1
|
Teixeira V, Mohamed I, Lavoie JC. Disturbances of the Lung Glutathione System in Adult Guinea Pigs Following Neonatal Vitamin C or Cysteine Deficiency. Antioxidants (Basel) 2023; 12:1361. [PMID: 37507901 PMCID: PMC10376486 DOI: 10.3390/antiox12071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
In premature infants receiving parenteral nutrition, oxidative stress is a trigger for the development of bronchopulmonary dysplasia, which is an important factor in the development of adult lung diseases. Neonatal vitamin C and glutathione deficiency is suspected to induce permanent modification of redox metabolism favoring the development of neonatal and adult lung diseases. A total of 64 3-day-old guinea pigs were fed an oral diet that was either complete or deficient in vitamin C (VCD), cysteine (CD) (glutathione-limiting substrate) or both (DD) for 4 days. At 1 week of age, half of the animals were sacrificed while the other started a complete diet until 12 weeks of age. At 1 week, the decrease in lung GSH in all deficient groups was partially explained by the oxidation of liver methionine-adenosyltransferase. mRNA levels of kelch-like ECH-associated protein 1 (Keap1), glutathione-reductase (Gsr) and glutaredoxin-1 (Glrx) were significantly lower only in CD but not in DD. At 12 weeks, glutathione levels were increased in VCD and CD. Keap1, Gsr and Glrx mRNA were increased, while glutathione-reductase and glutaredoxin proteins were lower in CD, favoring a higher glutathionylation status. Both neonatal deficiencies result in a long-term change in glutathione metabolism that could contribute to lung diseases' development.
Collapse
Affiliation(s)
- Vitor Teixeira
- Department of Nutrition, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Ibrahim Mohamed
- Department of Nutrition, Université de Montréal, Montréal, QC H3T 1C5, Canada
- Department of Pediatrics-Neonatology, CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Jean-Claude Lavoie
- Department of Nutrition, Université de Montréal, Montréal, QC H3T 1C5, Canada
- Department of Pediatrics-Neonatology, CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
2
|
Neonatal Vitamin C and Cysteine Deficiencies Program Adult Hepatic Glutathione and Specific Activities of Glucokinase, Phosphofructokinase, and Acetyl-CoA Carboxylase in Guinea Pigs' Livers. Antioxidants (Basel) 2021; 10:antiox10060953. [PMID: 34204849 PMCID: PMC8231532 DOI: 10.3390/antiox10060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Premature neonates are submitted to an early-life oxidative stress from parenteral nutrition, which is vitamin C (VC) deficient and induces low endogenous levels of glutathione. The oxidative stress caused by these deficiencies may permanently affect liver glycolysis and lipogenesis. This study evaluates the short- and long-term effects of neonatal VC and cysteine deficient diets on redox and energy metabolism. Three-day-old Hartley guinea pigs from both sexes were given a regular or a deficient diet (VC, cysteine, or both) until week 1 of life. Half of the animals were sacrificed at this age, while the other half ate a complete diet until 12 weeks. Liver glutathione and the activity and protein levels of glucokinase, phosphofructokinase, and acetyl-CoA-carboxylase were measured. Statistics: factorial ANOVA (5% threshold). At 1 week, all deficient diets decreased glutathione and the protein levels of glucokinase and phosphofructokinase, while cysteine deficiency decreased acetyl-CoA-carboxylase levels. A similar enzyme level was observed in control animals at 12 weeks. At this age, VC deficiency decreased glutathione, while cysteine increased it. Acetyl-CoA-carboxylase protein levels were increased, which decreased its specific activity. Early-life VC and cysteine deficiencies induce neonatal oxidative stress and an adult-like metabolism, while predisposing to increased lipogenic rates during adulthood.
