1
|
Katsanos CS, Tran L, Hoffman N, Roust LR, De Filippis E, Mandarino LJ, Johnsson K, Belohlavek M, Buras MR. Impaired Suppression of Plasma Lipid Extraction and its Partitioning Away from Muscle by Insulin in Humans with Obesity. J Clin Endocrinol Metab 2024:dgae727. [PMID: 39401337 DOI: 10.1210/clinem/dgae727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/09/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
CONTEXT Humans with obesity and insulin resistance exhibit lipid accumulation in skeletal muscle, but the underlying biological mechanisms responsible for the accumulation of lipid in the muscle of these individuals remain unknown. OBJECTIVE We investigated how plasma insulin modulates the extraction of circulating triglycerides (TGs) and non-esterified fatty acids (NEFAs) from ingested and endogenous origin in the muscle of lean, insulin-sensitive humans (Lean-IS) and contrasted these responses to those in humans with obesity and insulin resistance (Obese-IR). METHODS The studies were performed in a postprandial state associated with steady-state plasma TG concentrations. The arterio-venous blood sampling technique was employed to determine the extraction of circulating lipids across the forearm muscle before and after insulin infusion. We distinguished kinetics of TGs and NEFAs from ingested origin from those from endogenous origin across muscle by incorporating stable isotope-labeled triolein in the ingested fat. RESULTS Insulin infusion rapidly suppressed the extraction of plasma TGs from endogenous, but not ingested, origin in the muscle of the Lean-IS, but this response was absent in the muscle of the Obese-IR. Furthermore, in the muscle of the Lean-IS, insulin infusion decreased the extraction of circulating NEFAs from both ingested and endogenous origin; however, this response was absent for NEFAs from ingested origin in the muscle of the Obese-IR subjects. CONCLUSIONS Partitioning of circulating lipids away from the skeletal muscle when plasma insulin increases during the postprandial period is impaired in humans with obesity and insulin resistance.
Collapse
Affiliation(s)
- Christos S Katsanos
- School of Life Sciences, Arizona State University, Tempe, AZ 85259
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Lee Tran
- School of Life Sciences, Arizona State University, Tempe, AZ 85259
| | - Nyssa Hoffman
- School of Life Sciences, Arizona State University, Tempe, AZ 85259
| | - Lori R Roust
- College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | | | - Lawrence J Mandarino
- Department of Medicine, and Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona College of Medicine, Tucson, AZ 85724
| | - Kailin Johnsson
- School of Life Sciences, Arizona State University, Tempe, AZ 85259
| | - Marek Belohlavek
- Department of Cardiovascular Diseases, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Matthew R Buras
- Department of Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ 85259
| |
Collapse
|
2
|
Katsanos CS, Tran L, Hoffman N, Roust LR, De Filippis E, Mandarino LJ, Johnsson K, Belohlavek M, Buras MR. Impaired Suppression of Plasma Lipid Extraction and its Partitioning Away from Muscle by Insulin in Humans with Obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598550. [PMID: 38915696 PMCID: PMC11195248 DOI: 10.1101/2024.06.11.598550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Context Humans with obesity and insulin resistance exhibit lipid accumulation in skeletal muscle, but the underlying biological mechanisms responsible for the accumulation of lipid in the muscle of these individuals remain unknown. Objective We investigated how plasma insulin modulates the extraction of circulating triglycerides (TGs) and non-esterified fatty acids (NEFAs) from ingested and endogenous origin in the muscle of lean, insulin-sensitive humans (Lean-IS) and contrasted these responses to those in humans with obesity and insulin resistance (Obese-IR). Methods The studies were performed in a postprandial state associated with steady-state plasma TG concentrations. The arterio-venous blood sampling technique was employed to determine the extraction of circulating lipids across the forearm muscle before and after insulin infusion. We distinguished kinetics of TGs and NEFAs from ingested origin from those from endogenous origin across muscle by incorporating stable isotope-labeled triolein in the ingested fat. Results Insulin infusion rapidly suppressed the extraction of plasma TGs from endogenous, but not ingested, origin in the muscle of the Lean-IS, but this response was absent in the muscle of the Obese-IR. Furthermore, in the muscle of the Lean-IS, insulin infusion decreased the extraction of circulating NEFAs from both ingested and endogenous origin; however, this response was absent for NEFAs from ingested origin in the muscle of the Obese-IR subjects. Conclusions Partitioning of circulating lipids away from the skeletal muscle when plasma insulin increases during the postprandial period is impaired in humans with obesity and insulin resistance.
