1
|
Zhang W, Meng L, Zhang X, Li Z, Hong F. CNPY2 drives DSS-induced colitis via the macrophage-ROS axis. Biomed Pharmacother 2025; 187:118078. [PMID: 40262233 DOI: 10.1016/j.biopha.2025.118078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/06/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract, driven by genetic, environmental, and immune system factors. However, its exact mechanisms remain unclear. Here, we demonstrate that CNPY2 plays a critical role in colitis by modulating macrophage activity. Mice with whole-body Cnpy2 knockout (KO) exhibited significantly reduced dextran sodium sulfate (DSS)-induced colitis compared to wild-type controls. Cnpy2 KO mice showed less mucosal barrier disruption and fewer lamina propria macrophages (LPMφs) following DSS treatment. Proinflammatory cytokine production was also diminished in the colons of Cnpy2 KO mice. Furthermore, Cnpy2 KO macrophages generated markedly lower levels of reactive oxygen species (ROS), partly through CHOP regulation. Notably, treatment with the ROS scavenger N-acetyl-L-cysteine (NAC) completely abolished DSS-induced colitis in Cnpy2 KO mice. Thus, CNPY2 exacerbates DSS-induced colitis primarily through macrophage-specific effects, with ROS upregulation being central to its pathogenic role.
Collapse
Affiliation(s)
- Wenqing Zhang
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, United States; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH 43210, United States
| | - Lingbin Meng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH 43210, United States
| | - Xiaoli Zhang
- Biostatistics Core, College of Nursing, College of Public Health, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, United States
| | - Zihai Li
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, United States; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH 43210, United States.
| | - Feng Hong
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, United States; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH 43210, United States.
| |
Collapse
|
2
|
Lu D, Wu Y, Fu M, Wu Y, Wang Z, Lin J, Yang Q. CALB1: Anovel antiviral factor in chicken ileal mucus. Int J Biol Macromol 2023; 253:127007. [PMID: 37734520 DOI: 10.1016/j.ijbiomac.2023.127007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Intestinal mucus is the first line of defense against pathogens and has several active components. Poultry have a short intestine, the mucus of which may contain antiviral components. We hence investigated the antiviral components of mucus and explored their mechanisms of action. Initially, we isolated chicken intestinal mucus proteins that significantly inhibited the replication of avian viruses. The ileum 10-30 kDa protein fraction showed the greatest inhibition of viral replication. Moreover, liquid chromatography-mass spectrometry revealed 12 high-abundance proteins in the ileum 10-30 kDa protein fraction. Among them, we investigated the antiviral activity of calcium binding protein 1 (CALB1). Furthermore, eukaryotically and prokaryotically expressed CALB1 significantly suppressed the replication of avian viruses, possibly by binding calcium ions and/or inducing autophagy. In conclusion, we isolated and identified CALB1 from chicken intestinal mucus, which suppressed replication of avian viruses by regulating cellular calcium-ion homeostasis and autophagy.
Collapse
Affiliation(s)
- Danqing Lu
- College of Life Sciences, SanYa Institute of Nanjing Agricultural University, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China
| | - Yang Wu
- College of Life Sciences, SanYa Institute of Nanjing Agricultural University, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China
| | - Mei Fu
- College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Yaotang Wu
- College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Zhisheng Wang
- Institute of Veterinary Immunology and Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Jian Lin
- College of Life Sciences, SanYa Institute of Nanjing Agricultural University, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China; College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China.
| | - Qian Yang
- College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
3
|
Jia R, Han J, Liu X, Li K, Lai W, Bian L, Yan J, Xi Z. Exposure to Polypropylene Microplastics via Oral Ingestion Induces Colonic Apoptosis and Intestinal Barrier Damage through Oxidative Stress and Inflammation in Mice. TOXICS 2023; 11:127. [PMID: 36851002 PMCID: PMC9962291 DOI: 10.3390/toxics11020127] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 05/30/2023]
Abstract
Extensive environmental pollution by microplastics has increased the risk of human exposure to plastics. However, the biosafety of polypropylene microplastics (PP-MPs), especially of PP particles < 10 μm, in mammals has not been studied. Thus, here, we explored the mechanism of action and effect of exposure to small and large PP-MPs, via oral ingestion, on the mouse intestinal tract. Male C57BL/6 mice were administered PP suspensions (8 and 70 μm; 0.1, 1.0, and 10 mg/mL) for 28 days. PP-MP treatment resulted in inflammatory pathological damage, ultrastructural changes in intestinal epithelial cells, imbalance of the redox system, and inflammatory reactions in the colon. Additionally, we observed damage to the tight junctions of the colon and decreased intestinal mucus secretion and ion transporter expression. Further, the apoptotic rate of colonic cells significantly increased after PP-MP treatment. The expression of pro-inflammatory and pro-apoptosis proteins significantly increased in colon tissue, while the expression of anti-inflammatory and anti-apoptosis proteins significantly decreased. In summary, this study demonstrates that PP-MPs induce colonic apoptosis and intestinal barrier damage through oxidative stress and activation of the TLR4/NF-κB inflammatory signal pathway in mice, which provides new insights into the toxicity of MPs in mammals.
Collapse
Affiliation(s)
- Rui Jia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jie Han
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
4
|
Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022; 8:2825-2848. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.
Collapse
Affiliation(s)
- Dipesh Dinanath Pednekar
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Madison A Liguori
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | | | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.,BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zejian Zhou
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, West Haven, Connecticut 06516, United States
| | - Kagya Amoako
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
5
|
Tang M, Fang R, Xue J, Yang K, Lu Y. Effects of Catalase on Growth Performance, Antioxidant Capacity, Intestinal Morphology, and Microbial Composition in Yellow Broilers. Front Vet Sci 2022; 9:802051. [PMID: 35400106 PMCID: PMC8988485 DOI: 10.3389/fvets.2022.802051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this experiment was to study the effects of catalase (CAT) on growth performance, antioxidant capacity, intestinal morphology, and microbial composition of yellow broilers. Male Lingnan yellow broilers (360), aged 1 day, were randomly divided into control group (CON) (fed with a basic diet), R1 group (fed with basic diet + 150 U/kg catalase), and R2 group (fed with basic diet + 200 U/kg catalase). Each group had 8 replicates and 15 chickens in each replicate. The test is divided into the early stage (1–30 days) and the later stage (31–60 days). The results showed that compared with the control group, groups R1 and R2 significantly (p < 0.05) increased the weight gain and reduced (p < 0.05) the ratio of feed to gain in the early and the whole stages; prominently increased (p < 0.05) the concentration of total antioxidant capacity (T-AOC), the activities of CAT, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) in livers, the activities of CAT and GSH-Px in serum, and CAT in the jejunum in the early and the later stages; markedly increased (p < 0.05) the villus height and the ratio of villus height to crypt depth of the duodenum in the early and the later stages, the villus height and the villus height:crypt depth ratio of the jejunum and ileum in the early stage, and significantly lowered (p < 0.05) the crypt depth of the duodenum (in the early and the later stages), jejunum, and ileum (in early stage); memorably (p < 0.05) increased the number of total bacteria and Bacteroidetes in ceca, as well as the number of Lactobacillus in the jejunum (p < 0.05) on the 30th; significantly (p < 0.05) increased the mRNA expression of junction adhesion molecule 2 (JAM2), mucin 2 (MCU2), and occlusal protein (occludin) in the duodenum in the early stage, and increased (p < 0.05) the mRNA expression of JAM2 in the jejunum in the later stage. Collectively, adding catalase (CAT) to the diet of yellow broilers can improve the growth performance and the antioxidant capacity, promoting the integrity of intestinal morphology, optimizing the composition of intestinal microorganisms, and upregulating the mRNA expression of tight junction protein.
