1
|
Al Shboul S, Abu Al Karsaneh O, Alrjoub M, Al-Qudah M, El-Sadoni M, Alhesa A, Ramadan M, Barukba M, Al-Quran EF, Masaadeh A, Almasri FN, Shahin U, Alotaibi MR, Al-Azab M, Khasawneh AI, Saleh T. Dissociation between the expression of cGAS/STING and a senescence-associated signature in colon cancer. Int J Immunopathol Pharmacol 2025; 39:3946320251324821. [PMID: 40070172 PMCID: PMC11898089 DOI: 10.1177/03946320251324821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/13/2025] [Indexed: 03/15/2025] Open
Abstract
OBJECTIVE The effect of the cGAS/STING pathway on antitumor immunity and its connection to senescence in vivo necessitates further investigation. INTRODUCTION Cellular senescence and its secretory phenotype (the SASP) are implicated in modulating the immune microenvironment of cancer possibly through the cGAS/STING pathway. METHODS Gene expression data from paired colon cancer and adjacent non-malignant mucosa (98 patients, n = 196 samples; 65 patients, n = 130 samples) were analyzed for cGAS/STING and a senescence signature. Immunohistochemistry assessed cGAS/STING protein expression in 124 colorectal samples. RESULTS Approximately one-quarter of patients displayed senescence profiles in both gene sets, yet without significantly correlating with cGAS/STING expression. Notably, cGAS expression was higher than STING in tumor tissue compared to non-malignant colonic mucosa. Protein analysis showed 83% positive cGAS expression and 39% positive STING expression, with discrepancies in expression patterns. Additionally, 15% of samples lacked both markers, while 35% exhibited positive staining for both. No significant correlations were found between cGAS/STING status and tumor stage, patient age, lymphovascular invasion, or lymph node involvement. CONCLUSIONS Our findings demonstrate significant senescence marker expression in colorectal cancer samples but with no correlation with cGAS/STING.
Collapse
Affiliation(s)
- Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ola Abu Al Karsaneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Moath Alrjoub
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Al-Qudah
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammed El-Sadoni
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mohannad Ramadan
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Trinity Centre for Global Health, Trinity College Dublin, Dublin, Ireland
| | - Marwa Barukba
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Esraa Fares Al-Quran
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Amr Masaadeh
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
- Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Farah N Almasri
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Uruk Shahin
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Moureq R. Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Al-Azab
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ashraf I. Khasawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
2
|
Arias C, Álvarez-Indo J, Cifuentes M, Morselli E, Kerr B, Burgos PV. Enhancing adipose tissue functionality in obesity: senotherapeutics, autophagy and cellular senescence as a target. Biol Res 2024; 57:51. [PMID: 39118171 PMCID: PMC11312694 DOI: 10.1186/s40659-024-00531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity, a global health crisis, disrupts multiple systemic processes, contributing to a cascade of metabolic dysfunctions by promoting the pathological expansion of visceral adipose tissue (VAT). This expansion is characterized by impaired differentiation of pre-adipocytes and an increase in senescent cells, leading to a pro-inflammatory state and exacerbated oxidative stress. Particularly, the senescence-associated secretory phenotype (SASP) and adipose tissue hypoxia further impair cellular function, promoting chronic disease development. This review delves into the potential of autophagy modulation and the therapeutic application of senolytics and senomorphics as novel strategies to mitigate adipose tissue senescence. By exploring the intricate mechanisms underlying adipocyte dysfunction and the emerging role of natural compounds in senescence modulation, we underscore the promising horizon of senotherapeutics in restoring adipose health. This approach not only offers a pathway to combat the metabolic complications of obesity, but also opens new avenues for enhancing life quality and managing the global burden of obesity-related conditions. Our analysis aims to bridge the gap between current scientific progress and clinical application, offering new perspectives on preventing and treating obesity-induced adipose dysfunction.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, 7500922, Chile.
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Javiera Álvarez-Indo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
3
|
Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther 2023; 8:239. [PMID: 37291105 PMCID: PMC10248351 DOI: 10.1038/s41392-023-01502-8] [Citation(s) in RCA: 376] [Impact Index Per Article: 188.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Aging is characterized by systemic chronic inflammation, which is accompanied by cellular senescence, immunosenescence, organ dysfunction, and age-related diseases. Given the multidimensional complexity of aging, there is an urgent need for a systematic organization of inflammaging through dimensionality reduction. Factors secreted by senescent cells, known as the senescence-associated secretory phenotype (SASP), promote chronic inflammation and can induce senescence in normal cells. At the same time, chronic inflammation accelerates the senescence of immune cells, resulting in weakened immune function and an inability to clear senescent cells and inflammatory factors, which creates a vicious cycle of inflammation and senescence. Persistently elevated inflammation levels in organs such as the bone marrow, liver, and lungs cannot be eliminated in time, leading to organ damage and aging-related diseases. Therefore, inflammation has been recognized as an endogenous factor in aging, and the elimination of inflammation could be a potential strategy for anti-aging. Here we discuss inflammaging at the molecular, cellular, organ, and disease levels, and review current aging models, the implications of cutting-edge single cell technologies, as well as anti-aging strategies. Since preventing and alleviating aging-related diseases and improving the overall quality of life are the ultimate goals of aging research, our review highlights the critical features and potential mechanisms of inflammation and aging, along with the latest developments and future directions in aging research, providing a theoretical foundation for novel and practical anti-aging strategies.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China
| | - Chentao Li
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Wanying Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yanan Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Kwon A, Chae HW, Lee WJ, Kim J, Kim YJ, Ahn J, Oh Y, Kim HS. Insulin-like growth factor binding protein-3 induces senescence by inhibiting telomerase activity in MCF-7 breast cancer cells. Sci Rep 2023; 13:8739. [PMID: 37253773 DOI: 10.1038/s41598-023-35291-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) has been known to inhibit cell proliferation and exert tumor-suppressing effects depending on the cell type. In this study, we aimed to show that IGFBP-3 induces cellular senescence via suppression of the telomerase activity, thereby inhibiting MCF-7 breast cancer cell proliferation. We found that the induction of IGFBP-3 in MCF-7 cells enhanced the loss of cell viability. Flow cytometry revealed a higher percentage of non-cycling cells among IGFBP-3-expressing cells than among controls. IGFBP-3 induction also resulted in morphological alterations, such as a flattened cytoplasm and increased granularity, suggesting that IGFBP-3 induces a senescence-like phenotype. The percentage of IGFBP-3 expressing cells with senescence-associated β-galactosidase activity was 3.4 times higher than control cells. Telomeric repeat amplification and real-time PCR showed that IGFBP-3 decreased telomerase activity by reducing the levels of the RNA component (hTR) and catalytic protein component with reverse transcriptase activity (hTERT) of telomerase in a dose-dependent manner. These results suggest that IGFBP-3 is a negative regulator of MCF-7 breast cancer cell growth by inducing senescence through telomerase suppression.
Collapse
Affiliation(s)
- Ahreum Kwon
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, College of Medicine, Yonsei University, Seoul, 03722, South Korea
| | - Hyun Wook Chae
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, College of Medicine, Yonsei University, Seoul, 03722, South Korea
| | - Woo Jung Lee
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, College of Medicine, Yonsei University, Seoul, 03722, South Korea
| | - JungHyun Kim
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, College of Medicine, Yonsei University, Seoul, 03722, South Korea
| | - Ye Jin Kim
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, College of Medicine, Yonsei University, Seoul, 03722, South Korea
| | - Jungmin Ahn
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, College of Medicine, Yonsei University, Seoul, 03722, South Korea
| | - Youngman Oh
- Department of Pathology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ho-Seong Kim
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, College of Medicine, Yonsei University, Seoul, 03722, South Korea.
- Department of Pediatrics, Endocrine Research Institute, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
5
|
Nojima I, Hosoda R, Toda Y, Saito Y, Ueda N, Horimoto K, Iwahara N, Horio Y, Kuno A. Downregulation of IGFBP5 contributes to replicative senescence via ERK2 activation in mouse embryonic fibroblasts. Aging (Albany NY) 2022; 14:2966-2988. [PMID: 35378512 PMCID: PMC9037271 DOI: 10.18632/aging.203999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factor (IGF)-binding proteins (IGFBPs) are secretory proteins that regulate IGF signaling. In this study, we investigated the role of IGFBP5 in replicative senescence in embryonic mouse fibroblasts (MEFs). During passages according to the 3T3 method, MEFs underwent senescence after the 5th passage (P5) based on cell growth arrest, an increase in the number of cells positive for senescence-associated β-galactosidase (SA-β-GAL) staining, and upregulation of p16 and p19. In P8 MEFs, IGFBP5 mRNA level was markedly reduced compared with that in P2 MEFs. Downregulation of IGFBP5 via siRNA in P2 MEFs increased the number of SA-β-GAL-positive cells, upregulated p16 and p19, and inhibited cell growth. Incubation of MEFs with IGFBP5 during serial passage increased the cumulative population doubling and decreased SA-β-GAL positivity compared with those in vehicle-treated cells. IGFBP5 knockdown in P2 MEFs increased phosphorylation levels of ERK1 and ERK2. Silencing of ERK2, but not that of ERK1, blocked the increase in the number of SA-β-GAL-positive cells in IGFBP5-knockdown cells. The reduction in the cell number and upregulation of p16 and p21 in IGFBP5-knockdown cells were attenuated by ERK2 knockdown. Our results suggest that downregulation of IGFBP5 during serial passage contributes to replicative senescence via ERK2 in MEFs.
