1
|
Mohanram Ramkumar K, Thasu Susindran O, Ganesh GV, Kannan H, Paulmurugan R. Luciferase-Based Reporter System for Investigating GPx4-Mediated Ferroptosis and Its Therapeutic Implications in Diabetes. Anal Chem 2025; 97:1059-1069. [PMID: 39579117 DOI: 10.1021/acs.analchem.4c03065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Ferroptosis, a distinct form of regulated cell death, is characterized by iron-dependent lipid peroxide accumulation in cell membranes from dysregulated cellular iron homeostasis and compromised antioxidant defense mechanisms. Glutathione peroxidase 4 (GPx4) is crucial in the regulation of ferroptosis by controlling lipid peroxide accumulation. Recent research established the association of ferroptosis with several diseases, prompting investigation toward ferroptosis-targeted therapeutic approaches. However, there is a lack of sensor systems designed to evaluate ferroptosis modulation in intact cells. In this study, we developed a highly sensitive luciferase-based reporter system to study GPx4-mediated ferroptosis in cells. We constructed a novel vector flanking the GPx4 promoter driving luciferase gene expression, demonstrating ferroptosis-specific luciferase activity in transfected HEK293T cells. We established stable cells expressing the construct and optimized its suitability for high-throughput screening using well-established ferroptosis modulators. We identified eugenol, a phenolic compound, as a potent ferroptosis inhibitor using the developed reporter system. Eugenol demonstrated dose-dependent protection against ferroptosis-induced damage in pancreatic beta cells, as assessed by the expression of the key markers such as GPx4, SLC7A11, NRF2, and HO1. Further, we showed the regulation of iron levels and total iron-binding capacity of beta cells by eugenol in streptozotocin (STZ) -induced diabetic mice. Additionally, the diabetes-induced downregulation of GPx4 and antioxidant Nrf2 in pancreatic tissue was significantly mitigated by eugenol, as evidenced by both immunohistochemistry and gene expression analysis. This research validates the functionality of the ferroptosis sensor and offers an approach to develop antidiabetic therapy by targeting ferroptosis to protect beta-cell viability and function.
Collapse
Affiliation(s)
- Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Oviya Thasu Susindran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Goutham V Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Harithpriya Kannan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, California 94304, United States
| |
Collapse
|
2
|
Luo Z, Sheng Z, Hu L, Shi L, Tian Y, Zhao X, Yang W, Xiao Z, Shen D, Wu W, Lan T, Zhao B, Wang X, Zhuang N, Zhang JN, Wang Y, Lu Y, Wang L, Zhang C, Wang P, An J, Yang F, Li Q. Targeted macrophage phagocytosis by Irg1/itaconate axis improves the prognosis of intracerebral hemorrhagic stroke and peritonitis. EBioMedicine 2024; 101:104993. [PMID: 38324982 PMCID: PMC10862510 DOI: 10.1016/j.ebiom.2024.104993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Macrophages are innate immune cells whose phagocytosis function is critical to the prognosis of stroke and peritonitis. cis-aconitic decarboxylase immune-responsive gene 1 (Irg1) and its metabolic product itaconate inhibit bacterial infection, intracellular viral replication, and inflammation in macrophages. Here we explore whether itaconate regulates phagocytosis. METHODS Phagocytosis of macrophages was investigated by time-lapse video recording, flow cytometry, and immunofluorescence staining in macrophage/microglia cultures isolated from mouse tissue. Unbiased RNA-sequencing and ChIP-sequencing assays were used to explore the underlying mechanisms. The effects of Irg1/itaconate axis on the prognosis of intracerebral hemorrhagic stroke (ICH) and peritonitis was observed in transgenic (Irg1flox/flox; Cx3cr1creERT/+, cKO) mice or control mice in vivo. FINDINGS In a mouse model of ICH, depletion of Irg1 in macrophage/microglia decreased its phagocytosis of erythrocytes, thereby exacerbating outcomes (n = 10 animals/group, p < 0.05). Administration of sodium itaconate/4-octyl itaconate (4-OI) promoted macrophage phagocytosis (n = 7 animals/group, p < 0.05). In addition, in a mouse model of peritonitis, Irg1 deficiency in macrophages also inhibited phagocytosis of Staphylococcus aureus (n = 5 animals/group, p < 0.05) and aggravated outcomes (n = 9 animals/group, p < 0.05). Mechanistically, 4-OI alkylated cysteine 155 on the Kelch-like ECH-associated protein 1 (Keap1), consequent in nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and transcriptional activation of Cd36 gene. Blocking the function of CD36 completely abolished the phagocytosis-promoting effects of Irg1/itaconate axis in vitro and in vivo. INTERPRETATION Our findings provide a potential therapeutic target for phagocytosis-deficiency disorders, supporting further development towards clinical application for the benefit of stroke and peritonitis patients. FUNDING The National Natural Science Foundation of China (32070735, 82371321 to Q. Li, 82271240 to F. Yang) and the Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education (KZ202010025033 to Q. Li).
Collapse
Affiliation(s)
- Zhaoli Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ziyang Sheng
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Liye Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yichen Tian
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaochu Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Yang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhongnan Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Danmin Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Weihua Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ting Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Boqian Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaogang Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Nan Zhuang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jian-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yamei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yabin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Liyong Wang
- Core Facilities for Molecular Biology, Capital Medical University, Beijing 100069, China
| | - Chenguang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Peipei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China.
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Georgiou-Siafis SK, Tsiftsoglou AS. The Key Role of GSH in Keeping the Redox Balance in Mammalian Cells: Mechanisms and Significance of GSH in Detoxification via Formation of Conjugates. Antioxidants (Basel) 2023; 12:1953. [PMID: 38001806 PMCID: PMC10669396 DOI: 10.3390/antiox12111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Glutathione (GSH) is a ubiquitous tripeptide that is biosynthesized in situ at high concentrations (1-5 mM) and involved in the regulation of cellular homeostasis via multiple mechanisms. The main known action of GSH is its antioxidant capacity, which aids in maintaining the redox cycle of cells. To this end, GSH peroxidases contribute to the scavenging of various forms of ROS and RNS. A generally underestimated mechanism of action of GSH is its direct nucleophilic interaction with electrophilic compounds yielding thioether GSH S-conjugates. Many compounds, including xenobiotics (such as NAPQI, simvastatin, cisplatin, and barbital) and intrinsic compounds (such as menadione, leukotrienes, prostaglandins, and dopamine), form covalent adducts with GSH leading mainly to their detoxification. In the present article, we wish to present the key role and significance of GSH in cellular redox biology. This includes an update on the formation of GSH-S conjugates or GSH adducts with emphasis given to the mechanism of reaction, the dependence on GST (GSH S-transferase), where this conjugation occurs in tissues, and its significance. The uncovering of the GSH adducts' formation enhances our knowledge of the human metabolome. GSH-hematin adducts were recently shown to have been formed spontaneously in multiples isomers at hemolysates, leading to structural destabilization of the endogenous toxin, hematin (free heme), which is derived from the released hemoglobin. Moreover, hemin (the form of oxidized heme) has been found to act through the Kelch-like ECH associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor-2 (Nrf2) signaling pathway as an epigenetic modulator of GSH metabolism. Last but not least, the implications of the genetic defects in GSH metabolism, recorded in hemolytic syndromes, cancer and other pathologies, are presented and discussed under the framework of conceptualizing that GSH S-conjugates could be regarded as signatures of the cellular metabolism in the diseased state.
Collapse
Affiliation(s)
| | - Asterios S. Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece;
| |
Collapse
|
4
|
Li Y, Que M, Wang X, Zhan G, Zhou Z, Luo X, Li S. Exploring Astrocyte-Mediated Mechanisms in Sleep Disorders and Comorbidity. Biomedicines 2023; 11:2476. [PMID: 37760916 PMCID: PMC10525869 DOI: 10.3390/biomedicines11092476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes, the most abundant cells in the brain, are integral to sleep regulation. In the context of a healthy neural environment, these glial cells exert a profound influence on the sleep-wake cycle, modulating both rapid eye movement (REM) and non-REM sleep phases. However, emerging literature underscores perturbations in astrocytic function as potential etiological factors in sleep disorders, either as protopathy or comorbidity. As known, sleep disorders significantly increase the risk of neurodegenerative, cardiovascular, metabolic, or psychiatric diseases. Meanwhile, sleep disorders are commonly screened as comorbidities in various neurodegenerative diseases, epilepsy, and others. Building on existing research that examines the role of astrocytes in sleep disorders, this review aims to elucidate the potential mechanisms by which astrocytes influence sleep regulation and contribute to sleep disorders in the varied settings of brain diseases. The review emphasizes the significance of astrocyte-mediated mechanisms in sleep disorders and their associated comorbidities, highlighting the need for further research.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Mengxin Que
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Xuan Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Gaofeng Zhan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Zhiqiang Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiyong Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| |
Collapse
|
5
|
Dhir N, Jain A, Sharma AR, Sharma S, Mahendru D, Patial A, Malik D, Prakash A, Attri SV, Bhattacharyya S, Das Radotra B, Medhi B. Rat BM-MSCs secretome alone and in combination with stiripentol and ISRIB, ameliorated microglial activation and apoptosis in experimental stroke. Behav Brain Res 2023; 449:114471. [PMID: 37146724 DOI: 10.1016/j.bbr.2023.114471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Stroke, a devastating neurological emergency, is the leading cause of worldwide mortality and functional disability. Combining novel neuroprotective drugs offers a way to improve the stroke intervention outcomes. In the present era, the combination therapy has been proposed as a plausible strategy to target multiple mechanisms and enhance the treatment efficacy to rescue stroke induced behavioral abnormalities and neuropathological damage. In the current study, we have investigated the neuroprotective effect of stiripentol (STP) and trans integrated stress response inhibitor (ISRIB) alone and in combination with rat bone marrow derived mesenchymal stem cells (BM-MSCs) secretome in an experimental model of stroke. MATERIALS & METHODS Stroke was induced in male Wistar rats (n=92) by temporary middle cerebral artery occlusion (MCAO). Three investigational agents were selected including STP (350mg/kg; i.p.), trans ISRIB (2.5mg/kg; i.p.) and rat BM-MSCs secretome (100µg/kg; i.v). Treatment was administered at 3 hrs post MCAO, in four doses with a 12 hrs interval. Post MCAO, neurological deficits, brain infarct, brain edema, BBB permeability, motor functional and memory deficits were assessed. Molecular parameters: oxidative stress, pro inflammatory cytokines, synaptic protein markers, apoptotic protein markers and histopathological damage were assessed. RESULTS STP and trans ISRIB, alone and in combination with rat BM-MSCs secretome, significantly improved neurological, motor function and memory deficits along with significant reduction in pyknotic neurons in the brain of post MCAO rats. These results were correlating with significant reduction in pro-inflammatory cytokines, microglial activation and apoptotic markers in the brain of drug treated post MCAO rats. CONCLUSION STP and trans ISRIB, alone and in combination with rat BM-MSCs secretome, might be considered as potential neuroprotective agents in the acute ischemic stroke (AIS) management. DATA AVAILABILITY STATEMENT Data will be made available on reasonable request.
Collapse
Affiliation(s)
- Neha Dhir
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Ashish Jain
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Amit Raj Sharma
- Department of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Sunil Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Dhruv Mahendru
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Ajay Patial
- Department of Pediatrics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Deepti Malik
- Department of Biochemistry, All India Institute of Medical Sciences, Bilaspur, Himachal Pradesh, India.
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Savita Verma Attri
- Department of Biochemistry, All India Institute of Medical Sciences, Bilaspur, Himachal Pradesh, India.
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Bishan Das Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
6
|
Kumar D, Benyard B, Soni ND, Swain A, Wilson N, Reddy R. Feasibility of transient nuclear Overhauser effect imaging in brain at 7 T. Magn Reson Med 2023; 89:1357-1367. [PMID: 36372994 DOI: 10.1002/mrm.29519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE The nuclear Overhauser effect (NOE) quantification from the steady-state NOE imaging suffers from multiple confounding non-NOE-specific sources, including direct saturation, magnetization transfer, and relevant chemical exchange species, and is affected by B0 and B1 + inhomogeneities. The B0 -dependent and B1 + -dependent data needed for deconvolving these confounding effects would increase the scan time substantially, leading to other issues such as patient tolerability. Here, we demonstrate the feasibility of brain lipid mapping using an easily implementable transient NOE (tNOE) approach. METHODS This 7T study used a frequency-selective inversion pulse at a range of frequency offsets between 1.0 and 5.0 parts per million (ppm) and -5.0 and -1.0 ppm relative to bulk water peak. This was followed by a fixed/variable mixing time and then a single-shot 2D turbo FLASH readout. The feasibility of tNOE measurements is demonstrated on bovine serum albumin phantoms and healthy human brains. RESULTS The tNOE measurements from bovine serum albumin phantoms were found to be independent of physiological pH variations. Both bovine serum albumin phantoms and human brains showed broad tNOE contributions centered at approximately -3.5 ppm relative to water peak, with presumably aliphatic moieties in lipids and proteins being the dominant contributors. Less prominent tNOE contributions of approximately +2.5 ppm relative to water, presumably from aromatic moieties, were also detected. These aromatic signals were free from any CEST signals. CONCLUSION In this study, we have demonstrated the feasibility of tNOE in human brain at 7 T. This method is more scan-time efficient than steady-state NOE and provides NOE measurement with minimal confounders.
