University, Daraa, Syrian Arab Republic
| |
Collapse
|
42
|
Finno CJ, Peterson J, Kang M, Park S, Bordbari MH, Durbin-Johnson B, Settles M, Perez-Flores MC, Lee JH, Yamoah EN. Single-Cell RNA-seq Reveals Profound Alterations in Mechanosensitive Dorsal Root Ganglion Neurons with Vitamin E Deficiency. iScience 2019; 21:720-735. [PMID: 31733517 PMCID: PMC6864320 DOI: 10.1016/j.isci.2019.10.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/16/2019] [Accepted: 10/28/2019] [Indexed: 12/26/2022] Open
Abstract
Ninety percent of Americans consume less than the estimated average requirements of dietary vitamin E (vitE). Severe vitE deficiency due to genetic mutations in the tocopherol transfer protein (TTPA) in humans results in ataxia with vitE deficiency (AVED), with proprioceptive deficits and somatosensory degeneration arising from dorsal root ganglia neurons (DRGNs). Single-cell RNA-sequencing of DRGNs was performed in Ttpa-/- mice, an established model of AVED. In stark contrast to expected changes in proprioceptive neurons, Ttpa-/- DRGNs showed marked upregulation of voltage-gated Ca2+ and K+ channels in mechanosensitive, tyrosine-hydroxylase positive (TH+) DRGNs. The ensuing significant conductance changes resulted in reduced excitability in mechanosensitive Ttpa-/- DRGNs. A highly supplemented vitE diet (600 mg dl-α-tocopheryl acetate/kg diet) prevented the cellular and molecular alterations and improved mechanosensation. VitE deficiency profoundly alters the molecular signature and functional properties of mechanosensitive TH+ DRGN, representing an intriguing shift of the prevailing paradigm from proprioception to mechanical sensation.
Collapse
Affiliation(s)
- Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Janel Peterson
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Mincheol Kang
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Seojin Park
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Matthew H Bordbari
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Blythe Durbin-Johnson
- Bioinformatics Core Facility, Genome Center, University of California, Davis, CA 95616, USA
| | - Matthew Settles
- Bioinformatics Core Facility, Genome Center, University of California, Davis, CA 95616, USA
| | - Maria C Perez-Flores
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Jeong H Lee
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Ebenezer N Yamoah
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
43
|
Chambre DR, Tociu M, Stanescu MD, Popescu C. Influence of composition on the thermal behavior of oils extracted from the seeds of some Romanian grapes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6324-6332. [PMID: 31260108 DOI: 10.1002/jsfa.9909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The oils obtained from grape seeds are becoming a valuable way of exploiting winery waste and their properties are scrutinized for evaluating the potential usages. We examined the oils extracted with petroleum ether from grape seeds of four varieties of grapes (Cabernet Sauvignon, Feteasca Neagra, Merlot and Pinot Noir) from Romania looking at the influence of the fatty acid profile and of the antioxidants on their thermal behavior. RESULTS The fatty acid profiles of the oils were evaluated by 1 H-NMR spectroscopy, and the oil antioxidant capacity was determined by cupric ion reducing antioxidant capacity (CUPRAC) method. The main fatty acid component in all the oils is linoleic acid (over 70%), which, due to its known health benefits, make the oils of commercial interest. The thermal stability of grape seed oils appears to be mainly influenced by the percentage of polyunsaturated fatty acids in their composition, less polyunsaturated fatty acids making the oils more stable. The antioxidant compounds affect only the initial stage of the decomposition by limiting the formation of hydroperoxides in the allylic positions of the fatty acid chain. CONCLUSION Compared to pure samples of glyceryl-unsaturated fatty acids (glyceryl-trioleate, glyceryl-trilinoleate), the grape seed oils exhibit higher thermal stability, due to the presence of antioxidant compounds and to a synergistic action of unsaturated and saturated fatty acids, smaller percentage of the polyunsaturated and higher percentage of the saturated fatty acids enhancing the stability. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dorina R Chambre
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Arad, Romania
| | - Mihaela Tociu
- Faculty of Applied Chemistry and Material Sciences, Politehnica University, Bucharest, Romania
| | - Michaela D Stanescu
- Faculty of Applied Chemistry and Material Sciences, Politehnica University, Bucharest, Romania
| | - Crisan Popescu
- KAO European Research Laboratories, KAO Germany GmbH, Darmstadt, Germany
| |
Collapse
|
44
|
Viglianisi C, Menichetti S. Chain Breaking Antioxidant Activity of Heavy (S, Se, Te) Chalcogens Substituted Polyphenols. Antioxidants (Basel) 2019; 8:antiox8100487. [PMID: 31623080 PMCID: PMC6826409 DOI: 10.3390/antiox8100487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Polyphenols are probably the most important family of natural and synthetic chain-breaking antioxidants. Since long ago, chemists have studied how structural (bioinspired) modifications can improve the antioxidant activity of these compounds in terms of reaction rate with radical reactive oxygen species (ROS), catalytic character, multi-defence action, hydrophilicity/lipophilicity, biodistribution etc. In this framework, we will discuss the effect played on the overall antioxidant profile by the insertion of heavy chalcogens (S, Se and Te) in the phenolic skeleton.