Collapse
Affiliation(s)
- Iyori Nojima
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryusuke Hosoda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Toda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiki Saito
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naohiro Ueda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kouhei Horimoto
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naotoshi Iwahara
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiyuki Horio
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
6
|
Hasuike Y, Mochizuki H, Nakamori M. Expanded CUG Repeat RNA Induces Premature Senescence in Myotonic Dystrophy Model Cells. Front Genet 2022; 13:865811. [PMID: 35401669 PMCID: PMC8990169 DOI: 10.3389/fgene.2022.865811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a dominantly inherited disorder due to a toxic gain of function of RNA transcripts containing expanded CUG repeats (CUGexp). Patients with DM1 present with multisystemic symptoms, such as muscle wasting, cognitive impairment, cataract, frontal baldness, and endocrine defects, which resemble accelerated aging. Although the involvement of cellular senescence, a critical component of aging, was suggested in studies of DM1 patient-derived cells, the detailed mechanism of cellular senescence caused by CUGexp RNA remains unelucidated. Here, we developed a DM1 cell model that conditionally expressed CUGexp RNA in human primary cells so that we could perform a detailed assessment that eliminated the variability in primary cells from different origins. Our DM1 model cells demonstrated that CUGexp RNA expression induced cellular senescence by a telomere-independent mechanism. Furthermore, the toxic RNA expression caused mitochondrial dysfunction, excessive reactive oxygen species production, and DNA damage and response, resulting in the senescence-associated increase of cell cycle inhibitors p21 and p16 and secreted mediators insulin-like growth factor binding protein 3 (IGFBP3) and plasminogen activator inhibitor-1 (PAI-1). This study provides unequivocal evidence of the induction of premature senescence by CUGexp RNA in our DM1 model cells.
Collapse
|
7
|
Upregulated IGFBP3 with Aging Is Involved in Modulating Apoptosis, Oxidative Stress, and Fibrosis: A Target of Age-Related Erectile Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6831779. [PMID: 35154570 PMCID: PMC8831074 DOI: 10.1155/2022/6831779] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 12/04/2022]
Abstract
Aging has been deemed the primary factor in erectile dysfunction (ED). Herein, age-related changes in the erectile response and histomorphology were detected, and the relationship between aging and ED was investigated based on gene expression levels. Thirty male Sprague–Dawley (SD) rats were randomly divided into 6 groups, and intracavernous pressure (ICP) and mean arterial pressure (MAP) were measured. Subsequently, the corpus cavernosum (CC) was harvested and prepared for histological examinations of apoptosis, oxidative stress (OS), and fibrosis. Then, the microarray dataset (GSE10804) was analyzed to identify differentially expressed genes (DEGs) in ED progression, and hub genes were selected. In addition, aged CC smooth muscle cells (CCSMCs) were isolated to evaluate the function of the hub gene by siRNA interference, qRT–PCR, immunofluorescence staining, enzyme-linked immunosorbent assay, western blot analysis, CCK-8 assay, EdU staining, and flow cytometry approaches. The ICP/MAP and smooth muscle cell (SMC)/collagen ratios declined with aging, while apoptosis and OS levels increased with aging. The enriched functions and pathways of the DEGs were investigated, and 15 hub genes were identified, among which IGFBP3 was significantly upregulated. The IGFBP3 upregulation was verified in the CC of aging rats. Furthermore, aged CCSMCs were transfected with siRNA to knock down IGFBP3 expression. The viability and proliferation of the CCSMCs increased, while apoptosis, OS, and fibrosis decreased. Our findings demonstrate that the erectile response of SD rats declines in parallel with enhanced CC apoptosis, OS, and fibrosis with aging. Upregulation of IGFBP3 plays an important role; furthermore, downregulation of IGFBP3 improves the viability and proliferation of CCSMCs and alleviates apoptosis, OS, and fibrosis. Thus, IGFBP3 is a potential therapeutic target for age-related ED.
Collapse
|
8
|
Ushakov RE, Aksenov ND, Pugovkina NA, Burova EB. Effects of IGFBP3 knockdown on human endometrial mesenchymal stromal cells stress-induced senescence. Biochem Biophys Res Commun 2021; 570:143-147. [PMID: 34284139 DOI: 10.1016/j.bbrc.2021.07.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023]
Abstract
Insulin-like growth factor binding protein 3 (IGFBP3) is known for its pleiotropic ability to regulate various cellular processes such as proliferation, apoptosis, differentiation etc. It has recently been shown that IGFBP3 is part of the secretome of senescent human endometrial mesenchymal stromal cells (MESCs) (Griukova et al., 2019) that takes part in paracrine propagation of senescence-like phenotype in MESCs (Vassilieva et al., 2020); however, mechanisms of pro-senescent IGFBP3 action in MESCs remain still unexplored. This study is aimed at elucidating the role of IGFBP3 upregulation in senescent MESCs. IGFBP3 knockdown in MESCs committed to H2O2-induced senescence led to partial abrogation of p21/Rb axis, to elevated ERK phosphorylation and to increase in SA-β-gal activity. Additionally, MESCs derived from various donors were found to demonstrate different IGFBP3 regulation during stress-induced senescence. Obtained results suggest ambiguous role of IGFBP3 in stress-induced senescence of MESCs.
Collapse
Affiliation(s)
- Roman E Ushakov
- Institute of Cytology RAS, Tikhoretsky Ave 4, St. Petersburg, 194064, Russia
| | - Nikolay D Aksenov
- Institute of Cytology RAS, Tikhoretsky Ave 4, St. Petersburg, 194064, Russia
| | - Natalia A Pugovkina
- Institute of Cytology RAS, Tikhoretsky Ave 4, St. Petersburg, 194064, Russia
| | - Elena B Burova
- Institute of Cytology RAS, Tikhoretsky Ave 4, St. Petersburg, 194064, Russia.
| |
Collapse
|
9
|
Goligorsky MS. Chronic Kidney Disease: A Vicarious Relation to Premature Cell Senescence. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1164-1171. [PMID: 32194054 DOI: 10.1016/j.ajpath.2020.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/25/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD), commonly fostering nonrenal complications, themselves more life threatening than renal pathology, remains enigmatic. Despite more than a century of intense research, therapeutic options to halt or reverse renal disease are rather limited. Recently, similarity between manifestations of progressive CKD and aging kidney has attracted investigative attention that revealed senescent cells and secreting proinflammatory and profibrotic mediators in all renal compartments, even at young age, in patients with kidney maladies. The overlapping features of these categories have been noticed previously and are briefly summarized herein. I propose two hypothetical scenarios for interactive association of kidney diseases and cell senescence, both culminating in progressive deterioration of renal function. Persistence of senescent cells is considered as a critical contributor to this association; and the mechanisms explaining persistence, such as activation of cell cycle regulators, anti-apoptotic stimuli, metabolic aberrations, and their interactions, are discussed. The mutual encroachment of underlying kidney disease and cell senescence bring about the conclusion that both entities merge along the natural history of the disease. This putative interpretation of vicarious relation between cell senescence and CKD may expand the arsenal of pharmacotherapy to include the judicious use of senotherapeutics in the management of renal disease.
Collapse
Affiliation(s)
- Michael S Goligorsky
- Renal Research Institute, and the Departments of Medicine, Pharmacology, and Physiology, New York Medical College at Touro University, Valhalla, New York.
| |
Collapse
|
10
|
Graded regulation of cellular quiescence depth between proliferation and senescence by a lysosomal dimmer switch. Proc Natl Acad Sci U S A 2019; 116:22624-22634. [PMID: 31636214 DOI: 10.1073/pnas.1915905116] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The reactivation of quiescent cells to proliferate is fundamental to tissue repair and homeostasis in the body. Often referred to as the G0 state, quiescence is, however, not a uniform state but with graded depth. Shallow quiescent cells exhibit a higher tendency to revert to proliferation than deep quiescent cells, while deep quiescent cells are still fully reversible under physiological conditions, distinct from senescent cells. Cellular mechanisms underlying the control of quiescence depth and the connection between quiescence and senescence are poorly characterized, representing a missing link in our understanding of tissue homeostasis and regeneration. Here we measured transcriptome changes as rat embryonic fibroblasts moved from shallow to deep quiescence over time in the absence of growth signals. We found that lysosomal gene expression was significantly up-regulated in deep quiescence, and partially compensated for gradually reduced autophagy flux. Reducing lysosomal function drove cells progressively deeper into quiescence and eventually into a senescence-like irreversibly arrested state; increasing lysosomal function, by lowering oxidative stress, progressively pushed cells into shallower quiescence. That is, lysosomal function modulates graded quiescence depth between proliferation and senescence as a dimmer switch. Finally, we found that a gene-expression signature developed by comparing deep and shallow quiescence in fibroblasts can correctly classify a wide array of senescent and aging cell types in vitro and in vivo, suggesting that while quiescence is generally considered to protect cells from irreversible arrest of senescence, quiescence deepening likely represents a common transition path from cell proliferation to senescence, related to aging.