Collapse
Affiliation(s)
- Dushyant Kumar
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Blake Benyard
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Narayan Datt Soni
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anshuman Swain
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Neil Wilson
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravinder Reddy
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Pan F, Xu W, Ding J, Wang C. Elucidating the progress and impact of ferroptosis in hemorrhagic stroke. Front Cell Neurosci 2023; 16:1067570. [PMID: 36713782 PMCID: PMC9874704 DOI: 10.3389/fncel.2022.1067570] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Hemorrhagic stroke is a devastating cerebrovascular disease with high morbidity and mortality, for which effective therapies are currently unavailable. Based on different bleeding sites, hemorrhagic stroke can be generally divided into intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH), whose pathogenesis share some similarity. Ferroptosis is a recently defined programmed cell deaths (PCDs), which is a critical supplement to the hypothesis on the mechanism of nervous system injury after hemorrhagic stroke. Ferroptosis is characterized by distinctive morphological changes of mitochondria and iron-dependent accumulation of lipid peroxides. Moreover, scientists have successfully demonstrated the involvement of ferroptosis in animal models of ICH and SAH, indicating that ferroptosis is a promising target for hemorrhagic stroke therapy. However, the studies on ferroptosis still faces a serious of technical and theoretical challenges. This review systematically elaborates the role of ferroptosis in the pathogenesis of hemorrhagic stroke and puts forward some opinions on the dilemma of ferroptosis research.
Collapse
Affiliation(s)
- Feixia Pan
- Department of Cardiac Surgery, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Weize Xu
- Department of Cardiac Surgery, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jieying Ding
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chencen Wang
- Department of Pediatrics, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua, China,*Correspondence: Chencen Wang,
| |
Collapse
|
8
|
Baldacchino K, Peveler WJ, Lemgruber L, Smith RS, Scharler C, Hayden L, Komarek L, Lindsay SL, Barnett SC, Edgar JM, Linington C, Thümmler K. Myelinated axons are the primary target of hemin-mediated oxidative damage in a model of the central nervous system. Exp Neurol 2022; 354:114113. [PMID: 35569511 DOI: 10.1016/j.expneurol.2022.114113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 12/01/2022]
Abstract
Iron released from oligodendrocytes during demyelination or derived from haemoglobin breakdown products is believed to amplify oxidative tissue injury in multiple sclerosis (MS). However, the pathophysiological significance of iron-containing haemoglobin breakdown products themselves is rarely considered in the context of MS and their cellular specificity and mode of action remain unclear. Using myelinating cell cultures, we now report the cytotoxic potential of hemin (ferriprotoporphyrin IX chloride), a major degradation product of haemoglobin, is 25-fold greater than equimolar concentrations of free iron in myelinating cultures; a model that reproduces the complex multicellular environment of the CNS. At low micro molar concentrations (3.3 - 10 μM) we observed hemin preferentially binds to myelin and axons to initiate a complex detrimental response that results in targeted demyelination and axonal loss but spares neuronal cell bodies, astrocytes and the majority of oligodendroglia. Demyelination and axonal loss in this context are executed by a combination of mechanisms that include iron-dependent peroxidation by reactive oxygen species (ROS) and ferroptosis. These effects are microglial-independent, do not require any initiating inflammatory insult and represent a direct effect that compromises the structural integrity of myelinated axons in the CNS. Our data identify hemin-mediated demyelination and axonal loss as a novel mechanism by which intracerebral degradation of haemoglobin may contribute to lesion development in MS.
Collapse
Affiliation(s)
- Karl Baldacchino
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - William J Peveler
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, G12 8QQ Glasgow, UK
| | - Leandro Lemgruber
- Glasgow Imaging Facility, Institute of Infection, Immunity and Inflammation, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Rebecca Sherrard Smith
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Cornelia Scharler
- Institute of Experimental and Clinical Cell Therapy, Paracelsus Medical University, Salzburg, Austria
| | - Lorna Hayden
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Lina Komarek
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Susan L Lindsay
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Julia M Edgar
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Christopher Linington
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Katja Thümmler
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom.
| |
Collapse
|
9
|
Mlejnek P. Direct Interaction between N-Acetylcysteine and Cytotoxic Electrophile—An Overlooked In Vitro Mechanism of Protection. Antioxidants (Basel) 2022; 11:antiox11081485. [PMID: 36009205 PMCID: PMC9405167 DOI: 10.3390/antiox11081485] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
In laboratory experiments, many electrophilic cytotoxic agents induce cell death accompanied by reactive oxygen species (ROS) production and/or by glutathione (GSH) depletion. Not surprisingly, millimolar concentrations of N-acetylcysteine (NAC), which is used as a universal ROS scavenger and precursor of GSH biosynthesis, inhibit ROS production, restore GSH levels, and prevent cell death. The protective effect of NAC is generally used as corroborative evidence that cell death induced by a studied cytotoxic agent is mediated by an oxidative stress-related mechanism. However, any simple interpretation of the results of the protective effects of NAC may be misleading because it is unable to interact with superoxide (O2•−), the most important biologically relevant ROS, and is a very weak scavenger of H2O2. In addition, NAC is used in concentrations that are unnecessarily high to stimulate GSH synthesis. Unfortunately, the possibility that NAC as a nucleophile can directly interact with cytotoxic electrophiles to form non-cytotoxic NAC–electrophile adduct is rarely considered, although it is a well-known protective mechanism that is much more common than expected. Overall, apropos the possible mechanism of the cytoprotective effect of NAC in vitro, it is appropriate to investigate whether there is a direct interaction between NAC and the cytotoxic electrophile to form a non-cytotoxic NAC–electrophilic adduct(s).
Collapse
Affiliation(s)
- Petr Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 77515 Olomouc, Czech Republic
| |
Collapse
|
10
|
Li X, Wang B, Yu N, Yang L, Nan C, Sun Z, Guo L, Zhao Z. Gabapentin Alleviates Brain Injury in Intracerebral Hemorrhage Through Suppressing Neuroinflammation and Apoptosis. Neurochem Res 2022; 47:3063-3075. [PMID: 35809188 DOI: 10.1007/s11064-022-03657-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/29/2022]
Abstract
Neuroinflammation plays an important role in brain tissue injury during intracerebral hemorrhage. Gabapentin can reduce inflammation and oxidative stress through inhibiting nuclear factor κB (NFκB) signals. Here, we showed that gabapentin reduced brain tissue injury in ICH through suppressing NFκB-mediated neuroinflammation. ICH was induced by injecting collagenase IV into the right striatum of Sprague-Dawley rats. PC12 and BV2 cells injury induced by Hemin were used to simulate ICH in vitro. Inflammation and apoptosis were assessed in rat brain tissue and in vitro cells. The neurobehavioral scores were significantly decreased in ICH rats compared with sham rats. Phosphorylated IκB-α and cleaved caspase3, and apoptosis rate were significantly higher in tissue surrounding the hematoma than in brain tissues from rats subjected to sham surgery. Furthermore, serum IL-6 levels in ICH rats were higher than in sham rats. Gabapentin treatment significantly improved the behavioral scores, decreased levels of phosphorylated IκB-α and cleaved caspase3, apoptosis rate, and serum IL-6 level in ICH rats. Hemin-treated BV2 cells displayed higher levels of phosphorylated IκB-α, cleaved caspase3, and IL-6 in the supernatant compared with vehicle-treated cells. Hemin treatment induced a significantly lower level of peroxisome proliferator-activated receptor γ (PPARγ) in BV2 cells. BV2-PC12 co-culture cells treated by hemin displayed higher levels of cleaved caspase3 in PC12 cells. Furthermore, gabapentin treatment could reduce these effects induced by hemin and the protective effects of gabapentin were significantly attenuated by PPARγ inhibitor. Therefore, gabapentin may reduce inflammation and apoptosis induced by the ICH through PPARγ-NFκB pathway.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China.,Department of Neurosurgery, The First Hospital of Handan City, Handan, 056000, HeBei, China
| | - Bingqian Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China.,Department of Neurosurgery, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, 054000, HeBei, China
| | - Ning Yu
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, HeBei, China
| | - Liang Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China
| | - Chengrui Nan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China
| | - Zhimin Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China.,Department of Neurosurgery, The Third Hospital of Shijiazhuang City, Shijiazhuang, 050000, HeBei, China
| | - Lisi Guo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China.
| |
Collapse
|
11
|
Zhu G, Wang X, Chen L, Lenahan C, Fu Z, Fang Y, Yu W. Crosstalk Between the Oxidative Stress and Glia Cells After Stroke: From Mechanism to Therapies. Front Immunol 2022; 13:852416. [PMID: 35281064 PMCID: PMC8913707 DOI: 10.3389/fimmu.2022.852416] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Stroke is the second leading cause of global death and is characterized by high rates of mortality and disability. Oxidative stress is accompanied by other pathological processes that together lead to secondary brain damage in stroke. As the major component of the brain, glial cells play an important role in normal brain development and pathological injury processes. Multiple connections exist in the pathophysiological changes of reactive oxygen species (ROS) metabolism and glia cell activation. Astrocytes and microglia are rapidly activated after stroke, generating large amounts of ROS via mitochondrial and NADPH oxidase pathways, causing oxidative damage to the glial cells themselves and neurons. Meanwhile, ROS cause alterations in glial cell morphology and function, and mediate their role in pathological processes, such as neuroinflammation, excitotoxicity, and blood-brain barrier damage. In contrast, glial cells protect the Central Nervous System (CNS) from oxidative damage by synthesizing antioxidants and regulating the Nuclear factor E2-related factor 2 (Nrf2) pathway, among others. Although numerous previous studies have focused on the immune function of glial cells, little attention has been paid to the role of glial cells in oxidative stress. In this paper, we discuss the adverse consequences of ROS production and oxidative-antioxidant imbalance after stroke. In addition, we further describe the biological role of glial cells in oxidative stress after stroke, and we describe potential therapeutic tools based on glia cells.
Collapse
Affiliation(s)
- Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luxi Chen
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Zhang Y, Khan S, Liu Y, Zhang R, Li H, Wu G, Tang Z, Xue M, Yong VW. Modes of Brain Cell Death Following Intracerebral Hemorrhage. Front Cell Neurosci 2022; 16:799753. [PMID: 35185473 PMCID: PMC8851202 DOI: 10.3389/fncel.2022.799753] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke with high rates of mortality and morbidity. It induces cell death that is responsible for neurological deficits postinjury. There are no therapies that effectively mitigate cell death to treat ICH. This review aims to summarize our knowledge of ICH-induced cell death with a focus on apoptosis and necrosis. We also discuss the involvement of ICH in recently described modes of cell death including necroptosis, pyroptosis, ferroptosis, autophagy, and parthanatos. We summarize treatment strategies to mitigate brain injury based on particular cell death pathways after ICH.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ruiyi Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Guofeng Wu
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhouping Tang
- Department of Neurology, Affiliated Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
- *Correspondence: Mengzhou Xue,
| | - V. Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- V. Wee Yong,
| |
Collapse
|
13
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
14
|
Hu Y, Feng X, Chen J, Wu Y, Shen L. Hydrogen-rich saline alleviates early brain injury through inhibition of necroptosis and neuroinflammation via the ROS/HO-1 signaling pathway after traumatic brain injury. Exp Ther Med 2022; 23:126. [PMID: 34970349 PMCID: PMC8713175 DOI: 10.3892/etm.2021.11049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) has been recognized as a serious public health issue and a key contributor to disability and death, with a huge economic burden worldwide. Hydrogen, which is a slight and specific cytotoxic oxygen radical scavenger, has been demonstrated to ameliorate early brain injury (EBI) through reactive oxygen species (ROS), oxidative stress injury, apoptosis and necroptosis. Necroptosis refers to a type of programmed cell death process that has a vital function in neuronal cell death following TBI. The specific function of necroptosis in hydrogen-mediated neuroprotection after TBI, however, has yet to be determined. The present study aimed to examine the neuroprotective effects and possible molecular basis that underly hydrogen-rich saline in TBI-stimulated EBI by examining neural necroptosis in the C57BL/6 mouse model. The brain water content, neurological score, neuroinflammatory cytokines (NF-κΒ, TNF-α, IL-6 and IL-1β) and ROS were evaluated using flow cytometry. Malondialdehyde, superoxide dismutase (SOD) and glutathione (GSH) levels were evaluated using a biochemical kit. Receptor-interacting protein kinase (RIP)1, RIP3, Nrf2 and Heme oxygenase-1 (HO-1) were evaluated using western blotting. mRNA of Nrf2 and HO-1 were evaluated using quantitative PCR. Neuronal death was evaluated by TUNEL staining. The outcomes illustrated that hydrogen-rich saline treatment considerably enhanced the neurological score, increased neuronal survival, decreased the levels of serum MDA and brain ROS, increased the levels of serum GSH and SOD. In addition the protein expression levels of RIP1 and RIP3 and the cytokines NF-κB, TNF-α, IL-1β and IL-6 were downregulated compared with the TBI group, which demonstrated that hydrogen-rich saline-induced inhibition of necroptosis and neuroinflammation ameliorated neuronal death following TBI. The neuroprotective capacity of hydrogen-rich saline was demonstrated to be partly dependent on the ROS/heme oxygenase-1 signaling pathway. Taken together, the findings of the present study indicated that hydrogen-rich saline enhanced neurological outcomes in mice and minimized neuronal death by inducing protective effects against neural necroptosis as well as neuroinflammation.
