1
|
Sarwar S, Sami A, Haider MZ, Tasawar L, Akram J, Ahmad A, Shafiq M, Zaki HEM, Ondrasek G, Shahid MS. Genome-Wide Identification and In Silico Expression Analysis of CCO Gene Family in Citrus clementina (Citrus) in Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:249. [PMID: 39861602 PMCID: PMC11769352 DOI: 10.3390/plants14020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025]
Abstract
The Citrus clementina (citrus) plant produces various phytohormones due to the significant involvement of the carotenoid cleavage oxygenase (CCO) gene family in its growth and development. CCO genes can be divided into two main categories: NCED (9-cis-epoxy carotenoid dioxygenase), responsible for abscisic acid (ABA) production, and CCD (carotenoid cleavage dioxygenase), involved in pigment and strigolactone formation. To better understand the roles and positions of CcCCO gene members in relation to these hormones, researchers analyzed the clementine genome. To identify their structural features, they employed phylogenetic analysis, protein interactions, localization, structure, miRNA targets, evolutionary analysis, and transcriptome studies. The study revealed the presence of 15 CcCCO genes, including 11 NCED and 4 CCD genes, scattered across various chromosomes, with the majority located in chloroplasts. Promoter sequencing analysis indicated the presence of different cis-regulatory elements that likely interacted with phytohormones, such as auxin and abscisic acid among others. Notably, two genes, CcNCED1 and CcNCED3, were significantly expressed among the CCO genes, and these were found to be expressed during stress and played a crucial role in enabling optimal plant development. Furthermore, a comprehensive genome-wide comparison of CCO genes in C. Clementine and Arabidopsis thaliana models was conducted to understand their functional characteristics. This research provides a solid foundation for further exploration of the unique attributes of the C. clementina plant, contributing to a deeper understanding of its growth and development processes.
Collapse
Affiliation(s)
- Sadaf Sarwar
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore P.O. Box 54590, Pakistan
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore P.O. Box 54590, Pakistan
| | - Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore P.O. Box 54590, Pakistan
| | - Layba Tasawar
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore P.O. Box 54590, Pakistan
| | - Jannat Akram
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore P.O. Box 54590, Pakistan
| | - Arsalan Ahmad
- Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, Lahore P.O. Box 54590, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore P.O. Box 54590, Pakistan
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, Minya 61517, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur 411, Oman
| | - Gabrijel Ondrasek
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
2
|
Naik R, Gupte S. Optimization of media components for enhanced carotenoid production by Paracoccus marcusii RSPO1 and assessment of their cytotoxicity against A549 and vero cells. Prep Biochem Biotechnol 2024; 54:764-778. [PMID: 38165781 DOI: 10.1080/10826068.2023.2282533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
In this study, we tried to explore the influence of various tricarboxylic acid (TCA) cycle intermediates on carotenoid production and with a focus on enhancing pigment biosynthesis, we conducted two statistical analysis. In case of TCA intermediates influence on pigment production by Paracoccus marcusii RSPO1; fumaric acid, and malic acid were observed as potent enhancers of pigment biosynthesis. Further, to optimize key media components for enhanced carotenoid production, the Plackett-Burman design was employed encompassing carbon, nitrogen sources, TCA cycle intermediates, and metal salts. The selected factors after Plackett Burman were fine-tuned through Response Surface Methodology and the optimal concentrations that have remarkably elevated carotenoid production were starch-2.24 g/l, MgSO4-0.416 g/l, ZnSO4-0.0157 g/l, and fumaric Acid-16 mM. Further, evaluation of pigment cytotoxicity against normal (Vero) and Non-Small Cell Carcinoma (A549) cells was performed. The resultant IC50 values were quantified as 161.3 µg/ml and 7.623 µg/ml for Vero and A549 cells, respectively. Moreover, a reactive oxygen species (ROS) determination study in A549 cells was done which have shown a noteworthy threefold ROS production in A549 cells through fluorescence spectroscopic observation. This implies that the bacterial carotenoids can act as potent pro-oxidants against cancerous cells while being nontoxic toward normal cells.