Collapse
|
11
|
Zhai W, Yong D, El-Jawhari JJ, Cuthbert R, McGonagle D, Win Naing M, Jones E. Identification of senescent cells in multipotent mesenchymal stromal cell cultures: Current methods and future directions. Cytotherapy 2019; 21:803-819. [PMID: 31138507 DOI: 10.1016/j.jcyt.2019.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/30/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Regardless of their tissue of origin, multipotent mesenchymal stromal cells (MSCs) are commonly expanded in vitro for several population doublings to achieve a sufficient number of cells for therapy. Prolonged MSC expansion has been shown to result in phenotypical, morphological and gene expression changes in MSCs, which ultimately lead to the state of senescence. The presence of senescent cells in therapeutic MSC batches is undesirable because it reduces their viability, differentiation potential and trophic capabilities. Additionally, senescent cells acquire senescence-activated secretory phenotype, which may not only induce apoptosis in the neighboring host cells following MSC transplantation, but also trigger local inflammatory reactions. This review outlines the current and promising new methodologies for the identification of senescent cells in MSC cultures, with a particular emphasis on non-destructive and label-free methodologies. Technologies allowing identification of individual senescent cells, based on new surface markers, offer potential advantage for targeted senescent cell removal using new-generation senolytic agents, and subsequent production of therapeutic MSC batches fully devoid of senescent cells. Methods or a combination of methods that are non-destructive and label-free, for example, involving cell size and spectroscopic measurements, could be the best way forward because they do not modify the cells of interest, thus maximizing the final output of therapeutic-grade MSC cultures. The further incorporation of machine learning methods has also recently shown promise in facilitating, automating and enhancing the analysis of these measured data.
Collapse
Affiliation(s)
- Weichao Zhai
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK; Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Derrick Yong
- Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Jehan Jomaa El-Jawhari
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK; Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Richard Cuthbert
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK
| | - May Win Naing
- Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Elena Jones
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK.
| |
Collapse
|
12
|
Voic H, Li X, Jang JH, Zou C, Sundd P, Alder J, Rojas M, Chandra D, Randell S, Mallampalli RK, Tesfaigzi Y, Ryba T, Nyunoya T. RNA sequencing identifies common pathways between cigarette smoke exposure and replicative senescence in human airway epithelia. BMC Genomics 2019; 20:22. [PMID: 30626320 PMCID: PMC6325884 DOI: 10.1186/s12864-018-5409-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/26/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Aging is affected by genetic and environmental factors, and cigarette smoking is strongly associated with accumulation of senescent cells. In this study, we wanted to identify genes that may potentially be beneficial for cell survival in response to cigarette smoke and thereby may contribute to development of cellular senescence. RESULTS Primary human bronchial epithelial cells from five healthy donors were cultured, treated with or without 1.5% cigarette smoke extract (CSE) for 24 h or were passaged into replicative senescence. Transcriptome changes were monitored using RNA-seq in CSE and non-CSE exposed cells and those passaged into replicative senescence. We found that, among 1534 genes differentially regulated during senescence and 599 after CSE exposure, 243 were altered in both conditions, representing strong enrichment. Pathways and gene sets overrepresented in both conditions belonged to cellular processes that regulate reactive oxygen species, proteasome degradation, and NF-κB signaling. CONCLUSIONS Our results offer insights into gene expression responses during cellular aging and cigarette smoke exposure, and identify potential molecular pathways that are altered by cigarette smoke and may also promote airway epithelial cell senescence.
Collapse
Affiliation(s)
- Hannah Voic
- 0000 0004 0504 9575grid.422569.eDivision of Natural Sciences, New College of Florida, Sarasota, FL USA
| | - Xiuying Li
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Jun-Ho Jang
- 0000 0004 0454 5075grid.417046.0Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA USA
| | - Chunbin Zou
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Prithu Sundd
- 0000 0004 1936 9000grid.21925.3dVascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Jonathan Alder
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Mauricio Rojas
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Divay Chandra
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Scott Randell
- 0000 0001 1034 1720grid.410711.2Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC USA
| | - Rama K. Mallampalli
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Yohannes Tesfaigzi
- Lovelace Respiratory Research Institute, COPD program, Albuquerque, NM USA
| | - Tyrone Ryba
- 0000 0004 0504 9575grid.422569.eDivision of Natural Sciences, New College of Florida, Sarasota, FL USA
| | - Toru Nyunoya
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| |
Collapse
|
13
|
Jiang CM, Liu X, Li CX, Qian HC, Chen D, Lai CQ, Shen LR. Anti-senescence effect and molecular mechanism of the major royal jelly proteins on human embryonic lung fibroblast (HFL-I) cell line. J Zhejiang Univ Sci B 2018; 19:960-972. [PMID: 30507079 PMCID: PMC6305251 DOI: 10.1631/jzus.b1800257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 09/09/2018] [Accepted: 09/09/2018] [Indexed: 12/15/2022]
Abstract
Royal jelly (RJ) from honeybee has been widely used as a health promotion supplement. The major royal jelly proteins (MRJPs) have been identified as the functional component of RJ. However, the question of whether MRJPs have anti-senescence activity for human cells remains. Human embryonic lung fibroblast (HFL-I) cells were cultured in media containing no MRJPs (A), MRJPs at 0.1 mg/ml (B), 0.2 mg/ml (C), or 0.3 mg/ml (D), or bovine serum albumin (BSA) at 0.2 mg/ml (E). The mean population doubling levels of cells in media B, C, D, and E were increased by 12.4%, 31.2%, 24.0%, and 10.4%, respectively, compared with that in medium A. The cells in medium C also exhibited the highest relative proliferation activity, the lowest senescence, and the longest telomeres. Moreover, MRJPs up-regulated the expression of superoxide dismutase-1 (SOD1) and down-regulated the expression of mammalian target of rapamycin (MTOR), catenin beta like-1 (CTNNB1), and tumor protein p53 (TP53). Raman spectra analysis showed that there were two unique bands related to DNA synthesis materials, amide carbonyl group vibrations and aromatic hydrogens. These results suggest that MRJPs possess anti-senescence activity for the HFL-I cell line, and provide new knowledge illustrating the molecular mechanism of MRJPs as anti-senescence factors.
Collapse
Affiliation(s)
- Chen-min Jiang
- College of Biosystems Engineering and Food Science, Zhejiang University / Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs / Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, China
| | - Xin Liu
- College of Biosystems Engineering and Food Science, Zhejiang University / Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs / Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, China
| | - Chun-xue Li
- College of Biosystems Engineering and Food Science, Zhejiang University / Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs / Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, China
| | - Hao-cheng Qian
- College of Biosystems Engineering and Food Science, Zhejiang University / Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs / Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, China
| | - Di Chen
- College of Biosystems Engineering and Food Science, Zhejiang University / Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs / Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, China
| | - Chao-qiang Lai
- USDA ARS Nutritional Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, the United States
| | - Li-rong Shen
- College of Biosystems Engineering and Food Science, Zhejiang University / Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs / Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, China
| |
Collapse
|
14
|
Toutfaire M, Dumortier E, Fattaccioli A, Van Steenbrugge M, Proby CM, Debacq-Chainiaux F. Unraveling the interplay between senescent dermal fibroblasts and cutaneous squamous cell carcinoma cell lines at different stages of tumorigenesis. Int J Biochem Cell Biol 2018; 98:113-126. [DOI: 10.1016/j.biocel.2018.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/08/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022]
|
15
|
Bürkle A. In memoriam Olivier Toussaint – Stress-induced premature senescence and the role of DNA damage. Mech Ageing Dev 2018. [DOI: 10.1016/j.mad.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Resveratrol Attenuates Copper-Induced Senescence by Improving Cellular Proteostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3793817. [PMID: 28280523 PMCID: PMC5322428 DOI: 10.1155/2017/3793817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/05/2017] [Indexed: 01/15/2023]
Abstract
Copper sulfate-induced premature senescence (CuSO4-SIPS) consistently mimetized molecular mechanisms of replicative senescence, particularly at the endoplasmic reticulum proteostasis level. In fact, disruption of protein homeostasis has been associated to age-related cell/tissue dysfunction and human disorders susceptibility. Resveratrol is a polyphenolic compound with proved antiaging properties under particular conditions. In this setting, we aimed to evaluate resveratrol ability to attenuate cellular senescence induction and to unravel related molecular mechanisms. Using CuSO4-SIPS WI-38 fibroblasts, resveratrol is shown to attenuate typical senescence alterations on cell morphology, senescence-associated beta-galactosidase activity, and cell proliferation. The mechanisms implicated in this antisenescence effect seem to be independent of senescence-associated genes and proteins regulation but are reliant on cellular proteostasis improvement. In fact, resveratrol supplementation restores copper-induced increased protein content, attenuates BiP level, and reduces carbonylated and polyubiquitinated proteins by autophagy induction. Our data provide compelling evidence for the beneficial effects of resveratrol by mitigating CuSO4-SIPS stressful consequences by the modulation of protein quality control systems. These findings highlight the importance of a balanced cellular proteostasis and add further knowledge on molecular mechanisms mediating resveratrol antisenescence effects. Moreover, they contribute to identifying specific molecular targets whose modulation will prevent age-associated cell dysfunction and improve human healthspan.