Collapse
|
3
|
Pai V, Bileck A, Hommer N, Janku P, Lindner T, Kauer V, Rumpf B, Haslacher H, Hagn G, Meier-Menches SM, Schmetterer L, Schmidl D, Gerner C, Garhöfer G. Impaired retinal oxygen metabolism and perfusion are accompanied by plasma protein and lipid alterations in recovered COVID-19 patients. Sci Rep 2024; 14:8395. [PMID: 38600099 PMCID: PMC11006918 DOI: 10.1038/s41598-024-56834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
The aim of the present study was to investigate retinal microcirculatory and functional metabolic changes in patients after they had recovered from a moderate to severe acute COVID-19 infection. Retinal perfusion was quantified using laser speckle flowgraphy. Oxygen saturation and retinal calibers were assessed with a dynamic vessel analyzer. Arterio-venous ratio (AVR) was calculated based on retinal vessel diameter data. Blood plasma samples underwent mass spectrometry-based multi-omics profiling, including proteomics, metabolomics and eicosadomics. A total of 40 subjects were included in the present study, of which 29 had recovered from moderate to severe COVID-19 within 2 to 23 weeks before inclusion and 11 had never had COVID-19, as confirmed by antibody testing. Perfusion in retinal vessels was significantly lower in patients (60.6 ± 16.0 a.u.) than in control subjects (76.2 ± 12.1 a.u., p = 0.006). Arterio-venous (AV) difference in oxygen saturation and AVR was significantly lower in patients compared to healthy controls (p = 0.021 for AVR and p = 0.023 for AV difference in oxygen saturation). Molecular profiles demonstrated down-regulation of cell adhesion molecules, NOTCH3 and fatty acids, and suggested a bisphasic dysregulation of nitric oxide synthesis after COVID-19 infection. The results of this study imply that retinal perfusion and oxygen metabolism is still significantly altered in patients well beyond the acute phase of COVID-19. This is also reflected in the molecular profiling analysis of blood plasma, indicating a down-regulation of nitric oxide-related endothelial and immunological cell functions.Trial Registration: ClinicalTrials.gov ( https://clinicaltrials.gov ) NCT05650905.
Collapse
Affiliation(s)
- Viktoria Pai
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Vienna, Austria
| | - Nikolaus Hommer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Patrick Janku
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Theresa Lindner
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Victoria Kauer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Department of Medicine IV for Infectious Diseases and Tropical Medicine, Clinic Favoriten, Vienna, Austria
| | - Benedikt Rumpf
- Department of Medicine IV for Infectious Diseases and Tropical Medicine, Clinic Favoriten, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hagn
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Samuel M Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria.
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Vienna, Austria.