Collapse
|
3
|
Neonatal parenteral nutrition affects the metabolic flow of glucose in newborn and adult male Hartley guinea pigs' liver. J Dev Orig Health Dis 2020; 12:484-495. [PMID: 32741420 DOI: 10.1017/s2040174420000719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extremely premature birth is associated with a permanent disruption of energy metabolism. The underlying mechanisms are poorly understood. The oxidative stress induced by parenteral nutrition (PN) during the first week of life is suspected to reprogram energy metabolism in the liver. Full-term male Hartley guinea pigs (to isolate PN from prematurity) receiving PN enriched or not with glutathione (to isolate PN effects from PN-induced oxidative stress effects) or an Oral Nutrition (ON) during the first week of life were used. At 1 week (neonatal) and 16 weeks (adult), measurements of liver glutathione (GSH and GSSG) and activities of three key enzymes of energy metabolism (glucokinase (GCK), phosphofructokinase (PFK), and acetyl-CoA carboxylase (ACC)) were performed. Differences between groups were reported if p ≤ 0.05 (Analysis of Variance). At 1 week, compared to ON, PN induced higher GSSG (oxidative stress), higher GCK activity, and lower PFK and ACC activity, the glutathione supplement prevented all PN effects. At 16 weeks, early PN induced lower GSSG (reductive stress) and lower GCK activity, which was prevented by added glutathione, and higher ACC activity independent of glutathione supplement. ACC was negatively associated (r2 = 0.33) with GSSG. Increased nicotinamide adenine dinucleotide phosphate levels confirmed the glucose-6-phosphate accumulation at 1 week, whereas our protocol failed to document lipid accumulation at 16 weeks. In adult male guinea pigs, neonatal exposure to PN affected glutathione metabolism leading to reductive stress (lower GSSG) and an altered metabolic flow of glucose. Partial prevention with glutathione supplementation suggests that, in addition to peroxides, other factors of PN are involved.
Collapse
|
4
|
Mungala Lengo A, Guiraut C, Mohamed I, Lavoie JC. Relationship between redox potential of glutathione and DNA methylation level in liver of newborn guinea pigs. Epigenetics 2020; 15:1348-1360. [PMID: 32594836 PMCID: PMC7678935 DOI: 10.1080/15592294.2020.1781024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The metabolism of DNA methylation is reported to be sensitive to oxidant molecules or oxidative stress. Hypothesis: early-life oxidative stress characterized by the redox potential of glutathione influences the DNA methylation level. The in vivo study aimed at the impact of modulating redox potential of glutathione on DNA methylation. Newborn guinea pigs received different nutritive modalities for 4 days: oral nutrition, parenteral nutrition including lipid emulsion Intralipid (PN-IL) or SMOFLipid (PN-SF), protected or not from ambient light. Livers were collected for biochemical determinations. Redox potential (p < 0.001) and DNA methylation (p < 0.01) were higher in PN-infused animals and even higher in PN-SF. Their positive correlation was significant (r2 = 0.51; p < 0.001). Methylation activity was higher in PN groups (p < 0.01). Protein levels of DNA methyltransferase (DNMT)-1 were lower in PN groups (p < 0.01) while those of both DNMT3a isoforms were increased (p < 0.01) and significantly correlated with redox potential (r2 > 0.42; p < 0.001). The ratio of SAM (substrate) to SAH (inhibitor) was positively correlated with the redox potential (r2 = 0.36; p < 0.001). In conclusion, early in life, the redox potential value strongly influences the DNA methylation metabolism, resulting in an increase of DNA methylation as a function of increased oxidative stress. These results support the notion that early-life oxidative stress can reprogram the metabolism epigenetically. This study emphasizes once again the importance of improving the quality of parenteral nutrition solutions administered early in life, especially to newborn infants. Abbreviation of Title: Parenteral nutrition and DNA methylation