Collapse
|
17
|
Liang L, Stone RC, Stojadinovic O, Ramirez H, Pastar I, Maione AG, Smith A, Yanez V, Veves A, Kirsner RS, Garlick JA, Tomic-Canic M. Integrative analysis of miRNA and mRNA paired expression profiling of primary fibroblast derived from diabetic foot ulcers reveals multiple impaired cellular functions. Wound Repair Regen 2016; 24:943-953. [PMID: 27607190 DOI: 10.1111/wrr.12470] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/20/2016] [Indexed: 12/24/2022]
Abstract
Diabetic foot ulcers (DFUs) are one of the major complications of diabetes. Its molecular pathology remains poorly understood, impeding the development of effective treatments. Although it has been established that multiple cell types, including fibroblasts, keratinocytes, macrophages, and endothelial cells, all contribute to inhibition of healing, less is known regarding contributions of individual cell type. Thus, we generated primary fibroblasts from nonhealing DFUs and evaluated their cellular and molecular properties in comparison to nondiabetic foot fibroblasts (NFFs). Specifically, we analyzed both micro-RNA and mRNA expression profiles of primary DFU fibroblasts. Paired genomic analyses identified a total of 331 reciprocal miRNA-mRNA pairs including 21 miRNAs (FC > 2.0) along with 239 predicted target genes (FC > 1.5) that are significantly and differentially expressed. Of these, we focused on three miRNAs (miR-21-5p, miR-34a-5p, miR-145-5p) that were induced in DFU fibroblasts as most differentially regulated. The involvement of these microRNAs in wound healing was investigated by testing the expression of their downstream targets as well as by quantifying cellular behaviors in prospectively collected and generated cell lines from 15 patients (seven DFUF and eight NFF samples). We found large number of downstream targets of miR-21-5p, miR-34a-5p, miR-145-5p to be coordinately regulated in mRNA profiles, which was confirmed by quantitative real-time PCR. Pathway analysis on paired miRNA-mRNA profiles predicted inhibition of cell movement and cell proliferation, as well as activation of cell differentiation and senescence in DFU fibroblasts, which was confirmed by cellular assays. We concluded that induction of miR-21-5p, miR-34a-5p, miR-145-5p in DFU dermal fibroblasts plays an important role in impairing multiple cellular functions, thus contributing to overall inhibition of healing in DFUs.
Collapse
Affiliation(s)
- Liang Liang
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine (UMMSOM), Wound Healing and Regenerative Medicine Research Program
| | - Rivka C Stone
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine (UMMSOM), Wound Healing and Regenerative Medicine Research Program
| | - Olivera Stojadinovic
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine (UMMSOM), Wound Healing and Regenerative Medicine Research Program.,Wound Healing Clinical Research Program, UM Health System, Miami, Florida
| | - Horacio Ramirez
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine (UMMSOM), Wound Healing and Regenerative Medicine Research Program.,Human Genomics and Genetics Graduate Program, Tufts University, Boston, Massachusetts
| | - Irena Pastar
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine (UMMSOM), Wound Healing and Regenerative Medicine Research Program
| | - Anna G Maione
- Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts.,Department of Oral and Maxillofacial Pathology, School of Dentistry, School of Medicine, School of Engineering, Tufts University, Boston, Massachusetts
| | - Avi Smith
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine (UMMSOM), Miami, Florida
| | - Vanessa Yanez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine (UMMSOM), Miami, Florida
| | | | - Robert S Kirsner
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine (UMMSOM), Wound Healing and Regenerative Medicine Research Program.,Wound Healing Clinical Research Program, UM Health System, Miami, Florida
| | - Jonathan A Garlick
- Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts.,Department of Oral and Maxillofacial Pathology, School of Dentistry, School of Medicine, School of Engineering, Tufts University, Boston, Massachusetts
| | - Marjana Tomic-Canic
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine (UMMSOM), Wound Healing and Regenerative Medicine Research Program.,Wound Healing Clinical Research Program, UM Health System, Miami, Florida.,Human Genomics and Genetics Graduate Program, Tufts University, Boston, Massachusetts.,John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine (UMMSOM), Miami, Florida
| |
Collapse
|
18
|
Bellotti C, Capanni C, Lattanzi G, Donati D, Lucarelli E, Duchi S. Detection of mesenchymal stem cells senescence by prelamin A accumulation at the nuclear level. SPRINGERPLUS 2016; 5:1427. [PMID: 27625981 PMCID: PMC5001959 DOI: 10.1186/s40064-016-3091-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/17/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND Human mesenchymal stem cells (MSC), during in vitro expansion, undergo a progressive loss of proliferative potential that leads to the senescent state, associated with a reduction of their "medicinal" properties. This may hampers their efficacy in the treatment of injured tissues. Quality controls on MSC-based cell therapy products should include an assessment of the senescent state. However, a reliable and specific marker is still missing. From studies on lamin-associated disorders, has emerged the correlation between defective lamin A maturation and cellular senescence. FINDINGS Primary cultured hMSC lines (n = 3), were analyzed by immunostaining at different life-span stages for the accumulation of prelamin A, along with other markers of cellular senescence. During culture, cells at the last stage of their life span displayed evident signs of senescence consistent with the positivity of SA-β-gal staining. We also observed a significant increase of prelamin A positive cells. Furthermore, we verified that the cells marked by prelamin A were also positive for p21(Waf1) while negative for Ki67. CONCLUSIONS Overall data support that the detection of prelamin A identifies senescent MSC, providing an easy and reliable tool to be use alone or in combination with known senescence markers to screen MSC before their use in clinical applications.
Collapse
Affiliation(s)
- Chiara Bellotti
- Osteoarticular Regeneration Laboratory, 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, 40036 Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cristina Capanni
- Institute of Molecular Genetics - Unit of Bologna, CNR-National Research Council of Italy, Bologna, Italy
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Giovanna Lattanzi
- Institute of Molecular Genetics - Unit of Bologna, CNR-National Research Council of Italy, Bologna, Italy
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Davide Donati
- Osteoarticular Regeneration Laboratory, 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, 40036 Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Enrico Lucarelli
- Osteoarticular Regeneration Laboratory, 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, 40036 Italy
| | - Serena Duchi
- Osteoarticular Regeneration Laboratory, 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, 40036 Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Yokoyama Y, Zhu H, Zhang R, Noma KI. A novel role for the condensin II complex in cellular senescence. Cell Cycle 2016; 14:2160-70. [PMID: 26017022 DOI: 10.1080/15384101.2015.1049778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Although cellular senescence is accompanied by global alterations in genome architecture, how the genome is restructured during the senescent processes is not well understood. Here, we show that the hCAP-H2 subunit of the condensin II complex exists as either a full-length protein or an N-terminus truncated variant (ΔN). While the full-length hCAP-H2 associates with mitotic chromosomes, the ΔN variant exists as an insoluble nuclear structure. When overexpressed, both hCAP-H2 isoforms assemble this nuclear architecture and induce senescence-associated heterochromatic foci (SAHF). The hCAP-H2ΔN protein accumulates as cells approach senescence, and hCAP-H2 knockdown inhibits oncogene-induced senescence. This study identifies a novel mechanism whereby condensin drives senescence via nuclear/genomic reorganization.
