1
|
Schiavinato M, Ronanki S, Estruch IM, van den Brink N. Immune response accelerated telomere shortening during early life stage of a passerine bird, the blue tit ( Cyanistes caeruleus). Biol Lett 2025; 21:20240618. [PMID: 39837488 PMCID: PMC11750392 DOI: 10.1098/rsbl.2024.0618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
Dealing with infections is a daily challenge for wild animals. Empirical data show an increase in reactive oxygen species (ROS) production during immune response. This could have consequences on telomere length, the end parts of linear chromosomes, commonly used as proxy for good health and ageing. Telomere length dynamics may reflect the costs associated with physiological responses. In this study, immune system of blue tit (Cyanistes caeruleus) nestlings was experimentally challenged through a polyinosinic:polycytidylic acid (poly I:C) injection, a synthetic double-stranded RNA that mimics a virus, activating the pathway of immune response triggered via the toll-like receptors 3. This path is known to form ROS downstream. Immune response was quantified by white cell counts in blood, while brain lipoperoxidation has been evaluated as an indicator of oxidative damage. Finally, individuals' telomere length shortening between days 8 and 15 after hatching was measured in erythrocytes. Challenged nestlings showed increased leukocyte number when compared with control (treated with a saline solution), lower brain lipid peroxidation (likely as a result of a compensatory mechanism after oxidative stress burst) and accelerated telomere shortening. These findings support the 'ageing cost of infections pathway' hypothesis, which supposes a role for infections in quick biological ageing.
Collapse
Affiliation(s)
- Matteo Schiavinato
- Cluster of Biomolecular Science, Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Shivani Ronanki
- Cluster of Biomolecular Science, Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Ignacio Miro Estruch
- Cluster of Biomolecular Science, Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Nico van den Brink
- Cluster of Biomolecular Science, Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
2
|
Wang J, Li C, Han J, Xue Y, Zheng X, Wang R, Radak Z, Nakabeppu Y, Boldogh I, Ba X. Reassessing the roles of oxidative DNA base lesion 8-oxoGua and repair enzyme OGG1 in tumorigenesis. J Biomed Sci 2025; 32:1. [PMID: 39741341 DOI: 10.1186/s12929-024-01093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/08/2024] [Indexed: 01/02/2025] Open
Abstract
ROS cause multiple forms of DNA damage, and among them, 8-oxoguanine (8-oxoGua), an oxidized product of guanine, is one of the most abundant. If left unrepaired, 8-oxoGua may pair with A instead of C, leading to a mutation of G: C to T: A during DNA replication. 8-Oxoguanine DNA glycosylase 1 (OGG1) is a tailored repair enzyme that recognizes 8-oxoGua in DNA duplex and initiates the base excision repair (BER) pathway to remove the lesion and ensure the fidelity of the genome. The accumulation of genomic 8-oxoGua and the dysfunction of OGG1 is readily linked to mutagenesis, and subsequently aging-related diseases and tumorigenesis; however, the direct experimental evidence has long been lacking. Recently, a series of studies have shown that guanine oxidation in the genome has a conservative bias, with the tendency to occur in the regulatory regions, thus, 8-oxoGua is not only a lesion to be repaired, but also an epigenetic modification. In this regard, OGG1 is a specific reader of this base modification. Substrate recognition and/or excision by OGG1 can cause DNA conformation changes, affect chromatin modifications, thereby modulating the transcription of genes involved in a variety of cellular processes, including inflammation, cell proliferation, differentiation, and apoptosis. Thus, in addition to the potential mutagenicity, 8-oxoGua may contribute to tumor development and progression through the altered gene expression stemming from its epigenetic effects.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Chunshuang Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Jinling Han
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yaoyao Xue
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Xu Zheng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Ruoxi Wang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, 1123, Hungary
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
3
|
Miller LG, Kim W, Schowe S, Taylor K, Han R, Jain V, Park R, Sherman M, Fang J, Ramirez H, Ellington A, Tamamis P, Resendiz MJE, Zhang YJ, Contreras L. Selective 8-oxo-rG stalling occurs in the catalytic core of polynucleotide phosphorylase (PNPase) during degradation. Proc Natl Acad Sci U S A 2024; 121:e2317865121. [PMID: 39495922 PMCID: PMC11572968 DOI: 10.1073/pnas.2317865121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 11/06/2024] Open
Abstract
RNA oxidation, predominantly through the accumulation of 8-oxo-7,8-dihydroguanosine (8-oxo-rG), represents an important biomarker for cellular oxidative stress. Polynucleotide phosphorylase (PNPase) is a 3'-5' exoribonuclease that has been shown to preferentially recognize 8-oxo-rG-containing RNA and protect Escherichia coli cells from oxidative stress. However, the impact of 8-oxo-rG on PNPase-mediated RNA degradation has not been studied. Here, we show that the presence of 8-oxo-rG in RNA leads to catalytic stalling of E. coli PNPase through in vitro RNA degradation experiments and electrophoretic analysis. We also link this stalling to the active site of the enzyme through resolution of single-particle cryo-EM structures for PNPase in complex with singly or doubly oxidized RNA oligonucleotides. Following identification of Arg399 as a key residue in recognition of both single and sequential 8-oxo-rG nucleotides, we perform follow-up in vitro analysis to confirm the importance of this residue in 8-oxo-rG-specific PNPase stalling. Finally, we investigate the effects of mutations to active site residues implicated in 8-oxo-rG binding through E. coli cell growth experiments under H2O2-induced oxidative stress. Specifically, Arg399 mutations show significant effects on cell growth under oxidative stress. Overall, we demonstrate that 8-oxo-rG-specific stalling of PNPase is relevant to bacterial survival under oxidative stress and speculate that this enzyme might associate with other cellular factors to mediate this stress.
Collapse
Affiliation(s)
- Lucas G. Miller
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Wantae Kim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Shawn Schowe
- Department of Chemistry, University of Colorado Denver, Denver, CO80217
| | - Kathleen Taylor
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Vashita Jain
- Department of Chemistry, University of Colorado Denver, Denver, CO80217
| | - Raeyeon Park
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX77843
| | - Mark Sherman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Janssen Fang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Haydee Ramirez
- Department of Chemistry, University of Colorado Denver, Denver, CO80217
| | - Andrew Ellington
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX77843
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX77840
| | | | - Y. Jessie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Lydia Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
4
|
Dorf N, Maciejczyk M. Skin senescence-from basic research to clinical practice. Front Med (Lausanne) 2024; 11:1484345. [PMID: 39493718 PMCID: PMC11527680 DOI: 10.3389/fmed.2024.1484345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
The most recognizable implications of tissue aging manifest themselves on the skin. Skin laxity, roughness, pigmentation disorders, age spots, wrinkles, telangiectasia or hair graying are symptoms of physiological aging. Development of the senescent phenotype depends on the interaction between aging cells and remodeling of the skin's extracellular matrix (ECM) that contains collagen and elastic fiber. Aging changes occur due to the combination of both endogenous (gene mutation, cellular metabolism or hormonal agents) and exogenous factors (ultraviolet light, environmental pollutants, and unsuitable diet). However, overproduction of mitochondrial reactive oxygen species (ROS) is a key factor driving cellular senescence. Aging theories have disclosed a range of diverse molecular mechanisms that are associated with cellular senescence of the body. Theories best supported by evidence include protein glycation, oxidative stress, telomere shortening, cell cycle arrest, and a limited number of cell divisions. Accumulation of the ECM damage is suggested to be a key factor in skin aging. Every cell indicates a functional and morphological change that may be used as a biomarker of senescence. Senescence-associated β-galactosidase (SA-β-gal), cell cycle inhibitors (p16INK4a, p21CIP1, p27, p53), DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS), senescence-associated heterochromatin foci (SAHF), shortening of telomeres or downregulation of lamina B1 constitute just an example of aging biomarkers known so far. Aging may also be assessed non-invasively through measuring the skin fluorescence of advanced glycation end-products (AGEs). This review summarizes the recent knowledge on the pathogenesis and clinical conditions of skin aging as well as biomarkers of skin senescence.