Collapse
Affiliation(s)
- Caterina Viglianisi
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Stefano Menichetti
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
45
|
Testa D, Marcuccio G, Lombardo N, Cocuzza SG, Guerra G, Motta G. Role of α-Tocopherol Acetate on Nasal Respiratory Functions: Mucociliary Clearance and Rhinomanometric Evaluations in Primary Atrophic Rhinitis. EAR, NOSE & THROAT JOURNAL 2019; 100:NP290-NP295. [PMID: 31578104 DOI: 10.1177/0145561319870483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Primary atrophic rhinitis is a disease of the nose and of paranasalsinuses characterized by a progressive loss of function of nasal and paranasal mucosa caused by a gradual destruction of ciliary mucosalepithelium with atrophy of serous-mucous glands and loss of bonestructures.The aim of this study was to evaluate the therapeutic effects of topic α-tochopherol acetate (vitamin E) in patients with primary atrophicrhinitis based on subjective and objective data.We analyzed 44 patients with dry nose sensation and endoscopic evidence of atrophic nasal mucosa. We analyzed endoscopic mucosascore, anterior rhinomanometry, and nasal mucociliary clearance before and after 6 months of topic treatment with α-tochopherol acetate. For statistical analysis, we used paired samples t test (95% confidence interval [CI], P < .05) for rhinomanometric and muciliary transit time evaluations and analysis of variance 1-way test (95% CI, P < .05) for endoscopic evaluation. All patients showed an improvement in "dry nose" sensation and inperception of nasal airflow. Rhinomanometric examination showed increase of nasal airflow at follow-up (P < .05); nasal mucociliaryclearance showed a reduction in mean transit time (P < .05); and endoscopic evaluation showed significative improvement of hydration of nasalmucosa and significative decreasing nasal crusts and mucusaccumulation (P < .05). Medical treatment for primary atrophic rhinitis is not clearly documented in the literature; in this research, it was demonstrated that α-ochopherol acetate could be a possible treatment for atrophic rhinitis.