Collapse
Affiliation(s)
- Angela Mungala Lengo
- Department of Nutrition, Université De Montréal, CHU Sainte-Justine , Montréal, QC, Canada
| | - Clémence Guiraut
- Department of Paediatrics, CHU Sainte-Justine, Université De Montréal , Montréal, QC, Canada
| | - Ibrahim Mohamed
- Department of Nutrition, Université De Montréal, CHU Sainte-Justine , Montréal, QC, Canada.,Department of Paediatrics, CHU Sainte-Justine, Université De Montréal , Montréal, QC, Canada
| | - Jean-Claude Lavoie
- Department of Nutrition, Université De Montréal, CHU Sainte-Justine , Montréal, QC, Canada.,Department of Paediatrics, CHU Sainte-Justine, Université De Montréal , Montréal, QC, Canada
| |
Collapse
|
5
|
Lavoie JC, Chessex P. Parenteral nutrition and oxidant stress in the newborn: A narrative review. Free Radic Biol Med 2019; 142:155-167. [PMID: 30807828 DOI: 10.1016/j.freeradbiomed.2019.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 01/27/2023]
Abstract
There is strong evidence that oxidant molecules from various sources contaminate solutions of parenteral nutrition following interactions between the mixture of nutrients and some of the environmental conditions encountered in clinical practice. The continuous infusion of these organic and nonorganic peroxides provided us with a unique opportunity to study in cells, in vascular and animal models, the mechanisms involved in the deleterious reactions of oxidation in premature infants. Potential clinical impacts of peroxides infused with TPN include: a redox imbalance, vasoactive responses, thrombosis of intravenous catheters, TPN-related hepatobiliary complications, bronchopulmonary dysplasia and mortality. This is a narrative review of published data.
Collapse
Affiliation(s)
- Jean-Claude Lavoie
- Centre de Recherche Hôpital Ste-Justine, Department of Nutrition, University of Montreal, Montreal, QC, Canada
| | - Philippe Chessex
- Division of Neonatology, Department of Pediatrics, Children's and Women's Health Center of British Columbia, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Andrich DE, Melbouci L, Ou Y, Auclair N, Mercier J, Grenier JC, Lira FS, Barreiro LB, Danialou G, Comtois AS, Lavoie JC, St-Pierre DH. A Short-Term High-Fat Diet Alters Glutathione Levels and IL-6 Gene Expression in Oxidative Skeletal Muscles of Young Rats. Front Physiol 2019; 10:372. [PMID: 31024337 PMCID: PMC6468044 DOI: 10.3389/fphys.2019.00372] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/18/2019] [Indexed: 01/03/2023] Open
Abstract
Obesity and ensuing disorders are increasingly prevalent worldwide. High-fat diets (HFD) and diet-induced obesity have been shown to induce oxidative stress and inflammation while altering metabolic homeostasis in many organs, including the skeletal muscle. We previously observed that 14 days of HFD impairs contractile functions of the soleus (SOL) oxidative skeletal muscle. However, the mechanisms underlying these effects are not clarified. In order to determine the effects of a short-term HFD on skeletal muscle glutathione metabolism, young male Wistar rats (100–125 g) were fed HFD or a regular chow diet (RCD) for 14 days. Reduced (GSH) and disulfide (GSSG) glutathione levels were measured in the SOL. The expression of genes involved in the regulation of glutathione metabolism, oxidative stress, antioxidant defense and inflammation were measured by RNA-Seq. We observed a significant 25% decrease of GSH levels in the SOL muscle. Levels of GSSG and the GSH:GSSG ratio were similar in both groups. Further, we observed a 4.5 fold increase in the expression of pro-inflammatory cytokine interleukin 6 (IL-6) but not of other cytokines or markers of inflammation and oxidative stress. We hereby demonstrate that a short-term HFD significantly lowers SOL muscle GSH levels. This effect could be mediated through the increased expression of IL-6. Further, the skeletal muscle antioxidant defense could be impaired under cellular stress. We surmise that these early alterations could contribute to HFD-induced insulin resistance observed in longer protocols.