Collapse
Affiliation(s)
- Raj Naik
- Department of Microbiology, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Science (ARIBAS), CVM University, Anand, Gujarat, India
| | - Shilpa Gupte
- Department of Microbiology, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Science (ARIBAS), CVM University, Anand, Gujarat, India
| |
Collapse
|
3
|
Sui J, Guo J, Pan D, Wang Y, Xu Y, Sun G, Xia H. The Efficacy of Dietary Intake, Supplementation, and Blood Concentrations of Carotenoids in Cancer Prevention: Insights from an Umbrella Meta-Analysis. Foods 2024; 13:1321. [PMID: 38731692 PMCID: PMC11083701 DOI: 10.3390/foods13091321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Previous meta-analyses of multiple studies have suggested that dietary intake and blood concentrations of carotenoids, as well as dietary supplement of certain carotenoids, play a role in reducing the risk of cancer. However, the conclusions of these studies have been subject to controversy. We conducted an umbrella review of meta-analyses to comprehensively analyze and evaluate the evidence pertaining the association between carotenoids and cancer outcomes. We searched PubMed, Web of Science, Embase, and Cochrane Library databases of meta-analyses and systematic reviews up to June 2023. Our selection criteria encompassed meta-analyses of cohort and case-control studies, as well as randomized controlled clinical trials, which investigated the associations between carotenoids and cancer risk. We also determined the levels of evidence for these associations with AMSTAR 2 criteria. We included 51 eligible articles, including 198 meta-analyses for qualitative synthesis in the umbrella review. Despite the presence of moderate to high heterogeneity among the studies, dietary intake, supplementation, and blood concentrations of carotenoids were inversely associated with the risk of total cancer, and certain specific cancers of lung, digestive system, prostate, breast, head and neck, and others. Subgroup analysis also showed that individual carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein, zeaxanthin, and lycopene) offer certain protection against specific types of cancers. However, high doses of carotenoid supplements, especially β-carotene, significantly increased the risk of total cancer, lung cancer, and bladder cancer. Our umbrella meta-analysis supported that high intake of dietary carotenoids as a whole food approach could be more beneficial in reducing cancer risk. Concurrently, the findings suggest that the efficacy of single-carotenoid supplementation in cancer prevention remains a subject of controversy.
Collapse
Affiliation(s)
- Jing Sui
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China; (J.S.); (J.G.); (Y.X.)
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (D.P.); (Y.W.); (G.S.)
| | - Jingwen Guo
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China; (J.S.); (J.G.); (Y.X.)
| | - Da Pan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (D.P.); (Y.W.); (G.S.)
| | - Ying Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (D.P.); (Y.W.); (G.S.)
| | - Ying Xu
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China; (J.S.); (J.G.); (Y.X.)
| | - Guiju Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (D.P.); (Y.W.); (G.S.)
| | - Hui Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (D.P.); (Y.W.); (G.S.)
| |
Collapse
|
4
|
Xing S, Li R, Zhao H, Zhai H, He S, Zhang H, Zhou Y, Zhao N, Gao S, Liu Q. The transcription factor IbNAC29 positively regulates the carotenoid accumulation in sweet potato. HORTICULTURE RESEARCH 2023; 10:uhad010. [PMID: 36960431 PMCID: PMC10028406 DOI: 10.1093/hr/uhad010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Carotenoid is a tetraterpene pigment beneficial for human health. Although the carotenoid biosynthesis pathway has been extensively studied in plants, relatively little is known about their regulation in sweet potato. Previously, we conducted the transcriptome database of differentially expressed genes between the sweet potato (Ipomoea batatas) cultivar 'Weiduoli' and its high-carotenoid mutant 'HVB-3'. In this study, we selected one of these candidate genes, IbNAC29, for subsequent analyses. IbNAC29 belongs to the plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factor family. Relative IbNAC29 mRNA level in the HVB-3 storage roots was ~1.71-fold higher than Weiduoli. Additional experiments showed that the contents of α-carotene, lutein, β-carotene, zeaxanthin, and capsanthin are obviously increased in the storage roots of transgenic sweet potato plants overexpressing IbNAC29. Moreover, the levels of carotenoid biosynthesis genes in transgenic plants were also up-regulated. Nevertheless, yeast one-hybrid assays indicated that IbNAC29 could not directly bind to the promoters of these carotenoid biosynthesis genes. Furthermore, the level of IbSGR1 was down-regulated, whose homologous genes in tomato can negatively regulate carotene accumulation. Yeast three-hybrid analysis revealed that the IbNAC29-IbMYB1R1-IbAITR5 could form a regulatory module. Yeast one-hybrid, electrophoretic mobility shift assay, quantitative PCR analysis of chromatin immunoprecipitation and dual-luciferase reporter assay showed that IbAITR5 directly binds to and inhibits the promoter activity of IbSGR1, up-regulating carotenoid biosynthesis gene IbPSY. Taken together, IbNAC29 is a potential candidate gene for the genetic improvement of nutritive value in sweet potato.