Collapse
Affiliation(s)
- Yun Hu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Xiaoyan Feng
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Junhui Chen
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Yan Wu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Liuyan Shen
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214044, P.R. China
| |
Collapse
|
15
|
Wang L, Jiao W, Wu J, Zhang J, Tang M, Chen Y. Ulinastatin alleviates early brain injury after intracerebral hemorrhage by inhibiting necroptosis and neuroinflammation via MAPK/NF-κB signaling pathway. Acta Cir Bras 2022; 37:e370301. [PMID: 35584533 PMCID: PMC9109988 DOI: 10.1590/acb370301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose: Spontaneous intracerebral hemorrhage (ICH) is a major public health problem
with a huge economic burden worldwide. Ulinastatin (UTI), a serine protease
inhibitor, has been reported to be anti-inflammatory, immune regulation, and
organ protection by reducing reactive oxygen species production, and
inflammation. Necroptosis is a programmed cell death mechanism that plays a
vital role in neuronal cell death after ICH. However, the neuroprotection of
UTI in ICH has not been confirmed, and the potential mechanism is unclear.
The present study aimed to investigate the neuroprotection and potential
molecular mechanisms of UTI in ICH-induced EBI in a C57BL/6 mouse model. Methods: The neurological score, brain water content, neuroinflammatory cytokine
levels, and neuronal damage were evaluated. The anti-inflammation
effectiveness of UTI in ICH patients also was evaluated. Results: UTI treatment markedly increased the neurological score, alleviate the brain
edema, decreased the inflammatory cytokine TNF-α, interleukin‑1β (IL‑1β),
IL‑6, NF‑κB levels, and RIP1/RIP3, which indicated that UTI-mediated
inhibition of neuroinflammation, and necroptosis alleviated neuronal damage
after ICH. UTI also can decrease the inflammatory cytokine of ICH patients.
The neuroprotective capacity of UTI is partly dependent on the MAPK/NF-κB
signaling pathway. Conclusions: UTI improves neurological outcomes in mice and reduces neuronal death by
protecting against neural neuroinflammation, and necroptosis.
Collapse
Affiliation(s)
- Li Wang
- Anhui Medical University, China
| | | | | | | | | | | |
Collapse
|
16
|
Tao Y, Xu Y, Shen M, Feng X, Wu Y, Wu Y, Shen L, Wang Y. The neuroprotection of cerebrolysin after spontaneous intracerebral hemorrhage through regulates necroptosis via Akt/ GSK3β signaling pathway. Acta Cir Bras 2021; 36:e361002. [PMID: 34817023 PMCID: PMC8610213 DOI: 10.1590/acb361002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Spontaneous intracerebral hemorrhage (ICH) is a major cause of death and disability with a huge economic burden worldwide. Cerebrolysin (CBL) has been previously used as a nootropic drug. Necroptosis is a programmed cell death mechanism that plays a vital role in neuronal cell death after ICH. However, the precise role of necroptosis in CBL neuroprotection following ICH has not been confirmed. METHODS In the present study, we aimed to investigate the neuroprotective effects and potential molecular mechanisms of CBL in ICH-induced early brain injury (EBI) by regulating neural necroptosis in the C57BL/6 mice model. Mortality, neurological score, brain water content, and neuronal death were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, Evans blue extravasation, Western blotting, and quantitative real-time polymerase chain reaction (PCR). RESULTS The results show that CBL treatment markedly increased the survival rate, neurological score, and neuron survival, and downregulated the protein expression of RIP1 and RIP3, which indicated that CBL-mediated inhibition of necroptosis, and ameliorated neuronal death after ICH. The neuroprotective capacity of CBL is partly dependent on the Akt/GSK3β signaling pathway. CONCLUSIONS CBL improves neurological outcomes in mice and reduces neuronal death by protecting against neural necroptosis.
Collapse
Affiliation(s)
| | | | | | | | - Yan Wu
- Anhui Medical University, China
| | | | | | | |
Collapse
|
17
|
Ahluwalia M, Kumar M, Ahluwalia P, Rahimi S, Vender JR, Raju RP, Hess DC, Baban B, Vale FL, Dhandapani KM, Vaibhav K. Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages - A potential therapeutic approach. Neurochem Int 2021; 150:105192. [PMID: 34560175 PMCID: PMC8542401 DOI: 10.1016/j.neuint.2021.105192] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles responsible for cellular energy production. Besides, regulating energy homeostasis, mitochondria are responsible for calcium homeostasis, signal transmission, and the fate of cellular survival in case of injury and pathologies. Accumulating reports have suggested multiple roles of mitochondria in neuropathologies, neurodegeneration, and immune activation under physiological and pathological conditions. Mitochondrial dysfunction, which occurs at the initial phase of brain injury, involves oxidative stress, inflammation, deficits in mitochondrial bioenergetics, biogenesis, transport, and autophagy. Thus, development of targeted therapeutics to protect mitochondria may improve functional outcomes following traumatic brain injury (TBI) and intracerebral hemorrhages (ICH). In this review, we summarize mitochondrial dysfunction related to TBI and ICH, including the mechanisms involved, and discuss therapeutic approaches with special emphasis on past and current clinical trials.
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Manish Kumar
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Scott Rahimi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raghavan P Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
18
|
Abstract
Abstract
Ebselen is a well-known synthetic compound mimicking glutathione peroxidase (GPx), which catalyses some vital reactions that protect against oxidative damage. Based on a large number of in vivo and in vitro studies, various mechanisms have been proposed to explain its actions on multiple targets. It targets thiol-related compounds, including cysteine, glutathione, and thiol proteins (e.g., thioredoxin and thioredoxin reductase). Owing to this, ebselen is a unique multifunctional agent with important effects on inflammation, apoptosis, oxidative stress, cell differentiation, immune regulation and neurodegenerative disease, with anti-microbial, detoxifying and anti-tumour activity. This review summarises the current understanding of the multiple biological processes and molecules targeted by ebselen, and its pharmacological applications.
Collapse
|
19
|
Yang L, Wang Y, Zhang C, Cheng H. Perampanel, an AMPAR antagonist, alleviates experimental intracerebral hemorrhage‑induced brain injury via necroptosis and neuroinflammation. Mol Med Rep 2021; 24:544. [PMID: 34080030 PMCID: PMC8185517 DOI: 10.3892/mmr.2021.12183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a subtype of stroke with high mortality and morbidity due to the lack of effective therapies. The alpha‑amino‑3‑hydroxy‑5‑methyl‑4‑isoxazolepropionic acid receptor antagonist perampanel has been reported to alleviate early brain injury following subarachnoid hemorrhage and traumatic brain injury by reducing reactive oxygen species, apoptosis, autophagy, and necroptosis. Necroptosis is a caspase‑independent programmed cell death mechanism that serves a vital role in neuronal cell death following ICH. However, the precise role of necroptosis in perampanel‑mediated neuroprotection following ICH has not been confirmed. The present study aimed to investigate the neuroprotective effects and potential molecular mechanisms of perampanel in ICH‑induced early brain injury by regulating neural necroptosis in C57BL/6 mice and in a hemin‑induced neuron damage cell culture model. Mortality, neurological score, brain water content, and neuronal death were evaluated. The results demonstrated that perampanel treatment increased the survival rate and neurological score, and increased neuron survival. In addition, perampanel treatment downregulated the protein expression levels of receptor interacting serine/threonine kinase (RIP) 1, RIP3, and mixed lineage kinase domain like pseudokinase, and of the cytokines IL‑1β, IL‑6, TNF‑α, and NF‑κB. These results indicated that perampanel‑mediated inhibition of necroptosis and neuroinflammation ameliorated neuronal death in vitro and in vivo following ICH. The neuroprotective capacity of perampanel was partly dependent on the PTEN pathway. Taken together, the results of the present study demonstrated that perampanel improved neurological outcomes in mice and reduced neuronal death by protecting against neural necroptosis and neuroinflammation.
Collapse
Affiliation(s)
- Lixiang Yang
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yue Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Can Zhang
- Department of Neurosurgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Huilin Cheng
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
20
|
Bai Y, Zhang Y, Chu P, Wang C, Li L, Qi Y, Han X, Zhang B, Sun H, Li Y, Chen L, Ma X. Synthesis and biological evaluation of selenogefitinib for reducing bleomycin-induced pulmonary fibrosis. Bioorg Med Chem Lett 2021; 48:128238. [PMID: 34216747 DOI: 10.1016/j.bmcl.2021.128238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022]
Abstract
Selenium has demonstrated effectiveness in the reduction of oxidative stress and inflammation in vitro and in vivo, both of which are key indicators of the pathogenesis of pulmonary fibrosis. Gefitinib, an FDA-approved EGFR inhibitor, effectively reverses the deterioration of bleomycin-induced pulmonary fibrosis. Based on this, we proposed introducing a selenium atom into the structure of gefitinib, resulting in the generation of selenogefitinib. Compared to gefitinib, selenogefitinib was significantly less hepatotoxic and cytotoxic in cells. The results of the H&E staining of lung tissue validated that Selenogefitinib effectively protected the structure of the alveolar tissue and mitigated the infiltration of inflammatory cells in bleomycin-induced pulmonary fibrosis models. The reduction in the deposition of collagen fibers in lung tissue determined by Masson staining and hydroxyproline (HYP) content also corroborated the efficacy of selenogefitinib in the treatment of pulmonary fibrosis. Furthermore, Selenogefitinib decreased the levels of pro-inflammatory markers IL-4, IL-6, and TNF-α more significantly than gefitinib, which indicated that it exhibited a higher anti-inflammatory activity. In addition, the presence of selenium manifested a greater reduction in oxidative stress based on the decrease in the levels of MDA in mice blood. These results suggested that Selenogefitinib may be a potential candidate for the treatment of IPF.
Collapse
Affiliation(s)
- Yue Bai
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Yunhao Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Peng Chu
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Changyuan Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Lei Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Baojing Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Yanxia Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Lixue Chen
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China.
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China.
| |
Collapse
|
21
|
Ryter SW. Significance of Heme and Heme Degradation in the Pathogenesis of Acute Lung and Inflammatory Disorders. Int J Mol Sci 2021; 22:ijms22115509. [PMID: 34073678 PMCID: PMC8197128 DOI: 10.3390/ijms22115509] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
The heme molecule serves as an essential prosthetic group for oxygen transport and storage proteins, as well for cellular metabolic enzyme activities, including those involved in mitochondrial respiration, xenobiotic metabolism, and antioxidant responses. Dysfunction in both heme synthesis and degradation pathways can promote human disease. Heme is a pro-oxidant via iron catalysis that can induce cytotoxicity and injury to the vascular endothelium. Additionally, heme can modulate inflammatory and immune system functions. Thus, the synthesis, utilization and turnover of heme are by necessity tightly regulated. The microsomal heme oxygenase (HO) system degrades heme to carbon monoxide (CO), iron, and biliverdin-IXα, that latter which is converted to bilirubin-IXα by biliverdin reductase. Heme degradation by heme oxygenase-1 (HO-1) is linked to cytoprotection via heme removal, as well as by activity-dependent end-product generation (i.e., bile pigments and CO), and other potential mechanisms. Therapeutic strategies targeting the heme/HO-1 pathway, including therapeutic modulation of heme levels, elevation (or inhibition) of HO-1 protein and activity, and application of CO donor compounds or gas show potential in inflammatory conditions including sepsis and pulmonary diseases.
Collapse
|
22
|
GDF11 alleviates secondary brain injury after intracerebral hemorrhage via attenuating mitochondrial dynamic abnormality and dysfunction. Sci Rep 2021; 11:3974. [PMID: 33597668 PMCID: PMC7889617 DOI: 10.1038/s41598-021-83545-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/03/2021] [Indexed: 02/05/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a serious public health problem with high rates of death and disability. The neuroprotective effect of Growth Differentiation Factor 11 (GDF11) in ICH has been initially proved by our previous study. Oxidative stress (OS) plays crucial roles in mediating subsequent damage of ICH. However, whether and how mitochondrial dynamic events and function participated in ICH pathophysiology, and how mitochondrial function and OS interreacted in the neuroprotective process of GDF11 in ICH remains unclarified. Based on the rat model of ICH and in vitro cell model, we demonstrated that GDF11 could alleviate ICH induced neurological deficits, brain edema, OS status, neuronal apoptosis and inflammatory reaction. In addition, mitochondrial functional and structural impairments were obviously restored by GDF11. Treatment with antioxidant protected against erythrocyte homogenate (EH) induced cell injury by restoring OS status and mitochondrial fusion fission imbalance, which was similar to the effect of GDF11 treatment. Further, inhibition of mitochondrial division with Mdivi-1 attenuated mitochondrial functional defects and neuronal damages. In conclusion, our results for the first time proposed that GDF11 protected the post-ICH secondary injury by suppressing the feedback loop between mitochondrial ROS production and mitochondrial dynamic alteration, resulting in attenuated mitochondrial function and amelioration of neural damage.