Collapse
Affiliation(s)
- Minghong Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safe (CICAPS), Changsha, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safe (CICAPS), Changsha, China
- *Correspondence: Rejun Fang
| | - Junjing Xue
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safe (CICAPS), Changsha, China
| | - Kaili Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safe (CICAPS), Changsha, China
| | - Yi Lu
- Research and Development Center, Shanghai Menon Biotechnology Co., LTD, Shanghai, China
| |
Collapse
|
6
|
Sun M, Ban W, Ling H, Yu X, He Z, Jiang Q, Sun J. Emerging nanomedicine and prodrug delivery strategies for the treatment of inflammatory bowel disease. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Huang X, Tang M. Review of gut nanotoxicology in mammals: Exposure, transformation, distribution and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145078. [PMID: 33940715 DOI: 10.1016/j.scitotenv.2021.145078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Nanomaterials are increasingly used in food processing, daily necessities and other fields due to their excellent properties, and increase the environmental contamination. Human beings will inevitably come into contact with these nanomaterials through multiple exposure routes especially oral exposure. The intestine is an important organ for nutrient absorption and physiologic barrier, which may be the main target of nanoparticles (NPs) exposure. However, for a long time, research on the toxicity of NPs has mainly focused on organs such as liver, kidney and brain. There are few assessment data over the intestinal safety. Recently, as reported, NPs can be translocated to the intestinal part in mammals and would be distributed in different substructures of intestines, thus causing damage to the structure and function of the intestine, in which the gut microbiota and its metabolites play important roles. In addition, due to the special physiological environment of gut, nanomaterials will undergo complex transformations that may cause different biological effects from their original form. Therefore, this review aims to assess the potential adverse effects of NPs on intestine and its possible mechanisms through the results of in vivo mammalian experiments. In addition, the exposure pathway, biodistribution and biotransformation of NPs in the intestine are also considered. We hope this review will arouse people's attention to the intestinal nanotoxicology and provide basic information for further related studies.
Collapse
Affiliation(s)
- Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
8
|
Kaur J, Singh BP, Chaudhary V, Elshaghabee FMF, Singh J, Singh A, Rokana N, Panwar H. Probiotics as Live Bio-therapeutics: Prospects and Perspectives. MICROORGANISMS FOR SUSTAINABILITY 2021:83-120. [DOI: 10.1007/978-981-15-6795-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Gao T, Wang Z, Cao J, Dong Y, Chen Y. Melatonin attenuates microbiota dysbiosis of jejunum in short-term sleep deprived mice. J Microbiol 2020; 58:588-597. [PMID: 32424577 DOI: 10.1007/s12275-020-0094-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022]
Abstract
Our study demonstrated that sleep deprivation resulted in homeostasis disorder of colon. Our study goes deeper into the positive effects of melatonin on small intestinal microbiota disorder caused by sleep deprivation. We successfully established a multiplatform 72 h sleep deprivation mouse model with or without melatonin supplementation, and analyzed the change of small intestinal microbiota using high-throughput sequencing of the 16S rRNA. We found melatonin supplementation suppressed the decrease of plasma melatonin level in sleep deprivation mice. Meanwhile, melatonin supplementation improved significantly the reduction in OTU numbers and the diversity and richness of jejunal microbiota and the abundance of Bacteroidaeae and Prevotellaceae, as well as an increase in the Firmicutes-to-Bacteroidetes ratio and the content of Moraxellaceae and Aeromonadaceae in the jejunum of sleep deprived-mice. Moreover, melatonin supplementation reversed the change of metabolic pathway in sleep deprived-mice, including metabolism, signal transduction mechanisms and transcription etc, which were related to intestinal health. Furthermore, melatonin supplementation inverted the sleep deprivation-induced a decline of anti-inflammatory cytokines (IL-22) and an increase of the ROS and proinflammatory cytokines (IL-17) in jejunum. These findings suggested that melatonin, similar to a probiotics agent, can reverse sleep deprivation-induced small intestinal microbiota disorder by suppressing oxidative stress and inflammation response.
Collapse
Affiliation(s)
- Ting Gao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
10
|
Biological Activity of Porcine Gastric Mucin on Stress Resistance and Immunomodulation. Molecules 2020; 25:molecules25132981. [PMID: 32610600 PMCID: PMC7411864 DOI: 10.3390/molecules25132981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Purified porcine gastric mucin (PGM) is an alternative biomaterial to native mucin which displays multifunctional properties for exploring a wide range of biomedical applications. The present study evaluated the in vitro (RAW 264.7 macrophage cells) and in vivo (zebrafish embryos and larvae) bioactivities of PGM. The median lethal concentration (LC50) of PGM was 197.9 µg/mL for embryos, while it was non-toxic to RAW 264.7 cells, even at 500 µg/mL. Following PGM exposure (100 µg/mL), a higher embryo hatching rate (59.9%) was observed at 48 h post fertilization, compared to the control (30.6%). Protective effects of PGM from pathogenic Aeromonas hydrophila were demonstrated by high larvae survival rates of 85.0% and 94.0% at 50 and 100 μg/mL of PGM exposure, respectively. Heat tolerance effect of PGM (50 and 100 µg/mL) on larvae (40 °C for 48 h) was confirmed by 75% and 100% of survival rates, respectively. Additionally, PGM reduced the A. hydrophila–induced reactive oxygen species (ROS) generation in larvae. The qRT-PCR results in PGM exposed larvae exhibited induction of immune-related genes (tlr5a and tlr5b, myd88, c-rel, il1β, tnf-α, il6, il10, cxcl18b, ccl34a.4, defbl1, hamp, ctsd, muc2.1, muc5.1, muc5.2, and muc5.3), stress response (hsp70, hsp90aa1.1, and hsp90ab1), and antioxidant genes (cat and sod1). Moreover, our results revealed that PGM involved in the regulation of transcriptional gene induction increases Hsp90 protein in the zebrafish larvae. Furthermore, upregulation of Il6, Il10, Tnfα, Ccl3, Defa-rs2, Defa21 and Camp and antioxidant genes (Sod2 and Cat) were observed in PGM-exposed RAW 264.7 cells. Overall findings confirmed the activation of immune responses, disease resistance against pathogenic bacteria, heat tolerance, and ROS-scavenging properties by PGM, which may provide insights into new applications for PGM as a multifunctional immunomodulator.