Collapse
Affiliation(s)
- Shihan Xing
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ruijie Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Haoqiang Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhou
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | | | | |
Collapse
|
5
|
Cloning and Prokaryotic Expression of Carotenoid Cleavage Dioxygenases from Mulberry (Morus notabilis). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4811144. [PMID: 35966753 PMCID: PMC9371844 DOI: 10.1155/2022/4811144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022]
Abstract
Carotenoid cleavage dioxygenase (CCD) is the key enzyme for carotenoid cleavage, and the products of carotenoid cleavage regulate the ability of plants to stress. In this paper, six CCD genes were obtained from Morus notabilis (Mn) by reverse transcription-polymerase chain reaction (RT-PCR) and we classified them into three subgroups based on gene structures and phylogenetic analysis. The CDS (coding sequence) regions of the six MnCCD genes were 1617, 1620, 1635, 1713, 1746, and 1791 bp in full length, encoding 538, 539, 544, 570, 581, and 596 amino acids, respectively. Then, Pcold–TF-MnCCD plasmids were constructed and independently transferred into E. coli BL21 (DE3), and the MnCCD proteins were successfully expressed by prokaryotic expression with an expected molecular weight of recombinant proteins (∼120 kDa) and high solubility. These results will lay a foundation for the identification of mulberry carotenoid products.
Collapse
|
6
|
Xing S, Zhu H, Zhou Y, Xue L, Wei Z, Wang Y, He S, Zhang H, Gao S, Zhao N, Zhai H, Liu Q. A cytochrome P450 superfamily gene, IbCYP82D47, increases carotenoid contents in transgenic sweet potato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111233. [PMID: 35351305 DOI: 10.1016/j.plantsci.2022.111233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The cytochrome P450 superfamily (CYP450) is one of the largest protein families in plants, and its members play diverse roles in primary and secondary metabolic biosynthesis. In this study, the CYP450 family gene IbCYP82D47 was cloned from the high carotenoid line HVB-3 of sweet potato (Ipomoea batatas). The IbCYP82D47 protein harbored two transmembrane domains and dynamically localized between plastid stroma and membrane. Overexpression of IbCYP82D47 not only increased total carotenoid, lutein, zeaxanthin and violaxanthin contents by 32.2-48.0%, 10.5-13.3%, 40.2-136% and 82.4-106%, respectively, but also increased the number of carotenoid globules in sweet potato storage roots. Furthermore, genes associated with the carotenoid biosynthesis (IbDXS, IbPSY, IbLCYE, IbBCH, IbZEP) were upregulated in transgenic sweet potato. In addition, IbCYP82D47 physically interacts with geranylgeranyl diphosphate synthase 12 (IbGGPPS12). Our findings suggest that IbCYP82D47 increases carotenoid contents by interacting with the carotenoid biosynthesis related protein IbGGPPS12, and influencing the expressions of carotenoid biosynthesis related genes in transgenic sweet potato.
Collapse
Affiliation(s)
- Shihan Xing
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhou
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Luyao Xue
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zihao Wei
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuxin Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Vrdoljak N. Carotenoids and Carcinogenesis: Exploring the Antioxidant and Cell Signaling Roles of Carotenoids in the Prevention of Cancer. Crit Rev Oncog 2022; 27:1-13. [PMID: 37183934 DOI: 10.1615/critrevoncog.2022045331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Carotenoids are lipid soluble pigments found in various fruits and vegetables and are naturally produced in photoautotrophic plants. Various studies have investigated the properties of carotenoids to determine how they are able to mitigate numerous diseases, including cancer. Carotenoids present in human serum, including β-carotene, α-carotene, lycopene, β-cryptoxanthin, zeaxanthin, and lutein have demonstrated the ability to act as anticarcinogenic agents. Prevention of disease is often described to be more effective than treatment; as cancer impacts millions of lives globally, the role of carotenoids in the prevention of oncogenesis for numerous types of cancers have been extensively researched. This review provides an in-depth analysis of the structure and properties of carotenoids, as well as the identified and potential mechanisms by which carotenoids can act as a chemopreventative agent.