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Carulla P, Badia-Villanueva M, Civit S, Carrascal M, Abian J, Ricart-Jané D, Llobera M, Casanovas A, López-Tejero MD. The response to fasting and refeeding reveals functional regulation of lipoprotein lipase proteoforms. Front Physiol 2023; 14:1271149. [PMID: 37916217 PMCID: PMC10617031 DOI: 10.3389/fphys.2023.1271149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Lipoprotein lipase (LPL) is responsible for the intravascular catabolism of triglyceride-rich lipoproteins and plays a central role in whole-body energy balance and lipid homeostasis. As such, LPL is subject to tissue-specific regulation in different physiological conditions, but the mechanisms of this regulation remain incompletely characterized. Previous work revealed that LPL comprises a set of proteoforms with different isoelectric points, but their regulation and functional significance have not been studied thus far. Here we studied the distribution of LPL proteoforms in different rat tissues and their regulation under physiological conditions. First, analysis by two-dimensional electrophoresis and Western blot showed different patterns of LPL proteoforms (i.e., different pI or relative abundance of LPL proteoforms) in different rat tissues under basal conditions, which could be related to the tissue-specific regulation of the enzyme. Next, the comparison of LPL proteoforms from heart and brown adipose tissue between adults and 15-day-old rat pups, two conditions with minimal regulation of LPL in these tissues, yielded virtually the same tissue-specific patterns of LPL proteoforms. In contrast, the pronounced downregulation of LPL activity observed in white adipose tissue during fasting is accompanied by a prominent reconfiguration of the LPL proteoform pattern. Furthermore, refeeding reverts this downregulation of LPL activity and restores the pattern of LPL proteoforms in this tissue. Importantly, this reversible proteoform-specific regulation during fasting and refeeding indicates that LPL proteoforms are functionally diverse. Further investigation of potential differences in the functional properties of LPL proteoforms showed that all proteoforms exhibit lipolytic activity and have similar heparin-binding affinity, although other functional aspects remain to be investigated. Overall, this study demonstrates the ubiquity, differential distribution and specific regulation of LPL proteoforms in rat tissues and underscores the need to consider the existence of LPL proteoforms for a complete understanding of LPL regulation under physiological conditions.
Collapse
Affiliation(s)
- Pere Carulla
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Míriam Badia-Villanueva
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Sergi Civit
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Montserrat Carrascal
- Biological and Environmental Proteomics, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC/IDIBAPS), Barcelona, Spain
| | - Joaquin Abian
- Biological and Environmental Proteomics, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC/IDIBAPS), Barcelona, Spain
| | - David Ricart-Jané
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Miquel Llobera
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Albert Casanovas
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - M. Dolores López-Tejero
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
5
|
Xiao Y, Yang C, Xu H, Wu Q, Zhou Y, Zhou X, Miao J. Procyanidin B2 prevents dyslipidemia via modulation of gut microbiome and related metabolites in high-fat diet fed mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
6
|
Anavi S, Tirosh O. iNOS as a metabolic enzyme under stress conditions. Free Radic Biol Med 2020; 146:16-35. [PMID: 31672462 DOI: 10.1016/j.freeradbiomed.2019.10.411] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) is a free radical acting as a cellular signaling molecule in many different biochemical processes. NO is synthesized from l-arginine through the action of the nitric oxide synthase (NOS) family of enzymes, which includes three isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS). iNOS-derived NO has been associated with the pathogenesis and progression of several diseases, including liver diseases, insulin resistance, obesity and diseases of the cardiovascular system. However, transient NO production can modulate metabolism to survive and cope with stress conditions. Accumulating evidence strongly imply that iNOS-derived NO plays a central role in the regulation of several biochemical pathways and energy metabolism including glucose and lipid metabolism during inflammatory conditions. This review summarizes current evidence for the regulation of glucose and lipid metabolism by iNOS during inflammation, and argues for the role of iNOS as a metabolic enzyme in immune and non-immune cells.
Collapse
Affiliation(s)
- Sarit Anavi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel; Peres Academic Center, Rehovot, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
7
|
Xiao HB, Liang L, Luo ZF, Sun ZL. Paeoniflorin regulates GALNT2-ANGPTL3-LPL pathway to attenuate dyslipidemia in mice. Eur J Pharmacol 2018; 836:122-128. [PMID: 30096295 DOI: 10.1016/j.ejphar.2018.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/06/2023]
Abstract
N-acetylgalactosaminyltransferase 2-Angiopoietin-like protein 3-lipoprotein lipase (GALNT2-ANGPTL3-LPL) pathway may be a useful pharmacologic objective for dyslipidemia. The present study was conducted to test the effect of paeoniflorin, a monoterpene Glycoside, on dyslipidemia in mice. Fifty mice were randomly divided into five groups (n = 10): three groups of apolipoprotein E-null (ApoE-/-) mice treated with paeoniflorin (10 or 20 or 30 mg/kg/day), untreated ApoE-/- mice group, and C57BL/6J control group. Six weeks after treatment, expression of hepatic ANGPTL3, hepatic GALNT2 and adipose tissue LPL, lipid levels in the liver and blood were quantified. Treatment with paeoniflorin (10 or 20 or 30 mg/kg) obviously down-regulated expression of ANGPTL3 and up-regulated expressions of GALNT2 and LPL concomitantly with elevated plasma high-density lipoprotein cholesterol level, reduced plasma concentrations of low-density lipoprotein cholesterol, total cholesterol, triglyceride, malonaldehyde, and 8-isoprostane. The present results suggest that paeoniflorin regulates GALNT2-ANGPTL3-LPL pathway to attenuate dyslipidemia in mice.