Collapse
Affiliation(s)
- Natalia Dorf
- Independent Laboratory of Cosmetology, Medical University of Białystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Białystok, Bialystok, Poland
| |
Collapse
|
5
|
Krishnamurthy HK, Pereira M, Rajavelu I, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Oxidative stress: fundamentals and advances in quantification techniques. Front Chem 2024; 12:1470458. [PMID: 39435263 PMCID: PMC11491411 DOI: 10.3389/fchem.2024.1470458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Oxidative species, generated endogenously via metabolism or from exogenous sources, play crucial roles in the body. At low levels, these species support immune functions by participating in phagocytosis. They also aid in cellular signaling and contribute to vasomodulation. However, when the levels of oxidative species exceed the body's antioxidant capacity to neutralize them, oxidative stress occurs. This stress can damage cellular macromolecules such as lipids, DNA, RNA, and proteins, driving the pathogenesis of diseases and aging through the progressive deterioration of physiological functions and cellular structures. Therefore, the body's ability to manage oxidative stress and maintain it at optimal levels is essential for overall health. Understanding the fundamentals of oxidative stress, along with its reliable quantification, can enable consistency and comparability in clinical practice across various diseases. While direct quantification of oxidant species in the body would be ideal for assessing oxidative stress, it is not feasible due to their high reactivity, short half-life, and the challenges of quantification using conventional techniques. Alternatively, quantifying lipid peroxidation, damage products of nucleic acids and proteins, as well as endogenous and exogenous antioxidants, serves as appropriate markers for indicating the degree of oxidative stress in the body. Along with the conventional oxidative stress markers, this review also discusses the role of novel markers, focusing on their biological samples and detection techniques. Effective quantification of oxidative stress may enhance the understanding of this phenomenon, aiding in the maintenance of cellular integrity, prevention of age-associated diseases, and promotion of longevity.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | | |
Collapse
|
6
|
Pan L, Wang K, Hao W, Xue Y, Zheng X, Basu RS, Hazra TK, Islam A, Hosakote Y, Tian B, Gagnon MG, Ba X, Boldogh I. 8-Oxoguanine DNA Glycosylase1 conceals oxidized guanine in nucleoprotein-associated RNA of respiratory syncytial virus. PLoS Pathog 2024; 20:e1012616. [PMID: 39413143 PMCID: PMC11515973 DOI: 10.1371/journal.ppat.1012616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/28/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Respiratory syncytial virus (RSV), along with other prominent respiratory RNA viruses such as influenza and SARS-CoV-2, significantly contributes to the global incidence of respiratory tract infections. These pathogens induce the production of reactive oxygen species (ROS), which play a crucial role in the onset and progression of respiratory diseases. However, the mechanisms by which viral RNA manages ROS-induced base oxidation remain poorly understood. Here, we reveal that 8-oxo-7,8-dihydroguanine (8-oxoGua) is not merely an incidental byproduct of ROS activity but serves as a strategic adaptation of RSV RNA to maintain genetic fidelity by hijacking the 8-oxoguanine DNA glycosylase 1 (OGG1). Through RNA immunoprecipitation and next-generation sequencing, we discovered that OGG1 binding sites are predominantly found in the RSV antigenome, especially within guanine-rich sequences. Further investigation revealed that viral ribonucleoprotein complexes specifically exploit OGG1. Importantly, inhibiting OGG1's ability to recognize 8-oxoGua significantly decreases RSV progeny production. Our results underscore the viral replication machinery's adaptation to oxidative challenges, suggesting that inhibiting OGG1's reading function could be a novel strategy for antiviral intervention.
Collapse
Affiliation(s)
- Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Ke Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Wenjing Hao
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaoyao Xue
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Xu Zheng
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Ritwika S. Basu
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Azharul Islam
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Yashoda Hosakote
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Bing Tian
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Matthieu G. Gagnon
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Xueqing Ba
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
7
|
You Q, Feng X, Cai Y, Baylin SB, Li H. Human 8-oxoguanine glycosylase OGG1 binds nucleosome at the dsDNA ends and the super-helical locations. Commun Biol 2024; 7:1202. [PMID: 39341999 PMCID: PMC11438860 DOI: 10.1038/s42003-024-06919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
The human glycosylase OGG1 extrudes and excises the oxidized DNA base 8-oxoguanine (8-oxoG) to initiate base excision repair and plays important roles in many pathological conditions such as cancer, inflammation, and neurodegenerative diseases. Previous structural studies have used a truncated protein and short linear DNA, so it has been unclear how full-length OGG1 operates on longer DNA or on nucleosomes. Here we report cryo-EM structures of human OGG1 bound to a 35-bp long DNA containing an 8-oxoG within an unmethylated Cp-8-oxoG dinucleotide as well as to a nucleosome with an 8-oxoG at super-helical location (SHL)-5. The 8-oxoG in the linear DNA is flipped out by OGG1, consistent with previous crystallographic findings with a 15-bp DNA. OGG1 preferentially binds near dsDNA ends at the nucleosomal entry/exit sites. Such preference may underlie the enzyme's function in DNA double-strand break repair. Unexpectedly, we find that OGG1 bends the nucleosomal entry DNA, flips an undamaged guanine, and binds to internal nucleosomal DNA sites such as SHL-5 and SHL+6. We suggest that the DNA base search mechanism by OGG1 may be chromatin context-dependent and that OGG1 may partner with chromatin remodelers to excise 8-oxoG at the nucleosomal internal sites.