Collapse
Affiliation(s)
- Nikolina Vrdoljak
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
8
|
Mani S, Swargiary G, Ralph SJ. Targeting the redox imbalance in mitochondria: A novel mode for cancer therapy. Mitochondrion 2021; 62:50-73. [PMID: 34758363 DOI: 10.1016/j.mito.2021.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Changes in reactive oxygen species (ROS) levels affect many aspects of cell behavior. During carcinogenesis, moderate ROS production modifies gene expression to alter cell function, elevating metabolic activity and ROS. To avoid extreme ROS-activated death, cancer cells increase antioxidative capacity, regulating sustained ROS levels that promote growth. Anticancer therapies are exploring inducing supranormal, cytotoxic oxidative stress levels either inhibiting antioxidative capacity or promoting excess ROS to selectively destroy cancer cells, triggering mechanisms such as apoptosis, autophagy, necrosis, or ferroptosis. This review exemplifies pro-oxidants (natural/synthetic/repurposed drugs) and their clinical significance as cancer therapies providing revolutionary approaches.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Stephen J Ralph
- School of Medical Science, Griffith University, Southport, Australia.
| |
Collapse
|
9
|
Sui Y, Gu Y, Lu Y, Yu C, Zheng J, Qi H. Fucoxanthin@Polyvinylpyrrolidone Nanoparticles Promoted Oxidative Stress-Induced Cell Death in Caco-2 Human Colon Cancer Cells. Mar Drugs 2021; 19:92. [PMID: 33562511 PMCID: PMC7915087 DOI: 10.3390/md19020092] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/06/2023] Open
Abstract
Fucoxanthin (FX), a natural carotenoid found in seaweed with multiple functional activities, is unstable with a poor water solubility that limits its utilization. This study aimed to improve FX's stability and bioavailability via the nano-encapsulation of FX in polyvinylpyrrolidone (PVP)-coated FX@PVP nanoparticles (NPs). The FX@PVP NPs were evaluated in terms of their morphology, stability, encapsulation efficiency (EE), loading capacity (LC), and in vitro release to optimize the encapsulation parameters, and a 1:8 FX:PVP ratio was found to perform the best with the highest EE (85.50 ± 0.19%) and LC (10.68 ± 0.15%) and improved FX stability. In addition, the FX@PVP NPs were shown to effectively deliver FX into Caco-2 cancer cells, and the accumulation of FX in these cancer cells showed pro-oxidative activities to ameliorate H2O2-induced damage and cell death. The FX@PVP NPs could potentially become a new therapeutical approach for targeted cancer treatment.
Collapse
Affiliation(s)
- Yue Sui
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.S.); (Y.G.); (Y.L.)
| | - Yue Gu
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.S.); (Y.G.); (Y.L.)
| | - Yujing Lu
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.S.); (Y.G.); (Y.L.)
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Jie Zheng
- Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
| | - Hang Qi
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.S.); (Y.G.); (Y.L.)
| |
Collapse
|
10
|
Zhou XT, Jia LD, Duan MZ, Chen X, Qiao CL, Ma JQ, Zhang C, Jing FY, Zhang SS, Yang B, Zhang LY, Li JN. Genome-wide identification and expression profiling of the carotenoid cleavage dioxygenase (CCD) gene family in Brassica napus L. PLoS One 2020; 15:e0238179. [PMID: 32881902 PMCID: PMC7470270 DOI: 10.1371/journal.pone.0238179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/12/2020] [Indexed: 11/19/2022] Open
Abstract
Carotenoid cleavage dioxygenase (CCD), a key enzyme in carotenoid metabolism, cleaves carotenoids to form apo-carotenoids, which play a major role in plant growth and stress responses. CCD genes had not previously been systematically characterized in Brassica napus (rapeseed), an important oil crop worldwide. In this study, we identified 30 BnCCD genes and classified them into nine subgroups based on a phylogenetic analysis. We identified the chromosomal locations, gene structures, and cis-promoter elements of each of these genes and performed a selection pressure analysis to identify residues under selection. Furthermore, we determined the subcellular localization, physicochemical properties, and conserved protein motifs of the encoded proteins. All the CCD proteins contained a retinal pigment epithelial membrane protein (RPE65) domain. qRT-PCR analysis of expression of 20 representative BnCCD genes in 16 tissues of the B. napus cultivar Zhong Shuang 11 ('ZS11') revealed that members of the BnCCD gene family possess a broad range of expression patterns. This work lays the foundation for functional studies of the BnCCD gene family.