Collapse
|
11
|
Menicagli R, Marotta O, Serra R. Free Radical Production in the Smoking of E-Cigarettes and their Possible Effects in Human Health. Int J Prev Med 2020; 11:53. [PMID: 32577183 PMCID: PMC7297425 DOI: 10.4103/ijpvm.ijpvm_424_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 04/05/2020] [Indexed: 01/23/2023] Open
Abstract
Background: The increase in smoking e-cigarettes with nicotine or only flavoring compounds requires a deep study on consequences on human health. This research aims to study the possible process, to form free radicals or the nuclei's damages with consequent micronuclei's formation. Methods: The study analyzed three groups: the first one that uses e-cigarettes with nicotine, (e-nicotine), the second flavoured liquid (e-vapor) and third the not-smoking group. We determinated the salivary malondialdehyde (MDA), the total salivary mucins (SM). and in buccal smear cells the micronuclei (MN). We statistically analyzed the results with the Mann-Whitney U Test Calculator. Results: Smoking e-cigarettes e-nicotine or e-vapor produced a great and significative amount of MDA vs control group: p ≤ 0.05. Only those smoking e-nicotine, have a highest and statically significant amount of salivary mucins vs control group: P value 00496. In both smokers groups, the mean of MN scores has a significant difference vs control group P ≤ 0.05. Conclusions: This study shows the possible damages of the nuclei, but the increase of radicals, oral mucins and MN needs more researches.
Collapse
Affiliation(s)
| | - Ortensio Marotta
- Prof University Federico II, ENT DEPT Medicine Faculty, Naples, Italy
| | | |
Collapse
|
12
|
Limage R, Tako E, Kolba N, Guo Z, García-Rodríguez A, Marques CNH, Mahler GJ. TiO 2 Nanoparticles and Commensal Bacteria Alter Mucus Layer Thickness and Composition in a Gastrointestinal Tract Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000601. [PMID: 32338455 PMCID: PMC7282385 DOI: 10.1002/smll.202000601] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 05/05/2023]
Abstract
Nanoparticles (NPs) are used in food packaging and processing and have become an integral part of many commonly ingested products. There are few studies that have focused on the interaction between ingested NPs, gut function, the mucus layer, and the gut microbiota. In this work, an in vitro model of gastrointestinal (GI) tract is used to determine whether, and how, the mucus layer is affected by the presence of Gram-positive, commensal Lactobacillus rhamnosus; Gram-negative, opportunistic Escherichia coli; and/or exposure to physiologically relevant doses of pristine or digested TiO2 NPs. Caco-2/HT29-MTX-E12 cell monolayers are exposed to physiological concentrations of bacteria (expressing fluorescent proteins) and/or TiO2 nanoparticles for a period of 4 h. To determine mucus thickness and composition, cell monolayers are stained with alcian blue, periodic acid schiff, or an Alexa Fluor 488 conjugate of wheat germ agglutinin. It is found that the presence of both bacteria and nanoparticles alter the thickness and composition of the mucus layer. Changes in the distribution or pattern of mucins can be indicative of pathological conditions, and this model provides a platform for understanding how bacteria and/or NPs may interact with and alter the mucus layer.
Collapse
Affiliation(s)
| | - Elad Tako
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Nikolai Kolba
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Zhongyuan Guo
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Alba García-Rodríguez
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Cláudia N H Marques
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| |
Collapse
|
13
|
Ma H, Zhang B, Hu Y, Wang J, Liu J, Qin R, Lv S, Wang S. Correlation Analysis of Intestinal Redox State with the Gut Microbiota Reveals the Positive Intervention of Tea Polyphenols on Hyperlipidemia in High Fat Diet Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7325-7335. [PMID: 31184120 DOI: 10.1021/acs.jafc.9b02211] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tea polyphenols (TP) possess the ability to regulate dyslipidemia and gut microbiota dysbiosis. However, the underlying mechanism is still elusive. The present study explored the intervention of TP on high fat diet induced metabolic disorders, gut microbiota dysbiosis in mice, and the underlying intestinal mechanism. As a result, TP significantly ameliorated hyperlipidemia, improved the expression levels of hepatic lipid metabolism genes, and modulated gut microbiota. The underlying mechanism was supposed to rely on the maintaining of intestinal redox state by TP. Intestinal redox related indicators were significantly correlated with the distribution of gut microbiota. An unidentified genus of Lachnospiraceae, Bacteroides, Alistipes, and Faecalibaculum were identified as the biomarkers for intestinal redox state. Importantly, different dosages of TP modulated intestinal redox state and gut microbiota in varied patterns, and an overdose intake attenuated the beneficial effects on gut health. Our findings offered novel insights into the mechanism of TP on intestinal homeostasis.
Collapse
Affiliation(s)
- Hui Ma
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , People's Republic of China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , People's Republic of China
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , People's Republic of China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , People's Republic of China
| | - Jingmin Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , People's Republic of China
| | - Renbing Qin
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Shiwen Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , People's Republic of China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , People's Republic of China
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| |
Collapse
|
14
|
Campbell CL, Yu R, Li F, Zhou Q, Chen D, Qi C, Yin Y, Sun J. Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice. Diabetes Metab Syndr Obes 2019; 12:97-107. [PMID: 30655683 PMCID: PMC6324607 DOI: 10.2147/dmso.s192228] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The antioxidant resveratrol (RSV) has low bioavailability and can reach the colon to access the gut microbial ecosystem. RSV administration together with high-fat diet prevented abnormal changes of intestinal microbiota. However, whether or not RSV can reshape the intestinal microbiota of obese mice and alleviate obesity-related diseases remains to be studied. This study aimed to explore the role of RSV in alleviating high-fat-induced obesity and its relationship with oxidative stress and gut microbiota. METHODS Male C57BL/6 mice were divided into five groups and administered for 16 weeks with: standard diet (CON), high-fat diet (60% energy for lard, HFD), and HFD with low, medium, and high dose of RSV, 50, 75, and 100 mg/kg body weight administered daily via drinking water, respectively. RESULTS Medium and high RSV treatment significantly prevented body weight gain, decreased relative weight of liver and adipose tissue compared with HFD (P<0.05). All doses significantly prevented HFD-induced increase of serum triglyceride, low density lipoprotein cholesterol, glucose, and endotoxemia (P<0.05). Medium and high dose also prevented chronic inflammation by decreasing serum interleukin-1 and tumor necrosis factor-alpha (P<0.05), and oxidative stress in liver and brain indicated by increase in superoxide dismutase, catalase, glutathione peroxidase activity (P<0.05). Formation of malondialdehyde was prevented by all doses compared with HFD (P<0.05). Both medium and high doses of RES increased alpha diversity of gut microbiota according to the Chao1 and Shannon indices (P<0.05). Medium dose induced obvious shift in gut microbiota composition according to principal component analysis. High dose of RSV effectively prevented HFD-induced increase of Coriobacteriaceae and Desulfovi-brionaceae (P<0.05), which show a significant correlation with body weight (r>0.8 P<0.00). CONCLUSION RSV prevented HFD-induced endotoxemia, oxidative stress, and gut microbiota change.