Collapse
Affiliation(s)
- David E Andrich
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Lilya Melbouci
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | - Ya Ou
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | - Nickolas Auclair
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | - Jocelyne Mercier
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | | | - Fábio Santos Lira
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Department of Physical Education, São Paulo State University, São Paulo, Brazil
| | - Luis B Barreiro
- Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada.,Département de Pédiatrie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Gawiyou Danialou
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Royal Military College Saint-Jean, Saint-Jean-sur-Richelieu, QC, Canada
| | - Alain-Steve Comtois
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Jean-Claude Lavoie
- Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada.,Département de Nutrition, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - David H St-Pierre
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
7
|
Wu KC, Cui JY, Liu J, Lu H, Zhong XB, Klaassen CD. RNA-Seq provides new insights on the relative mRNA abundance of antioxidant components during mouse liver development. Free Radic Biol Med 2019; 134:335-342. [PMID: 30659941 PMCID: PMC6588412 DOI: 10.1016/j.freeradbiomed.2019.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 11/18/2022]
Abstract
Mammals have developed a variety of antioxidant systems to protect them from the oxygen environment and toxic stimuli. Little is known about the mRNA abundance of antioxidant components during postnatal development of the liver. Therefore, the purpose of this study was to compare the mRNA abundance of antioxidant components during liver development. Livers from male C57BL/6J mice were collected at 12 ages from prenatal to adulthood. The transcriptome was determined by RNA-Seq with transcript abundance estimated by Cufflinks. RNA-Seq provided a complete, more accurate, and unbiased quantification of the transcriptome. Among 33 known antioxidant components examined, three ontogeny patterns of liver antioxidant components were observed: (1) Prenatal-enriched, in which the mRNAs decreased from fetal livers to adulthood, such as metallothionein and heme oxygenase-1; (2) adolescent-rich and relatively stable expression, such as peroxiredoxins; and (3) adult-rich, in which the mRNA increased with age, such as catalase and superoxide dismutase. Alternative splicing of several antioxidant genes, such as Keap1, Glrx2, Gpx3, and Txnrd1, were also detected by RNA-Seq. In summary, RNA-Seq revealed the relative abundance of hepatic antioxidant enzymes, which are important in protecting against the deleterious effects of oxidative stress.
Collapse
Affiliation(s)
- Kai Connie Wu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Jie Liu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Hong Lu
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
8
|
Salsberg J, Macridis S, Garcia Bengoechea E, Macaulay AC, Moore S. The shifting dynamics of social roles and project ownership over the lifecycle of a community-based participatory research project. Fam Pract 2017; 34:305-312. [PMID: 28334748 DOI: 10.1093/fampra/cmx006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND . Community based participatory research (CBPR) is often initiated by academic researchers, yet relies on meaningful community engagement and ownership to have lasting impact. Little is understood about how ownership shifts from academic to community partners. OBJECTIVES . We examined a CBPR project over its life course and asked: what does the evolution of ownership look like from project initiation by an academic (non-community) champion (T1); to maturation-when the intervention is ready to be deployed (T2); to independence-the time when the original champion steps aside (T3); and finally, to its maintenance-when the community has had an opportunity to function independently of the original academic champion (T4)? METHODS . Using sociometric (whole network) social network analysis, knowledge leadership was measured using 'in-degree centrality'. Stakeholder network structure was measured using 'centralisation' and 'core-periphery analysis'. Friedman rank sum test was used to measure change in actor roles over time from T1 to T4. RESULTS . Project stakeholder roles were observed to shift significantly (P < 0.005) from initiation (T1) to project maintenance (T4). Community stakeholders emerged into positions of knowledge leadership, while the roles of academic partners diminished in importance. The overall stakeholder network demonstrated a structural shift towards a core of densely interacting community stakeholders. CONCLUSION . This was the first study to use Social network analysis to document a shift in ownership from academic to community partners, indicating community self-determination over the research process. Further analysis of qualitative data will determine which participatory actions or strategies were responsible for this observed change.