Collapse
Affiliation(s)
- Qinglong You
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Xiang Feng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Yi Cai
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stephen B Baylin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
8
|
Alaraby M, Abass D, Farre M, Hernández A, Marcos R. Are bioplastics safe? Hazardous effects of polylactic acid (PLA) nanoplastics in Drosophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170592. [PMID: 38354814 DOI: 10.1016/j.scitotenv.2024.170592] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
The expanded uses of bioplastics require understanding the potential health risks associated with their exposure. To address this issue, Drosophila melanogaster as a versatile terrestrial in vivo model was employed, and polylactic acid nanoplastics (PLA-NPLs), as a proxy for bioplastics, were tested as a material model. Effects were determined in larvae exposed for 4 days to different concentrations (25, 100, and 400 μg/mL) of 463.9 ± 129.4 nm PLA-NPLs. Transmission electron microscopy (TEM) and scanning electron microscope (SEM) approaches permitted the detection of PLA-NPLs in the midgut lumen of Drosophila larvae, interacting with symbiotic bacteria. Enzymatic vacuoles were observed as carriers, collecting PLA-NPLs and enabling the crossing of the peritrophic membrane, finally internalizing into enterocytes. Although no toxic effects were observed in egg-to-adult survival, cell uptake of PLA-NPLs causes cytological disturbances and the formation of large vacuoles. The translocation across the intestinal barrier was demonstrated by their presence in the hemolymph. PLA-NPL exposure triggered intestinal damage, oxidative stress, DNA damage, and inflammation responses, as evaluated via a wide set of marker genes. Collectively, these structural and molecular interferences caused by PLA-NPLs generated high levels of oxidative stress and DNA damage in the hemocytes of Drosophila larvae. The observed effects point out the need for further studies aiming to deepen the health risks of bioplastics before adopting their uses as a safe plastic alternative.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Zoology Department, Faculty of Sciences, Sohag University, 82524 Sohag, Egypt.
| | - Doaa Abass
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Zoology Department, Faculty of Sciences, Sohag University, 82524 Sohag, Egypt
| | - Marinella Farre
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034 Barcelona, Spain
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
9
|
Paller CJ, Tukachinsky H, Maertens A, Decker B, Sampson JR, Cheadle JP, Antonarakis ES. Pan-Cancer Interrogation of MUTYH Variants Reveals Biallelic Inactivation and Defective Base Excision Repair Across a Spectrum of Solid Tumors. JCO Precis Oncol 2024; 8:e2300251. [PMID: 38394468 PMCID: PMC10901435 DOI: 10.1200/po.23.00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 02/25/2024] Open
Abstract
PURPOSE Biallelic germline pathogenic variants of the base excision repair (BER) pathway gene MUTYH predispose to colorectal cancer (CRC) and other cancers. The possible association of heterozygous variants with broader cancer susceptibility remains uncertain. This study investigated the prevalence and consequences of pathogenic MUTYH variants and MUTYH loss of heterozygosity (LOH) in a large pan-cancer analysis. MATERIALS AND METHODS Data from 354,366 solid tumor biopsies that were sequenced as part of routine clinical care were analyzed using a validated algorithm to distinguish germline from somatic MUTYH variants. RESULTS Biallelic germline pathogenic MUTYH variants were identified in 119 tissue biopsies. Most were CRCs and showed increased tumor mutational burden (TMB) and a mutational signature consistent with defective BER (COSMIC Signature SBS18). Germline heterozygous pathogenic variants were identified in 5,991 biopsies and their prevalence was modestly elevated in some cancer types. About 12% of these cancers (738 samples: including adrenal gland cancers, pancreatic islet cell tumors, nonglioma CNS tumors, GI stromal tumors, and thyroid cancers) showed somatic LOH for MUTYH, higher rates of chromosome 1p loss (where MUTYH is located), elevated genomic LOH, and higher COSMIC SBS18 signature scores, consistent with BER deficiency. CONCLUSION This analysis of MUTYH alterations in a large set of solid cancers suggests that in addition to the established role of biallelic pathogenic MUTYH variants in cancer predisposition, a broader range of cancers may possibly arise in MUTYH heterozygotes via a mechanism involving somatic LOH at the MUTYH locus and defective BER. However, the effect is modest and requires confirmation in additional studies before being clinically actionable.
Collapse
Affiliation(s)
- Channing J Paller
- Johns Hopkins University School of Medicine, Oncology, Baltimore, MD
| | | | - Alexandra Maertens
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD
| | | | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jeremy P Cheadle
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Emmanuel S Antonarakis
- University of Minnesota Masonic Cancer Center, Division of Hematology, Oncology and Transplantation, Minneapolis, MN
| |
Collapse
|
10
|
Radak Z, Pan L, Zhou L, Mozaffaritabar S, Gu Y, A Pinho R, Zheng X, Ba X, Boldogh I. Epigenetic and "redoxogenetic" adaptation to physical exercise. Free Radic Biol Med 2024; 210:65-74. [PMID: 37977212 DOI: 10.1016/j.freeradbiomed.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Exercise-induced adaptation is achieved by altering the epigenetic landscape of the entire genome leading to the expression of genes involved in various processes including regulatory, metabolic, adaptive, immune, and myogenic functions. Clinical and experimental data suggest that the methylation pattern/levels of promoter/enhancer is not linearly correlated with gene expression and proteome levels during physical activity implying a level of complexity and interplay with other regulatory modulators. It has been shown that a higher level of physical fitness is associated with a slower DNA methylation-based aging clock. There is strong evidence supporting exercise-induced ROS being a key regulatory mediator through overlapping events, both as signaling entities and through oxidative modifications to various protein mediators and DNA molecules. ROS generated by physical activity shapes epigenome both directly and indirectly, a complexity we are beginning to unravel within the epigenetic arrangement. Oxidative modification of guanine to 8-oxoguanine is a non-genotoxic alteration, does not distort DNA helix and serves as an epigenetic-like mark. The reader and eraser of oxidized guanine is the 8-oxoguanine DNA glycosylase 1, contributing to changes in gene expression. In fact, it can modulate methylation patterns of promoters/enhancers consequently leading to multiple phenotypic changes. Here, we provide evidence and discuss the potential roles of exercise-induced ROS in altering cytosine methylation patterns during muscle adaptation processes.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan.
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Lei Zhou
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Soroosh Mozaffaritabar
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Xu Zheng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| |
Collapse
|
11
|
Saleh EAM, Al-Dolaimy F, Qasim Almajidi Y, Baymakov S, Kader M MA, Ullah MI, Abbas AHR, Khlewee IH, Bisht YS, Alsaalamy AH. Oxidative stress affects the beginning of the growth of cancer cells through a variety of routes. Pathol Res Pract 2023; 249:154664. [PMID: 37573621 DOI: 10.1016/j.prp.2023.154664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/15/2023]
Abstract
Oxidative stress is a physiological condition that occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the cell's antioxidant defense system. ROS are highly reactive molecules that can cause damage to cellular structures such as DNA, proteins, and lipids. the regulation of ROS levels and the antioxidant defense system is crucial for cancer prevention and treatment. Strategies to enhance antioxidant defenses or induce oxidative stress selectively in cancer cells are being developed as potential therapeutic approaches. targeting oxidative stress in cancer treatment is an active area of research with several potential therapeutic approaches being investigated. Developing selective and effective therapies that target oxidative stress in cancer cells while sparing normal cells will be crucial for improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University,College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia.
| | | | | | - Sayfiddin Baymakov
- Department of General surgery and Military-Field surgery, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific affairs, Samarkand State Dental Institute, Samarkand, Uzbekistan.