Collapse
Affiliation(s)
- C Linda Campbell
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China,
- Department of Central Lab, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China, ,
| | - Fengzhi Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qin Zhou
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China,
| | - Daozhen Chen
- Department of Central Lab, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China, ,
| | - Ce Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongxiang Yin
- Department of Pathology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Jin Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Early tranexamic acid administration: A protective effect on gut barrier function following ischemia/reperfusion injury. J Trauma Acute Care Surg 2016; 79:1015-22. [PMID: 26317817 DOI: 10.1097/ta.0000000000000703] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The mucus barrier is a critical component of the gut barrier and may be disrupted by pancreatic enzymes following trauma/hemorrhagic shock (T/HS). Luminal strategies against pancreatic enzyme activation or contact with the intestine are protective of the mucus layer and gut barrier integrity following T/HS. There is increasing evidence the use of tranexamic acid (TA) attenuates inflammatory responses in cardiac surgery and is readily absorbed from the gut. We therefore postulated that systemic administration of TA would attenuate mucus degradation and gut barrier failure following T/HS. This was studied in an in vitro model. METHODS Confluent monolayers of HT29-MTX (mucus-producing clone) and Caco-2 cocultures were exposed to 90 minutes of hypoxia followed by reoxygenation (H/R), luminal trypsin (5 μM), or both treatment groups. In a subset of experiments, TA (40 μM or 150 μM) was added to the basal chamber (systemic side) of intestinal cell cultures immediately following the hypoxic period. Mucus barrier function was indexed by rheologic measurement of both mucus thickness and viscosity (G', dyne/cm) and oxidant stress. Intestinal cell barrier integrity was indexed by transepithelial electrical resistance, permeability to fluorescein isothiocyanate-dextran, and apoptosis by flow cytometry. RESULTS Exposure to both trypsin and H/R of Caco-2/HT29-MTX cocultures led to the most severe effect on mucus barrier function. Administration of TA immediately following hypoxia abrogated the effects noted on mucus barrier function. The epithelial barrier was also most severely impacted by both trypsin and H/R. Addition of TA after the hypoxic event was shown to be protective. CONCLUSION Intestinal mucus physiochemical properties and intestinal barrier function were most severely impacted by exposure to both trypsin (concentration related) and H/R. The "systemic" administration of TA immediately after the hypoxic period was protective and suggests an additional role for early administration of TA in trauma patients in shock.
Collapse
|
16
|
Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium. Part Fibre Toxicol 2016; 13:9. [PMID: 26888332 PMCID: PMC4756536 DOI: 10.1186/s12989-016-0117-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 01/26/2016] [Indexed: 11/28/2022] Open
Abstract
Background The increased incorporation of silver nanoparticles (Ag NPs) into consumer products makes the characterization of potential risk for humans and other organisms essential. The oral route is an important uptake route for NPs, therefore the study of the gastrointestinal tract in respect to NP uptake and toxicity is very timely. The aim of the present study was to evaluate the effects of Ag NPs and ions on a Caco-2/TC7:HT29-MTX intestinal co-culture model with mucus secretion, which constitutes an important protective barrier to exogenous agents in vivo and may strongly influence particle uptake. Methods The presence of the mucus layer was confirmed with staining techniques (alcian blue and toluidine blue). Mono and co-cultures of Caco-2/TC7 and HT29-MTX cells were exposed to Ag NPs (Ag 20 and 200 nm) and AgNO3 and viability (alamar blue), ROS induction (DCFH-DA assay) and IL-8 release (ELISA) were measured. The particle agglomeration in the media was evaluated with DLS and the ion release with ultrafiltration and ICP-MS. The effects of the Ag NPs and AgNO3 on cells in co-culture were studied at a proteome level with two-dimensional difference in gel electrophoresis (2D-DIGE) followed by Matrix Assisted Laser Desorption Ionization - Time Of Flight/ Time Of Flight (MALDI-TOF/TOF) mass spectrometry (MS). Intracellular localization was assessed with NanoSIMS and TEM. Results The presence of mucus layer led to protection against ROS and decrease in IL-8 release. Both Ag 20 and 200 nm NPs were taken up by the cells and Ag NPs 20 nm were mainly localized in organelles with high sulfur content. A dose- and size-dependent increase in IL-8 release was observed with a lack of cytotoxicity and oxidative stress. Sixty one differentially abundant proteins were identified involved in cytoskeleton arrangement and cell cycle, oxidative stress, apoptosis, metabolism/detoxification and stress. Conclusions The presence of mucus layer had an impact on modulating the induced toxicity of NPs. NP-specific effects were observed for uptake, pro-inflammatory response and changes at the proteome level. The low level of overlap between differentially abundant proteins observed in both Ag NPs and AgNO3 treated co-culture suggests size-dependent responses that cannot only be attributed to soluble Ag. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0117-9) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
The intestinal mucus layer is a critical component of the gut barrier that is damaged during acute pancreatitis. Shock 2015; 42:264-70. [PMID: 24978882 DOI: 10.1097/shk.0000000000000209] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut barrier failure has been implicated in the progression from single-organ injury to multiple-organ failure. The unstirred mucus layer is a major component of the physiological gut barrier; its role in acute pancreatitis (AP) is not clearly defined. Rats underwent biliopancreatic duct ligation-induced AP; two controls were used: biliopancreatic duct ligation with drainage and sham duct ligation. After 4.5 h, serum and ascitic amylase activity was measured. Mucus was analyzed for reactive nitrogen intermediate-mediated damage, reactive oxygen species-induced damage, and total antioxidant capacity. Mucus coverage and villous injury were assessed histologically. Ileum permeability was measured by diffusion of a fluorescent Dextran probe. Histology and morphology of the mucus layer were validated in a mouse AP model (intraductal taurocholate plus cerulein). Biliopancreatic duct ligation increased serum α-amylase, ascitic volume, and ascitic α-amylase. Intestinal permeability was increased, which was associated with loss of the unstirred mucus layer but not villous injury. These changes correlated with increased reactive oxygen species- and- reactive nitrogen intermediate-mediated mucus damage as well as decreased mucus total antioxidant capacity but were not present in the two control groups. Using a different model of AP in mice, the finding of mucus layer disruption was recapitulated at 6 h after AP, but by 24 h, rebound hypersecretion of inspissated mucus was seen. These results support the hypothesis that damage to the unstirred mucus layer with evidence of oxidative stress occurs during AP-induced gut barrier failure.
Collapse
|
18
|
Estrogen modulates intestinal mucus physiochemical properties and protects against oxidant injury. J Trauma Acute Care Surg 2015; 78:94-9. [DOI: 10.1097/ta.0000000000000499] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Fishman JE, Sheth SU, Levy G, Alli V, Lu Q, Xu D, Qin Y, Qin X, Deitch EA. Intraluminal nonbacterial intestinal components control gut and lung injury after trauma hemorrhagic shock. Ann Surg 2014; 260:1112-1120. [PMID: 24646554 PMCID: PMC4168009 DOI: 10.1097/sla.0000000000000631] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To test whether the mucus layer, luminal digestive enzymes, and intestinal mast cells are critical components in the pathogenesis of trauma shock-induced gut and lung injury. BACKGROUND Gut origin sepsis studies have highlighted the importance of the systemic component (ischemia-reperfusion) of gut injury, whereas the intraluminal component is less well studied. METHODS In rats subjected to trauma hemorrhagic shock (T/HS) or sham shock, the role of pancreatic enzymes in gut injury was tested by diversion of pancreatic enzymes via pancreatic duct exteriorization whereas the role of the mucus layer was tested via the enteral administration of a mucus surrogate. In addition, the role of mast cells was assessed by measuring mast cell activation and the ability of pharmacologic inhibition of mast cells to abrogate gut and lung injury. Gut and mucus injury was characterized functionally, morphologically, and chemically. RESULTS Pancreatic duct exteriorization abrogated T/HS-induced gut barrier loss and limited chemical mucus changes. The mucus surrogate prevented T/HS-induced gut and lung injury. Finally, pancreatic enzyme-induced gut and lung injury seems to involve mast cell activation because T/HS activates mast cells and pharmacologic inhibition of intestinal mast cells prevented T/HS-induced gut and lung injury. CONCLUSIONS These results indicate that gut and gut-induced lung injury after T/HS involves a complex process consisting of intraluminal digestive enzymes, the unstirred mucus layer, and a systemic ischemic-reperfusion injury. This suggests the possibility of intraluminal therapeutic strategies.