Collapse
Key Words
- BrdU, bromodeoxyuridine
- CDK, cyclin dependent kinase
- DAPI, 4,6-diamidino-2-phenylindole
- NCAPH2, non-SMC chromosome-associated protein H2 gene
- RPE-1, hTERT-immortalized retinal pigment epithelial cell line
- Rb, retinoblastoma protein
- SA-β-gal, senescence-associated β-galactosidase
- SADS, senescence-associated distension of satellites
- SAHF
- SAHF, senescence-associated heterochromatic foci
- SMC, structural maintenance of chromosomes
- cellular senescence
- condensin
- genome organization
- hCAP-H2, human chromosome-associated protein H2
- hTERT, human telomerase reverse transcriptase
- human
- nuclear architecture
- oncogene-induced senescence
- shRNA, short-hairpin RNA.
- uORF, upstream open reading frame
Collapse
|
20
|
Chen L, Peng Z, Meng Q, Mongan M, Wang J, Sartor M, Chen J, Niu L, Medvedovic M, Kao W, Xia Y. Loss of IκB kinase β promotes myofibroblast transformation and senescence through activation of the ROS-TGFβ autocrine loop. Protein Cell 2016; 7:338-50. [PMID: 26946493 PMCID: PMC4853320 DOI: 10.1007/s13238-015-0241-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
Using forward and reverse genetics and global gene expression analyses, we explored the crosstalk between the IκB kinase β (IKKβ) and the transforming growth factor β (TGFβ) signaling pathways. We show that in vitro ablation of Ikkβ in fibroblasts led to progressive ROS accumulation and TGFβ activation, and ultimately accelerated cell migration, fibroblast-myofibroblast transformation and senescence. Mechanistically, the basal IKKβ activity was required for anti-oxidant gene expression and redox homeostasis. Lacking this activity, IKKβ-null cells showed ROS accumulation and activation of stress-sensitive transcription factor AP-1/c-Jun. AP-1/c-Jun activation led to up-regulation of the Tgfβ2 promoter, which in turn further potentiated intracellular ROS through the induction of NADPH oxidase (NOX). These data suggest that by blocking the autocrine amplification of a ROS-TGFβ loop IKKβ plays a crucial role in the prevention of fibroblast-myofibroblast transformation and senescence.
Collapse
Affiliation(s)
- Liang Chen
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Zhimin Peng
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Qinghang Meng
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Maureen Mongan
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Jingcai Wang
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Maureen Sartor
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Jing Chen
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Liang Niu
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Mario Medvedovic
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Winston Kao
- Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Ying Xia
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA. .,Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA.
| |
Collapse
|
21
|
Morgunova GV, Kolesnikov AV, Klebanov AA, Khokhlov AN. Senescence-associated β-galactosidase—A biomarker of aging, DNA damage, or cell proliferation restriction? ACTA ACUST UNITED AC 2016. [DOI: 10.3103/s0096392515040082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Grootaert MOJ, da Costa Martins PA, Bitsch N, Pintelon I, De Meyer GRY, Martinet W, Schrijvers DM. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy 2015; 11:2014-2032. [PMID: 26391655 PMCID: PMC4824610 DOI: 10.1080/15548627.2015.1096485] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 09/03/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022] Open
Abstract
Autophagy is triggered in vascular smooth muscle cells (VSMCs) of diseased arterial vessels. However, the role of VSMC autophagy in cardiovascular disease is poorly understood. Therefore, we investigated the effect of defective autophagy on VSMC survival and phenotype and its significance in the development of postinjury neointima formation and atherosclerosis. Tissue-specific deletion of the essential autophagy gene Atg7 in murine VSMCs (atg7-/- VSMCs) caused accumulation of SQSTM1/p62 and accelerated the development of stress-induced premature senescence as shown by cellular and nuclear hypertrophy, CDKN2A-RB-mediated G1 proliferative arrest and senescence-associated GLB1 activity. Transfection of SQSTM1-encoding plasmid DNA in Atg7+/+ VSMCs induced similar features, suggesting that accumulation of SQSTM1 promotes VSMC senescence. Interestingly, atg7-/- VSMCs were resistant to oxidative stress-induced cell death as compared to controls. This effect was attributed to nuclear translocation of the transcription factor NFE2L2 resulting in upregulation of several antioxidative enzymes. In vivo, defective VSMC autophagy led to upregulation of MMP9, TGFB and CXCL12 and promoted postinjury neointima formation and diet-induced atherogenesis. Lesions of VSMC-specific atg7 knockout mice were characterized by increased total collagen deposition, nuclear hypertrophy, CDKN2A upregulation, RB hypophosphorylation, and GLB1 activity, all features typical of cellular senescence. To conclude, autophagy is crucial for VSMC function, phenotype, and survival. Defective autophagy in VSMCs accelerates senescence and promotes ligation-induced neointima formation and diet-induced atherogenesis, implying that autophagy inhibition as therapeutic strategy in the treatment of neointimal stenosis and atherosclerosis would be unfavorable. Conversely, stimulation of autophagy could be a valuable new strategy in the treatment of arterial disease.
Collapse
Affiliation(s)
- Mandy OJ Grootaert
- Laboratory of Physiopharmacology; University of Antwerp; Antwerp, Belgium
| | - Paula A da Costa Martins
- Department of Cardiology; Cardiovascular Research Institute Maastricht; Maastricht, The Netherlands
| | - Nicole Bitsch
- Department of Cardiology; Cardiovascular Research Institute Maastricht; Maastricht, The Netherlands
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology; University of Antwerp; Antwerp, Belgium
| | - Guido RY De Meyer
- Laboratory of Physiopharmacology; University of Antwerp; Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology; University of Antwerp; Antwerp, Belgium
| | | |
Collapse
|
23
|
Sklirou AD, Ralli M, Dominguez M, Papassideri I, Skaltsounis AL, Trougakos IP. Hexapeptide-11 is a novel modulator of the proteostasis network in human diploid fibroblasts. Redox Biol 2015; 5:205-215. [PMID: 25974626 PMCID: PMC4434199 DOI: 10.1016/j.redox.2015.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 04/20/2015] [Accepted: 04/26/2015] [Indexed: 01/01/2023] Open
Abstract
Despite the fact that several natural products (e.g. crude extracts or purified compounds) have been found to activate cell antioxidant responses and/or delay cellular senescence the effect(s) of small peptides on cell viability and/or modulation of protective mechanisms (e.g. the proteostasis network) remain largely elusive. We have thus studied a hexapeptide (Hexapeptide-11) of structure Phe-Val-Ala-Pro-Phe-Pro (FVAPFP) originally isolated from yeast extracts and later synthesized by solid state synthesis to high purity. We show herein that Hexapeptide-11 exhibits no significant toxicity in normal human diploid lung or skin fibroblasts. Exposure of fibroblasts to Hexapeptide-11 promoted dose and time-dependent activation of proteasome, autophagy, chaperones and antioxidant responses related genes. Moreover, it promoted increased nuclear accumulation of Nrf2; higher expression levels of proteasomal protein subunits and increased proteasome peptidase activities. In line with these findings we noted that Hexapeptide-11 conferred significant protection in fibroblasts against oxidative-stress-mediated premature cellular senescence, while at in vivo skin deformation assays in human subjects it improved skin elasticity. Finally, Hexapeptide-11 was found to induce the activity of extracellular MMPs and it also suppressed cell migration. Our presented findings indicate that Hexapeptide-11 is a promising anti-ageing agent.
Collapse
Affiliation(s)
- Aimilia D Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Marianna Ralli
- Korres S.A. Natural Products, 57th Athens-Lamia National Road, 32011 Inofyta, Greece
| | | | - Issidora Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| |
Collapse
|
24
|
Anti-ageing effects of Sonchus oleraceus L. (pūhā) leaf extracts on H₂O₂-induced cell senescence. Molecules 2015; 20:4548-64. [PMID: 25774489 PMCID: PMC6272691 DOI: 10.3390/molecules20034548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 11/17/2022] Open
Abstract
Antioxidants protect against damage from free radicals and are believed to slow the ageing process. Previously, we have reported the high antioxidant activity of 70% methanolic Sonchus oleraceus L. (Asteraceae) leaf extracts. We hypothesize that S. oleraceus extracts protect cells against H2O2-induced senescence by mediating oxidative stress. Premature senescence of young WI-38 cells was induced by application of H2O2. Cells were treated with S. oleraceus extracts before or after H2O2 stress. The senescence- associated β-galactosidase (SA-β-gal) activity was used to indicate cell senescence. S. oleraceus extracts showed higher cellular antioxidant activity than chlorogenic acid in WI-38 cells. S. oleraceus extracts suppressed H2O2 stress-induced premature senescence in a concentration-dependent manner. At 5 and 20 mg/mL, S. oleraceus extracts showed better or equivalent effects of reducing stress-induced premature senescence than the corresponding ascorbic acid treatments. These findings indicate the potential of S. oleraceus extracts to be formulated as an anti-ageing agent.