Collapse
|
23
|
Agyemang AA, Kvist SV, Brinkman N, Gentinetta T, Illa M, Ortenlöf N, Holmqvist B, Ley D, Gram M. Cell-free oxidized hemoglobin drives reactive oxygen species production and pro-inflammation in an immature primary rat mixed glial cell culture. J Neuroinflammation 2021; 18:42. [PMID: 33573677 PMCID: PMC7879625 DOI: 10.1186/s12974-020-02052-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Germinal matrix intraventricular hemorrhage (GM-IVH) is associated with deposition of redox active cell-free hemoglobin (Hb), derived from hemorrhagic cerebrospinal fluid (CSF), in the cerebrum and cerebellum. In a recent study, using a preterm rabbit pup model of IVH, intraventricularly administered haptoglobin (Hp), a cell-free Hb scavenger, partially reversed the damaging effects observed following IVH. Together, this suggests that cell-free Hb is central in the pathophysiology of the injury to the immature brain following GM-IVH. An increased understanding of the causal pathways and metabolites involved in eliciting the damaging response following hemorrhage is essential for the continued development and implementation of neuroprotective treatments of GM-IVH in preterm infant. Methods We exposed immature primary rat mixed glial cells to hemorrhagic CSF obtained from preterm human infants with IVH (containing a mixture of Hb-metabolites) or to a range of pure Hb-metabolites, incl. oxidized Hb (mainly metHb with iron in Fe3+), oxyHb (mainly Fe2+), or low equivalents of heme, with or without co-administration with human Hp (a mixture of isotype 2-2/2-1). Following exposure, cellular response, reactive oxygen species (ROS) generation, secretion and expression of pro-inflammatory cytokines and oxidative markers were evaluated. Results Exposure of the glial cells to hemorrhagic CSF as well as oxidized Hb, but not oxyHb, resulted in a significantly increased rate of ROS production that positively correlated with the rate of production of pro-inflammatory and oxidative markers. Congruently, exposure to oxidized Hb caused a disintegration of the polygonal cytoskeletal structure of the glial cells in addition to upregulation of F-actin proteins in microglial cells. Co-administration of Hp partially reversed the damaging response of hemorrhagic CSF and oxidized Hb. Conclusion Exposure of mixed glial cells to oxidized Hb initiates a pro-inflammatory and oxidative response with cytoskeletal disintegration. Early administration of Hp, aiming to minimize the spontaneous autoxidation of cell-free oxyHb and liberation of heme, may provide a therapeutic benefit in preterm infant with GM-IVH.
Collapse
Affiliation(s)
| | - Suvi Vallius Kvist
- Lund University, Department of Clinical Sciences Lund, Pediatrics, Lund, Sweden
| | | | | | - Miriam Illa
- Fetal i+D Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clínic de Ginecologia, Obstetricia i Neonatologia, Universitat de Barcelona, Barcelona, Spain
| | - Niklas Ortenlöf
- Lund University, Department of Clinical Sciences Lund, Pediatrics, Lund, Sweden
| | | | - David Ley
- Lund University, Department of Clinical Sciences Lund, Pediatrics, Lund, Sweden
| | - Magnus Gram
- Lund University, Department of Clinical Sciences Lund, Pediatrics, Lund, Sweden.
| |
Collapse
|
24
|
Wang Y, Chen H, Chang W, Chen R, Xu S, Tao D. Protective effects of selenium yeast against cadmium-induced necroptosis via inhibition of oxidative stress and MAPK pathway in chicken liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111329. [PMID: 32979722 DOI: 10.1016/j.ecoenv.2020.111329] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The aim of the study was to investigate the protective effects of selenium yeast (SeY) against necroptosis triggered by Cd via inhibition of oxidative stress and MAPK pathway in the liver of chicken. Two hundred 120-day-old layers were randomly divided into four groups and raised for 120 days. The histopathological examination showed that necrosis characteristics were observed in Cd-exposed chicken livers. The exposure of Cd significantly reduced the activities of SOD, GSH-Px and CAT while improving MDA level in both serum and liver of chickens (P < 0.05), and induced oxidative stress. The MLKL, Rip1, RIP3, ERK, JNK and P38 mRNA expression of Cd group were significantly higher than other three groups (P < 0.01), and those in the Se + Cd group were significantly higher than control group and Se group (P < 0.01). However, the mRNA expression level of caspase8 of Cd was significantly lower than other three groups (P < 0.01), and that in the Se + Cd group was significantly higher than control group and Se group (P < 0.01), so the supplement of SeY could improve these situations. Similar results were also detected at the protein level. The results of the present study indicated that Cd could induce oxidative stress, activate MAPK pathway and evoke necroptosis damage in chicken livers, whereas SeY had protective effects in preventing this kind of Cd-induced injury by inhibition of oxidative stress and down-regulation MAPK pathway.
Collapse
Affiliation(s)
- Yong Wang
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China
| | - Hongwei Chen
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China
| | - Weihua Chang
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China
| | - Rong Chen
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China
| | - Shiwen Xu
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China.
| | - Dayong Tao
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China.
| |
Collapse
|
25
|
Bai Q, Liu J, Wang G. Ferroptosis, a Regulated Neuronal Cell Death Type After Intracerebral Hemorrhage. Front Cell Neurosci 2020; 14:591874. [PMID: 33304242 PMCID: PMC7701249 DOI: 10.3389/fncel.2020.591874] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Ferroptosis is a term that describes one form of regulated non-apoptotic cell death. It is triggered by the iron-dependent accumulation of lipid peroxides. Emerging evidence suggests a link between ferroptosis and the pathophysiological processes of neurological disorders, including stroke, degenerative diseases, neurotrauma, and cancer. Hemorrhagic stroke, also known as intracerebral hemorrhage (ICH), belongs to a devastating illness for its high level in morbidity and mortality. Currently, there are few established treatments and limited knowledge about the mechanisms of post-ICH neuronal death. The secondary brain damage after ICH is mainly attributed to oxidative stress and hemoglobin lysate, including iron, which leads to irreversible damage to neurons. Therefore, ferroptosis is becoming a common trend in research of neuronal death after ICH. Accumulative data suggest that the inhibition of ferroptosis may effectively prevent neuronal ferroptosis, thereby reducing secondary brain damage after ICH in animal models. Ferroptosis has a close relationship with oxidative damage and iron metabolism. This review reveals the pathological pathways and regulation mechanism of ferroptosis following ICH and then offers potential intervention strategies to mitigate neuron death and dysfunction after ICH.
Collapse
Affiliation(s)
- Qinqin Bai
- Shanxi Medical University, Neurology, Taiyuan, China
| | - Jiachen Liu
- Xiangya Medical College of Central South University, Clinical Medicine, Changsha, China
| | - Gaiqing Wang
- Shanxi Medical University, Neurology, Taiyuan, China.,Department of Neurology, Sanya Central Hospital (HaiNan Third People's Hospital), Sanya, China
| |
Collapse
|
26
|
Cao L, Mu W. Necrostatin-1 and necroptosis inhibition: Pathophysiology and therapeutic implications. Pharmacol Res 2020; 163:105297. [PMID: 33181319 PMCID: PMC7962892 DOI: 10.1016/j.phrs.2020.105297] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Necrostatin-1 (Nec-1) is a RIP1-targeted inhibitor of necroptosis, a form of programmed cell death discovered and investigated in recent years. There are already many studies demonstrating the essential role of necroptosis in various diseases, including inflammatory diseases, cardiovascular diseases and neurological diseases. However, the potential of Nec-1 in diseases has not received much attention. Nec-1 is able to inhibit necroptosis signaling pathway and thus ameliorate necroptotic cell death in disease development. Recent research findings indicate that Nec-1 could be applied in several types of diseases to alleviate disease development or improve prognosis. Moreover, we predict that Nec-1 has the potential to protect against the complications of coronavirus disease 2019 (COVID-19). This review summarized the effect of Nec-1 in disease models and the underlying molecular mechanism, providing research evidence for its future application.
Collapse
Affiliation(s)
- Liyuan Cao
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Mu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
27
|
Huang H, Huang G, Gu J, Chen K, Huang Y, Xu H. Relationship of Serum Uric Acid to Hematoma Volume and Prognosis in Patients with Acute Supratentorial Intracerebral Hemorrhage. World Neurosurg 2020; 143:e604-e612. [PMID: 32781152 DOI: 10.1016/j.wneu.2020.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oxidative stress and inflammation play important roles in the neuronal injury caused by intracerebral hemorrhage (ICH). Uric acid (UA), an important natural antioxidant, might reduce the neuronal injury caused by ICH. Delineating the relationship between UA and ICH will enhance our understanding of antioxidative mechanisms in recovery from ICH. METHODS We conducted a retrospective study of 325 patients with acute supratentorial ICH to investigate the relationship between serum UA levels and hematoma volumes and prognosis. A hematoma volume of ≥30 mL was defined as a large hematoma. An unfavorable outcome was defined as a modified Rankin scale score of 4-6 on day 30. RESULTS The serum UA level was significantly lower in the patients with a large hematoma volume (median, 306 μmol/L; 25th to 75th percentile, 243-411 μmol/L) than in those with a small hematoma volume (median, 357 μmol/L; 25th to 75th percentile, 271-442 μmol/L; P = 0.012). Similarly, the unfavorable outcome group had had lower serum UA levels (median, 309 vs. 363 μmol/L; P = 0.009) compared with the favorable outcome group. The results of the multivariate logistic analysis indicated that a lower serum UA level was associated with a larger hematoma volume (odds ratio, 0.996; P = 0.006) and an unfavorable outcome (odds ratio, 0.997; P = 0.030). CONCLUSIONS The results from the present study have indicated that in patients with acute supratentorial ICH, a low serum UA level might indicate that the patient has a large hematoma volume and might be a risk factor for a poor day 30 functional prognosis.
Collapse
Affiliation(s)
- Haoping Huang
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China; Shantou University Medical College, Shantou, China
| | - Guanhua Huang
- Shantou University Medical College, Shantou, China; Department of Anthropotomy/Clinically Oriented Anatomy, Shantou University Medical College, Shantou, China
| | - Jiajie Gu
- Department of Neurosurgery, Yinzhou people's Hospital, Ningbo, Zhejiang, China
| | - Kehua Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China; Shantou University Medical College, Shantou, China
| | - Yuejun Huang
- Department of Pediatrics, Second Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Hongwu Xu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China; Department of Anthropotomy/Clinically Oriented Anatomy, Shantou University Medical College, Shantou, China.
| |
Collapse
|
28
|
Cai GF, Sun ZR, Zhuang Z, Zhou HC, Gao S, Liu K, Shang LL, Jia KP, Wang XZ, Zhao H, Cai GL, Song WL, Xu SN. Cross electro-nape-acupuncture ameliorates cerebral hemorrhage-induced brain damage by inhibiting necroptosis. World J Clin Cases 2020; 8:1848-1858. [PMID: 32518774 PMCID: PMC7262720 DOI: 10.12998/wjcc.v8.i10.1848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/01/2020] [Accepted: 04/21/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Receptor interacting protein kinase 1 (RIPK1)-mediated cell death, including apoptosis and necroptosis, belongs to programmed cell death. It has been reported that RIPK1-mediated necroptosis exists in lesions of cerebral hemorrhage (CH). Electroacupuncture, a treatment derived from traditional Chinese medicine, could improve neurological impairment in patients with brain injury.
AIM To investigate the protective role of cross electro-nape acupuncture (CENA) in CH, and clarify the potential mechanism.
METHODS CH rat models were established, and CENA was applied to the experimental rats. Neurological functions and encephaledema were then measured. Necrotic cells in the brain of rats with CH were evaluated by propidium iodide staining. Necroptosis was assessed by immunofluorescence. Activation of the necroptosis-related pathway was detected by western blot. Extraction of brain tissue, cerebrospinal fluid and serum samples was conducted to measure the expression and secretion of inflammatory cytokines by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay.
RESULTS The necroptotic marker p-MLKL was detectable in the brains of rats with CH. Next, we found that CENA could ameliorate neurological functions in rat models of CH. Moreover, the upregulation of RIPK1-mediated necroptosis-related molecules in the brains of rats with CH were inhibited by CENA. Further investigation revealed that CENA partially blocked the interaction between RIPK1 and RIPK3. Finally, in vivo assays showed that CENA decreased the expression of the inflammatory cytokines tumor necrosis factor-α, interleukin-6 and interleukin-8 in CH rat models.
CONCLUSION These findings revealed that CENA exerts a protective role in CH models by inhibiting RIPK1-mediated necroptosis.