Collapse
|
20
|
Gomes AC, Bueno AA, de Souza RGM, Mota JF. Gut microbiota, probiotics and diabetes. Nutr J 2014; 13:60. [PMID: 24939063 PMCID: PMC4078018 DOI: 10.1186/1475-2891-13-60] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 06/12/2014] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a condition of multifactorial origin, involving several molecular mechanisms related to the intestinal microbiota for its development. In type 2 diabetes, receptor activation and recognition by microorganisms from the intestinal lumen may trigger inflammatory responses, inducing the phosphorylation of serine residues in insulin receptor substrate-1, reducing insulin sensitivity. In type 1 diabetes, the lowered expression of adhesion proteins within the intestinal epithelium favours a greater immune response that may result in destruction of pancreatic β cells by CD8+ T-lymphocytes, and increased expression of interleukin-17, related to autoimmunity. Research in animal models and humans has hypothesized whether the administration of probiotics may improve the prognosis of diabetes through modulation of gut microbiota. We have shown in this review that a large body of evidence suggests probiotics reduce the inflammatory response and oxidative stress, as well as increase the expression of adhesion proteins within the intestinal epithelium, reducing intestinal permeability. Such effects increase insulin sensitivity and reduce autoimmune response. However, further investigations are required to clarify whether the administration of probiotics can be efficiently used for the prevention and management of diabetes.
Collapse
Affiliation(s)
- Aline Corado Gomes
- Laboratório de Investigação em Nutrição Clínica e Esportiva (Labince). Faculdade de Nutrição, Universidade Federal de Goiás, Rua 227 Qd. 68s/nº - Setor Leste Universitário, Goiânia, Goiás, Brazil
| | - Allain Amador Bueno
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
| | - Rávila Graziany Machado de Souza
- Laboratório de Investigação em Nutrição Clínica e Esportiva (Labince). Faculdade de Nutrição, Universidade Federal de Goiás, Rua 227 Qd. 68s/nº - Setor Leste Universitário, Goiânia, Goiás, Brazil
| | - João Felipe Mota
- Laboratório de Investigação em Nutrição Clínica e Esportiva (Labince). Faculdade de Nutrição, Universidade Federal de Goiás, Rua 227 Qd. 68s/nº - Setor Leste Universitário, Goiânia, Goiás, Brazil
| |
Collapse
|
21
|
Vong LB, Yoshitomi T, Morikawa K, Saito S, Matsui H, Nagasaki Y. Oral nanotherapeutics: effect of redox nanoparticle on microflora in mice with dextran sodium sulfate-induced colitis. J Gastroenterol 2014; 49:806-13. [PMID: 23715850 DOI: 10.1007/s00535-013-0836-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/12/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Patients with ulcerative colitis (UC) exhibit overproduction of reactive oxygen species (ROS) and imbalance of colonic microflora. We previously developed a novel redox nanoparticle (RNP(O)), which effectively scavenged ROS in the inflamed mucosa of mice with dextran sodium sulfate (DSS)-induced colitis after oral administration. The objective of this study was to examine whether the orally administered RNP(O) changed the colonic microflora in healthy mice and those with colitis. METHODS RNP(O) was synthesized by self-assembly of an amphiphilic block copolymer that contains stable nitroxide radicals in hydrophobic side chain via ether linkage. Colitis was induced in mice by supplementing DSS in drinking water for 7 days, and RNP(O) was orally administered daily during DSS treatment. The alterations of fecal microflora during treatment of DSS and RNP(O) were investigated using microbiological assays. RESULTS We investigated that RNP(O) did not result in significant changes to the fecal microflora in healthy mice. Although total aerobic and anaerobic bacteria were not significantly different between experimental groups, a remarkable increase in commensal bacteria (Escherichia coli and Staphylococcus sp.) was observed in mice with DSS-induced colitis. Interestingly, orally administered RNP(O) remarkably reduced the rate of increase of these commensal bacteria in mice with colitis. CONCLUSIONS On the basis of the obtained results, it was confirmed that the oral administration of RNP(O) did not change any composition of bacteria in feces, which strongly suggests a protective effect of RNP(O) on healthy environments in intestinal microflora. RNP(O) may become an effective and safe medication for treatment of UC.
Collapse
Affiliation(s)
- Long Binh Vong
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Deheyn DD, Enzor LA, Dubowitz A, Urbach JS, Blair D. Optical and Physicochemical Characterization of the Luminous Mucous Secreted by the Marine WormChaetopterussp. Physiol Biochem Zool 2013; 86:702-5. [DOI: 10.1086/673869] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Fishman JE, Levy G, Alli V, Sheth S, Lu Q, Deitch EA. Oxidative modification of the intestinal mucus layer is a critical but unrecognized component of trauma hemorrhagic shock-induced gut barrier failure. Am J Physiol Gastrointest Liver Physiol 2013; 304:G57-63. [PMID: 23125158 PMCID: PMC3543631 DOI: 10.1152/ajpgi.00170.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent studies demonstrate that mechanisms underlying gut barrier failure include systemic processes and less studied luminal processes. We thus tested the hypothesis that mucus layer oxidation is a component of trauma/hemorrhagic shock-induced gut injury and dysfunction. Male Sprague-Dawley rats underwent trauma/hemorrhagic shock. Controls underwent trauma only. Mucus from the terminal 30 cm of the ileum was collected, processed, and analyzed for reactive nitrogen intermediates (RNI)-mediated damage, reactive oxygen species (ROS)-induced damage, and total antioxidant capacity. The distal ileum was stained to quantify the mucus layer; gut permeability was assessed physiologically. A time course study was conducted to determine the temporal sequence of mucus layer damage. The role of free radical-mediated damage to the gut barrier was investigated by the effect of the free radical scavenger dimethyl sulfoxide on trauma/hemorrhagic shock-induced changes on the mucus and on gut permeability. Trauma/hemorrhagic shock increased intestinal permeability, which was associated with evidence of loss of the unstirred mucus layer. These changes correlated with increased ROS- and RNI-mediated mucus damage and loss of mucus total antioxidant capacity. Based on the time course study, ROS-mediated mucus damage and loss of total antioxidant capacity were present immediately following shock, whereas RNI-mediated damage was delayed for 3 h. Dimethyl sulfoxide ameliorated gut barrier loss, ROS-mediated changes to the mucus layer, and loss of total antioxidant capacity. There was no change in RNI-induced changes to the mucus layer. These results support the hypothesis that trauma/hemorrhagic shock leads to mucus damage and gut dysfunction through the generation of free radical species.