Collapse
Affiliation(s)
- Jon Salsberg
- Department of Family Medicine, McGill University, Montreal, Canada.,Kahnawake Schools Diabetes Prevention Project (KSDPP), Kahnawake, Canada
| | - Soultana Macridis
- Kahnawake Schools Diabetes Prevention Project (KSDPP), Kahnawake, Canada.,Alberta Centre for Active Living, Faculty of Physical Education & Recreation, University of Alberta, Edmonton, Canada and
| | | | - Ann C Macaulay
- Department of Family Medicine, McGill University, Montreal, Canada.,Kahnawake Schools Diabetes Prevention Project (KSDPP), Kahnawake, Canada
| | - Spencer Moore
- Arnold School of Public Health, University of South Carolina, Columbia, USA
| | | |
Collapse
|
9
|
Abstract
BACKGROUND Neonatal total parenteral nutrition (TPN) is associated with animals with low glucose tolerance, body weight, and physical activity at adulthood. The early life origin of adult metabolic perturbations suggests a reprogramming of metabolism following epigenetic modifications induced by a change in the pattern of DNA expression. We hypothesized that peroxides contaminating TPN inhibit the activity of DNA methyltransferase (DNMT), leading to a modified DNA methylation state. METHODS Three groups of 3-d-old guinea pigs with catheters in their jugular veins were compared: (i) control: enterally fed with regular chow; (ii) TPN: fed exclusively with TPN (dextrose, amino acids, lipids, multivitamins, contaminated with 350 ± 29 μmol/l peroxides); (iii) H2O2: control + 350 μmol/l H2O2 intravenously. After 4 d, infusions were stopped and animals enterally fed. Half the animals were killed immediately after treatments and half were killed 8 wk later (n = 4-6 per group) for hepatic determination of DNMT activities and of 5'-methyl-2'-deoxycytidine (5MedCyd) levels, a marker of DNA methylation. RESULTS At 1 wk, DNMT and 5MedCyd were lower in the TPN and H2O2 groups as compared with controls. At 9 wk, DNMT remained lower in the TPN group, whereas 5MedCyd was lower in the TPN and H2O2 groups. CONCLUSION Administration of TPN or H2O2 early in life in guinea pigs induces a sustained hypomethylation of DNA following inhibition of DNMT activity.
Collapse
|
10
|
Miloudi K, Comte B, Rouleau T, Montoudis A, Levy E, Lavoie JC. The mode of administration of total parenteral nutrition and nature of lipid content influence the generation of peroxides and aldehydes. Clin Nutr 2012; 31:526-34. [PMID: 22230256 DOI: 10.1016/j.clnu.2011.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The absence of light protection of neonatal total parenteral nutrition (PN) contributes to the generation of 4-hydroxynonenal and peroxides. 4-Hydroxynonenal is suspected to be involved in PN-related liver complications. AIMS To find a practical modality to reduce 4-hydroxynonenal in PN and assess in vivo the impact of PN containing low 4-hydroxynonenal concentration. METHODS Six modalities of delivering PN were compared for the in vitro generation of peroxides and 4-hydroxynonenal: 1) MV-AA-L: light-protected (-L) solution containing multivitamin (MV) mixed with amino acids + dextrose (AA); 2) MV-AA+L: MV-AA without photo-protection (+L); 3) MV-LIP+L: MV mixed with lipid emulsion (LIP). LIP was a) Intralipid20%(®) or b) Omegaven(®). Hepatic markers of oxidative stress (glutathione, F(2α)-isoprostanes, GS-HNE) and inflammation (mRNA of TNF-α and IL-1) were measured in newborn guinea pigs infused during 4-days with MV-AA+L compounded with Intralipid20%(®) or Omegaven(®). RESULTS Hydroperoxides and 4-hydroxynonenal were the lowest in MV-AA-L and the highest in MV-LIP+L. MV-AA+L with Omegaven(®) was associated with the lowest levels of markers of oxidative stress and inflammation. CONCLUSION Compared to Intralipid20%(®), Omegaven(®) reduces oxidative stress associated with PN and prevents liver inflammation. These findings offer an alternative strategy to light protection of PN, which in the clinical setting is a cumbersome modality.