Collapse
Affiliation(s)
- Guo-Feng Cai
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
- Postdoctoral Research Station of Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Zhong-Ren Sun
- Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Zhe Zhuang
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150000, Heilongjiang Province, China
| | - Hai-Chun Zhou
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Shan Gao
- First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Kai Liu
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Li-Li Shang
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150000, Heilongjiang Province, China
| | - Kun-Ping Jia
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Xiu-Zhen Wang
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Hui Zhao
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150000, Heilongjiang Province, China
| | - Guo-Liang Cai
- Harbin Sport University, Harbin 150001, Heilongjiang Province, China
| | - Wen-Li Song
- Harbin Sport University, Harbin 150001, Heilongjiang Province, China
| | - Sheng-Nan Xu
- Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| |
Collapse
|
29
|
Fang Y, Gao S, Wang X, Cao Y, Lu J, Chen S, Lenahan C, Zhang JH, Shao A, Zhang J. Programmed Cell Deaths and Potential Crosstalk With Blood-Brain Barrier Dysfunction After Hemorrhagic Stroke. Front Cell Neurosci 2020; 14:68. [PMID: 32317935 PMCID: PMC7146617 DOI: 10.3389/fncel.2020.00068] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Hemorrhagic stroke is a life-threatening neurological disease characterized by high mortality and morbidity. Various pathophysiological responses are initiated after blood enters the interstitial space of the brain, compressing the brain tissue and thus causing cell death. Recently, three new programmed cell deaths (PCDs), necroptosis, pyroptosis, and ferroptosis, were also found to be important contributors in the pathophysiology of hemorrhagic stroke. Additionally, blood-brain barrier (BBB) dysfunction plays a crucial role in the pathophysiology of hemorrhagic stroke. The primary insult following BBB dysfunction may disrupt the tight junctions (TJs), transporters, transcytosis, and leukocyte adhesion molecule expression, which may lead to brain edema, ionic homeostasis disruption, altered signaling, and immune infiltration, consequently causing neuronal cell death. This review article summarizes recent advances in our knowledge of the mechanisms regarding these new PCDs and reviews their contributions in hemorrhagic stroke and potential crosstalk in BBB dysfunction. Numerous studies revealed that necroptosis, pyroptosis, and ferroptosis participate in cell death after subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH). Endothelial dysfunction caused by these three PCDs may be the critical factor during BBB damage. Also, several signaling pathways were involved in PCDs and BBB dysfunction. These new PCDs (necroptosis, pyroptosis, ferroptosis), as well as BBB dysfunction, each play a critical role after hemorrhagic stroke. A better understanding of the interrelationship among them might provide us with better therapeutic targets for the treatment of hemorrhagic stroke.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Georgiou-Siafis SK, Tsiftsoglou AS. Activation of KEAP1/NRF2 stress signaling involved in the molecular basis of hemin-induced cytotoxicity in human pro-erythroid K562 cells. Biochem Pharmacol 2020; 175:113900. [PMID: 32156661 DOI: 10.1016/j.bcp.2020.113900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
During hemolysis, free heme released from damaged RBCs impairs adjacent cells. As a response, heme induces its metabolic degradation via heme oxygenase-1 (HO-1), activated by NF-E2-related factor 2 (NRF2), the master stress response transcription factor. Heme is well considered a signaling molecule, but how heme does activate NRF2 is not well understood. K562, human pro-erythroid cells responding to hemin (ferric chloride heme), were employed to uncover the major role of Kelch-like ECH-associated protein 1 (KEAP1)/NRF2 stress response signaling, embedded in hemin-induced cytotoxicity (HIC), at ≥50 μM. The intracellular pools of hemin were found to determine the progression from the reversible cell growth inhibition to non-apoptotic cell death. Hemin-induced accumulation of both reactive oxygen species (ROS) and ubiquitinated proteins provoked disturbed cellular proteostasis. Immediate accumulation and nuclear translocation of NRF2 were recorded as defensive adaptation. The NRF2-driven genes encoding glutamate-cysteine ligase (GCLC) and cystine/glutamate antiporter (xCT) were substantially activated. Hemin orchestrated a defensive pathway involving the management of cellular non-protein thiols, via an increase in GSH levels and secretion of cysteine. Mechanistically, hemin stabilized NRF2 protein levels selectively by inhibiting the KEAP1-driven ubiquitination of NRF2, while allowing KEAP1 ubiquitination. High-molecular-weight ubiquitinated KEAP1 variants formed in hemin-treated cells degraded in proteasomes, while a portion of them translocated into the nucleus. The KEAP1/NRF2 system can be revealed as a basic homeostatic mechanism, activated in cells encountering free heme, both in healthy and diseased state. Its activation provides a multi-target cytoprotective platform to develop agents preventing heme toxicity.
Collapse
Affiliation(s)
- Sofia K Georgiou-Siafis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki (A.U.Th.), Thessaloniki 54124, Greece
| | - Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki (A.U.Th.), Thessaloniki 54124, Greece.
| |
Collapse
|
31
|
Kagan VE, Tyurina YY, Vlasova II, Kapralov AA, Amoscato AA, Anthonymuthu TS, Tyurin VA, Shrivastava IH, Cinemre FB, Lamade A, Epperly MW, Greenberger JS, Beezhold DH, Mallampalli RK, Srivastava AK, Bayir H, Shvedova AA. Redox Epiphospholipidome in Programmed Cell Death Signaling: Catalytic Mechanisms and Regulation. Front Endocrinol (Lausanne) 2020; 11:628079. [PMID: 33679610 PMCID: PMC7933662 DOI: 10.3389/fendo.2020.628079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 01/16/2023] Open
Abstract
A huge diversification of phospholipids, forming the aqueous interfaces of all biomembranes, cannot be accommodated within a simple concept of their role as membrane building blocks. Indeed, a number of signaling functions of (phospho)lipid molecules has been discovered. Among these signaling lipids, a particular group of oxygenated polyunsaturated fatty acids (PUFA), so called lipid mediators, has been thoroughly investigated over several decades. This group includes oxygenated octadecanoids, eicosanoids, and docosanoids and includes several hundreds of individual species. Oxygenation of PUFA can occur when they are esterified into major classes of phospholipids. Initially, these events have been associated with non-specific oxidative injury of biomembranes. An alternative concept is that these post-synthetically oxidatively modified phospholipids and their adducts with proteins are a part of a redox epiphospholipidome that represents a rich and versatile language for intra- and inter-cellular communications. The redox epiphospholipidome may include hundreds of thousands of individual molecular species acting as meaningful biological signals. This review describes the signaling role of oxygenated phospholipids in programs of regulated cell death. Although phospholipid peroxidation has been associated with almost all known cell death programs, we chose to discuss enzymatic pathways activated during apoptosis and ferroptosis and leading to peroxidation of two phospholipid classes, cardiolipins (CLs) and phosphatidylethanolamines (PEs). This is based on the available LC-MS identification and quantitative information on the respective peroxidation products of CLs and PEs. We focused on molecular mechanisms through which two proteins, a mitochondrial hemoprotein cytochrome c (cyt c), and non-heme Fe lipoxygenase (LOX), change their catalytic properties to fulfill new functions of generating oxygenated CL and PE species. Given the high selectivity and specificity of CL and PE peroxidation we argue that enzymatic reactions catalyzed by cyt c/CL complexes and 15-lipoxygenase/phosphatidylethanolamine binding protein 1 (15LOX/PEBP1) complexes dominate, at least during the initiation stage of peroxidation, in apoptosis and ferroptosis. We contrast cell-autonomous nature of CLox signaling in apoptosis correlating with its anti-inflammatory functions vs. non-cell-autonomous ferroptotic signaling facilitating pro-inflammatory (necro-inflammatory) responses. Finally, we propose that small molecule mechanism-based regulators of enzymatic phospholipid peroxidation may lead to highly specific anti-apoptotic and anti-ferroptotic therapeutic modalities.
Collapse
Affiliation(s)
- Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irina I Vlasova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander A Kapralov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tamil S Anthonymuthu
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Indira H Shrivastava
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
- Office of the Director, Health Effects Laboratory Division, NIOSH/CDC, Morgantown, WV, United States
| | - Fatma B Cinemre
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew Lamade
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donald H Beezhold
- Office of the Director, Health Effects Laboratory Division, NIOSH/CDC, Morgantown, WV, United States
| | - Rama K Mallampalli
- Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Apurva K Srivastava
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Hulya Bayir
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anna A Shvedova
- Exposure Assessment Branch, The National Institute for Occupational Safety and Health/Centers for Disease Control and Prevention (NIOSH/CDC), Morgantown, WV, United States
| |
Collapse
|
32
|
Robicsek SA, Bhattacharya A, Rabai F, Shukla K, Doré S. Blood-Related Toxicity after Traumatic Brain Injury: Potential Targets for Neuroprotection. Mol Neurobiol 2019; 57:159-178. [PMID: 31617072 DOI: 10.1007/s12035-019-01766-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Emergency visits, hospitalizations, and deaths due to traumatic brain injury (TBI) have increased significantly over the past few decades. While the primary early brain trauma is highly deleterious to the brain, the secondary injury post-TBI is postulated to significantly impact mortality. The presence of blood, particularly hemoglobin, and its breakdown products and key binding proteins and receptors modulating their clearance may contribute significantly to toxicity. Heme, hemin, and iron, for example, cause membrane lipid peroxidation, generate reactive oxygen species, and sensitize cells to noxious stimuli resulting in edema, cell death, and increased morbidity and mortality. A wide range of other mechanisms such as the immune system play pivotal roles in mediating secondary injury. Effective scavenging of all of these pro-oxidant and pro-inflammatory metabolites as well as controlling maladaptive immune responses is essential for limiting toxicity and secondary injury. Hemoglobin metabolism is mediated by key molecules such as haptoglobin, heme oxygenase, hemopexin, and ferritin. Genetic variability and dysfunction affecting these pathways (e.g., haptoglobin and heme oxygenase expression) have been implicated in the difference in susceptibility of individual patients to toxicity and may be target pathways for potential therapeutic interventions in TBI. Ongoing collaborative efforts are required to decipher the complexities of blood-related toxicity in TBI with an overarching goal of providing effective treatment options to all patients with TBI.
Collapse
Affiliation(s)
- Steven A Robicsek
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA. .,Departments of Neurosurgery, Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Ayon Bhattacharya
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA.,Department of Pharmacology, KPC Medical College, West Bengal University of Health Sciences, Kolkata, West Bengal, India
| | - Ferenc Rabai
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Krunal Shukla
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA. .,Departments of Neurology, Psychiatry, Pharmaceutics and Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
33
|
Chi Q, Wang D, Hu X, Li S, Li S. Hydrogen Sulfide Gas Exposure Induces Necroptosis and Promotes Inflammation through the MAPK/NF- κB Pathway in Broiler Spleen. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8061823. [PMID: 31467636 PMCID: PMC6701317 DOI: 10.1155/2019/8061823] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/28/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022]
Abstract
Hydrogen sulfide (H2S) is one of the main pollutants in the atmosphere, which is a serious threat to human health. The decomposition of sulfur-containing organics in chicken houses could produce a large amount of H2S, thereby damaging poultry health. In this study, one-day-old broilers were selected and exposed to 4 or 20 ppm of H2S gas (0-3 weeks: 4 ± 0.5 ppm, 4-6 weeks: 20 ± 0.5 ppm). The spleen samples were collected immediately after the chickens were euthanized at 2, 4, and 6 weeks. The histopathological and ultrastructural observations showed obvious necrosis characteristics of H2S-exposed spleens. H2S exposure suppressed GSH, CAT, T-AOC, and SOD activities; increased NO, H2O2, and MDA content and iNOS activity; and induced oxidative stress. ATPase activities and the expressions of energy metabolism-related genes were significantly decreased. Also, the expressions of related necroptosis (RIPK1, RIPK3, MLKL, TAK1, TAB2, and TAB3) were significantly increased, and the MAPK pathway was activated. Besides, H2S exposure activated the NF-κB classical pathway and induced TNF-α and IL-1β release. Taken together, we conclude that H2S exposure induces oxidative stress and energy metabolism dysfunction; evokes necroptosis; activates the MAPK pathway, eventually triggering the NF-κB pathway; and promotes inflammatory response in chicken spleens.
Collapse
Affiliation(s)
- Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Dongxu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shiping Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
34
|
Simenc J, Juric DM, Lipnik-Stangelj M. NADPH oxidase inhibitor VAS2870 prevents staurosporine-induced cell death in rat astrocytes. Radiol Oncol 2019; 53:69-76. [PMID: 30661061 PMCID: PMC6411017 DOI: 10.2478/raon-2019-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/18/2018] [Indexed: 12/31/2022] Open
Abstract
Background Astrocytes maintain central nerve system homeostasis and are relatively resistant to cell death. Dysfunction of cell death mechanisms may underlie glioblastoma genesis and resistance to cancer therapy; therefore more detailed understanding of astrocytic death modalities is needed in order to design effective therapy. The purpose of this study was to determine the effect of VAS2870, a pan-NADPH oxidase inhibitor, on staurosporine-induced cell death in astrocytes. Materials and methods Cultured rat astrocytes were treated with staurosporine as activator of cell death. Cell viability, production of reactive oxygen species (ROS), and mitochondrial potential were examined using flow cytometric analysis, while chemiluminescence analysis was performed to assess caspase 3/7 activity and cellular ATP. Results We show here for the first time, that VAS2870 is able to prevent staurosporine-induced cell death. Staurosporine exerts its toxic effect through increased generation of ROS, while VAS2870 reduces the level of ROS. Further, VAS2870 partially restores mitochondrial inner membrane potential and level of ATP in staurosporine treated cells. Conclusions Staurosporine induces cell death in cultured rat astrocytes through oxidative stress. Generation of ROS, mitochondrial membrane potential and energy level are sensitive to VAS2870, which suggests NADPH oxidases as an important effector of cell death. Consequently, NADPH oxidases activation pathway could be an important target to modulate astrocytic death.