Collapse
Affiliation(s)
- Jordan E. Fishman
- Department of Surgery, New Jersey Medical School, University Of Medicine And Dentistry Of New Jersey, Newark, New Jersey
| | - Gal Levy
- Department of Surgery, New Jersey Medical School, University Of Medicine And Dentistry Of New Jersey, Newark, New Jersey
| | - Vamsi Alli
- Department of Surgery, New Jersey Medical School, University Of Medicine And Dentistry Of New Jersey, Newark, New Jersey
| | - Sharvil Sheth
- Department of Surgery, New Jersey Medical School, University Of Medicine And Dentistry Of New Jersey, Newark, New Jersey
| | - Qu Lu
- Department of Surgery, New Jersey Medical School, University Of Medicine And Dentistry Of New Jersey, Newark, New Jersey
| | - Edwin A. Deitch
- Department of Surgery, New Jersey Medical School, University Of Medicine And Dentistry Of New Jersey, Newark, New Jersey
| |
Collapse
|
24
|
Multimolecular salivary mucin complex is altered in saliva of cigarette smokers: detection of disulfide bridges by Raman spectroscopy. BIOMED RESEARCH INTERNATIONAL 2012; 2013:168765. [PMID: 23509686 PMCID: PMC3591210 DOI: 10.1155/2013/168765] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/01/2012] [Accepted: 07/23/2012] [Indexed: 02/01/2023]
Abstract
Saliva contains mucins, which protect epithelial cells. We showed a smaller amount of salivary mucin, both MG1 and MG2, in the premenopausal female smokers than in their nonsmoking counterparts. Smokers' MG1, which contains almost 2% cysteine/half cystine in its amino acid residues, turned out to be chemically altered in the nonsmoker's saliva. The smaller acidic glycoprotein bands were detectable only in smoker's saliva in the range of 20–25 kDa and at 45 kDa, suggesting that degradation, at least in part, caused the reduction of MG1 mucin. This is in agreement with the previous finding that free radicals in cigarette smoke modify mucins in both sugar and protein moieties. Moreover, proteins such as amylase and albumin are bound to other proteins through disulfide bonds and are identifiable only after reduction with DTT. Confocal laser Raman microspectroscopy identified a disulfide stretch band of significantly stronger intensity per protein in the stimulated saliva of smokers alone. We conclude that the saliva of smokers, especially stimulated saliva, contains significantly more oxidized form of proteins with increased disulfide bridges, that reduces protection for oral epithelium. Raman microspectroscopy can be used for an easy detection of the damaged salivary proteins.
Collapse
|
25
|
Inhibition of Fe-induced colon oxidative stress by lactobacilli in mice. World J Microbiol Biotechnol 2012; 29:209-16. [DOI: 10.1007/s11274-012-1172-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/14/2012] [Indexed: 01/27/2023]
|
26
|
Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Appl Microbiol Biotechnol 2012; 97:1689-97. [PMID: 22948953 DOI: 10.1007/s00253-012-4323-6] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/19/2012] [Accepted: 07/18/2012] [Indexed: 12/20/2022]
Abstract
Alterations of the gut microbiota induced by diet exert a strong influence on the development of metabolic syndrome. In this study, we prove the hypothesis that the long-term high-fat diet (HFD) may influence gut microbiota directly and/or indirectly by changing the redox state. Lipoic acid (LA), as a universal antioxidant, was used to improve the redox state. Reactive oxygen species (ROS), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) were analyzed to profile oxidative stress states. PCR-denaturing gradient gel electrophoresis (DGGE) was used to describe gut flora structures, while plate count was employed for the quantitative analysis of Escherichia coli, lactobacilli, and enterococcus. The influence of redox state on the vitality of gut-derived bacteria was measured in vitro. ROS and MDA, which significantly decreased in LA mice compared with HFD mice, showed a strong positive association with E. coli and enterococcus (P < 0.05) and a negative association with lactobacilli (P < 0.05). Increased T-AOC in LA mice showed a high positive association with lactobacilli (P < 0.05) and a negative correlation with E. coli and enterococcus. These correlations implied that the dietary effects on the gut microbiota were conferred, at least in part, through an effect on oxidative stress. This study provides evidence that modulation of the redox state by an antioxidant has the potential to improve gut microbiota, which has relevance for metabolic health.
Collapse
|
27
|
Geisler C, Jarvis DL. Effective glycoanalysis with Maackia amurensis lectins requires a clear understanding of their binding specificities. Glycobiology 2012; 21:988-93. [PMID: 21863598 DOI: 10.1093/glycob/cwr080] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
28
|
Oliver SR, Phillips NA, Novosad VL, Bakos MP, Talbert EE, Clanton TL. Hyperthermia induces injury to the intestinal mucosa in the mouse: evidence for an oxidative stress mechanism. Am J Physiol Regul Integr Comp Physiol 2012; 302:R845-53. [PMID: 22237593 DOI: 10.1152/ajpregu.00595.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Loss of the intestinal barrier is critical to the clinical course of heat illness, but the underlying mechanisms are still poorly understood. We tested the hypothesis that conditions characteristic of mild heatstroke in mice are associated with injury to the epithelial lining of the intestinal tract and comprise a critical component of barrier dysfunction. Anesthetized mice were gavaged with 4 kDa FITC-dextran (FD-4) and exposed to increasing core temperatures, briefly reaching 42.4°C, followed by 30 min recovery. Arterial samples were collected to measure FD-4 concentration in plasma (in vivo gastrointestinal permeability). The small intestines were then removed to measure histological evidence of injury. Hyperthermia resulted in a ≈2.5-fold elevation in plasma FD-4 and was always associated with significant histological evidence of injury to the epithelial lining compared with matched controls, particularly in the duodenum. When isolated intestinal segments from control animals were exposed to ≥41.5°C, marked increases in permeability were observed within 60 min. These changes were associated with release of lactate dehydrogenase, evidence of protein oxidation via carbonyl formation and histological damage. Coincubation with N-acetylcysteine protected in vitro permeability during hyperthermia and reduced histological damage and protein oxidation. Chelation of intracellular Ca(2+) to block tight junction opening during 41.5°C exposure failed to reduce the permeability of in vitro segments. The results demonstrate that hyperthermia exposure in mouse intestine, at temperatures at or below those necessary to induce mild heatstroke, cause rapid and substantial injury to the intestinal lining that may be attributed, in part, to oxidative stress.
Collapse
Affiliation(s)
- S R Oliver
- Univ. of Florida, College of Health and Human Performance, Dept. of Applied Physiology & Kinesiology, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
29
|
Tal MC, Iwasaki A. Mitoxosome: a mitochondrial platform for cross-talk between cellular stress and antiviral signaling. Immunol Rev 2011; 243:215-34. [PMID: 21884179 DOI: 10.1111/j.1600-065x.2011.01038.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Evidence is accumulating that the mitochondria form an integral platform from which innate signaling takes place. Recent studies revealed that the mitochondria are shaping the innate response to intracellular pathogens, and mitochondrial function is modulating and being modulated by innate immune signaling. Further, cell biologic analyses have uncovered the dynamic relocalization of key components involved in cytosolic viral recognition and signaling to the mitochondria, as well as the mobilization of mitochondria to the sites of viral replication. In this review, we provide an integrated view of how cellular stress and signals following cytosolic viral recognition are intimately linked and coordinated at the mitochondria. We incorporate recent findings into our current understanding of the role of mitochondrial function in antiviral immunity and suggest the existence of a 'mitoxosome', a mitochondrial oxidative signalosome where multiple pathways of viral recognition and cellular stress converge on the surface of the mitochondria to facilitate a coordinated antiviral response.