Collapse
Affiliation(s)
- Xin-Tong Zhou
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Le-Dong Jia
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Mou-Zheng Duan
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xue Chen
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Cai-Lin Qiao
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Qi Ma
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Chao Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Fu-Yu Jing
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Sheng-Sen Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bo Yang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li-Yuan Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jia-Na Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Shin J, Song MH, Oh JW, Keum YS, Saini RK. Pro-Oxidant Actions of Carotenoids in Triggering Apoptosis of Cancer Cells: A Review of Emerging Evidence. Antioxidants (Basel) 2020; 9:E532. [PMID: 32560478 PMCID: PMC7346220 DOI: 10.3390/antiox9060532] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Carotenoids are well known for their potent antioxidant function in the cellular system. However, in cancer cells with an innately high level of intracellular reactive oxygen species (ROS), carotenoids may act as potent pro-oxidant molecules and trigger ROS-mediated apoptosis. In recent years, the pro-oxidant function of several common dietary carotenoids, including astaxanthin, β-carotene, fucoxanthin, and lycopene, has been investigated for their effective killing effects on various cancer cell lines. Besides, when carotenoids are delivered with ROS-inducing cytotoxic drugs (e.g., anthracyclines), they can minimize the adverse effects of these drugs on normal cells by acting as antioxidants without interfering with their cytotoxic effects on cancer cells as pro-oxidants. These dynamic actions of carotenoids can optimize oxidative stress in normal cells while enhancing oxidative stress in cancer cells. This review discusses possible mechanisms of carotenoid-triggered ROS production in cancer cells, the activation of pro-apoptotic signaling by ROS, and apoptotic cell death. Moreover, synergistic actions of carotenoids with ROS-inducing anti-cancer drugs are discussed, and research gaps are suggested.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.S.); (J.-W.O.)
| | - Min-Ho Song
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (Y.-S.K.)
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.S.); (J.-W.O.)
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (Y.-S.K.)
| | - Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (Y.-S.K.)
- Institute of Natural Science and Agriculture, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
12
|
Hong M, Chi ZH, Wang YQ, Tang YM, Deng QX, He MY, Wang RK, He YZ. Expression of a Chromoplast-Specific Lycopene β-Cyclase Gene ( CYC- B) Is Implicated in Carotenoid Accumulation and Coloration in the Loquat. Biomolecules 2019; 9:E874. [PMID: 31847172 PMCID: PMC6995616 DOI: 10.3390/biom9120874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/24/2023] Open
Abstract
Carotenoids are the principal pigments in the loquat. Although the metabolic pathway of plant carotenoids has been extensively investigated, few studies have been explored the regulatory mechanisms of loquat carotenoids because knowledge of the loquat genome is incomplete. The chromoplast-specific lycopene β-cyclase gene (CYC-B) could catalyze cyclization of lycopene to β-carotene. In this study, the differential accumulation patterns of loquat with different colors were analyzed and virus-induced gene silencing (VIGS) was utilized in order to verify CYC-B gene function. Using a cloning strategy of homologous genes, a CYC-B gene orthologue was successfully identified from the loquat. At a later stage of maturation, CYC-B gene expression and carotenoids concentrations in the 'Dawuxing' variety were higher than in 'Chuannong 1-5-9', possibly leading to the difference in pulp coloration of loquat. Interference of CYC-B gene expression in the loquat demonstrated clear visual changes. The green color in negative control fruits became yellow, while TRV2-CYC-B silenced fruits remained green. CYC-B gene expression and total carotenoid content in the pulp decreased by 32.5% and 44.1%, respectively. Furthermore, multiple key genes in the carotenoid metabolic pathway synergistically responded to downregulation of CYC-B gene expression. In summary, we provide direct evidences that CYC-B gene is involved in carotenoid accumulation and coloration in the loquat.
Collapse
Affiliation(s)
- Min Hong
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (M.H.); (M.-Y.H.); (R.-K.W.); (Y.-Z.H.)
| | - Zhuo-Heng Chi
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.-H.C.); (Q.-X.D.)
| | - Yong-Qing Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.-H.C.); (Q.-X.D.)
| | - Yue-Ming Tang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Qun-Xian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.-H.C.); (Q.-X.D.)
| | - Ming-Yang He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (M.H.); (M.-Y.H.); (R.-K.W.); (Y.-Z.H.)
| | - Ri-Kui Wang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (M.H.); (M.-Y.H.); (R.-K.W.); (Y.-Z.H.)
| | - Yi-Zhong He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (M.H.); (M.-Y.H.); (R.-K.W.); (Y.-Z.H.)