| | - Mohammed Abdul Kader M
- Department Restorative Dental science, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka, 72388 Aljouf, Saudi Arabia
| | - Ahmed Hussien R Abbas
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ibrahim Hammoud Khlewee
- Department of Prosthodontics, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Yashwant Singh Bisht
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Ali Hashiem Alsaalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
12
|
Pan L, Vlahopoulos S, Tanner L, Bergwik J, Bacsi A, Radak Z, Egesten A, Ba X, Brasier AR, Boldogh I. Substrate-specific binding of 8-oxoguanine DNA glycosylase 1 (OGG1) reprograms mucosal adaptations to chronic airway injury. Front Immunol 2023; 14:1186369. [PMID: 37614238 PMCID: PMC10442650 DOI: 10.3389/fimmu.2023.1186369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Recent advances have uncovered the non-random distribution of 7, 8-dihydro-8-oxoguanine (8-oxoGua) induced by reactive oxygen species, which is believed to have epigenetic effects. Its cognate repair protein, 8-oxoguanine DNA glycosylase 1 (OGG1), reads oxidative substrates and participates in transcriptional initiation. When redox signaling is activated in small airway epithelial cells, the DNA repair function of OGG1 is repurposed to transmit acute inflammatory signals accompanied by cell state transitions and modification of the extracellular matrix. Epithelial-mesenchymal and epithelial-immune interactions act cooperatively to establish a local niche that instructs the mucosal immune landscape. If the transitional cell state governed by OGG1 remains responsive to inflammatory mediators instead of differentiation, the collateral damage provides positive feedback to inflammation, ascribing inflammatory remodeling to one of the drivers in chronic pathologies. In this review, we discuss the substrate-specific read through OGG1 has evolved in regulating the innate immune response, controlling adaptations of the airway to environmental and inflammatory injury, with a focus on the reader function of OGG1 in initiation and progression of epithelial to mesenchymal transitions in chronic pulmonary disease.
Collapse
Affiliation(s)
- Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Spiros Vlahopoulos
- Horemeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Lloyd Tanner
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jesper Bergwik
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary, Debrecen, Hungary
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Arne Egesten
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
13
|
Zhang W, Zhong R, Qu X, Xiang Y, Ji M. Effect of 8-Hydroxyguanine DNA Glycosylase 1 on the Function of Immune Cells. Antioxidants (Basel) 2023; 12:1300. [PMID: 37372030 DOI: 10.3390/antiox12061300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Excess reactive oxygen species (ROS) can cause an imbalance between oxidation and anti-oxidation, leading to the occurrence of oxidative stress in the body. The most common product of ROS-induced base damage is 8-hydroxyguanine (8-oxoG). Failure to promptly remove 8-oxoG often causes mutations during DNA replication. 8-oxoG is cleared from cells by the 8-oxoG DNA glycosylase 1 (OGG1)-mediated oxidative damage base excision repair pathway so as to prevent cells from suffering dysfunction due to oxidative stress. Physiological immune homeostasis and, in particular, immune cell function are vulnerable to oxidative stress. Evidence suggests that inflammation, aging, cancer, and other diseases are related to an imbalance in immune homeostasis caused by oxidative stress. However, the role of the OGG1-mediated oxidative damage repair pathway in the activation and maintenance of immune cell function is unknown. This review summarizes the current understanding of the effect of OGG1 on immune cell function.
Collapse
Affiliation(s)
- Weiran Zhang
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Ranwei Zhong
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Ming Ji
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410078, China
| |
Collapse
|
14
|
Abstract
Oxidative stress is an important and pervasive physical stress encountered by all kingdoms of life, including bacteria. In this review, we briefly describe the nature of oxidative stress, highlight well-characterized protein-based sensors (transcription factors) of reactive oxygen species that serve as standards for molecular sensors in oxidative stress, and describe molecular studies that have explored the potential of direct RNA sensitivity to oxidative stress. Finally, we describe the gaps in knowledge of RNA sensors-particularly regarding the chemical modification of RNA nucleobases. RNA sensors are poised to emerge as an essential layer of understanding and regulating dynamic biological pathways in oxidative stress responses in bacteria and, thus, also represent an important frontier of synthetic biology.
Collapse
Affiliation(s)
- Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Phillip Sweet
- Integrative Life Sciences Program, University of Texas at Austin, Austin, Texas, USA
| | - Aparna Anantharaman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Lydia Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
- Integrative Life Sciences Program, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
15
|
Seki Y, Aczel D, Torma F, Jokai M, Boros A, Suzuki K, Higuchi M, Tanisawa K, Boldogh I, Horvath S, Radak Z. No strong association among epigenetic modifications by DNA methylation, telomere length, and physical fitness in biological aging. Biogerontology 2023; 24:245-255. [PMID: 36592269 PMCID: PMC10006047 DOI: 10.1007/s10522-022-10011-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/15/2022] [Indexed: 01/03/2023]
Abstract
Cellular senescence is greatly accelerated by telomere shortening, and the steps forward in human aging are strongly influenced by environmental and lifestyle factors, whether DNA methylation (DNAm) is affected by exercise training, remains unclear. In the present study, we investigated the relationships between physiological functions, maximal oxygen uptake (VO2max), vertical jump, working memory, telomere length (TL) assessed by RT-PCR, DNA methylation-based estimation of TL (DNAmTL), and DNA methylation-based biomarkers of aging of master rowers (N = 146) and sedentary subjects (N = 95), aged between 37 and 85 years. It was found that the TL inversely correlated with chronological age. We could not detect an association between telomere length and VO2max, vertical jump, and working memory by RT-PCR method, while these physiological test results showed a correlation with DNAmTL. DNAmGrimAge and DNAmPhenoAge acceleration were inversely associated with telomere length assessed by both methods. It appears that there are no strong beneficial effects of exercise or physiological fitness on telomere shortening, however, the degree of DNA methylation is associated with telomere length.
Collapse
Affiliation(s)
- Yasuhiro Seki
- Faculty of Sport Sciences, Waseda University, Tokorozawa, 2-579-15, Japan
| | - Dora Aczel
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest, Hungary
| | - Ferenc Torma
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest, Hungary
| | - Matyas Jokai
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest, Hungary
| | - Anita Boros
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest, Hungary
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa, 2-579-15, Japan
| | - Mitsuru Higuchi
- Faculty of Sport Sciences, Waseda University, Tokorozawa, 2-579-15, Japan
| | - Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, 2-579-15, Japan
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Zsolt Radak
- Faculty of Sport Sciences, Waseda University, Tokorozawa, 2-579-15, Japan.
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest, Hungary.
| |
Collapse
|
16
|
Pan L, Xue Y, Wang K, Zheng X, Boldogh I. Detection of Oxidatively Modified Base Lesion(s) in Defined DNA Sequences by FLARE Quantitative PCR. Methods Mol Biol 2023; 2701:115-134. [PMID: 37574478 DOI: 10.1007/978-1-0716-3373-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Assessment of DNA base and strand damage can be determined using a quantitative PCR assay that is based on the concept that damage blocks the progression of a thermostable polymerase thus resulting in decreased amplification. However, some of the mutagenic DNA base lesions cause little or no distortion in Watson-Crick base pairing. One of the most abundant such lesion is 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo(d)Gua), although it affects the thermodynamic stability of the DNA, duplex 8-oxo(d)Gua does not inhibit DNA synthesis or arrest most of DNA or RNA polymerases during replication and transcription. When unrepaired, it is a pre-mutagenic base as it pairs with adenine in anti-syn conformation. Recent studies considered 8-oxo(d)Gua as an epigenetic-like mark and along with 8-oxoguanine DNA glycosylase1 (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1) has roles in gene expression via nucleating transcription factor's promoter occupancy. Here, we introduce its identification through fragment length analysis with repair enzyme (FLARE)-coupled quantitative (q)-PCR. One of the strengths of the assay is that 8-oxo(d)Gua can be identified within short stretches of nuclear and mitochondrial DNA in ng quantities. Bellow we describe the benefits and limits of using FLARE qPCR to assess DNA damage in mammalian cells and provide a detailed protocol of the assay.