Collapse
Affiliation(s)
- Michal Caspi Tal
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
30
|
Martinez CAR, Nonose R, Spadari APP, Máximo FR, Priolli DG, Pereira JA, Margarido NF. Quantification by computerized morphometry of tissue levels of sulfomucins and sialomucins in diversion colitis in rats. Acta Cir Bras 2011; 25:231-40. [PMID: 20498935 DOI: 10.1590/s0102-86502010000300004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/17/2010] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To quantify the intensity of sulfomucin and sialomucin expression in the colon mucosa, by means of computer-assisted image processing, comparing segments with and without fecal stream and correlating with the duration of fecal transit exclusion. METHODS Forty-five Wistar rats were subjected to diversion of the fecal stream in the left colon by means of constructing a proximal colostomy and distal mucosal fistula. They were distributed randomly into three experimental groups of 15 animals, of which 10 were subjected to colon diversion (experimental subgroup) and five were only subjected to laparotomy, without colon diversion (control subgroup). The three experimental groups were formed according to the sacrifice date, which was to be performed six weeks after the surgical procedure (Group A), 12 weeks (Group B) and 18 weeks (Group C). The sulfomucin and sialomucin expression in the colon mucosa was evaluated using the histochemical technique of high iron diamine-alcian blue (HID-AB). The tissue expression was quantified for each animal, in the segments with and without fecal stream, at a location where there were four complete contiguous crypts in two random fields, with the aid of the computer-assisted image analysis software. The final value was taken to be the mean reading from the two fields selected, in the segments with and without fecal stream. To compare the expressions of the two mucin subtypes in the segments with and without fecal stream, the paired Student t test was used. To analyze variance according to duration of exclusion, ANOVA with the Newman-Keuls post-test was used, setting the significance level at 5% (p<0.05). RESULTS There were significant reductions in tissue sulfomucin and sialomucin content in the colon without fecal stream, independent of the duration of exclusion considered. There was increased tissue sulfomucin content and decreased tissue sialomucin in the segments without fecal stream, with increasing duration of exclusion. CONCLUSIONS Diversion of the fecal transit decreased the tissue sulfomucin and sialomucin content in the segments without fecal stream. Notwithstanding the reduction in the levels of both subtypes of acid mucin in the segments without fecal stream, there was increased tissue sulfomucin content and decreased tissue sialomucin with increasing duration of intestinal diversion.
Collapse
|
31
|
|
32
|
Pearson JP, Brownlee IA. The interaction of large bowel microflora with the colonic mucus barrier. Int J Inflam 2010; 2010:321426. [PMID: 21152122 PMCID: PMC2989700 DOI: 10.4061/2010/321426] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/14/2010] [Accepted: 08/04/2010] [Indexed: 12/20/2022] Open
Abstract
The colonic mucus barrier is the first line of defence that the underlying mucosa has against the wide range of potentially damaging agents of microbial, endogenous, and dietary origin that occur within the colonic lumen. The functional component of mucus is the secreted, polymeric glycoprotein mucin. The mucus barrier can either act as an energy source or a support medium for growth to the intestinal microflora. The mucus barrier appears to effectively partition the vast number of microbial cells from the underlying epithelium. The normal functionality and biochemistry of this mucus barrier appears to be lost in diseases of the colorectal mucosa. Germ-free animal studies have highlighted the necessity of the presence of the colonic microflora to drive the maturation of the colonic mucosa and normal mucus production. A number of by-products of the microflora have been suggested to be key luminal drivers of colonic mucus secretion.
Collapse
Affiliation(s)
- Jeffrey P Pearson
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|
33
|
Li W, Shi YH, Yang RL, Cui J, Xiao Y, Le GW. Reactive oxygen species serve as signals mediating glucose-stimulated somatostatin secretion from cultured rat gastric primary D-cells. Free Radic Res 2010; 44:614-23. [PMID: 20370561 DOI: 10.3109/10715761003713549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Somatostatin plays an important role in glucose homeostasis. It is normally secreted in response to glucose and ATP generation is believed to be the key transduction signal of glucose-stimulated somatostatin secretion (GSSS). However, in the present study, in cultured rat gastric primary D-cells, GSSS was accompanied by increases in cellular reactive oxygen species (ROS). GSSS is dependent on the cellular ROS and independently of the ATP production linked to glucose metabolism. The antioxidant, alpha-lipoic acid or catalase inhibitor, 3-aminotriazole can influence the intracellular calcium concentration and abolish or further elevate GSSS. It is suggested that ROS production may serve as a signal modulating the necessary Ca(2+) recruitment for GSSS. Since somatostatin is thought to exert broad regulatory functions on gastrointestinal physiology and nutrient intake, the interaction with ROS may lead to potential targets for mediating nutrition and energy homeostasis.
Collapse
Affiliation(s)
- Wu Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, PR China
| | | | | | | | | | | |
Collapse
|
34
|
Gupta C, Vikram A, Tripathi DN, Ramarao P, Jena GB. Antioxidant and antimutagenic effect of quercetin against DEN induced hepatotoxicity in rat. Phytother Res 2010; 24:119-28. [PMID: 19504466 DOI: 10.1002/ptr.2883] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diethylnitrosamine (DEN), a potent hepatocarcinogen, is found in tobacco smoke, processed meat as well as in different food products. Quercetin (QC), a naturally occurring flavonoid has excellent antioxidant properties. The present study was aimed to investigate the chemoprotective potential of QC against DEN induced hepatotoxicity in Sprague-Dawley (SD) rats. Quercetin was administered (10, 30 and 100 mg/kg) for 5 consecutive days after DEN (200 mg/kg) treatment. The animals were killed 24 h after the last dose of QC/saline treatment. The DEN induced hepatotoxicity was evident by elevated malondialdehyde (MDA) and decreased glutathione (GSH) levels in the liver. A significant increase in the levels of plasma aspartate transaminase (AST) and plasma alanine transaminase (ALT) was observed in the DEN treated group. The DEN induced DNA damage was evaluated using a single cell gel electrophoresis (SCGE) assay. A significant increase in the number of TUNEL positive cells was observed in the DEN treated group. Quercetin restored AST, ALT and GSH levels at all the tested doses. Restoration of the MDA level and cellular morphology was observed at doses of 10 and 30 mg/kg of QC. Further, DEN induced DNA damage and apoptosis was ameliorated by QC. The results indicate that QC ameliorates the DEN induced hepatotoxicity in rats and can be a candidate for a good chemoprotectant.