Collapse
Affiliation(s)
- Khalil Miloudi
- Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Kleiber N, Chessex P, Rouleau T, Nuyt AM, Perreault M, Lavoie JC. Neonatal exposure to oxidants induces later in life a metabolic response associated to a phenotype of energy deficiency in an animal model of total parenteral nutrition. Pediatr Res 2010; 68:188-92. [PMID: 20543762 DOI: 10.1203/pdr.0b013e3181ebb541] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Failure to protect total parenteral nutrition (TPN) from ambient light exacerbates the generation of peroxides, which affects blood glucose and plasma triacylglyceride (TG) in neonates. Based on the concept that the origin of adult diseases can be traced back to perinatal life, it was hypothesized that neonatal exposure to peroxides may affect energy availability later in life. Three-day-old guinea pigs, fitted with a jugular catheter, were fed regular chow (sham) +/- i.v. 350 microM H2O2 (sham + H2O2) or nourished with light-protected TPN [TPN(-)L, 209 +/- 9 microM peroxides] or light-exposed TPN [TPN(+)L, 365 +/- 15 microM peroxides]. After 4 d, infusions were stopped and animals fed chow. Spontaneous ambulatory movements, fasting blood glucose, glucose tolerance, TG, hepatic activities of glucokinase, phosphofructokinase (key enzymes of glycolysis), and acetyl-CoA carboxylase (key enzymes of lipogenesis) were determined at 12-14 wk and compared by ANOVA (p < 0.05). Relative to sham, the animals from sham + H2O2, TPN(-)L and TPN(+)L groups had lower plasma TG explained for 36% by low phosphofructokinase activity; they had lower glucose tolerance, lower body weight, and lower physical activity. In conclusion, neonatal exposure to oxidant molecules such as peroxides has important consequences later in life on lipid and glucose metabolism leading to a phenotype of energy deficiency.
Collapse
Affiliation(s)
- Niina Kleiber
- Department of Pediatrics, CHU Sainte-Justine, University of Montréal, 3175 Chemin de la Côte Ste-Catherine, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Maghdessian R, Côté F, Rouleau T, Ben Djoudi Ouadda A, Levy E, Lavoie JC. Ascorbylperoxide contaminating parenteral nutrition perturbs the lipid metabolism in newborn guinea pig. J Pharmacol Exp Ther 2010; 334:278-84. [PMID: 20375199 DOI: 10.1124/jpet.110.166223] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The light exposure of parenteral nutritive solutions generates peroxides such as H(2)O(2) and ascorbylperoxide [2,3-diketo-4-hydoxyperoxyl-5,6-dihydroxyhexanoic acid]. This absence of photoprotection is associated with higher plasma triacylglycerol (TG) concentration in premature infants and oxidative stress and H(2)O(2)-independent hepatic steatosis in animals. We hypothesized that ascorbylperoxide is the active agent leading to high TG. The aim was to investigate the role of ascorbylperoxide in glucose and lipid metabolism in an animal model of neonatal parenteral nutrition. Three-day-old guinea pigs received through a catheter in the jugular solutions containing dextrose plus 0, 90, 225, or 450 microM ascorbylperoxide. After 4 days, blood and liver were sampled and treated for determinations of TG, cholesterol, markers of oxidative stress (redox potential of glutathione and F(2alpha)-isoprostane), and activities and protein levels of acetyl-CoA carboxylase (ACC), glucokinase, and phosphofructokinase (PFK). Ascorbylperoxide concentration was measured in urine on the last day. Data were compared by analysis of variance (p < 0.05). Plasma TG and cholesterol and hepatic PFK activity increased (200% of control), whereas ACC activity decreased (66% of control) in the function of the amount of ascorbylperoxide infused. Both markers of oxidative stress were higher in animals receiving the highest amounts of ascorbylperoxide. The logarithmic relations between urinary ascorbylperoxide and plasma TG (r(2) = 0.69) and hepatic PFK activity (r(2) = 0.26) were positive, whereas they were negative with ACC activity (r(2) = 0.50). In conclusion, ascorbylperoxide contaminating parenteral nutrition stimulates glycolysis, allowing higher availability of substrates for lipid synthesis. The logarithmic relation between urinary ascorbylperoxide and plasma TG suggests a very low efficient concentration.
Collapse
Affiliation(s)
- Raffi Maghdessian
- Department of Nutrition, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|