Collapse
Affiliation(s)
- Janez Simenc
- University of Ljubljana, Faculty of Medicine, Department of Pharmacology and Experimental Toxicology, Ljubljana, Slovenia
| | - Damijana Mojca Juric
- University of Ljubljana, Faculty of Medicine, Department of Pharmacology and Experimental Toxicology, Ljubljana, Slovenia
| | - Metoda Lipnik-Stangelj
- University of Ljubljana, Faculty of Medicine, Department of Pharmacology and Experimental Toxicology, Ljubljana, Slovenia
- Prof. Metoda Lipnik-Stangelj, M.D., M.Pharm., Ph.D., University of Ljubljana, Faculty of Medicine,Department of Pharmacology and Experimental Toxicology, Korytkova ulica 2, SI-1000 Ljubljana, Slovenia. Phone: +386 1 5437330
| |
Collapse
|
35
|
Dual effect of hemin on renal ischemia-reperfusion injury. Biochem Biophys Res Commun 2018; 503:2820-2825. [PMID: 30100067 DOI: 10.1016/j.bbrc.2018.08.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 01/07/2023]
Abstract
Acute kidney injury (AKI) is a major public health concern, which is contributing to serious hospital complications, chronic kidney disease (CKD) and even death. Renal ischemia-reperfusion injury (IRI) remains a leading cause of AKI. The stress-responsive enzyme, heme oxygenase-1 (HO-1) mediates protection against renal IRI and may be preventively induced using hemin prior to renal insult. This HO-1 induction pathway called hemin preconditioning is largely known to be effective. Therefore, HO-1 might be an interesting therapeutic target in case of predictable AKI (e.g. partial nephrectomy or renal transplantation). However, the use of hemin to mitigate established AKI remains poorly characterized. Mice underwent bilateral renal IRI for 26 min or sham surgery. After surgical procedure, animals were injected either with hemin (5 mg/kg) or vehicle. Twenty-four hours later, mice were sacrificed. Despite strong HO-1 induction, hemin-treated mice exhibited significant renal damage and oxidative stress as compared to vehicle-treated mice. Interestingly, higher dose of hemin is associated with more severe IRI-induced AKI in a dose-dependent relation. To determine whether hemin preconditioning remains efficient to dampen postoperative hemin-amplified IRI-induced AKI, we pretreated mice either with hemin (5 mg/kg) or vehicle 24 h prior to surgical procedure. Then, all mice (hemin- and vehicle-pretreated) received postoperative injection of hemin (5 mg/kg) to amplify IRI-induced AKI. In comparison to vehicle, prior administration of hemin to renal IRI mitigated hemin-amplified IRI-induced AKI as attested by fewer renal damage, inflammation and oxidative stress. In conclusion, hemin may have a dual effect on renal IRI, protective or deleterious, depending on the timing of its administration.
Collapse
|
36
|
Nowak WN, Taha H, Kachamakova-Trojanowska N, Stępniewski J, Markiewicz JA, Kusienicka A, Szade K, Szade A, Bukowska-Strakova K, Hajduk K, Klóska D, Kopacz A, Grochot-Przęczek A, Barthenheier K, Cauvin C, Dulak J, Józkowicz A. Murine Bone Marrow Mesenchymal Stromal Cells Respond Efficiently to Oxidative Stress Despite the Low Level of Heme Oxygenases 1 and 2. Antioxid Redox Signal 2018; 29:111-127. [PMID: 29065700 PMCID: PMC6003402 DOI: 10.1089/ars.2017.7097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Mesenchymal stromal cells (MSCs) are heterogeneous cells from adult tissues that are able to differentiate in vitro into adipocytes, osteoblasts, or chondrocytes. Such cells are widely studied in regenerative medicine. However, the success of cellular therapy depends on the cell survival. Heme oxygenase-1 (HO-1, encoded by the Hmox1 gene), an enzyme converting heme to biliverdin, carbon monoxide, and Fe2+, is cytoprotective and can affect stem cell performance. Therefore, our study aimed at assessing whether Hmox1 is critical for survival and functions of murine bone marrow MSCs. RESULTS Both MSC Hmox1+/+ and Hmox1-/- showed similar phenotype, differentiation capacities, and production of cytokines or growth factors. Hmox1+/+ and Hmox1-/- cells showed similar survival in response to 50 μmol/L hemin even in increased glucose concentration, conditions that were unfavorable for Hmox1-/- bone marrow-derived proangiogenic cells (BDMC). Hmox1+/+ MSCs but not fibroblasts retained low ROS levels even after prolonged incubation with 50 μmol/L hemin, although both cell types have a comparable Hmox1 expression and similarly increase its levels in response to hemin. MSCs Hmox1-/- treated with hemin efficiently induced expression of a vast panel of antioxidant genes, especially enzymes of the glutathione pathway. Innovation and Conclusion: Hmox1 overexpression is a popular strategy to enhance viability and performance of MSCs after the transplantation. However, murine MSCs Hmox1-/- do not differ from wild-type MSCs in phenotype and functions. MSC Hmox1-/- show better resistance to hemin than fibroblasts and BDMCs and rapidly react to the stress by upregulation of quintessential genes in antioxidant response. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Witold Norbert Nowak
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Hevidar Taha
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland .,2 Department of Animal Production, College of Agriculture, University of Duhok , Duhok, Iraq
| | - Neli Kachamakova-Trojanowska
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Jacek Stępniewski
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Joanna Agata Markiewicz
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Anna Kusienicka
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Krzysztof Szade
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Agata Szade
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Karolina Bukowska-Strakova
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland .,3 Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College , Kraków, Poland
| | - Karolina Hajduk
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Damian Klóska
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Aleksandra Kopacz
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Anna Grochot-Przęczek
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Kathrin Barthenheier
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Camille Cauvin
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Józef Dulak
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland .,4 Kardio-Med Silesia, Zabrze, Poland
| | - Alicja Józkowicz
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| |
Collapse
|
37
|
Oridonin enhances the cytotoxicity of 5-FU in renal carcinoma cells by inducting necroptotic death. Biomed Pharmacother 2018; 106:175-182. [PMID: 29958141 DOI: 10.1016/j.biopha.2018.06.111] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND 5-fluorouracil (5-FU) is widely used for the treatment of renal carcinoma. However, drug resistance remains the reason for failure of chemotherapy. Oridonin, extracted from Chinese herb medicine, displays anti-tumor effect in several types of cancer. Whether oridonin could enhance the effect of 5-FU in renal carcinoma has not been studied. METHODS 786-O cells were used in the current study. Cell death was measured by MTT assay or live- and dead-cell staining assay. Glutathione (GSH) level was examined by ELISA. Necroptosis was identified by protein levels of receptors interaction protein-1 (RIP-1) and RIP-3, lactate dehydrogenase (LDH) and high mobility group box-1 protein (HMGB1) release, and poly [ADP-ribose] polymerase-1 (Parp-1) activity. Using a xenograft assay in nude mice, we tested the anti-tumor effects of the oridonin combined with 5-FU. RESULTS 5-FU only induced apoptosis in 786-O cells. Oridonin activated both apoptosis and necroptosis in 786-O cells. Oridonin-induced necroptosis was reversed by addition of GSH or its precursorN-acetylcysteine (NAC). Oridonin-induced necroptosis was associated by activated JNK, p38, and ERK in 786-O cells, which were abolished by GSH or NAC treatment. However, JNK, p38, and ERK inhibitors showed no effect on oridonin induced-cell death. GSH or NAC treatment partly abolished the synergistic effects of oridonin and 5-FU on cell death. Oridonin enhanced the cytotoxicity of 5-FU both in vitro and in vivo. CONCLUSION Oridonin enhances the cytotoxicity of 5-FU in renal cancer cells partially through inducing necroptosis, providing evidence of using necroptosis inducers in combination with chemotherapeutic agents for cancer treatment.
Collapse
|
38
|
van Swelm RPL, Vos M, Verhoeven F, Thévenod F, Swinkels DW. Endogenous hepcidin synthesis protects the distal nephron against hemin and hemoglobin mediated necroptosis. Cell Death Dis 2018; 9:550. [PMID: 29749404 PMCID: PMC5945780 DOI: 10.1038/s41419-018-0568-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022]
Abstract
Hemoglobinuria is associated with kidney injury in various hemolytic pathologies. Currently, there is no treatment available and its pathophysiology is not completely understood. Here we studied the potential detrimental effects of hemoglobin (Hb) exposure to the distal nephron (DN). Involvement of the DN in Hb kidney injury was suggested by the induction of renal hepcidin synthesis (p < 0.001) in mice repeatedly injected with intravenous Hb. Moreover, the hepcidin induction was associated with a decline in urinary kidney injury markers 24p3/NGAL and KIM1, suggesting a role for hepcidin in protection against Hb kidney injury. We demonstrated that uptake of Hb in the mouse cortical collecting duct cells (mCCDcl1) is mediated by multi-protein ligand receptor 24p3R, as indicated by a significant 90% reduction in Hb uptake (p < 0.001) after 24p3R silencing. Moreover, incubation of mCCDcl1 cells with Hb or hemin for 4 or 24 h resulted in hepcidin synthesis and increased mRNA expression of markers for oxidative, inflammatory and ER stress, but no cell death as indicated by apoptosis staining. A protective role for cellular hepcidin against Hb-induced injury was demonstrated by aggravation of oxidative, inflammatory and ER stress after 4 h Hb or hemin incubation in hepcidin silenced mCCDcl1 cells. Hepcidin silencing potentiated hemin-mediated cell death that could be diminished by co-incubation of Nec-1, suggesting that endogenous hepcidin prevents necroptosis. Combined, these results demonstrate that renal hepcidin synthesis protects the DN against hemin and hemoglobin-mediated injury.
Collapse
Affiliation(s)
- Rachel P L van Swelm
- Department of Laboratory Medicine, Radboud university medical center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| | - Madelon Vos
- Department of Laboratory Medicine, Radboud university medical center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Frank Verhoeven
- Department of Laboratory Medicine, Radboud university medical center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Frank Thévenod
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research, University of Witten/Herdecke, Witten, Germany
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Radboud university medical center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
39
|
Chen-Roetling J, Regan RF. Targeting the Nrf2-Heme Oxygenase-1 Axis after Intracerebral Hemorrhage. Curr Pharm Des 2018; 23:2226-2237. [PMID: 27799046 DOI: 10.2174/1381612822666161027150616] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/16/2016] [Accepted: 10/22/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Injury to cells adjacent to an intracerebral hemorrhage (ICH) is likely mediated at least in part by toxins released from the hematoma that initiate complex and interacting injury cascades. Pharmacotherapies targeting a single toxin or pathway, even if consistently effective in controlled experimental models, have a high likelihood of failure in a variable clinical setting. Nuclear factor erythroid-2 related factor 2 (Nrf2) regulates the expression of heme oxygenase-1 (HO-1) and multiple other proteins with antioxidant and antiinflammatory effects, and may be a target of interest after ICH. METHODS Studies that tested the effect of HO and Nrf2 in models relevant to ICH are summarized, with an effort to reconcile conflicting data by consideration of methodological limitations. RESULTS In vitro studies demonstrated that Nrf2 activators rapidly increased HO-1 expression in astrocytes, and reduced their vulnerability to hemoglobin or hemin. Modulating HO-1 expression via genetic approaches yielded similar results. Systemic treatment with small molecule Nrf2 activators increased HO-1 expression in perivascular cells, particularly astrocytes. When tested in mouse or rat ICH models, Nrf2 activators were consistently protective, improving barrier function and attenuating edema, inflammation, neuronal loss and neurological deficits. These effects were mimicked by selective astrocyte HO-1 overexpression in transgenic mice. CONCLUSION Systemic treatment with Nrf2 activators after ICH is protective in rodents. Two compounds, dimethyl fumarate and hemin, are currently approved for treatment of multiple sclerosis and acute porphyria, respectively, and have acceptable safety profiles over years of clinical use. Further development of these drugs as ICH therapeutics seems warranted.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, College Building Room 813, Philadelphia, PA 19107, United States
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, College Building Room 813, Philadelphia, PA 19107, United States
| |
Collapse
|
40
|
Necrostatin-1 Improves Long-term Functional Recovery Through Protecting Oligodendrocyte Precursor Cells After Transient Focal Cerebral Ischemia in Mice. Neuroscience 2018; 371:229-241. [DOI: 10.1016/j.neuroscience.2017.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/22/2022]
|
41
|
Su X, Wang H, Lin Y, Chen F. RIP1 and RIP3 mediate hemin-induced cell death in HT22 hippocampal neuronal cells. Neuropsychiatr Dis Treat 2018; 14:3111-3119. [PMID: 30532542 PMCID: PMC6247969 DOI: 10.2147/ndt.s181074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a devastating neurological injury associated with significant mortality. Necroptosis is a newly identified type of programmed necrosis initiated by the activation of tumor necrosis factor alpha. Evidences had demonstrated the importance of necroptosis in neuronal cell death. Necrostatin-1 is a specific inhibitor of necroptosis. The present study was carried out to explore whether RIP1/RIP3 pathways participate in hemin induced cell death in HT-22 hippocampal neuronal cells and investigate the potential neuroprotection of necrostatin-1 in hemin induced cell death in HT-22. METHODS First, different concentrations of hemin (0, 25, 50, 100 μmol/L) were added to HT-22 cells. Propidium iodide (PI) positive cells and cell viability were measured at 24 hours after hemin treatment. Then, necrostatin-1, pan-caspase inhibitor Benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (z-VAD-fmk) and reactive oxygen species (ROS) scavenger butylated hydroxyanisole (BHA) were applied to hemin-treated HT-22 cells. PI positive cells and cell viability were measured at 24 hours after hemin treatment. MitoSox Red was used to indicate ROS level. Last, the effect of RIP3 in hemin induced HT-22 cell death was explored through RIP3 knockdown using siRNA. PI positive cells, cell viability and ROS lever were measured at 24 h after hemin treatment. RESULTS Hemin could induce a dose dependent cell death in HT22 neural cells. RIP1 specific inhibitor necrostatin-1 significantly inhibited cell death induced by hemin in HT-22 cells, greatly reducing PI positive cells, dramatically improving cell viability and decreasing ROS accumulation. BHA could significantly inhibit PI positive cells induced by hemin in HT-22 cells. Furthermore, silencing of RIP3 using siRNA attenuated hemin induced cell death in HT-22 cells, greatly reducing PI positive cells, dramatically improving cell viability and decreasing ROS accumulation. CONCLUSION These data revealed that RIP1/RIP3 might mediate hemin induced cell death in HT-22 cells, and necrostatin-1 played a neuroprotection role in hemin induced cell death in HT-22. RIP1 and RIP3 might represent novel therapeutic targets for ICH.