Collapse
Affiliation(s)
- Lang Pan
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Yaoyao Xue
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ke Wang
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Xu Zheng
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Istvan Boldogh
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
17
|
Li C, Xue Y, Ba X, Wang R. The Role of 8-oxoG Repair Systems in Tumorigenesis and Cancer Therapy. Cells 2022; 11:cells11233798. [PMID: 36497058 PMCID: PMC9735852 DOI: 10.3390/cells11233798] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Tumorigenesis is highly correlated with the accumulation of mutations. The abundant and extensive DNA oxidation product, 8-Oxoguanine (8-oxoG), can cause mutations if it is not repaired by 8-oxoG repair systems. Therefore, the accumulation of 8-oxoG plays an essential role in tumorigenesis. To avoid the accumulation of 8-oxoG in the genome, base excision repair (BER), initiated by 8-oxoguanine DNA glycosylase1 (OGG1), is responsible for the removal of genomic 8-oxoG. It has been proven that 8-oxoG levels are significantly elevated in cancer cells compared with cells of normal tissues, and the induction of DNA damage by some antitumor drugs involves direct or indirect interference with BER, especially through inducing the production and accumulation of reactive oxygen species (ROS), which can lead to tumor cell death. In addition, the absence of the core components of BER can result in embryonic or early post-natal lethality in mice. Therefore, targeting 8-oxoG repair systems with inhibitors is a promising avenue for tumor therapy. In this study, we summarize the impact of 8-oxoG accumulation on tumorigenesis and the current status of cancer therapy approaches exploiting 8-oxoG repair enzyme targeting, as well as possible synergistic lethality strategies involving exogenous ROS-inducing agents.
Collapse
Affiliation(s)
- Chunshuang Li
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Yaoyao Xue
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
- Correspondence: (X.B.); (R.W.)
| | - Ruoxi Wang
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (X.B.); (R.W.)
| |
Collapse
|
18
|
Lodato MA, Ziegenfuss JS. The two faces of DNA oxidation in genomic and functional mosaicism during aging in human neurons. FRONTIERS IN AGING 2022; 3:991460. [PMID: 36313183 PMCID: PMC9596766 DOI: 10.3389/fragi.2022.991460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
Maintaining genomic integrity in post-mitotic neurons in the human brain is paramount because these cells must survive for an individual's entire lifespan. Due to life-long synaptic plasticity and electrochemical transmission between cells, the brain engages in an exceptionally high level of mitochondrial metabolic activity. This activity results in the generation of reactive oxygen species with 8-oxo-7,8-dihydroguanine (8-oxoG) being one of the most prevalent oxidation products in the cell. 8-oxoG is important for the maintenance and transfer of genetic information into proper gene expression: a low basal level of 8-oxoG plays an important role in epigenetic modulation of neurodevelopment and synaptic plasticity, while a dysregulated increase in 8-oxoG damages the genome leading to somatic mutations and transcription errors. The slow yet persistent accumulation of DNA damage in the background of increasing cellular 8-oxoG is associated with normal aging as well as neurological disorders such as Alzheimer's disease and Parkinson's disease. This review explores the current understanding of how 8-oxoG plays a role in brain function and genomic instability, highlighting new methods being used to advance pathological hallmarks that differentiate normal healthy aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Michael A. Lodato
- University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | |
Collapse
|
19
|
Han R, Jiang J, Fang J, Contreras LM. PNPase and RhlB Interact and Reduce the Cellular Availability of Oxidized RNA in Deinococcus radiodurans. Microbiol Spectr 2022; 10:e0214022. [PMID: 35856907 PMCID: PMC9430589 DOI: 10.1128/spectrum.02140-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023] Open
Abstract
8-Oxo-7,8-dihydroguanine (8-oxoG) is a major RNA modification caused by oxidative stresses and has been implicated in carcinogenesis, neurodegeneration, and aging. Several RNA-binding proteins have been shown to have a binding preference for 8-oxoG-modified RNA in eukaryotes and protect cells from oxidative stress. To date, polynucleotide phosphorylase (PNPase) is one of the most well-characterized proteins in bacteria that recognize 8-oxoG-modified RNA, but how PNPase cooperates with other proteins to process oxidized RNA is still unclear. Here, we use RNA affinity chromatography and mass spectrometry to search for proteins that preferably bind 8-oxoG-modified RNA in Deinococcus radiodurans, an extremophilic bacterium with extraordinary resistance to oxidative stresses. We identified four proteins that preferably bind to oxidized RNA: PNPase (DR_2063), DEAD box RNA helicase (DR_0335/RhlB), ribosomal protein S1 (DR_1983/RpsA), and transcriptional termination factor (DR_1338/Rho). Among these proteins, PNPase and RhlB exhibit high-affinity binding to 8-oxoG-modified RNA in a dose-independent manner. Deletions of PNPase and RhlB caused increased sensitivity of D. radiodurans to oxidative stress. We further showed that PNPase and RhlB specifically reduce the cellular availability of 8-oxoG-modified RNA but have no effect on oxidized DNA. Importantly, PNPase directly interacts with RhlB in D. radiodurans; however, no additional phenotypic effect was observed for the double deletion of pnp and rhlB compared to the single deletions. Overall, our findings suggest the roles of PNPase and RhlB in targeting 8-oxoG-modified RNAs and thereby constitute an important component of D. radiodurans resistance to oxidative stress. IMPORTANCE Oxidative RNA damage can be caused by oxidative stress, such as hydrogen peroxide, ionizing radiation, and antibiotic treatment. 8-oxo-7,8-dihydroguanine (8-oxoG), a major type of oxidized RNA, is highly mutagenic and participates in a variety of disease occurrences and development. Although several proteins have been identified to recognize 8-oxoG-modified RNA, the knowledge of how RNA oxidative damage is controlled largely remains unclear, especially in nonmodel organisms. In this study, we identified four RNA binding proteins that show higher binding affinity to 8-oxoG-modified RNA compared to unmodified RNA in the extremophilic bacterium Deinococcus radiodurans, which can endure high levels of oxidative stress. Two of the proteins, polynucleotide phosphorylase (PNPase) and DEAD-box RNA helicase (RhlB), interact with each other and reduce the cellular availability of 8-oxoG-modified RNA under oxidative stress. As such, this work contributes to our understanding of how RNA oxidation is influenced by RNA binding proteins in bacteria.