Collapse
|
25
|
Ribeiro-Varandas E, Pereira HS, Monteiro S, Neves E, Brito L, Boavida Ferreira R, Viegas W, Delgado M. Bisphenol A disrupts transcription and decreases viability in aging vascular endothelial cells. Int J Mol Sci 2014; 15:15791-805. [PMID: 25207595 PMCID: PMC4200871 DOI: 10.3390/ijms150915791] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 05/04/2014] [Accepted: 06/13/2014] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA) is a widely utilized endocrine disruptor capable of mimicking endogenous hormones, employed in the manufacture of numerous consumer products, thereby interfering with physiological cellular functions. Recent research has shown that BPA alters epigenetic cellular mechanisms in mammals and may be correlated to enhanced cellular senescence. Here, the effects of BPA at 10 ng/mL and 1 µg/mL, concentrations found in human samples, were analyzed on HT29 human colon adenocarcinona cell line and Human Umbilical Vein Endothelial Cells (HUVEC). Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) transcriptional analysis of the Long Interspersed Element-1 (LINE-1) retroelement showed that BPA induces global transcription deregulation in both cell lines, although with more pronounced effects in HUVEC cells. Whereas there was an increase in global transcription in HT29 exclusively after 24 h of exposure, this chemical had prolonged effects on HUVEC. Immunoblotting revealed that this was not accompanied by alterations in the overall content of H3K9me2 and H3K4me3 epigenetic marks. Importantly, cell viability assays and transcriptional analysis indicated that prolonged BPA exposure affects aging processes in senescent HUVEC. To our knowledge this is the first report that BPA interferes with senescence in primary vascular endothelial cells, therefore, suggesting its association to the etiology of age-related human pathologies, such as atherosclerosis.
Collapse
Affiliation(s)
- Edna Ribeiro-Varandas
- Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; E-Mails: (E.R.-V.); (H.S.P.); (S.M.); (E.N.); (L.B.); (R.B.F.); (W.V.)
| | - H. Sofia Pereira
- Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; E-Mails: (E.R.-V.); (H.S.P.); (S.M.); (E.N.); (L.B.); (R.B.F.); (W.V.)
| | - Sara Monteiro
- Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; E-Mails: (E.R.-V.); (H.S.P.); (S.M.); (E.N.); (L.B.); (R.B.F.); (W.V.)
| | - Elsa Neves
- Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; E-Mails: (E.R.-V.); (H.S.P.); (S.M.); (E.N.); (L.B.); (R.B.F.); (W.V.)
- Escola Superior de Tecnologia e Gestão Jean Piaget do Litoral Alentejano (ESTGJPLA), Instituto Piaget, Campus Académico de Santo André, Ap. 38, 7500-999 Vila Nova de Santo André, Portugal
| | - Luísa Brito
- Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; E-Mails: (E.R.-V.); (H.S.P.); (S.M.); (E.N.); (L.B.); (R.B.F.); (W.V.)
| | - Ricardo Boavida Ferreira
- Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; E-Mails: (E.R.-V.); (H.S.P.); (S.M.); (E.N.); (L.B.); (R.B.F.); (W.V.)
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa (UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - Wanda Viegas
- Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; E-Mails: (E.R.-V.); (H.S.P.); (S.M.); (E.N.); (L.B.); (R.B.F.); (W.V.)
| | - Margarida Delgado
- Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; E-Mails: (E.R.-V.); (H.S.P.); (S.M.); (E.N.); (L.B.); (R.B.F.); (W.V.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +351-213-653-100 (ext. 3281); Fax: +351-213-653-195
| |
Collapse
|
26
|
Xu X, Hueckstaedt LK, Ren J. Deficiency of insulin-like growth factor 1 attenuates aging-induced changes in hepatic function: role of autophagy. J Hepatol 2013; 59:308-17. [PMID: 23583271 DOI: 10.1016/j.jhep.2013.03.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/26/2013] [Accepted: 03/28/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Circulating insulin-like growth factor-1 (IGF-1) plays a pivotal role in mediating the aging process. This study was designed to evaluate the effect of liver IGF-1 deficiency (LID) on aging-induced changes in hepatic function and underlying mechanisms, with a focus on autophagy. METHODS Plasma and liver samples were obtained from young (3-mo) and aged (24-mo) wild type (WT) and LID mice. Levels of AST, ALT, triglyceride, hepatic lipofuscin, steatosis, fibrosis, and nuclear morphology were analyzed. Western blot was employed to evaluate autophagy. Human HepG2 cells were treated with free fatty acid (FFA) to mimic hepatic aging in the absence or presence of IGF-1 siRNA. SA-β-gal activity was detected using flow cytometry and a fluorescence microplate reader. GFP-LC3 was used to assess autophagy activity in HepG2 cells. RESULTS Median survival was longer in LID mice compared with WT mice. Aging was associated with elevated levels of triglyceride, AST and ALT, lipofuscin accumulation, steatosis, fibrosis and nuclear injury, which were significantly attenuated by liver IGF-1 deficiency. Levels of autophagy were suppressed in senescent livers, the effect was reversed in the liver of IGF-1 deficient mice. In HepG2 cells, FFA induced the accumulation of β-gal, which was dramatically suppressed by IGF-1 knockdown. Importantly, inhibiting autophagy using 3-methyladenine mitigated IGF-1 knockdown-induced preservation of autophagic vacuole formation and inhibition of β-gal accumulation in the presence of FFA in HepG2 cells. CONCLUSIONS Our data revealed that IGF-1 deficiency ameliorated aging-induced hepatic injury, possibly through preventing a concomitant diminution in autophagy. These data provide new insight into the role of IGF-1 and autophagy in the management of aging-induced hepatic injury.
Collapse
Affiliation(s)
- Xihui Xu
- Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | | | |
Collapse
|
27
|
Kojima H, Inoue T, Kunimoto H, Nakajima K. IL-6-STAT3 signaling and premature senescence. JAKSTAT 2013; 2:e25763. [PMID: 24416650 PMCID: PMC3876432 DOI: 10.4161/jkst.25763] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/13/2013] [Accepted: 07/15/2013] [Indexed: 12/12/2022] Open
Abstract
Cytokines play several roles in developing and/or reinforcing premature cellular senescence of young cells. One such cytokine, interleukin-6 (IL-6), regulates senescence in some systems in addition to its known functions of immune regulation and promotion of tumorigenesis. In this review, we describe recent advances in studies on the roles of IL-6 and its downstream signal transducer and activator of transcription 3 (STAT3) in regulating premature cellular senescence. IL-6/sIL-6Rα stimulation forms a senescence-inducing circuit involving the STAT3-insulin-like growth factor-binding protein 5 (IGFBP5) as a key axis triggering and reinforcing component in human fibroblasts. We describe how cytokines regulate the process of senescence by activating STAT3 in one system and anti-senescence or tumorigenesis in other systems. The roles of other STAT members in premature senescence also will be discussed to show the multiple mechanisms leading to cytokine-induced senescence.
Collapse
Affiliation(s)
- Hirotada Kojima
- Department of Immunology; Osaka City University Graduate School of Medicine; Osaka, Japan
| | - Toshiaki Inoue
- Division of Human Genome Science; Department of Molecular and Cellular Biology; School of Life Sciences; Faculty of Medicine; Tottori University; Yonago, Japan
| | - Hiroyuki Kunimoto
- Department of Immunology; Osaka City University Graduate School of Medicine; Osaka, Japan
| | - Koichi Nakajima
- Department of Immunology; Osaka City University Graduate School of Medicine; Osaka, Japan
| |
Collapse
|
28
|
Abstract
Skin is a model of choice in studies on aging. Indeed, skin aging can be modulated by internal and external factors, reflecting its complexity. Two types of skin aging have been identified: intrinsic, mainly genetically determined and extrinsic—also called "photo-aging"—resulting on the impact of environmental stress and more precisely of UV rays. Simplified in vitro models, based on cellular senescence, have been developed to study the relationship between UV and aging. These models vary on the cell type (fibroblasts or keratinocytes, normal or immortalized) and the type of UV used (UVA or UVB).