| |
Collapse
|
13
|
Huang H, Lu C, Ma S, Wang X, Dai S. Different colored Chrysanthemum × morifolium cultivars represent distinct plastid transformation and carotenoid deposit patterns. PROTOPLASMA 2019; 256:1629-1645. [PMID: 31267226 DOI: 10.1007/s00709-019-01406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Carotenoids are the most important pigments determining the color of C. × morifolium; however, it is still unknown whether the changes of plastid ultrastructure affect carotenoids accumulation. In this study, we compared the change of carotenoid composition, content, and the plastid ultrastructures in the different developmental stages of capitulum among fourteen C. × morifolium cultivars from seven color groups. We found that the carotenoids and plastids detected at the early stage of capitulum development were similar in all cultivars, including violaxanthin, lutein, and β-carotene, which were present in proplastids and immature chloroplasts. Immature chloroplasts were degraded completely, forming loosely broken plastids during the development of the capitulum in white and pink cultivars. Meanwhile, a number of lipid vesicles appeared at proplastids, which resulted in only trace amounts of carotenoid accumulation in these cultivars. For yellow, orange, red, and brown cultivars, a great number of chromoplasts were found, which contained diverse ultrastructures, such as plastoglobules, tubules, and lipid droplets; these chromoplasts were derived from proplastids or chloroplasts. Compared with the early stage of capitulum development, these cultivars accumulated large amounts of carotenoids, primarily including lutein, lutein derivatives, and their isomers. In green cultivars, proplastids and immature chloroplasts were completely transformed into mature chloroplasts. These chloroplasts mainly contained violaxanthin, lutein, β-carotene, and two new components, (9Z)-lutein and (9'Z)-lutein, compared with carotenoid components presented in proplastids and immature chloroplasts. This research will be helpful for understanding the mechanisms of carotenoid metabolism of C. × morifolium. Furthermore, we found that two different chromoplast transformation patterns could be present in the same tissue cell, which contributed to the research on plastid differentiation and development in higher plants.
Collapse
Affiliation(s)
- He Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- Beijing Laboratory of Urban and rural ecological environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- Beijing Laboratory of Urban and rural ecological environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Sha Ma
- Chinese Society of Forestry, Beijing, China
| | - Xinyu Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- Beijing Laboratory of Urban and rural ecological environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China.
- National Engineering Research Center for Floriculture, Beijing, China.
- Beijing Laboratory of Urban and rural ecological environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
14
|
Cao H, Wang J, Dong X, Han Y, Ma Q, Ding Y, Zhao F, Zhang J, Chen H, Xu Q, Xu J, Deng X. Carotenoid accumulation affects redox status, starch metabolism, and flavonoid/anthocyanin accumulation in citrus. BMC PLANT BIOLOGY 2015; 15:27. [PMID: 25644332 PMCID: PMC4323224 DOI: 10.1186/s12870-015-0426-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/15/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Carotenoids are indispensable plant secondary metabolites that are involved in photosynthesis, antioxidation, and phytohormone biosynthesis. Carotenoids are likely involved in other biological functions that have yet to be discovered. In this study, we integrated genomic, biochemical, and cellular studies to gain deep insight into carotenoid-related biological processes in citrus calli overexpressing CrtB (phytoene synthase from Pantoea agglomerans). Fortunella hindsii Swingle (a citrus relative) and Malus hupehensis (a wild apple) calli were also utilized as supporting systems to investigate the effect of altered carotenoid accumulation on carotenoid-related biological processes. RESULTS Transcriptomic analysis provided deep insight into the carotenoid-related biological processes of redox status, starch metabolism, and flavonoid/anthocyanin accumulation. By applying biochemical and cytological analyses, we determined that the altered redox status was associated with variations in O2 (-) and H2O2 levels. We also ascertained a decline in starch accumulation in carotenoid-rich calli. Furthermore, via an extensive cellular investigation of the newly constructed CrtB overexpressing Fortunella hindsii Swingle, we demonstrated that starch level reducation occurred in parallel with significant carotenoid accumulation. Moreover, studying anthocyanin-rich Malus hupehensis calli showed a negative effect of carotenoids on anthocyanin accumulation. CONCLUSIONS In citrus, altered carotenoid accumulation resulted in dramatic effects on metabolic processes involved in redox modification, starch degradation, and flavonoid/anthocyanin biosynthesis. These findings provided new perspectives to understand the biological importance of carotenogenesis and of the developmental processes associated with the nutritional and sensory qualities of agricultural products that accumulate carotenoids.