Collapse
Affiliation(s)
- Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Jessie Jiang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Jaden Fang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
20
|
Small molecule-mediated allosteric activation of the base excision repair enzyme 8-oxoguanine DNA glycosylase and its impact on mitochondrial function. Sci Rep 2022; 12:14685. [PMID: 36038587 PMCID: PMC9424235 DOI: 10.1038/s41598-022-18878-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/22/2022] [Indexed: 02/07/2023] Open
Abstract
8-Oxoguanine DNA glycosylase (OGG1) initiates base excision repair of the oxidative DNA damage product 8-oxoguanine. OGG1 is bifunctional; catalyzing glycosyl bond cleavage, followed by phosphodiester backbone incision via a β-elimination apurinic lyase reaction. The product from the glycosylase reaction, 8-oxoguanine, and its analogues, 8-bromoguanine and 8-aminoguanine, trigger the rate-limiting AP lyase reaction. The precise activation mechanism remains unclear. The product-assisted catalysis hypothesis suggests that 8-oxoguanine and analogues bind at the product recognition (PR) pocket to enhance strand cleavage as catalytic bases. Alternatively, they may allosterically activate OGG1 by binding outside of the PR pocket to induce an active-site conformational change to accelerate apurinic lyase. Herein, steady-state kinetic analyses demonstrated random binding of substrate and activator. 9-Deazaguanine, which can't function as a substrate-competent base, activated OGG1, albeit with a lower Emax value than 8-bromoguanine and 8-aminoguanine. Random compound screening identified small molecules with Emax values similar to 8-bromoguanine. Paraquat-induced mitochondrial dysfunction was attenuated by several small molecule OGG1 activators; benefits included enhanced mitochondrial membrane and DNA integrity, less cytochrome c translocation, ATP preservation, and mitochondrial membrane dynamics. Our results support an allosteric mechanism of OGG1 and not product-assisted catalysis. OGG1 small molecule activators may improve mitochondrial function in oxidative stress-related diseases.
Collapse
|
21
|
Wu J, Zhang M, Song L, Tan Y, Taniguchi Y, Hipolito CJ, Zhang Y, Yin Y. Implications of N7-hydrogen and C8-keto on the base pairing, mutagenic potential and repair of 8-oxo-2'-deoxy-adenosine: Investigation by nucleotide analogues. Bioorg Chem 2022; 127:106029. [PMID: 35858520 DOI: 10.1016/j.bioorg.2022.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/20/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
Oxidative lesions, such as 8-oxo-dG and 8-oxo-dA, are continuously generated from exposure to reactive oxygen species. While 8-oxo-dG has been extensively studied, 8-oxo-dA has not received as much attention until recently. Herein, we report the synthesis of duplex DNAs incorporating dA, 8-oxo-dA, 7-deaza-dA, 8-Br-dA, and 8-Br-7-deaza-dA, which have different substitutions at 7- and 8-position, for the investigation into the implications of N7-hydrogen and C8-keto on the base pairing preference, mutagenic potential and repair of 8-oxo-dA. Base pairing study suggested that the polar N7-hydrogen and C8-keto of 8-oxo-dA, rather than the syn-preference, might be essential for 8-oxo-dA to form a stable base pair with dG. Insertion and extension studies using KF-exo- and human DNA polymerase β indicated that the efficient dGTP insertion opposite 8-oxo-dA and extension past 8-oxo-dA:dG are contingent upon not only the stable base pair with dG, but also the flexibility of the active site in polymerase. The N7-hydrogen in 8-oxo-dA or C7-hydrogen in 7-deaza-dA and 8-Br-7-deaza-dA was suggested to be important for the recognition by hOGG1, although the excision efficiencies of 7-deaza-dA and 8-Br-7-deaza-dA were much lower than 8-oxo-dA. This study provides an insight into the structure-function relationship of 8-oxo-dA by nucleotide analogues.
Collapse
Affiliation(s)
- Junjie Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Mengmeng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lulu Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yahong Tan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Yizhen Yin
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
22
|
Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res 2022; 71:817-831. [PMID: 35748903 PMCID: PMC9307547 DOI: 10.1007/s00011-022-01598-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/08/2023] Open
Abstract
Background Excessive exposure of the skin to UV radiation (UVR) triggers a remodeling of the immune system and leads to the photoaging state which is reminiscent of chronological aging. Over 30 years ago, it was observed that UVR induced an immunosuppressive state which inhibited skin contact hypersensitivity. Methods Original and review articles encompassing inflammation and immunosuppression in the photoaging and chronological aging processes were examined from major databases including PubMed, Scopus, and Google Scholar. Results Currently it is known that UVR treatment can trigger a cellular senescence and inflammatory state in the skin. Chronic low-grade inflammation stimulates a counteracting immunosuppression involving an expansion of immunosuppressive cells, e.g., regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and regulatory dendritic cells (DCreg). This increased immunosuppressive activity not only suppresses the function of effector immune cells, a state called immunosenescence, but it also induces bystander degeneration of neighboring cells. Interestingly, the chronological aging process also involves an accumulation of pro-inflammatory senescent cells and signs of chronic low-grade inflammation, called inflammaging. There is also clear evidence that inflammaging is associated with an increase in anti-inflammatory and immunosuppressive activities which promote immunosenescence. Conclusion It seems that photoaging and normal aging evoke similar processes driven by the remodeling of the immune system. However, it is likely that there are different molecular mechanisms inducing inflammation and immunosuppression in the accelerated photoaging and the chronological aging processes.
Collapse
|
23
|
Allred DR. Integration of DNA Repair, Antigenic Variation, Cytoadhesion, and Chance in Babesia Survival: A Perspective. Front Cell Infect Microbiol 2022; 12:869696. [PMID: 35493746 PMCID: PMC9047050 DOI: 10.3389/fcimb.2022.869696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Apicomplexan parasites live in hostile environments in which they are challenged chemically and their hosts attempt in many ways to kill them. In response, the parasites have evolved multiple mechanisms that take advantage of these challenges to enhance their survival. Perhaps the most impressive example is the evolutionary co-option of DNA repair mechanisms by the parasites as a means to rapidly manipulate the structure, antigenicity, and expression of the products of specific multigene families. The purpose of variant proteins that mediate cytoadhesion has long been thought to be primarily the avoidance of splenic clearance. Based upon known biology, I present an alternative perspective in which it is survival of the oxidative environment within which Babesia spp. parasites live that has driven integration of DNA repair, antigenic variation, and cytoadhesion, and speculate on how genome organization affects that integration. This perspective has ramifications for the development of parasite control strategies.