Collapse
|
29
|
Matthaei M, Meng H, Meeker AK, Eberhart CG, Jun AS. Endothelial Cdkn1a (p21) overexpression and accelerated senescence in a mouse model of Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 2012; 53:6718-27. [PMID: 22956607 DOI: 10.1167/iovs.12-9669] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Stress of the endoplasmic reticulum and oxidative stress play critical roles in the pathogenesis of Fuchs Endothelial Corneal Dystrophy (FECD). In the normal aging cornea, cellular stress has been associated with a loss in proliferative capacity (premature senescence) of corneal endothelial cells (CECs). The present study used a transgenic Col8a2(Q455K/Q455K) knock-in mouse model of early-onset FECD to identify the endothelial expression profile of specific cellular stress response-related targets, which may be relevant to late-onset FECD. METHODS The differential endothelial mRNA levels of cellular stress response-related genes were determined in 12-month-old homozygous Col8a2(Q455K/Q455K) mutant and wild-type mice using customized PCR arrays. Result validation and analysis of additional senescence-related transcripts was performed by real-time PCR. Expression of p53 and p21 was assessed by immunofluorescence. Senescence-associated β-galactosidase (SA-β-Gal) activity was investigated by histochemical labeling. Human FECD samples and normal controls were examined for p21 expression by immunohistochemistry. RESULTS PCR-array analysis showed greater than 2-fold and/or significantly altered endothelial regulation of 19 cellular stress response-related transcripts in Col8a2(Q455K/Q455K) mutant mice; real-time PCR documented statistically significant upregulation of senescence-associated targets Cdkn1a (p21), Serpine1 (PAI-1), Tagln (Sm22), Fn1 and Clu (ApoJ). Immunofluorescence revealed increased expression of nuclear p53 and p21 in mutant animals. SA-β-Gal staining detected increased proportions of senescent CECs in mutant mice. Human FECD endothelium exhibited increased levels of nuclear p21 protein. CONCLUSIONS Our results identify endothelial Cdkn1a (p21) upregulation in a mouse model of early-onset FECD, confirm overexpression of p21 in late-onset human FECD endothelium, and suggest a role for premature senescence in FECD.
Collapse
Affiliation(s)
- Mario Matthaei
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
30
|
Matos L, Gouveia A, Almeida H. Copper ability to induce premature senescence in human fibroblasts. AGE (DORDRECHT, NETHERLANDS) 2012; 34:783-94. [PMID: 21695420 PMCID: PMC3682071 DOI: 10.1007/s11357-011-9276-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/27/2011] [Indexed: 05/06/2023]
Abstract
Human diploid fibroblasts (HDFs) exposed to subcytotoxic concentrations of oxidative or stressful agents, such as hydrogen peroxide, tert-butylhydroperoxide, or ethanol, undergo stress-induced premature senescence (SIPS). This condition is characterized by the appearance of replicative senescence biomarkers such as irreversible growth arrest, increase in senescence-associated β-galactosidase (SA β-gal) activity, altered cell morphology, and overexpression of several senescence-associated genes. Copper is an essential trace element known to accumulate with ageing and to be involved in the pathogenesis of some age-related disorders. Past studies using either yeast or human cellular models of ageing provided evidence in favor of the role of intracellular copper as a longevity modulator. In the present study, copper ability to cause the appearance of senescent features in HDFs was assessed. WI-38 fibroblasts exposed to a subcytotoxic concentration of copper sulfate presented inhibition of cell proliferation, cell enlargement, increased SA β-gal activity, and mRNA overexpression of several senescence-associated genes such as p21, apolipoprotein J (ApoJ), fibronectin, transforming growth factor β-1 (TGF β1), insulin growth factor binding protein 3, and heme oxygenase 1. Western blotting results confirmed enhanced intracellular p21, ApoJ, and TGF β1 in copper-treated cells. Thus, similar to other SIPS-inducing agents, HDF exposure to subcytotoxic concentration of copper results in premature senescence. Further studies will unravel molecular mechanisms and the biological meaning of copper-associated senescence and lead to a better understanding of copper-related disorder establishment and progression.
Collapse
Affiliation(s)
- Liliana Matos
- />Faculty of Nutrition and Food Sciences, University of Porto, Rua Dr. Roberto Frias, 4200–465 Oporto, Portugal
- />Laboratory for Cell and Molecular Biology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200–319 Oporto, Portugal
- />IBMC-Instituto de Biologia Molecular e Celular, Rua do Campo Alegre no.823, 4150–180 Oporto, Portugal
| | - Alexandra Gouveia
- />Faculty of Nutrition and Food Sciences, University of Porto, Rua Dr. Roberto Frias, 4200–465 Oporto, Portugal
- />Laboratory for Cell and Molecular Biology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200–319 Oporto, Portugal
- />IBMC-Instituto de Biologia Molecular e Celular, Rua do Campo Alegre no.823, 4150–180 Oporto, Portugal
| | - Henrique Almeida
- />Laboratory for Cell and Molecular Biology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200–319 Oporto, Portugal
- />IBMC-Instituto de Biologia Molecular e Celular, Rua do Campo Alegre no.823, 4150–180 Oporto, Portugal
| |
Collapse
|
31
|
Phadke M, Krynetskaia N, Mishra A, Krynetskiy E. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells. Biochem Biophys Res Commun 2011; 411:409-15. [PMID: 21749859 DOI: 10.1016/j.bbrc.2011.06.165] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 06/27/2011] [Indexed: 01/06/2023]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-β-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of α subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.
Collapse
Affiliation(s)
- Manali Phadke
- Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
32
|
Vo TKD, de Saint-Hubert M, Morrhaye G, Godard P, Geenen V, Martens HJ, Debacq-Chainiaux F, Swine C, Toussaint O. Transcriptomic biomarkers of the response of hospitalized geriatric patients admitted with heart failure. Comparison to hospitalized geriatric patients with infectious diseases or hip fracture. Mech Ageing Dev 2011; 132:131-9. [DOI: 10.1016/j.mad.2011.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/24/2010] [Accepted: 02/08/2011] [Indexed: 01/05/2023]
|
33
|
Vo TKD, Godard P, de Saint-Hubert M, Morrhaye G, Debacq-Chainiaux F, Swine C, Geenen V, Martens HJ, Toussaint O. Differentially abundant transcripts in PBMC of hospitalized geriatric patients with hip fracture compared to healthy aged controls. Exp Gerontol 2010; 46:257-64. [PMID: 21074600 DOI: 10.1016/j.exger.2010.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
The abundance of a selection of transcript species involved in inflammation, immunosenescence and stress response was compared between PBMC of 35 geriatric patients with hip fracture in acute phase (days 2-4 after hospitalization) or convalescence phase (days 7-10) and 28 healthy aged controls. Twenty-nine differentially abundant transcripts were identified in acute phase versus healthy ageing. Twelve of these transcripts remained differentially abundant in convalescence phase, and 22 were similarly differentially abundant in acute phase of geriatric infectious diseases. Seven of these 22 transcripts were previously identified as differentially abundant in PBMC of healthy aged versus healthy young controls, with further alteration for CD28, CD69, LCK, CTSD, HMOX1, and TNFRSF1A in acute phase after geriatric hip fracture and infectious diseases. The next question is whether these alterations are common to other geriatric diseases and/or preexist before the clinical onset of the diseases.
Collapse
Affiliation(s)
- Thi Kim Duy Vo
- Unit of Research on Cellular Biology, NARILIS-Namur Research Institute for Life Sciences, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vo TKD, Godard P, de Saint-Hubert M, Morrhaye G, Swine C, Geenen V, Martens HJ, Debacq-Chainiaux F, Toussaint O. Transcriptomic biomarkers of the response of hospitalized geriatric patients with infectious diseases. IMMUNITY & AGEING 2010; 7:9. [PMID: 20716329 PMCID: PMC2933667 DOI: 10.1186/1742-4933-7-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/17/2010] [Indexed: 11/10/2022]
Abstract
Background Infectious diseases are significant causes of morbidity and mortality among elderly populations. However, the relationship between oxidative stress, immune function and inflammatory response in acute phase of the infectious disease is poorly understood. Results Herein the abundance of a selection of 148 transcripts involved in immunosenescence and stress response was compared in total RNA of PBMC of 28 healthy aged probands and 39 aged patients in acute phase of infectious disease (day 2-4 after hospitalization) or in convalescence phase (day 7-10). This study provides a list of 24 differentially abundant transcript species in the acute phase versus healthy aged. For instance, transcripts associated with inflammatory and anti-inflammatory reactions (TNFRSF1A, IL1R1, IL1R2, IL10RB) and with oxidative stress (HMOX1, GPX1, SOD2, PRDX6) were more abundant while those associated with T-cell functions (CD28, CD69, LCK) were less abundant in acute phase. The abundance of seven of these transcripts (CD28, CD69, LCK, CTSD, HMOX1, TNFRSF1A and PRDX6) was already known to be altered in healthy aged probands compared to healthy young ones and was further affected in aged patients in acute phase, compromising an efficient response. Conclusion This work provides insights of the state of acute phase response to infections in elderly patients and could explain further the lack of appropriate response in the elderly compared to younger persons.
Collapse
Affiliation(s)
- Thi Kim Duy Vo
- Unit of Research on Cellular Biology, NARILIS-Namur Research Institute for Life Sciences, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 2010; 4:1798-806. [PMID: 20010931 DOI: 10.1038/nprot.2009.191] [Citation(s) in RCA: 1224] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Normal cells can permanently lose the ability to proliferate when challenged by potentially oncogenic stress, a process termed cellular senescence. Senescence-associated beta-galactosidase (SA-betagal) activity, detectable at pH 6.0, permits the identification of senescent cells in culture and mammalian tissues. Here we describe first a cytochemical protocol suitable for the histochemical detection of individual senescent cells both in culture and tissue biopsies. The second method is based on the alkalinization of lysosomes, followed by the use of 5-dodecanoylaminofluorescein di-beta-D-galactopyranoside (C12FDG), a fluorogenic substrate for betagal activity. The cytochemical method takes about 30 min to execute, and several hours to a day to develop and score. The fluorescence methods take between 4 and 8 h to execute and can be scored in a single day. The cytochemical method is applicable to tissue sections and requires simple reagents and equipment. The fluorescence-based methods have the advantages of being more quantitative and sensitive.