Collapse
Affiliation(s)
- Hong-Bo Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Lin Liang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhi-Feng Luo
- Department of Basic Medicine, Xiangnan University, Chenzhou 423000, China
| | - Zhi-Liang Sun
- Hunan Engineering Research Center of Veterinary Drug, Changsha 410128, China
| |
Collapse
|
8
|
Rubin LP, Ross AC, Stephensen CB, Bohn T, Tanumihardjo SA. Metabolic Effects of Inflammation on Vitamin A and Carotenoids in Humans and Animal Models. Adv Nutr 2017; 8:197-212. [PMID: 28298266 PMCID: PMC5347109 DOI: 10.3945/an.116.014167] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The association between inflammation and vitamin A (VA) metabolism and status assessment has been documented in multiple studies with animals and humans. The relation between inflammation and carotenoid status is less clear. Nonetheless, it is well known that carotenoids are associated with certain health benefits. Understanding these relations is key to improving health outcomes and mortality risk in infants and young children. Hyporetinolemia, i.e., low serum retinol concentrations, occurs during inflammation, and this can lead to the misdiagnosis of VA deficiency. On the other hand, inflammation causes impaired VA absorption and urinary losses that can precipitate VA deficiency in at-risk groups of children. Many epidemiologic studies have suggested that high dietary carotenoid intake and elevated plasma concentrations are correlated with a decreased risk of several chronic diseases; however, large-scale carotenoid supplementation trials have been unable to confirm the health benefits and in some cases resulted in controversial results. However, it has been documented that dietary carotenoids and retinoids play important roles in innate and acquired immunity and in the body's response to inflammation. Although animal models have been useful in investigating retinoid effects on developmental immunity, it is more challenging to tease out the effects of carotenoids because of differences in the absorption, kinetics, and metabolism between humans and animal models. The current understanding of the relations between inflammation and retinoid and carotenoid metabolism and status are the topics of this review.
Collapse
Affiliation(s)
- Lewis P Rubin
- Texas Tech Health Sciences Center El Paso, El Paso, TX
| | | | | | - Torsten Bohn
- Luxembourg Institute of Health, Population Health Department, Strassen, Luxembourg; and
| | | |
Collapse
|
9
|
Zhan X, Wang X, Desiderio DM. Mass spectrometry analysis of nitrotyrosine-containing proteins. MASS SPECTROMETRY REVIEWS 2015; 34:423-448. [PMID: 24318073 DOI: 10.1002/mas.21413] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
Oxidative stress plays important roles in a wide range of diseases such as cancer, inflammatory disease, neurodegenerative disorders, etc. Tyrosine nitration in a protein is a chemically stable oxidative modification, and a marker of oxidative injuries. Mass spectrometry (MS) is a key technique to identify nitrotyrosine-containing proteins and nitrotyrosine sites in endogenous and synthetic nitroproteins and nitropeptides. However, in vivo nitrotyrosine-containing proteins occur with extreme low-abundance to severely challenge the use of MS to identify in vivo nitroproteins and nitrotyrosine sites. A preferential enrichment of nitroproteins and/or nitropeptides is necessary before MS analysis. Current enrichment methods include immuno-affinity techniques, chemical derivation of the nitro group plus target isolations, followed with tandem mass spectrometry analysis. This article reviews the MS techniques and pertinent before-MS enrichment techniques for the identification of nitrotyrosine-containing proteins. This article reviews future trends in the field of nitroproteomics, including quantitative nitroproteomics, systems biological networks of nitroproteins, and structural biology study of tyrosine nitration to completely clarify the biological functions of tyrosine nitration.