Collapse
Affiliation(s)
- Hongbo Cao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- College of Horticulture, Agricultural University of Hebei, 071001, Baoding, Hebei, China.
| | - Jiangbo Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- Present address: College of Plant Science, Tarim University, 843300, Alar, China.
| | - Xintian Dong
- College of Horticulture, Agricultural University of Hebei, 071001, Baoding, Hebei, China.
| | - Yan Han
- College of Horticulture, Agricultural University of Hebei, 071001, Baoding, Hebei, China.
| | - Qiaoli Ma
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Yuduan Ding
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Fei Zhao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Jiancheng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- Present address: Shanxi Agricultural University, 030801, Taigu, Shanxi, China.
| | - Haijiang Chen
- College of Horticulture, Agricultural University of Hebei, 071001, Baoding, Hebei, China.
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Affiliation(s)
| | - Salim Al-Babili
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Eleanore T. Wurtzel
- The Graduate School and University Center, The City University of New York, New York, New York, USA
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York, USA
| |
Collapse
|
16
|
Saccà SC, Roszkowska AM, Izzotti A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases. Mutat Res 2013; 752:153-171. [PMID: 23337404 DOI: 10.1016/j.mrrev.2013.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 02/03/2023]
Abstract
The human eye is constantly exposed to sunlight and artificial lighting. Exogenous sources of reactive oxygen species (ROS) such as UV light, visible light, ionizing radiation, chemotherapeutics, and environmental toxins contribute to oxidative damage in ocular tissues. Long-term exposure to these insults places the aging eye at considerable risk for pathological consequences of oxidative stress. Furthermore, in eye tissues, mitochondria are an important endogenous source of ROS. Over time, all ocular structures, from the tear film to the retina, undergo oxidative stress, and therefore, the antioxidant defenses of each tissue assume the role of a safeguard against degenerative ocular pathologies. The ocular surface and cornea protect the other ocular tissues and are significantly exposed to oxidative stress of environmental origin. Overwhelming of antioxidant defenses in these tissues clinically manifests as pathologies including pterygium, corneal dystrophies, and endothelial Fuch's dystrophy. The crystalline lens is highly susceptible to oxidative damage in aging because its cells and their intracellular proteins are not turned over or replaced, thus providing the basis for cataractogenesis. The trabecular meshwork, which is the anterior chamber tissue devoted to aqueous humor drainage, has a particular susceptibility to mitochondrial oxidative injury that affects its endothelium and leads to an intraocular pressure increase that marks the beginning of glaucoma. Photo-oxidative stress can cause acute or chronic retinal damage. The pathogenesis of age-related macular degeneration involves oxidative stress and death of the retinal pigment epithelium followed by death of the overlying photoreceptors. Accordingly, converging evidence indicates that mutagenic mechanisms of environmental and endogenous sources play a fundamental pathogenic role in degenerative eye diseases.
Collapse
Affiliation(s)
- Sergio C Saccà
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology unit, Genoa, Italy
| | - Anna Maria Roszkowska
- Department of Specialized Surgery, University Hospital, Ophthalmology Unit, Messina, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, I-16132, Genoa, Italy.
| |
Collapse
|
17
|
Variation of antioxidant activity and the levels of bioactive compounds in lipophilic and hydrophilic extracts from hot pepper (Capsicum spp.) cultivars. Food Chem 2012; 134:1912-8. [PMID: 23442638 DOI: 10.1016/j.foodchem.2012.03.108] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/11/2012] [Accepted: 03/26/2012] [Indexed: 11/23/2022]
Abstract
Peppers (Capsicum spp.) are a rich source of diverse bioactive compounds with potential health-promoting properties. This study investigated the extraction efficiency of five solvents on antioxidant activities from cayenne (CA408 and Mesilla), jalapeño (Ixtapa) and serrano (Tuxtlas) pepper cultivars. Freeze-dried peppers were extracted using a Soxhlet extractor with five solvents: hexane, ethyl acetate, acetone, methanol, and methanol:water (80:20). The levels of specific bioactive compounds (phenolics, capsaicinoids, carotenoids and flavonoids) were determined by HPLC and antioxidant activities were assayed by three methods. For all pepper cultivars tested, hexane extracts had the highest levels of capsaicinoids and carotenoids, but methanol extracts had the maximum levels of flavonoids. Hexane extracts showed higher 2,2-diphenyl-1-pricrylhydrozyl (DPPH) radical-scavenging activity and higher reducing power, and acetone extracts (from Mesilla pepper) had a high reducing power. All pepper extracts, except hexane, were effective in preventing deoxyribose degradation, and the inhibition was increased by high concentrations of extracts. The results of the present study indicated that, among the different measures of antioxidant activity, DPPH radical-scavenging activity was strongly correlated with total bioactive compounds (capsaicinoids, carotenoids, flavonoids and total phenolics) in pepper cultivars.