Collapse
Affiliation(s)
- David R. Allred
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- *Correspondence: David R. Allred,
| |
Collapse
|
24
|
Yang K, Cao F, Xue Y, Tao L, Zhu Y. Three Classes of Antioxidant Defense Systems and the Development of Postmenopausal Osteoporosis. Front Physiol 2022; 13:840293. [PMID: 35309045 PMCID: PMC8927967 DOI: 10.3389/fphys.2022.840293] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 01/04/2023] Open
Abstract
Osteoporosis is a common bone imbalance disease that threatens the health of postmenopausal women. Estrogen deficiency accelerates the aging of women. Oxidative stress damage is regarded as the main pathogenesis of postmenopausal osteoporosis. The accumulation of reactive oxygen species in the bone microenvironment plays a role in osteoblast and osteoclast apoptosis. Improving the oxidative state is essential for the prevention and treatment of postmenopausal osteoporosis. There are three classes of antioxidant defense systems in the body to eliminate free radicals and peroxides including antioxidant substances, antioxidant enzymes, and repair enzymes. In our review, we demonstrated the mechanism of antioxidants and their effect on bone metabolism in detail. We concluded that glutathione/oxidized glutathione (GSH/GSSG) conversion involved the PI3K/Akt-Nrf2/HO-1 signaling pathway and that the antioxidant enzyme-mediated mitochondrial apoptosis pathway of osteoblasts was necessary for the development of postmenopausal osteoporosis. Since the current therapeutic effects of targeting bone cells are not significant, improving the systemic peroxidation state and then regulating bone homeostasis will be a new method for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Fangming Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yuchuan Xue
- The First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lin Tao,
| | - Yue Zhu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- Yue Zhu,
| |
Collapse
|
25
|
Seixas AF, Quendera AP, Sousa JP, Silva AFQ, Arraiano CM, Andrade JM. Bacterial Response to Oxidative Stress and RNA Oxidation. Front Genet 2022; 12:821535. [PMID: 35082839 PMCID: PMC8784731 DOI: 10.3389/fgene.2021.821535] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/21/2021] [Indexed: 01/03/2023] Open
Abstract
Bacteria have to cope with oxidative stress caused by distinct Reactive Oxygen Species (ROS), derived not only from normal aerobic metabolism but also from oxidants present in their environments. The major ROS include superoxide O2−, hydrogen peroxide H2O2 and radical hydroxide HO•. To protect cells under oxidative stress, bacteria induce the expression of several genes, namely the SoxRS, OxyR and PerR regulons. Cells are able to tolerate a certain number of free radicals, but high levels of ROS result in the oxidation of several biomolecules. Strikingly, RNA is particularly susceptible to this common chemical damage. Oxidation of RNA causes the formation of strand breaks, elimination of bases or insertion of mutagenic lesions in the nucleobases. The most common modification is 8-hydroxyguanosine (8-oxo-G), an oxidized form of guanosine. The structure and function of virtually all RNA species (mRNA, rRNA, tRNA, sRNA) can be affected by RNA oxidation, leading to translational defects with harmful consequences for cell survival. However, bacteria have evolved RNA quality control pathways to eliminate oxidized RNA, involving RNA-binding proteins like the members of the MutT/Nudix family and the ribonuclease PNPase. Here we summarize the current knowledge on the bacterial stress response to RNA oxidation, namely we present the different ROS responsible for this chemical damage and describe the main strategies employed by bacteria to fight oxidative stress and control RNA damage.
Collapse
Affiliation(s)
- André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João P Sousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alda F Q Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
26
|
Taniguchi Y. Development of Artificial Nucleoside Analogues for the Recognition and Detection of Damaged Nucleoside in DNA. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Zhang Y, Han Y, Zou X, Xu Q, Ma F, Zhang CY. Construction of a damage site-specific fluorescent biosensor for single-molecule detection of DNA damage. Talanta 2021; 235:122809. [PMID: 34517666 DOI: 10.1016/j.talanta.2021.122809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 02/06/2023]
Abstract
The 8-oxoguanine (8-oxoG) represents the most common DNA damage type, and it has been regarded as the oxidative stress biomarker, but the reported 8-oxoguanine assays are limited by poor specificity and low sensitivity. Herein, we demonstrate the construction of damage site-specific fluorescent biosensor for 8-oxoG assay by integrating single-molecule detection with hyperbranched signal amplification. In this assay, the 8-oxoG damages in DNA can generate free 3' OH with the assistance of formamidopyrimidine DNA glycosylase (Fpg) and polynucleotide kinase (PNK), which subsequently triggers the incorporation of abundant Cy5-labeled dUTPs via terminal deoxynucleotidyl transferase (TDT)-mediated site-specific hyperbranched nucleic acid amplification. After digestion of amplification products with nuclease treatment, abundant mononucleotide Cy5-dUTPs are produced, which will be easily monitored via single-molecule imaging and detection. The introduction of hyperbranched nucleic acid amplification and single-molecule detection can greatly improve the sensitivity to achieve a detection limit of 7.62 × 10-18 M. This biosensor is highly specific with the capability of discriminating 0.001% 8-oxoG target from the DNA mixture. Moreover, it can be applied for quantitative detection of 8-oxoG damage in genomic DNAs with a detection limit of 0.0017 ng, and even accurately quantifies the absolute number (7025 - 8506) of 8-oxoG damage base in single HeLa cell treated with 150 μM H2O2. Importantly, this biosensor can measure the 8-oxoG damage level in different cancer cell lines, facilitating the oxidative damage-associated biomedical researches and clinical diagnosis.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Yun Han
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
28
|
Michaeloudes C, Abubakar-Waziri H, Lakhdar R, Raby K, Dixey P, Adcock IM, Mumby S, Bhavsar PK, Chung KF. Molecular mechanisms of oxidative stress in asthma. Mol Aspects Med 2021; 85:101026. [PMID: 34625291 DOI: 10.1016/j.mam.2021.101026] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
The lungs are exposed to reactive oxygen species oxygen (ROS) produced as a result of inhalation of oxygen, as well as smoke and other air pollutants. Cell metabolism and the NADPH oxidases (Nox) generate low levels of intracellular ROS that act as signal transduction mediators by inducing oxidative modifications of histones, enzymes and transcription factors. Redox signalling is also regulated by localised production and sensing of ROS in mitochondria, the endoplasmic reticulum (ER) and inside the nucleus. Intracellular ROS are maintained at low levels through the action of a battery of enzymatic and non-enzymatic antioxidants. Asthma is a heterogeneous airway inflammatory disease with different immune endotypes; these include atopic or non-atopic Th2 type immune response associated with eosinophilia, or a non-Th2 response associated with neutrophilia. Airway remodelling and hyperresponsiveness accompany the inflammatory response in asthma. Over-production of ROS resulting from infiltrating immune cells, particularly eosinophils and neutrophils, and a concomitant impairment of antioxidant responses lead to development of oxidative stress in asthma. Oxidative stress is augmented in severe asthma and during exacerbations, as well as by air pollution and obesity, and causes oxidative damage of tissues promoting airway inflammation and hyperresponsiveness. Furthermore, deregulated Nox activity, mitochondrial dysfunction, ER stress and/or oxidative DNA damage, resulting from exposure to irritants, inflammatory mediators or obesity, may lead to redox-dependent changes in cell signalling. ROS play a central role in airway epithelium-mediated sensing, development of innate and adaptive immune responses, and airway remodelling and hyperresponsiveness. Nonetheless, antioxidant compounds have proven clinically ineffective as therapeutic agents for asthma, partly due to issues with stability and in vivo metabolism of these compounds. The compartmentalised nature of ROS production and sensing, and the role of ROS in homeostatic responses and in the action of corticosteroids and β2-adrenergic receptor agonists, adds another layer of complexity to antioxidant therapy development. Nox inhibitors and mitochondrial-targeted antioxidants are in clinical development for a number of diseases but they have not yet been investigated in asthma. A better understanding of the complex role of ROS in the pathogenesis of asthma will highlight new opportunities for more targeted and effective redox therapies.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom.
| | - Hisham Abubakar-Waziri
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Ramzi Lakhdar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Katie Raby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Piers Dixey
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Pankaj K Bhavsar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom; Royal Brompton & Harefield NHS Trust, London, UK
| |
Collapse
|
29
|
Biomolecular Modifications Linked to Oxidative Stress in Amyotrophic Lateral Sclerosis: Determining Promising Biomarkers Related to Oxidative Stress. Processes (Basel) 2021. [DOI: 10.3390/pr9091667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reduction–oxidation reactions are essential to cellular homeostasis. Oxidative stress transcends physiological antioxidative system damage to biomolecules, including nucleic acids and proteins, and modifies their structures. Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease. The cells present in the central nervous system, including motor neurons, are vulnerable to oxidative stress. Neurodegeneration has been demonstrated to be caused by oxidative biomolecular modifications. Oxidative stress has been suggested to be involved in the pathogenesis of ALS. Recent progress in research on the underlying mechanisms of oxidative stress in ALS has led to the development of disease-modifying therapies, including edaravone. However, the clinical effects of edaravone remain limited, and ALS is a heretofore incurable disease. The reason for the lack of reliable biomarkers and the precise underlying mechanisms between oxidative stress and ALS remain unclear. As extracellular proteins and RNAs present in body fluids and represent intracellular pathological neurodegenerative processes, extracellular proteins and/or RNAs are predicted to promise diagnosis, prediction of disease course, and therapeutic biomarkers for ALS. Therefore, we aimed to elucidate the underlying mechanisms between oxidative stress and ALS, and promising biomarkers indicating the mechanism to determine whether therapy targeting oxidative stress can be fundamental for ALS.