Collapse
Affiliation(s)
- Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- The State Key Laboratory of Medical Genetics, Central South University, 88 Xiangya Road, Changsha, Hunan, 410008, P.R. China
| | - Xiaowei Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
| | - Dominic M Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, Tennessee, 38163
| |
Collapse
|
10
|
Puthanveetil P, Wan A, Rodrigues B. Lipoprotein lipase and angiopoietin-like 4 – Cardiomyocyte secretory proteins that regulate metabolism during diabetic heart disease. Crit Rev Clin Lab Sci 2015; 52:138-49. [DOI: 10.3109/10408363.2014.997931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Ferrer R, Pardina E, Rossell J, Baena-Fustegueras JA, Lecube A, Balibrea JM, Caubet E, González O, Vilallonga R, Fort JM, Peinado-Onsurbe J. Decreased lipases and fatty acid and glycerol transporter could explain reduced fat in diabetic morbidly obese. Obesity (Silver Spring) 2014; 22:2379-87. [PMID: 25132069 DOI: 10.1002/oby.20861] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/16/2014] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The possible differences were investigated in 32 morbidly obese patients depending on whether they were "healthy" or had dyslipidemia and/or type 2 diabetes. METHODS Lipid metabolism and insulin resistance were analyzed in subcutaneous (SAT) and visceral adipose tissue (VAT) before and during 6 and 12 months after Roux-en-Y gastric bypass. RESULTS Significant differences have been found in lipoprotein lipase (LPL) and hormone-sensitive lipase (HSL) activities in SAT from the different obese group versus normal weight (control) but not between them. The reduced lipase activities in VAT were 43 and 19% smaller (22 and 4% smaller, respectively, vs. control) than the "healthy" obese group for LPL and HSL, respectively, and were accompanied with a reduced expression of these lipases, as well as decreased expression of FAT/CD36, FABP4, and AQ7 in that tissue. In addition, the expression of the other genes measured showed a downregulation not only versus the "healthy" obese but also versus the normal weight group. CONCLUSIONS Being obese is not "healthy," but it is even less so if morbidly obese patients with diabetes and dyslipidemia were considered. The reduced fat accumulation in these patients may be attributed to the decrease of the expression and activity of the lipases of their adipose tissue.
Collapse
Affiliation(s)
- Roser Ferrer
- Biochemistry Department, Hospital Universitari Vall D'Hebron, Universitat Autònoma De Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Reduced trunk fat and triglycerides after strength training are associated with reduced LPS levels in HIV-infected individuals. J Acquir Immune Defic Syndr 2014; 66:e52-4. [PMID: 24608893 DOI: 10.1097/qai.0000000000000132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Trøseid M, Manner IW, Pedersen KK, Haissman JM, Kvale D, Nielsen SD. Microbial translocation and cardiometabolic risk factors in HIV infection. AIDS Res Hum Retroviruses 2014; 30:514-22. [PMID: 24521167 DOI: 10.1089/aid.2013.0280] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The widespread access to antiretroviral treatment during the past decades has transformed HIV infection from a lethal disease to a chronic condition, in which the relative burden of non-AIDS-related chronic disorders such as cardiovascular disease, malignancy, renal, liver, and bone disease has increased. The adjusted relative risk for myocardial infarction is reported to be around 2-fold compared to that of the general population, which over time is likely to translate into increased absolute risk in an aging population. Thus, delineating potentially HIV-specific pathogenetic mechanisms is crucial in order to tailor novel strategies for prophylaxis and treatment. This review will focus on advances in the field that possibly link HIV-induced alterations of the gut mucosa and consequent microbial translocation to cardiometabolic risk factors in HIV infection. Recent work suggests that markers of microbial translocation are closely associated with several cardiovascular risk factors such as dyslipidemia, insulin resistance, hypertension, coagulation abnormalities, endothelial dysfunction, and carotid atherosclerosis. Future studies should investigate whether associations between microbial translocation and cardiovascular risk factors will translate into increased risk of acute events, and whether strategies to target gut microbiota and microbial translocation might reduce such a risk.