Collapse
|
36
|
Debacq-Chainiaux F, Boilan E, Dedessus Le Moutier J, Weemaels G, Toussaint O. p38(MAPK) in the senescence of human and murine fibroblasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:126-37. [PMID: 20886761 DOI: 10.1007/978-1-4419-7002-2_10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oncogenic and environmental stresses, such as reactive oxygen species, UV radiation etc, can induce premature cellular senescence without critical telomere shortening. The role of the Ras/Raf/ERK signal transduction cascade in this process has been previously established, but recent evidence also indicates a critical role of the p38 MAP kinases pathway. Oncogenic and environmental stresses impinge upon the p38(MAPK) pathway, suggesting a major role of this pathway in senescence induced by stresses. Prematurely senescent cells are most likely to appear in several age-relatedpathologies associated with a stressful environment and/or the release of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Florence Debacq-Chainiaux
- University of Namur, Research Unit on Cellular Biology, Rue de Bruxelles, 61, Namur B-5000, Belgium.
| | | | | | | | | |
Collapse
|
37
|
Damri M, Granot G, Ben-Meir H, Avivi Y, Plaschkes I, Chalifa-Caspi V, Wolfson M, Fraifeld V, Grafi G. Senescing Cells Share Common Features with Dedifferentiating Cells. Rejuvenation Res 2009; 12:435-43. [DOI: 10.1089/rej.2009.0887] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Meytal Damri
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Gila Granot
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Hagit Ben-Meir
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Yigal Avivi
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Inbar Plaschkes
- The National Institute for Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Vered Chalifa-Caspi
- The National Institute for Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Vadim Fraifeld
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| |
Collapse
|
38
|
Stress-induced premature senescence of endothelial cells: a perilous state between recovery and point of no return. Curr Opin Hematol 2009; 16:215-9. [PMID: 19318942 DOI: 10.1097/moh.0b013e32832a07bd] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW To discuss most recently published studies on morphologic patterns and molecular mechanisms of stress-induced premature senescence (SIPS) of vascular endothelial cells. RECENT FINDINGS Lysosomal dysfunction and impaired autophagy, which have been well established in replicative senescence, were also described in SIPS induced by advanced glycation end products (AGEs). Recently, strides were made to prevent and reverse senescence. The role of lysosomal dysfunction and Lamp-2A deficiency has been demonstrated in aging. Molecular analyses identified the role of sirtuin 1 in preventing cell senescence; shed light on the role of polycomb group (PcG) protein Bmi-1 in senescence. Additionally, intriguing data on the role of caveolin-1 in cell senescence have emerged. SUMMARY In aging organisms and chronic diseases properly functioning tissue is replaced by senescent cells. Comparison between replicative senescence and SIPS indicates that replicative senescence is almost exclusively associated with the reduction of telomerase activity and attrition of telomeres, whereas SIPS does not require these events, thus conferring potential reversibility onto this process.
Collapse
|
39
|
Bertrand-Vallery V, Boilan E, Ninane N, Demazy C, Friguet B, Toussaint O, Poumay Y, Debacq-Chainiaux F. Repeated exposures to UVB induce differentiation rather than senescence of human keratinocytes lacking p16INK-4A. Biogerontology 2009; 11:167-81. [DOI: 10.1007/s10522-009-9238-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 06/11/2009] [Indexed: 01/05/2023]
|
40
|
Scheckhuber CQ, Grief J, Boilan E, Luce K, Debacq-Chainiaux F, Rittmeyer C, Gredilla R, Kolbesen BO, Toussaint O, Osiewacz HD. Age-related cellular copper dynamics in the fungal ageing model Podospora anserina and in ageing human fibroblasts. PLoS One 2009; 4:e4919. [PMID: 19305496 PMCID: PMC2654708 DOI: 10.1371/journal.pone.0004919] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 02/11/2009] [Indexed: 12/14/2022] Open
Abstract
In previous investigations an impact of cellular copper homeostasis on ageing of the ascomycete Podospora anserina has been demonstrated. Here we provide new data indicating that mitochondria play a major role in this process. Determination of copper in the cytosolic fraction using total reflection X-ray fluorescence spectroscopy analysis and eGfp reporter gene studies indicate an age-related increase of cytosolic copper levels. We show that components of the mitochondrial matrix (i.e. eGFP targeted to mitochondria) become released from the organelle during ageing. Decreasing the accessibility of mitochondrial copper in P. anserina via targeting a copper metallothionein to the mitochondrial matrix was found to result in a switch from a copper-dependent cytochrome-c oxidase to a copper-independent alternative oxidase type of respiration and results in lifespan extension. In addition, we demonstrate that increased copper concentrations in the culture medium lead to the appearance of senescence biomarkers in human diploid fibroblasts (HDFs). Significantly, expression of copper-regulated genes is induced during in vitro ageing in medium devoid of excess copper suggesting that cytosolic copper levels also increase during senescence of HDFs. These data suggest that the identified molecular pathway of age-dependent copper dynamics may not be restricted to P. anserina but may be conserved from lower eukaryotes to humans.
Collapse
Affiliation(s)
- Christian Q. Scheckhuber
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Jürgen Grief
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Emmanuelle Boilan
- Research Unit on Cellular Biology, University of Namur, Namur, Belgium
| | - Karin Luce
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | - Claudia Rittmeyer
- Institute of Inorganic Chemistry/Analytical Chemistry, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Ricardo Gredilla
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Bernd O. Kolbesen
- Institute of Inorganic Chemistry/Analytical Chemistry, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Olivier Toussaint
- Research Unit on Cellular Biology, University of Namur, Namur, Belgium
| | - Heinz D. Osiewacz
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
41
|
p53 and ATF-2 partly mediate the overexpression of COX-2 in H2O2-induced premature senescence of human fibroblasts. Biogerontology 2008; 10:291-8. [DOI: 10.1007/s10522-008-9204-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 11/24/2008] [Indexed: 11/25/2022]
|
42
|
Yu JZ, Warycha MA, Christos PJ, Darvishian F, Yee H, Kaminio H, Berman RS, Shapiro RL, Buckley MT, Liebes LF, Pavlick AC, Polsky D, Brooks PC, Osman I. Assessing the clinical utility of measuring Insulin-like Growth Factor Binding Proteins in tissues and sera of melanoma patients. J Transl Med 2008; 6:70. [PMID: 19025658 PMCID: PMC2627832 DOI: 10.1186/1479-5876-6-70] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 11/24/2008] [Indexed: 02/06/2023] Open
Abstract
Background Different Insulin-like Growth Factor Binding Proteins (IGFBPs) have been investigated as potential biomarkers in several types of tumors. In this study, we examined both IGFBP-3 and -4 levels in tissues and sera of melanoma patients representing different stages of melanoma progression. Methods The study cohort consisted of 132 melanoma patients (primary, n = 72; metastatic, n = 60; 64 Male, 68 Female; Median Age = 56) prospectively enrolled in the New York University School of Medicine Interdisciplinary Melanoma Cooperative Group (NYU IMCG) between August 2002 and December 2006. We assessed tumor-expression and circulating sera levels of IGFBP-3 and -4 using immunohistochemistry and ELISA assays. Correlations with clinicopathologic parameters were examined using Wilcoxon rank-sum tests and Spearman-rank correlation coefficients. Results Median IGFBP-4 tumor expression was significantly greater in primary versus metastatic patients (70% versus 10%, p = 0.01) A trend for greater median IGFBP-3 sera concentration was observed in metastatic versus primary patients (4.9 μg/ml vs. 3.4 μg/ml, respectively, p = 0.09). However, sera levels fell within a normal range for IGFBP-3. Neither IGFBP-3 nor -4 correlated with survival in this subset of patients. Conclusion Decreased IGFBP-4 tumor expression might be a step in the progression from primary to metastatic melanoma. Our data lend support to a recently-described novel tumor suppressor role of secreting IGFBPs in melanoma. However, data do not support the clinical utility of measuring levels of IGFBP-3 and -4 in sera of melanoma patients.
Collapse
Affiliation(s)
- Jessie Z Yu
- Department of Dermatology, New York University School of Medicine, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Programme schedule for SFRR-E Berlin supplement. Free Radic Res 2008; 42 Suppl 1:2-126. [DOI: 10.1080/10715760802207914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|