Collapse
Affiliation(s)
- Domenico Testa
- Department of General and Specialistic Surgery-Head and Neck Unit, University of Campania "L Vanvitelli," Napoli, Italy
| | - Giuseppina Marcuccio
- Department of General and Specialistic Surgery-Head and Neck Unit, University of Campania "L Vanvitelli," Napoli, Italy
| | - Nicola Lombardo
- Department of Surgical and Medical Science, Otolaryngology, 'Magna Grecia' University, Catanzaro, Italy
| | - Salvatore Giuseppe Cocuzza
- Department of Surgical and Medical Science and Advanced Technologies "G.F. Ingrassia," Otolaryngology, University of Catania, Catania, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "V Tiberio," University of Molise, Campobasso, Italy
| | - Gaetano Motta
- Department of General and Specialistic Surgery-Head and Neck Unit, University of Campania "L Vanvitelli," Napoli, Italy
| |
Collapse
|
46
|
Zhan W, Liu J, Pan Q, Wang H, Yan S, Li K, Deng M, Li W, Liu N, Kong Q, Fernie AR, Yan J. An allele of ZmPORB2 encoding a protochlorophyllide oxidoreductase promotes tocopherol accumulation in both leaves and kernels of maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:114-127. [PMID: 31169939 DOI: 10.1111/tpj.14432] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 05/27/2023]
Abstract
Phytol is one of the key precursors for tocopherol synthesis in plants, however, the underlying mechanisms concerning the accumulation of tocopherol remain poorly understood. In this study, qVE5, a major QTL affecting tocopherol accumulation in maize kernels was identified via a positional cloning approach. qVE5 encodes a protochlorophyllide oxidoreductase (ZmPORB2), which localizes to the chloroplast. Overexpression of ZmPORB2 increased tocopherol content in both leaves and kernels. Candidate gene association analysis identified a 5/8-bp insertion/deletion (InDel058) in the 5' untranslated region (UTR) as the causal polymorphism in affecting ZmPORB2 expression and being highly associated with tocopherol content. We showed that higher expression of ZmPORB2 correlated with more chlorophyll metabolites in the leaf following pollination. RNA-sequencing and metabolic analysis in near isogenic lines (NILs) support that ZmPORB2 participates in chlorophyll metabolism enabling the production of phytol, an important precursor of tocopherol. We also found that the tocopherol content in the kernel is mainly determined by the maternal genotype, a fact that was further confirmed by in vitro culture experiments. Finally, a PCR-based marker based on Indel058 was developed in order to facilitate the high tocopherol (vitamin E) maize breeding.
Collapse
Affiliation(s)
- Wei Zhan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingchun Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Crop Germplasm Resources of Northern China (Ministry of Education), Hebei Sub-center of National Maize Improvement Center of China, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Shijuan Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nannan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Kong
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
47
|
Gustafsson SB, Jacobsson SOP. Effects of cannabinoids on the development of chick embryos in ovo. Sci Rep 2019; 9:13486. [PMID: 31530885 PMCID: PMC6748917 DOI: 10.1038/s41598-019-50004-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
We have examined the effects of the synthetic cannabinoids HU 210 and HU 211, the plant-derived cannabidiol and the endogenous cannabinoid anandamide on the viability and development of chick embryos. Fertilized White Leghorn chicken eggs were injected with the test compounds or carrier vehicle, via a drilled small hole in the egg, directly into the egg yolk. After nine days of exposure, the embryonal viability, length and wet weight of embryos, and wet weight of brains were measured, and the development stages were assessed according to the Hamburger and Hamilton (HH) scale. The potent synthetic cannabinoid receptor agonist HU 210 and the non-psychotropic cannabidiol were embryotoxic at the highest concentrations examined (10 µM and 50 µM, respectively), with no viable embryos after the HU 210 injection, and 20% viability after the cannabidiol injections. The effects of HU 210 on the chick embryo were attenuated by α-tocopherol and the cannabinoid receptor antagonist AM251, whereas only α-tocopherol gave a statistically significant protection against the embryotoxic effects of cannabidiol. This study shows that exposure to plant-derived or synthetic cannabinoids during early embryonal development decreases embryonal viability. Extrapolation of data across species is of course difficult, but the data would argue against the use of cannabinoids, be it recreationally or therapeutically, during pregnancy.
Collapse
Affiliation(s)
- Sofia B Gustafsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87, Umeå, Sweden
| | - Stig O P Jacobsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
48
|
Azzi A. Tocopherols, tocotrienols and tocomonoenols: Many similar molecules but only one vitamin E. Redox Biol 2019; 26:101259. [PMID: 31254734 PMCID: PMC6604160 DOI: 10.1016/j.redox.2019.101259] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 11/20/2022] Open
Abstract
The aim of this article is to correct a very general error in scientific articles, in textbooks and in the Internet that has become an accepted fact. In this literature, the term "vitamin E″ is used for several similar molecules (both tocopherols and tocotrienols) that have never been shown to have vitamin property, i.e. a protective effect against the human deficiency disease. In fact, the name "vitamin E″ should only be used to define molecules that prevent the human deficiency disease "Ataxia with Vitamin E Deficiency" (AVED). Only one such molecule is known, α-tocopherol. This error may confuse consumers as well as medical doctors, who prescribe vitamin E without realizing that the current use of the name includes molecules of unknown, if not unwanted functions.