Collapse
Affiliation(s)
- Marius Trøseid
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | | | - Karin K. Pedersen
- Viro-Immunology, Department of Infectious Diseases, Copenhagen University Rigshospitalet, Copenhagen, Denmark
| | - Judith M. Haissman
- Viro-Immunology, Department of Infectious Diseases, Copenhagen University Rigshospitalet, Copenhagen, Denmark
| | - Dag Kvale
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Susanne D. Nielsen
- Viro-Immunology, Department of Infectious Diseases, Copenhagen University Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
14
|
Plasma lipopolysaccharide and triglycerides are independently associated and both markers correlate with the development of metabolic syndrome in HIV infection. J Acquir Immune Defic Syndr 2014; 65:e158-61. [PMID: 24577189 DOI: 10.1097/qai.0000000000000055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Badia-Villanueva M, Carulla P, Carrascal M, Abián J, Llobera M, Casanovas A, Dolores López-Tejero M. Lipoprotein lipase isoelectric point isoforms in humans. Biochem Biophys Res Commun 2014; 445:480-5. [DOI: 10.1016/j.bbrc.2014.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 11/30/2022]
|
16
|
Microbial translocation in HIV infection is associated with dyslipidemia, insulin resistance, and risk of myocardial infarction. J Acquir Immune Defic Syndr 2014; 64:425-33. [PMID: 23797689 DOI: 10.1097/qai.0b013e31829f919d] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Microbial translocation has been suggested to be a driver of immune activation and inflammation. It is hypothesized that microbial translocation may be related to dyslipidemia, insulin resistance, and the risk of coronary heart disease in HIV-infected individuals. DESIGN Cross-sectional study of 60 HIV-infected patients on combination antiretroviral therapy with viral suppression >2 years and 31 healthy age-matched controls. METHODS Lipopolysaccharide (LPS) was analyzed by limulus amebocyte lysate colorimetric assay. Lipids, including cholesterol, low-density lipoprotein (LDL), and triglycerides, were measured. Glucose metabolism was determined using an oral glucose tolerance test. Body composition was determined using whole-body dual-energy x-ray absorptiometry scans and magnetic resonance imaging. The Framingham risk score was used to assess risk of cardiovascular disease and myocardial infarction. RESULTS HIV-infected patients had higher level of LPS compared with controls (64 pg/mL vs. 50 pg/mL, P = 0.002). Likewise, HIV-infected patients had higher triglycerides, LDL, and fasting insulin as well as evidence of lower insulin sensitivity compared with controls. Among HIV-infected patients, high LPS was associated with a higher level of triglycerides and LDL and with lower insulin sensitivity. Importantly, among HIV-infected patients, high LPS was associated with a higher Framingham risk score. CONCLUSIONS HIV-infected patients with suppressed viral replication had increased level of microbial translocation as measured by LPS. LPS was associated with cardiometabolic risk factors and increased Framingham risk score. Hence, the gastrointestinal mucosal barrier may be a potential therapeutic target to prevent dyslipidemia and future cardiovascular complications in HIV infection.