Collapse
Affiliation(s)
- C Gupta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali, Punjab-160 062, India
| | | | | | | | | |
Collapse
|
35
|
Werner T, Hoermannsperger G, Schuemann K, Hoelzlwimmer G, Tsuji S, Haller D. Intestinal epithelial cell proteome from wild-type and TNFDeltaARE/WT mice: effect of iron on the development of chronic ileitis. J Proteome Res 2009; 8:3252-64. [PMID: 19422269 DOI: 10.1021/pr800772b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Environmental factors substantially contribute to the development of chronic intestinal inflammation in the genetically susceptible host. Nutritional components like iron may act as pro-oxidative mediators affecting inflammatory processes and cell stress mechanisms. To better characterize effects of dietary iron on epithelial cell responses under the pathological conditions of chronic intestinal inflammation, we characterized the protein expression profile (proteome) in primary intestinal epithelial cells (IEC) from iron-adequate and low-iron fed wild-type (WT) and TNFDeltaARE/WT mice. We performed all possible comparisons between the 4 groups according to genotype or diet. Histological analysis of iron-adequate fed TNFDeltaARE/WT mice (approximately 0.54 mg of iron/day) revealed severe ileal inflammation with a histopathology score of 8.3+/-0.91 (score range from 0-12). Interestingly, low-iron fed mice (approximately 0.03 mg of iron/day) were almost completely protected from the development of inflammatory tissue destruction (histopathology score of 2.30+/-0.73). In total, we identified 74 target proteins with significantly altered steady state expression levels in primary IEC using 2D-gel electrophoresis (2D SDS-PAGE) and peptide mass fingerprinting via MALDI-TOF mass spectrometry (MS). Interestingly, the overlap between the comparison of iron-adequate fed WT and TNFDeltaARE/WT mice (inflamed conditions) and the comparison between the iron-adequate and iron-low fed TNFDeltaARE/WT mice (absence of inflammation) revealed 4 contrarily regulated proteins including aconitase 2, catalase, intelectin 1 and fumarylacetoacetate hydrolase (FAH). These proteins are associated with energy homeostasis, host defense, oxidative and endoplasmic reticulum (ER) stress responses. In conclusion, the iron-low diet affected the epithelial cell proteome and inhibited the development of chronic intestinal inflammation, suggesting a critical role for nutritional factors in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Tanja Werner
- ZIEL-Research Center for Nutrition and Food Science, Technische Universitat Munchen, Am Forum 5, Freising-Weihenstephan, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Nonose R, Spadari APP, Priolli DG, Máximo FR, Pereira JA, Martinez CAR. Tissue quantification of neutral and acid mucins in the mucosa of the colon with and without fecal stream in rats. Acta Cir Bras 2009; 24:267-75. [DOI: 10.1590/s0102-86502009000400005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 04/15/2009] [Indexed: 12/19/2022] Open
Abstract
PURPOSE: To quantify the intensity of the expression of neutral and acids mucins in mucosa of the colon with and without fecal stream and to correlate this with the duration of fecal transit diversion. METHODS: Thirty male Wistar rats were subjected to fecal transit deviation in the left colon by a proximal colostomy and a distal mucous fistula. The animals were divided into three experimental groups, according to whether sacrificing would be performed six, 12 or 18 weeks after surgery. The expression of neutral and acid mucins was evaluated using the histochemical techniques of Periodic Acid Schiff and Alcian Blue, respectively. The tissue mucins expression was quantified by computer-assisted image analysis software (NIS-Elements) in the segments with and without fecal stream. Student's paired t test was used to compare the quantities of mucins in colon with or without fecal stream and variance between the experimental groups by ANOVA and Newman-Keuls post-test, establishing level of signification of 5% (p<0.05). RESULTS: There were significant decreased quantities of acid and neutral mucins in the colon without transit, compared with the colon with fecal stream, independent of the duration of exclusion. There was increased expression of neutral mucins in the colon with fecal stream after 12 and 18 weeks of exclusion. There was no increase in the expression of acid mucins in the colon with transit as the duration of fecal transit exclusion progressed. There was increased production of acid mucins in the animals submitted to diversion of the fecal stream for 18 weeks, compared with those subjected to diversion for 6 and 12 weeks. In the colon without fecal stream, there was increased expression of neutral mucins after 12 and 18 weeks of exclusion. CONCLUSIONS: Deviation of the fecal stream decreased the expression of acid and neutral mucins in the segments without fecal transit, compared with segments with transit. Regardless of the reduced expression of acid and neutral mucins in the segments without fecal stream, their tissue expression increased with increasing duration of intestinal deviation.
Collapse
|
37
|
Bertrand KE, Mathieu N, Inocent G, Honore FK. Antioxidant status of bilirubin and uric acid in patients diagnosed with Plasmodium falciparum malaria in Douala. Pak J Biol Sci 2008; 11:1646-9. [PMID: 18819658 DOI: 10.3923/pjbs.2008.1646.1649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oxidative stress and changes in antioxidant status have been implicated in the pathogenesis of malaria. To assess the antioxidant level ofbilirubin and uric acid associated with falciparum malaria infection, 60 untreated patients (30 men and 30 women) in Douala, Cameroon were screened for the study. Sixty five healthy individuals (29 men and 36 women) were used as controls. Total and conjugated bilirubin were calculated using Jendrassik-Grof method while uric acid was determined using Barham-Trinder method. It was observed that total and conjugated bilirubins were significantly (p < 0.001) higher in malaria patients (10.722 +/- 4.043 and 3.627 +/- 1.571 mg L(-1), respectively) when compared to control (6.830 +/- 2.436 and 1.777 +/- 0.729 mg L(-1)) and these bilirubin levels increased significantly with parasite count (p < 0.050). There was also significant increased (p = 0.021) of uric acid in malaria patients (56.262 +/- 13.963 mg L(-1)) compared to controls (49.838 +/- 15.419 mg L(-1)). No significant differences based on sex were observed on uric acid, parasite count, total and conjugated bilirubins in malaria patients. Positive correlations were obtained between parasite count and total bilirubin (r = 0.320, p < 0.050), conjugated bilirubin (r = 0.477, p < 0.001), uric acid (r = 0.060, p > 0.050) and between total and conjugated bilirubin (r = 0.729, p < 0.001). From this study, it has been hypothesized that the augmentation of plasma level ofbilirubin and uric acid could provide more protection against oxidative stress induced by malaria.
Collapse
Affiliation(s)
- Kouam Eric Bertrand
- Department of Molecular Biology and Biotechnology, International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
| | | | | | | |
Collapse
|
38
|
Strugala V, Dettmar PW, Pearson JP. Thickness and continuity of the adherent colonic mucus barrier in active and quiescent ulcerative colitis and Crohn's disease. Int J Clin Pract 2008; 62:762-9. [PMID: 18194279 DOI: 10.1111/j.1742-1241.2007.01665.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The colon is covered by a mucus barrier that protects the underlying mucosa and alterations in this mucus barrier have been implicated in the aetiology of inflammatory bowel disease (IBD). This study investigated the thickness and continuity of the mucus barrier in ulcerative colitis (UC) and Crohn's disease (CD) in comparison to normal controls. METHODS Rectal biopsies were taken from 59 patients and cryostat sections stained with periodic acid-Schiff's/Alcian blue to visualise the mucus layer. Mucus thickness and continuity and goblet cell density were measured using light microscopy. RESULTS An essentially continuous adherent mucus layer was observed in normal human rectum and there was no change in the mucus barrier in quiescent UC. In active UC there was a trend for the mucus layer to become progressively thinner and significantly more discontinuous as disease severity increased. In severe active UC the mucus layer thickness and goblet cell density were significantly reduced compared with normal controls while the percentage discontinuity significantly increased. CONCLUSION It is not until severe UC that there is a global change in mucosal protection as a consequence of large regions lacking mucus, a decrease in secretory potential caused by a loss of goblet cells and a thinner, less effective mucus layer even when it is present.
Collapse
Affiliation(s)
- V Strugala
- Epithelial Group, Institute for Cell and Molecular Biology, Medical School, Framlington Place, University of Newcastle Upon Tyne, Newcastle Upon Tyne, UK.
| | | | | |
Collapse
|