Collapse
Affiliation(s)
- Angelo Azzi
- Sackler School of Graduate Biomedical Pharmacology and Drug Development Program, Tufts University, 75 Kneeland Street, Boston, MA, 02111, USA.
| |
Collapse
|
49
|
Siti F, Dubouchaud H, Hininger I, Quiclet C, Vial G, Galinier A, Casteilla L, Fontaine E, Batandier C, Couturier K. Maternal exercise before and during gestation modifies liver and muscle mitochondria in rat offspring. ACTA ACUST UNITED AC 2019; 222:jeb.194969. [PMID: 31019067 DOI: 10.1242/jeb.194969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/05/2019] [Indexed: 01/09/2023]
Abstract
It is now well established that the intrauterine environment is of major importance for offspring health during later life. Endurance training during pregnancy is associated with positive metabolic adjustments and beneficial effects on the balance between pro-oxidants and antioxidants (redox state) in the offspring. Our hypothesis was that these changes could rely on mitochondrial adaptations in the offspring due to modifications of the fetal environment induced by maternal endurance training. Therefore, we compared the liver and skeletal muscle mitochondrial function and the redox status of young rats whose mothers underwent moderate endurance training (treadmill running) before and during gestation (T) with those of young rats from untrained mothers (C). Our results show a significant reduction in the spontaneous H2O2 release by liver and muscle mitochondria in the T versus C offspring (P<0.05). These changes were accompanied by alterations in oxygen consumption. Moreover, the percentage of short-chain fatty acids increased significantly in liver mitochondria from T offspring. This may lead to improvements in the fluidity and the flexibility of the membrane. In plasma, glutathione peroxidase activity and protein oxidation were significantly higher in T offspring than in C offspring (P<0.05). Such changes in plasma could represent an adaptive signal transmitted from mothers to their offspring. We thus demonstrated for the first time, to our knowledge, that it is possible to act on bioenergetic function including alterations of mitochondrial function in offspring by modifying maternal physical activity before and during pregnancy. These changes could be crucial for the future health of the offspring.
Collapse
Affiliation(s)
- Farida Siti
- Université Grenoble Alpes, INSERM, LBFA, 38058 Grenoble, France.,Université Grenoble Alpes, UFR STAPS, SFR Sport Exercice Motricité, 38058 Grenoble, France.,Department of Medical Pharmacy, Universitas Indonesia, 10430 Jakarta, Indonesia
| | - Hervé Dubouchaud
- Université Grenoble Alpes, INSERM, LBFA, 38058 Grenoble, France.,Université Grenoble Alpes, UFR STAPS, SFR Sport Exercice Motricité, 38058 Grenoble, France
| | | | - Charline Quiclet
- Université Grenoble Alpes, INSERM, LBFA, 38058 Grenoble, France.,Université Grenoble Alpes, UFR STAPS, SFR Sport Exercice Motricité, 38058 Grenoble, France
| | - Guillaume Vial
- Université Grenoble Alpes, INSERM, HP2, 38000 Grenoble, France
| | - Anne Galinier
- Université de Toulouse, STROMALab, CNRS: ERL5311, EFS: INP-ENVT, INSERM: U-1031, UPS, 31100 Toulouse, France
| | - Louis Casteilla
- Université de Toulouse, STROMALab, CNRS: ERL5311, EFS: INP-ENVT, INSERM: U-1031, UPS, 31100 Toulouse, France
| | - Eric Fontaine
- Université Grenoble Alpes, INSERM, LBFA, 38058 Grenoble, France.,Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | | | - Karine Couturier
- Université Grenoble Alpes, INSERM, LBFA, 38058 Grenoble, France .,Université Grenoble Alpes, UFR STAPS, SFR Sport Exercice Motricité, 38058 Grenoble, France
| |
Collapse
|
50
|
Molochkina EM, Treshchenkova YA. The Effect of Alpha-Tocopherol on the Activity of Acetylcholinesterases from Different Sources. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|