Collapse
Affiliation(s)
- Xingfen Su
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, People's Republic of China,
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, People's Republic of China
| | - Yuanxiang Lin
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, People's Republic of China,
| | - Fuxiang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, People's Republic of China,
| |
Collapse
|
42
|
Zhao H, Chen Y, Feng H. P2X7 Receptor-Associated Programmed Cell Death in the Pathophysiology of Hemorrhagic Stroke. Curr Neuropharmacol 2018; 16:1282-1295. [PMID: 29766811 PMCID: PMC6251042 DOI: 10.2174/1570159x16666180516094500] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/17/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Hemorrhagic stroke is a life-threatening disease characterized by a sudden rupture of cerebral blood vessels, and cell death is widely believed to occur after exposure to blood metabolites or subsequently damaged cells. Recently, programmed cell death, such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis, has been demonstrated to play crucial roles in the pathophysiology of stroke. However, the detailed mechanisms of these novel kinds of cell death are still unclear. The P2X7 receptor, previously known for its cytotoxic activity, is an ATP-gated, nonselective cation channel that belongs to the family of ionotropic P2X receptors. Evolving evidence indicates that the P2X7 receptor plays a pivotal role in central nervous system pathology; genetic deletion and pharmacological blockade of the P2X7 receptor provide neuroprotection in various neurological disorders, including intracerebral hemorrhage and subarachnoid hemorrhage. The P2X7 receptor may regulate programmed cell death via (I) exocytosis of secretory lysosomes, (II) exocytosis of autophagosomes or autophagolysosomes during formation of the initial autophagic isolation membrane or omegasome, and (III) direct release of cytosolic IL-1β secondary to regulated cell death by pyroptosis or necroptosis. In this review, we present an overview of P2X7 receptor- associated programmed cell death for further understanding of hemorrhagic stroke pathophysiology, as well as potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| |
Collapse
|
43
|
Worthmann H, Li N, Martens-Lobenhoffer J, Dirks M, Schuppner R, Lichtinghagen R, Kielstein JT, Raab P, Lanfermann H, Bode-Böger SM, Weissenborn K. Dimethylarginines in patients with intracerebral hemorrhage: association with outcome, hematoma enlargement, and edema. J Neuroinflammation 2017; 14:247. [PMID: 29237474 PMCID: PMC5729507 DOI: 10.1186/s12974-017-1016-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/28/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Asymmetric dimethylarginine (ADMA)--the most potent endogenous NO-synthase inhibitor, has been regarded as mediator of endothelial dysfunction and oxidative stress. Considering experimental data, levels of ADMA and its structural isomer symmetric dimethylarginine (SDMA) might be elevated after intracerebral hemorrhage (ICH) and associated with clinical outcome and secondary brain injury. METHODS Blood samples from 20 patients with acute ICH were taken at ≤ 24 h and 3 and 7 days after the event. Nine patients had favorable (modified Rankin Scale (mRS) at 90 days 0-2) outcome, and 11 patients unfavorable outcome (mRS 3-6). Patients' serum ADMA, SDMA, and L-arginine levels were determined by high-performance liquid chromatography-tandem mass spectrometry. Levels were compared to those of 30 control subjects without ICH. For further analysis, patients were grouped according to outcome, hematoma and perihematomal edema volumes, occurrence of hematoma enlargement, and cytotoxic edema as measured by computed tomography and serial magnetic resonance imaging. RESULTS Levels of ADMA--but not SDMA and L-arginine--were elevated in ICH patients compared to controls (binary logistic regression analysis: ADMA ≤ 24 h, p = 0.003; 3 days p = 0.005; 7 days p = 0.004). If patients were grouped according to outcome, dimethylarginines were increased in patients with unfavorable outcome. The binary logistic regression analysis confirmed an association of SDMA levels ≤ 24 h (p = 0.048) and at 3 days (p = 0.028) with unfavorable outcome. ADMA ≤ 24 h was increased in patients with hematoma enlargement (p = 0.003), while SDMA ≤ 24 h was increased in patients with large hematoma (p = 0.029) and perihematomal edema volume (p = 0.023). CONCLUSIONS Our data demonstrate an association between dimethylarginines and outcome of ICH. However, further studies are needed to confirm this relationship and elucidate the mechanisms behind.
Collapse
Affiliation(s)
- Hans Worthmann
- Department of Neurology, Hannover Medical School, 30623, Hannover, Germany.
| | - Na Li
- Department of Neurology, Hannover Medical School, 30623, Hannover, Germany.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jens Martens-Lobenhoffer
- Department of Clinical Pharmacology, Otto-von-Guericke-University of Magdeburg, University Hospital, Magdeburg, Germany
| | - Meike Dirks
- Department of Neurology, Hannover Medical School, 30623, Hannover, Germany
| | - Ramona Schuppner
- Department of Neurology, Hannover Medical School, 30623, Hannover, Germany
| | - Ralf Lichtinghagen
- Department of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jan T Kielstein
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Medical Clinic V, Academic Teaching Hospital Braunschweig, Braunschweig, Germany
| | - Peter Raab
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Heinrich Lanfermann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Stefanie M Bode-Böger
- Department of Clinical Pharmacology, Otto-von-Guericke-University of Magdeburg, University Hospital, Magdeburg, Germany
| | - Karin Weissenborn
- Department of Neurology, Hannover Medical School, 30623, Hannover, Germany
| |
Collapse
|
44
|
Singla S, Sysol JR, Dille B, Jones N, Chen J, Machado RF. Hemin Causes Lung Microvascular Endothelial Barrier Dysfunction by Necroptotic Cell Death. Am J Respir Cell Mol Biol 2017; 57:307-314. [PMID: 28421813 DOI: 10.1165/rcmb.2016-0287oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hemin, the oxidized prosthetic moiety of hemoglobin, has been implicated in the pathogenesis of acute chest syndrome in patients with sickle cell disease by virtue of its endothelial-activating properties. In this study, we examined whether hemin can cause lung microvascular endothelial barrier dysfunction. By assessing transendothelial resistance using electrical cell impedance sensing, and by directly measuring trans-monolayer fluorescein isothiocyanate-dextran flux, we found that hemin does cause endothelial barrier dysfunction in a concentration-dependent manner. Pretreatment with either a Toll-like receptor 4 inhibitor, TAK-242, or an antioxidant, N-acetylcysteine, abrogated this effect. Increased monolayer permeability was found to be associated with programmed cell death by necroptosis, as evidenced by Trypan blue staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, Western blotting for activated forms of key effectors of cell death pathways, and studies utilizing specific inhibitors of necroptosis and apoptosis. Further studies examining the role of endothelial cell necroptosis in promoting noncardiogenic pulmonary edema during acute chest syndrome are warranted and may open a new avenue of potential treatments for this devastating disease.
Collapse
Affiliation(s)
- Sunit Singla
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Justin R Sysol
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Benjamin Dille
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Nicole Jones
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Jiwang Chen
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
45
|
Lule S, Wu L, McAllister LM, Edmiston WJ, Chung JY, Levy E, Zheng Y, Gough PJ, Bertin J, Degterev A, Lo EH, Whalen MJ. Genetic Inhibition of Receptor Interacting Protein Kinase-1 Reduces Cell Death and Improves Functional Outcome After Intracerebral Hemorrhage in Mice. Stroke 2017; 48:2549-2556. [PMID: 28765287 DOI: 10.1161/strokeaha.117.017702] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND PURPOSE Recent studies using cultured cells and rodent intracerebral hemorrhage (ICH) models have implicated RIPK1 (receptor interacting protein kinase-1) as a driver of programmed necrosis and secondary injury based on use of chemical inhibitors. However, these inhibitors have off-target effects and cannot be used alone to prove a role for RIPK1. The aim of the current study was to examine the effect of genetic inhibition of the kinase domain of RIPK1 in a mouse ICH model. METHODS We subjected 2 lines of mice with RIPK1 point mutations of the kinase domain (K45A and D138N), rendering them kinase inactive, to autologous blood ICH and measured acute cell death and functional outcome. RESULTS Compared with wild-type controls, RIPK1K45A/K45A and RIPK1D138N/D138N had significantly less cells with plasmalemma permeability, less acute neuronal cell death, less weight loss and more rapid weight gain to baseline, and improved performance in a Morris water maze paradigm after autologous blood ICH. In addition, mice systemically administered GSK'963, a potent, specific, brain penetrant small molecule RIPK1 inhibitor, had reduced acute neuronal death at 24 hours after ICH. CONCLUSIONS The data show that the kinase domain of RIPK1 is a disease driver of ICH, mediating both acute cell death and functional outcome, and support development of RIPK1 inhibitors as therapeutic agents for human ICH.
Collapse
Affiliation(s)
- Sevda Lule
- From the Neuroscience Center and Department of Pediatrics (S.L., L.W., L.M.M., W.J.E., J.Y.C., E.L., M.J.W.), Radiology (Y.Z., E.H.L.), and Department of Neurology (E.H.L.), Massachusetts General Hospital and Harvard Medical School, Charlestown; Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA (P.J.G., J.B.); and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.D.)
| | - Limin Wu
- From the Neuroscience Center and Department of Pediatrics (S.L., L.W., L.M.M., W.J.E., J.Y.C., E.L., M.J.W.), Radiology (Y.Z., E.H.L.), and Department of Neurology (E.H.L.), Massachusetts General Hospital and Harvard Medical School, Charlestown; Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA (P.J.G., J.B.); and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.D.)
| | - Lauren M McAllister
- From the Neuroscience Center and Department of Pediatrics (S.L., L.W., L.M.M., W.J.E., J.Y.C., E.L., M.J.W.), Radiology (Y.Z., E.H.L.), and Department of Neurology (E.H.L.), Massachusetts General Hospital and Harvard Medical School, Charlestown; Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA (P.J.G., J.B.); and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.D.)
| | - William J Edmiston
- From the Neuroscience Center and Department of Pediatrics (S.L., L.W., L.M.M., W.J.E., J.Y.C., E.L., M.J.W.), Radiology (Y.Z., E.H.L.), and Department of Neurology (E.H.L.), Massachusetts General Hospital and Harvard Medical School, Charlestown; Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA (P.J.G., J.B.); and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.D.)
| | - Joon Yong Chung
- From the Neuroscience Center and Department of Pediatrics (S.L., L.W., L.M.M., W.J.E., J.Y.C., E.L., M.J.W.), Radiology (Y.Z., E.H.L.), and Department of Neurology (E.H.L.), Massachusetts General Hospital and Harvard Medical School, Charlestown; Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA (P.J.G., J.B.); and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.D.)
| | - Emily Levy
- From the Neuroscience Center and Department of Pediatrics (S.L., L.W., L.M.M., W.J.E., J.Y.C., E.L., M.J.W.), Radiology (Y.Z., E.H.L.), and Department of Neurology (E.H.L.), Massachusetts General Hospital and Harvard Medical School, Charlestown; Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA (P.J.G., J.B.); and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.D.)
| | - Yi Zheng
- From the Neuroscience Center and Department of Pediatrics (S.L., L.W., L.M.M., W.J.E., J.Y.C., E.L., M.J.W.), Radiology (Y.Z., E.H.L.), and Department of Neurology (E.H.L.), Massachusetts General Hospital and Harvard Medical School, Charlestown; Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA (P.J.G., J.B.); and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.D.)
| | - Peter J Gough
- From the Neuroscience Center and Department of Pediatrics (S.L., L.W., L.M.M., W.J.E., J.Y.C., E.L., M.J.W.), Radiology (Y.Z., E.H.L.), and Department of Neurology (E.H.L.), Massachusetts General Hospital and Harvard Medical School, Charlestown; Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA (P.J.G., J.B.); and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.D.)
| | - John Bertin
- From the Neuroscience Center and Department of Pediatrics (S.L., L.W., L.M.M., W.J.E., J.Y.C., E.L., M.J.W.), Radiology (Y.Z., E.H.L.), and Department of Neurology (E.H.L.), Massachusetts General Hospital and Harvard Medical School, Charlestown; Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA (P.J.G., J.B.); and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.D.)
| | - Alexei Degterev
- From the Neuroscience Center and Department of Pediatrics (S.L., L.W., L.M.M., W.J.E., J.Y.C., E.L., M.J.W.), Radiology (Y.Z., E.H.L.), and Department of Neurology (E.H.L.), Massachusetts General Hospital and Harvard Medical School, Charlestown; Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA (P.J.G., J.B.); and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.D.)
| | - Eng H Lo
- From the Neuroscience Center and Department of Pediatrics (S.L., L.W., L.M.M., W.J.E., J.Y.C., E.L., M.J.W.), Radiology (Y.Z., E.H.L.), and Department of Neurology (E.H.L.), Massachusetts General Hospital and Harvard Medical School, Charlestown; Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA (P.J.G., J.B.); and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.D.)