Collapse
|
17
|
Xiao HB, Lu XY, Zhang HB, Sun ZL, Fang J. Undaria pinnatifida soluble fiber regulates Angptl3-LPL pathway to lessen hyperlipidemia in mice. J Physiol Biochem 2013; 69:719-25. [PMID: 23595961 DOI: 10.1007/s13105-013-0248-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/12/2013] [Indexed: 01/15/2023]
Abstract
Angiopoietin-like protein 3 (Angptl3)-lipoprotein lipase (LPL) pathway may be a useful pharmacologic target for hyperlipidemia. The present study was conducted to test the effect of soluble fiber extracted from Undaria pinnatifida (UP), on hyperlipidemia in apolipoprotein E-deficient (ApoE(-/-)) mice. Forty mice were divided into four groups (n = 10): control group (C57BL/6J mice), ApoE(-/-) mice group, and two groups of ApoE(-/-) mice treated with UP fiber (5 or 10 % per day). UP soluble fiber treatment significantly decreased plasma and hepatic total cholesterol, triglycerides levels, plasma low-density lipoprotein cholesterol, and malondialdehyde concentrations and increased plasma high-density lipoprotein cholesterol level and downregulated protein expression of Angptl3 concomitantly with upregulated protein expression of LPL. In addition, T0901317 caused elevated expression of hepatic Angptl3 protein, and the effect of T0901317 was also abrogated by UP soluble fiber in C57BL/6J mice. The present results suggest that the UP soluble fiber regulates Angptl3-LPL pathway to lessen hyperlipidemia in mice.
Collapse
Affiliation(s)
- Hong-Bo Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Furong District, Changsha, 410128, China,
| | | | | | | | | |
Collapse
|
18
|
1,3,5,8-Tetrahydroxyxanthone regulates ANGPTL3–LPL pathway to lessen the ketosis in mice. Eur J Pharm Sci 2012; 46:26-31. [DOI: 10.1016/j.ejps.2012.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/03/2012] [Accepted: 02/02/2012] [Indexed: 11/24/2022]
|
19
|
The dose-dependent effects of endotoxin on protein metabolism in two types of rat skeletal muscle. J Physiol Biochem 2012; 68:385-95. [PMID: 22311459 DOI: 10.1007/s13105-012-0150-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 01/25/2012] [Indexed: 12/28/2022]
Abstract
Endotoxin administration is frequently used as a model of systemic inflammatory response which is considered the important pathogenetic factor in muscle wasting development in severe illness, such as sepsis, cancer, injury, AIDS and others. The main purpose of this study was determining the effect of various doses of endotoxin on protein and amino acid metabolism in two types of rat skeletal muscle. Sepsis was induced by intraperitoneal administration of endotoxin in a dose of 1, 3 and 5 mg/kg body weight (bw); control animals received a corresponding volume of the saline solution. After 24 h, extensor digitorum longus (EDL) and soleus (SOL) muscles were isolated and used for determination of total and myofibrillar proteolysis, protein synthesis, activity of cathepsins B and L, chymotrypsin-like activity of proteasome and amino acid release. The endotoxemia induced the body weight loss, the rise of total cholesterol and triglyceride plasma concentration and the protein catabolic state in skeletal muscle, which was caused by a higher increase in protein breakdown (due to activation of the proteasome system) than protein synthesis. The more significant effect of endotoxin was seen in EDL than SOL. The dose of 5 mg of endotoxin/kg bw induced the most significant changes in parameters of the protein and amino acid metabolism measured and could be therefore considered appropriate for studies of protein catabolism in young rat skeletal muscle at 24 h after endotoxin treatment.
Collapse
|
20
|
Xiao HB, Jun F, Sun ZL. Effect of 1,3,5,8-tetrahydroxyxanthone on carcass characteristics and meat quality traits in pigs. ANIMAL PRODUCTION SCIENCE 2012. [DOI: 10.1071/an12001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Angiopoietin-like protein 3 (Angptl3) may promote adipose formation. The present study investigated the beneficial effect of 1,3,5,8-tetrahydroxyxanthone (Xan), a naturally occurring polyphenol agent, on carcass characteristics and meat quality in pigs and the mechanisms involved. Forty-eight Duroc × Landrace × Yorkshire pigs (65.3 ± 7.8 kg) were randomly divided into four groups: control group, untreated high lipid diet (HLD) group and two groups of HLD with Xan (1 or 3%). Forty-two days later, Xan (1 or 3%) treatment significantly increased percentage lean, loin eye area, colour, expression and activity of adipose tissue lipoprotein lipase activity and decreased percentage fat, backfat thickness, total cholesterol concentration, triglyceride concentration, and Angptl3 mRNA expression. The present results suggest that the beneficial effect of Xan on carcass characteristics and meat quality may be related to decreased expression of Angptl3 in pig.