Collapse
|
18
|
Kim SH, Ahn YO, Ahn MJ, Lee HS, Kwak SS. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato. PHYTOCHEMISTRY 2012; 74:69-78. [PMID: 22154923 DOI: 10.1016/j.phytochem.2011.11.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/23/2011] [Accepted: 11/15/2011] [Indexed: 05/21/2023]
Abstract
Sweetpotato (Ipomoea batatas Lam.) is an important industrial crop and source of food that contains useful components, including antioxidants such as carotenoids. β-Carotene hydroxylase (CHY-β) is a key regulatory enzyme in the beta-beta-branch of carotenoid biosynthesis and it catalyzes hydroxylation into both β-carotene to β-cryptoxanthin and β-cryptoxanthin to zeaxanthin. To increase the β-carotene content of sweetpotato through the inhibition of further hydroxylation of β-carotene, the effects of silencing CHY-β in the carotenoid biosynthetic pathway were evaluated. A partial cDNA encoding CHY-β was cloned from the storage roots of orange-fleshed sweetpotato (cv. Shinhwangmi) to generate an RNA interference-IbCHY-β construct. This construct was introduced into cultured cells of white-fleshed sweetpotato (cv. Yulmi). Reverse transcription-polymerase chain reaction analysis confirmed the successful suppression of IbCHY-β gene expression in transgenic cultured cells. The expression level of phytoene synthase and lycopene β-cyclase increased, whereas the expression of other genes showed no detectable change. Down-regulation of IbCHY-β gene expression changed the composition and levels of carotenoids between non-transgenic (NT) and transgenic cells. In transgenic line #7, the total carotenoid content reached a maximum of 117 μg/g dry weight, of which β-carotene measured 34.43 μg/g dry weight. In addition, IbCHY-β-silenced calli showed elevated β-cryptoxanthin and zeaxanthin contents as well as high transcript level P450 gene. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH) in transgenic cells was more than twice that in NT cells. RNA-IbCHY-β calli increased abscisic acid (ABA) content, which was accompanied by enhanced tolerance to salt stress. In addition, the production of reactive oxygen species measured by 3,3'-diaminobenzidine (DAB) staining was significantly decreased in transgenic cultured cells under salt stress. Taken together, the present results indicate that down-regulation of IbCHY-β increased β-carotene contents and total carotenoids in transgenic plant cells and enhanced their antioxidant capacity.
Collapse
Affiliation(s)
- Sun Ha Kim
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
Böhm F, Edge R, Truscott G. Interactions of dietary carotenoids with activated (singlet) oxygen and free radicals: potential effects for human health. Mol Nutr Food Res 2011; 56:205-16. [PMID: 22162194 DOI: 10.1002/mnfr.201100222] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/20/2011] [Accepted: 06/16/2011] [Indexed: 12/23/2022]
Abstract
Molecular mechanisms associated with the anti-/pro-oxidative properties of carotenoids (CARs) are described in organic solvents, micro-heterogeneous environments and model lipid membranes and in cellular suspensions. Singlet oxygen is important in the skin and eye and CARs are efficient singlet oxygen (SO) quenchers with corresponding rate constants near diffusion controlled (typically app. 10¹⁰ M⁻¹ s⁻¹) with lycopene (LYC) exhibiting the most efficient quenching in organic solvents. However, in membrane environments there is little or no difference in the quenching efficiency between the dietary CARs. Furthermore, aggregation of CARs, particularly those in the macula (lutein and zeaxanthin), markedly reduces SO quenching efficiency. Free radical interactions with CARs leads to at least three processes, electron and hydrogen atom transfer and adduct formation. The most studied is electron transfer where the CAR loses an electron to become a radical cation. The reactivity/lifetime of such CAR radicals may lead to a switch from anti- to pro-oxidant behaviour of CARs. These reactions are related to CAR redox potentials with LYC being the lowest (most easily oxidised) allowing LYC to reduce/repair all other CAR radical cations and LYC 'sacrificed' where mixtures of CARs are present in oxidative environments. Such redox-controlled reactions may lead to deleterious as well as beneficial health effects.
Collapse
Affiliation(s)
- Fritz Böhm
- Department of Dermatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
20
|
Shanmugasundaram R, Selvaraj RK. Dietary lutein and fish oil interact to alter atherosclerotic lesions in a Japanese quail model of atherosclerosis. J Anim Physiol Anim Nutr (Berl) 2010; 95:762-70. [DOI: 10.1111/j.1439-0396.2010.01106.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|