| | - Michael J Whalen
- From the Neuroscience Center and Department of Pediatrics (S.L., L.W., L.M.M., W.J.E., J.Y.C., E.L., M.J.W.), Radiology (Y.Z., E.H.L.), and Department of Neurology (E.H.L.), Massachusetts General Hospital and Harvard Medical School, Charlestown; Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA (P.J.G., J.B.); and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.D.).
| |
Collapse
|
46
|
Li H, Zhang C, Shen H, Shen Z, Wu L, Mo F, Li M. Physiological stress-induced corticosterone increases heme uptake via KLF4-HCP1 signaling pathway in hippocampus neurons. Sci Rep 2017; 7:5745. [PMID: 28720846 PMCID: PMC5515979 DOI: 10.1038/s41598-017-06058-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/07/2017] [Indexed: 11/10/2022] Open
Abstract
Iron overload has attracted much attention because of its adverse effect in increasing the risk of developing several neurodegenerative disorders. Under various pathologic conditions, a lot of heme are released. The aggregation of heme is more neurotoxic than that of iron released from the heme breakdown. Our previous studies demonstrated that psychological stress (PS) is a risk factor of cerebral iron metabolism disorders, thus causing iron accumulation in rat brains. In the present study, we found PS could increase heme uptake via heme carrier protein 1 (HCP1) in rat brains. We demonstrated that Glucocorticoid (GC), which is largely secreted under stress, could up-regulate HCP1 expression, thus promoting heme uptake in neurons. We also ascertained that HCP1 expression can be induced by GC through a transcription factor, Krüppel-like factor 4 (KLF4). These results may gain new insights into the etiology of heme uptake and iron accumulation in PS rats, and find new therapeutic targets of iron accumulation in Parkinson’s disease or Alzheimer’s disease.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Caixia Zhang
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.,Department of Nursing, People's Libration Army of 266 Hospital, Chengde City, Hubei, 067000, China
| | - Hui Shen
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Zhilei Shen
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Lusha Wu
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Fengfeng Mo
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| | - Min Li
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
47
|
Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, Cheng T, Yang J, Wang Z, Jiang C, Ying M, Koehler RC, Stockwell BR, Wang J. Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight 2017; 2:e90777. [PMID: 28405617 DOI: 10.1172/jci.insight.90777] [Citation(s) in RCA: 513] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) causes high mortality and morbidity, but our knowledge of post-ICH neuronal death and related mechanisms is limited. In this study, we first demonstrated that ferroptosis, a newly identified form of cell death, occurs in the collagenase-induced ICH model in mice. We found that administration of ferrostatin-1, a specific inhibitor of ferroptosis, prevented neuronal death and reduced iron deposition induced by hemoglobin in organotypic hippocampal slice cultures (OHSCs). Mice treated with ferrostatin-1 after ICH exhibited marked brain protection and improved neurologic function. Additionally, we found that ferrostatin-1 reduced lipid reactive oxygen species production and attenuated the increased expression level of PTGS2 and its gene product cyclooxygenase-2 ex vivo and in vivo. Moreover, ferrostatin-1 in combination with other inhibitors that target different forms of cell death prevented hemoglobin-induced cell death in OHSCs and human induced pluripotent stem cell-derived neurons better than any inhibitor alone. These results indicate that ferroptosis contributes to neuronal death after ICH, that administration of ferrostatin-1 protects hemorrhagic brain, and that cyclooxygenase-2 could be a biomarker of ferroptosis. The insights gained from this study will advance our knowledge of the post-ICH cell death cascade and be essential for future preclinical studies.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology and Critical Care Medicine
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine
| | - Yufeng Gao
- Department of Anesthesiology and Critical Care Medicine
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine
| | | | - Tian Cheng
- Department of Anesthesiology and Critical Care Medicine
| | - Jie Yang
- Department of Anesthesiology and Critical Care Medicine
| | - Zhongyu Wang
- Department of Anesthesiology and Critical Care Medicine
| | - Chao Jiang
- Department of Anesthesiology and Critical Care Medicine
| | - Mingyao Ying
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | | | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine
| |
Collapse
|
48
|
Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, Milner TA, Jonas EA, Ratan RR. Neuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis. Stroke 2017; 48:1033-1043. [PMID: 28250197 DOI: 10.1161/strokeaha.116.015609] [Citation(s) in RCA: 408] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/31/2016] [Accepted: 01/24/2017] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND PURPOSE Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and its oxidized product hemin from lysed red blood cells. The aim of this study was to identify the underlying cell death mechanisms attributable to secondary injury by hemoglobin and hemin to broaden treatment options. METHODS We investigated cell death mechanisms in cultured neurons exposed to hemoglobin or hemin. Chemical inhibitors implicated in all known cell death pathways were used. Identified cell death mechanisms were confirmed using molecular markers and electron microscopy. RESULTS Chemical inhibitors of ferroptosis and necroptosis protected against hemoglobin- and hemin-induced toxicity. By contrast, inhibitors of caspase-dependent apoptosis, protein or mRNA synthesis, autophagy, mitophagy, or parthanatos had no effect. Accordingly, molecular markers of ferroptosis and necroptosis were increased after intracerebral hemorrhage in vitro and in vivo. Electron microscopy showed that hemin induced a necrotic phenotype. Necroptosis and ferroptosis inhibitors each abrogated death by >80% and had similar therapeutic windows in vitro. CONCLUSIONS Experimental intracerebral hemorrhage shares features of ferroptotic and necroptotic cell death, but not caspase-dependent apoptosis or autophagy. We propose that ferroptosis or necroptotic signaling induced by lysed blood is sufficient to reach a threshold of death that leads to neuronal necrosis and that inhibition of either of these pathways can bring cells below that threshold to survival.
Collapse
Affiliation(s)
- Marietta Zille
- From the Burke Medical Research Institute, White Plains, New York (M.Z., S.S.K., Y.C., R.R.R.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (M.Z., S.S.K., Y.C., T.A.M., R.R.R.); Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit (P.J.G.) and Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area (J.B., J.F.), GlaxoSmithKline, Collegeville, PA; Laboratory of Neuroendocrinology, The Rockefeller University, New York (T.A.M.); and Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT (E.A.J.)
| | - Saravanan S Karuppagounder
- From the Burke Medical Research Institute, White Plains, New York (M.Z., S.S.K., Y.C., R.R.R.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (M.Z., S.S.K., Y.C., T.A.M., R.R.R.); Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit (P.J.G.) and Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area (J.B., J.F.), GlaxoSmithKline, Collegeville, PA; Laboratory of Neuroendocrinology, The Rockefeller University, New York (T.A.M.); and Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT (E.A.J.)
| | - Yingxin Chen
- From the Burke Medical Research Institute, White Plains, New York (M.Z., S.S.K., Y.C., R.R.R.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (M.Z., S.S.K., Y.C., T.A.M., R.R.R.); Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit (P.J.G.) and Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area (J.B., J.F.), GlaxoSmithKline, Collegeville, PA; Laboratory of Neuroendocrinology, The Rockefeller University, New York (T.A.M.); and Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT (E.A.J.)
| | - Peter J Gough
- From the Burke Medical Research Institute, White Plains, New York (M.Z., S.S.K., Y.C., R.R.R.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (M.Z., S.S.K., Y.C., T.A.M., R.R.R.); Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit (P.J.G.) and Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area (J.B., J.F.), GlaxoSmithKline, Collegeville, PA; Laboratory of Neuroendocrinology, The Rockefeller University, New York (T.A.M.); and Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT (E.A.J.)
| | - John Bertin
- From the Burke Medical Research Institute, White Plains, New York (M.Z., S.S.K., Y.C., R.R.R.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (M.Z., S.S.K., Y.C., T.A.M., R.R.R.); Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit (P.J.G.) and Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area (J.B., J.F.), GlaxoSmithKline, Collegeville, PA; Laboratory of Neuroendocrinology, The Rockefeller University, New York (T.A.M.); and Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT (E.A.J.)
| | - Joshua Finger
- From the Burke Medical Research Institute, White Plains, New York (M.Z., S.S.K., Y.C., R.R.R.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (M.Z., S.S.K., Y.C., T.A.M., R.R.R.); Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit (P.J.G.) and Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area (J.B., J.F.), GlaxoSmithKline, Collegeville, PA; Laboratory of Neuroendocrinology, The Rockefeller University, New York (T.A.M.); and Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT (E.A.J.)
| | - Teresa A Milner
- From the Burke Medical Research Institute, White Plains, New York (M.Z., S.S.K., Y.C., R.R.R.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (M.Z., S.S.K., Y.C., T.A.M., R.R.R.); Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit (P.J.G.) and Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area (J.B., J.F.), GlaxoSmithKline, Collegeville, PA; Laboratory of Neuroendocrinology, The Rockefeller University, New York (T.A.M.); and Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT (E.A.J.)
| | - Elizabeth A Jonas
- From the Burke Medical Research Institute, White Plains, New York (M.Z., S.S.K., Y.C., R.R.R.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (M.Z., S.S.K., Y.C., T.A.M., R.R.R.); Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit (P.J.G.) and Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area (J.B., J.F.), GlaxoSmithKline, Collegeville, PA; Laboratory of Neuroendocrinology, The Rockefeller University, New York (T.A.M.); and Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT (E.A.J.)
| | - Rajiv R Ratan
- From the Burke Medical Research Institute, White Plains, New York (M.Z., S.S.K., Y.C., R.R.R.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (M.Z., S.S.K., Y.C., T.A.M., R.R.R.); Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit (P.J.G.) and Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area (J.B., J.F.), GlaxoSmithKline, Collegeville, PA; Laboratory of Neuroendocrinology, The Rockefeller University, New York (T.A.M.); and Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT (E.A.J.).
| |
Collapse
|
49
|
Amri F, Ghouili I, Tonon MC, Amri M, Masmoudi-Kouki O. Hemoglobin-Improved Protection in Cultured Cerebral Cortical Astroglial Cells: Inhibition of Oxidative Stress and Caspase Activation. Front Endocrinol (Lausanne) 2017; 8:67. [PMID: 28443065 PMCID: PMC5385367 DOI: 10.3389/fendo.2017.00067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress plays a major role in triggering astroglial cell death in diverse neuropathological conditions such as ischemia and neurodegenerative diseases. Numerous studies indicate that hemoglobin (Hb) is expressed in both resting and reactive glia cells, but nothing is known regarding a possible role of Hb on astroglial cell survival. Thus, the purpose of the present study was to investigate the potential glioprotective effect of Hb on hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis in cultured rat astrocytes. Our study demonstrates that administration of graded concentrations of Hb (10-12 to 10-6 M) to H2O2-treated astrocytes reduces cell death in a concentration-dependent manner. H2O2 treatment induces the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), a drop of the mitochondrial membrane potential, and a stimulation of caspase-3/7 activity. Exposure of H2O2-treated cells to Hb was accompanied by marked attenuations of ROS and NO surproductions, mitochondrial membrane potential reduction, and caspase-3/7 activity increase. The protective action of Hb was blocked by the protein kinase A (PKA) inhibitor H89, the protein kinase C (PKC) inhibitor chelerythrine, and the mitogen-activated protein (MAP)-kinase kinase (MEK) inhibitor U0126. Taken together, these data demonstrate for the first time that Hb is a glioprotective factor that protects astrocytes from apoptosis induced by oxidative stress and suggest that Hb may confer neuroprotection in neurodegenerative diseases. The anti-apoptotic activity of Hb on astrocytes is mediated through the PKA, PKC, and MAPK transduction pathways and can be accounted for by inhibition of oxidative stress-induced mitochondrial dysfunctions and caspase activation.
Collapse
Affiliation(s)
- Fatma Amri
- University of Tunis El Manar, Faculty of Sciences of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, Tunis, Tunisia
| | - Ikram Ghouili
- University of Tunis El Manar, Faculty of Sciences of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, Tunis, Tunisia
| | - Marie-Christine Tonon
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, Mont-Saint-Aignan, France
| | - Mohamed Amri
- University of Tunis El Manar, Faculty of Sciences of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, Tunis, Tunisia
| | - Olfa Masmoudi-Kouki
- University of Tunis El Manar, Faculty of Sciences of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, Tunis, Tunisia
- *Correspondence: Olfa Masmoudi-Kouki,
| |
Collapse
|
50
|
The Injury and Therapy of Reactive Oxygen Species in Intracerebral Hemorrhage Looking at Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2592935. [PMID: 27293511 PMCID: PMC4880716 DOI: 10.1155/2016/2592935] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/20/2016] [Accepted: 04/17/2016] [Indexed: 01/12/2023]
Abstract
Intracerebral hemorrhage is an emerging major health problem often resulting in death or disability. Reactive oxygen species (ROS) have been identified as one of the major damaging factors in ischemic stroke. However, there is less discussion about ROS in hemorrhage stroke. Metabolic products of hemoglobin, excitatory amino acids, and inflammatory cells are all sources of ROS, and ROS harm the central nervous system through cell death and structural damage, especially disruption of the blood-brain barrier. We have considered the antioxidant system of the CNS itself and the drugs aiming to decrease ROS after ICH, and we find that mitochondria are key players in all of these aspects. Moreover, when the mitochondrial permeability transition pore opens, ROS-induced ROS release, which leads to extensive liberation of ROS and mitochondrial failure, occurs. Therefore, the mitochondrion may be a significant target for elucidating the problem of ROS in ICH; however, additional experimental support is required.
Collapse
|