Collapse
|
21
|
Comparative studies of vertebrate lipoprotein lipase: a key enzyme of very low density lipoprotein metabolism. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:224-34. [PMID: 21561822 DOI: 10.1016/j.cbd.2011.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 04/13/2011] [Accepted: 04/18/2011] [Indexed: 11/24/2022]
Abstract
Lipoprotein lipase (LIPL or LPL; E.C.3.1.1.34) serves a dual function as a triglyceride lipase of circulating chylomicrons and very-low-density lipoproteins (VLDL) and facilitates receptor-mediated lipoprotein uptake into heart, muscle and adipose tissue. Comparative LPL amino acid sequences and protein structures and LPL gene locations were examined using data from several vertebrate genome projects. Mammalian LPL genes usually contained 9 coding exons on the positive strand. Vertebrate LPL sequences shared 58-99% identity as compared with 33-49% sequence identities with other vascular triglyceride lipases, hepatic lipase (HL) and endothelial lipase (EL). Two human LPL N-glycosylation sites were conserved among seven predicted sites for the vertebrate LPL sequences examined. Sequence alignments, key amino acid residues and conserved predicted secondary and tertiary structures were also studied. A CpG island was identified within the 5'-untranslated region of the human LPL gene which may contribute to the higher than average (×4.5 times) level of expression reported. Phylogenetic analyses examined the relationships and potential evolutionary origins of vertebrate lipase genes, LPL, LIPG (encoding EL) and LIPC (encoding HL) which suggested that these have been derived from gene duplication events of an ancestral neutral lipase gene, prior to the appearance of fish during vertebrate evolution. Comparative divergence rates for these vertebrate sequences indicated that LPL is evolving more slowly (2-3 times) than for LIPC and LIPG genes and proteins.
Collapse
|
22
|
Abdelmegeed MA, Yoo SH, Henderson LE, Gonzalez FJ, Woodcroft KJ, Song BJ. PPARalpha expression protects male mice from high fat-induced nonalcoholic fatty liver. J Nutr 2011; 141:603-10. [PMID: 21346097 PMCID: PMC3056578 DOI: 10.3945/jn.110.135210] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence suggests that the lack of PPARα enhances hepatic steatosis and inflammation in Ppara-null mice when fed a high-fat diet (HFD). Thus, the aim of this study was to determine whether Ppara-null mice are more susceptible to nonalcoholic steatohepatitis (NASH) than their wild-type (WT) counterparts following short-term feeding with a HFD. Age-matched male WT and Ppara-null mice were randomly assigned to consume ad libitum a standard Lieber-DeCarli liquid diet (STD) (35% energy from fat) or a HFD (71% energy from fat) for 3 wk. Liver histology, plasma transaminase levels, and indicators of oxidative/nitrosative stress and inflammatory cytokines were evaluated in all groups. Levels of lobular inflammation and the NASH activity score were greater in HFD-exposed Ppara-null mice than in the other 3 groups. Biochemical analysis revealed elevated levels of ethanol-inducible cytochrome P450 2E1 and TNFα accompanied by increased levels of malondialdehyde as well as oxidized and nitrated proteins in Ppara-null mice. Elevated oxidative stress and inflammation were associated with activation of c-Jun-N-terminal kinase and p38 kinase, resulting in increased hepatocyte apoptosis in Ppara-null mice fed a HFD. These results, with increased steatosis, oxidative stress, and inflammation observed in Ppara-null mice fed a HFD, demonstrate that inhibition of PPARα functions may increase susceptibility to high fat-induced NASH.
Collapse
Affiliation(s)
- Mohamed A. Abdelmegeed
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism
| | - Seong-Ho Yoo
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism
| | - Lauren E. Henderson
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism,To whom correspondence should be addressed. E-mail:
| |
Collapse
|