Collapse
|
30
|
Mishra S, Kota S, Chaudhary R, Misra HS. Guanine quadruplexes and their roles in molecular processes. Crit Rev Biochem Mol Biol 2021; 56:482-499. [PMID: 34162300 DOI: 10.1080/10409238.2021.1926417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of guanine quadruplexes (G4) in fundamental biological processes like DNA replication, transcription, translation and telomere maintenance is recognized. G4 structure dynamics is regulated by G4 structure binding proteins and is thought to be crucial for the maintenance of genome integrity in both prokaryotic and eukaryotic cells. Growing research over the last decade has expanded the existing knowledge of the functional diversity of G4 (DNA and RNA) structures across the working models. The control of G4 structure dynamics using G4 binding drugs has been suggested as the putative targets in the control of cancer and bacterial pathogenesis. This review has brought forth the collections of recent information that indicate G4 (mostly G4 DNA) roles in microbial pathogenesis, DNA damaging stress response in bacteria and mammalian cells. Studies in mitochondrial gene function regulation by G4s have also been underscored. Finally, the interdependence of G4s and epigenetic modifications and their speculated medical implications through G4 interacting proteins has been discussed.
Collapse
Affiliation(s)
- Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - H S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| |
Collapse
|
31
|
Pillai VB, Samant S, Hund S, Gupta M, Gupta MP. The nuclear sirtuin SIRT6 protects the heart from developing aging-associated myocyte senescence and cardiac hypertrophy. Aging (Albany NY) 2021; 13:12334-12358. [PMID: 33934090 PMCID: PMC8148452 DOI: 10.18632/aging.203027] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022]
Abstract
Sirtuins have been shown to regulate the aging process. We have previously demonstrated that Sirt6 blocks the pressure overload-induced cardiac hypertrophy in mice. Here, we show that Sirt6 can also mitigate aging-induced cardiomyocyte senescence and cardiac hypertrophy. We found that aging is associated with altered Sirt6 activity along with development of cardiac hypertrophy and fibrosis. Compared to young mice (4-months), the hearts of aged mice (24-months) showed increased levels of mitochondrial DNA damage, shortened telomere length, and increased accumulation of 8-oxo-dG adducts, which are hallmarks of aging. The aged hearts also showed reduced levels of NAD+ and altered levels of mitochondrial fusion-fission proteins. Similar characteristics were observed in the hearts of Sirt6 deficient mice. Additionally, we found that doxorubicin (Dox) induced cardiomyocyte senescence, as measured by expression of p16INK4a, p53, and β-galactosidase, was associated with loss of Sirt6. However, Sirt6 overexpression protected cardiomyocytes from developing Dox-induced senescence. Further, compared to wild-type mice, the hearts of Sirt6.Tg mice showed reduced expression of aging markers, and the development of aging-associated cardiac hypertrophy and fibrosis. Our data suggest that Sirt6 is a critical anti-aging molecule that regulates various cellular processes associated with aging and protects the heart from developing aging-induced cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Vinodkumar B Pillai
- Department of Surgery, Basic Science Division, The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Sadhana Samant
- Department of Surgery, Basic Science Division, The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Samantha Hund
- Department of Surgery, Basic Science Division, The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Madhu Gupta
- Department of Surgery, Basic Science Division, The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Mahesh P Gupta
- Department of Surgery, Basic Science Division, The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
32
|
Sapio RT, Burns CJ, Pestov DG. Effects of Hydrogen Peroxide Stress on the Nucleolar Redox Environment and Pre-rRNA Maturation. Front Mol Biosci 2021; 8:678488. [PMID: 33981726 PMCID: PMC8107432 DOI: 10.3389/fmolb.2021.678488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Identifying biologically relevant molecular targets of oxidative stress may provide new insights into disease mechanisms and accelerate development of novel biomarkers. Ribosome biogenesis is a fundamental prerequisite for cellular protein synthesis, but how oxidative stress affects ribosome biogenesis has not been clearly established. To monitor and control the redox environment of ribosome biogenesis, we targeted a redox-sensitive roGFP reporter and catalase, a highly efficient H2O2 scavenger, to the nucleolus, the primary site for transcription and processing of rRNA in eukaryotic cells. Imaging of mouse 3T3 cells exposed to non-cytotoxic H2O2 concentrations revealed increased oxidation of the nucleolar environment accompanied by a detectable increase in the oxidative damage marker 8-oxo-G in nucleolar RNA. Analysis of pre-rRNA processing showed a complex pattern of alterations in pre-rRNA maturation in the presence of H2O2, including inhibition of the transcription and processing of the primary 47S transcript, accumulation of 18S precursors, and inefficient 3'-end processing of 5.8S rRNA. This work introduces new tools for studies of the redox biology of the mammalian nucleolus and identifies pre-rRNA maturation steps sensitive to H2O2 stress.
Collapse
Affiliation(s)
- Russell T Sapio
- Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States.,Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Chelsea J Burns
- Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| |
Collapse
|
33
|
Gonzalez-Rivera JC, Sherman MW, Wang DS, Chuvalo-Abraham JCL, Hildebrandt Ruiz L, Contreras LM. RNA oxidation in chromatin modification and DNA-damage response following exposure to formaldehyde. Sci Rep 2020; 10:16545. [PMID: 33024153 PMCID: PMC7538935 DOI: 10.1038/s41598-020-73376-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/11/2020] [Indexed: 01/18/2023] Open
Abstract
Formaldehyde is an environmental and occupational chemical carcinogen implicated in the damage of proteins and nucleic acids. However, whether formaldehyde provokes modifications of RNAs such as 8-oxo-7,8-dihydroguanine (8-oxoG) and the role that these modifications play on conferring long-term adverse health effects remains unexplored. Here, we profile 8-oxoG modifications using RNA-immunoprecipitation and RNA sequencing (8-oxoG RIP-seq) to identify 343 RNA transcripts heavily enriched in oxidations in human bronchial epithelial BEAS-2B cell cultures exposed to 1 ppm formaldehyde for 2 h. RNA oxidation altered expression of many transcripts involved in chromatin modification and p53-mediated DNA-damage responses, two pathways that play key roles in sustaining genome integrity and typically deregulated in tumorigenesis. Given that these observations were identified in normal cells exhibiting minimal cell stress and death phenotypes (for example, lack of nuclear shrinkage, F-actin alterations or increased LDH activity); we hypothesize that oxidative modification of specific RNA transcripts following formaldehyde exposure denotes an early process occurring in carcinogenesis analogous to the oxidative events surfacing at early stages of neurodegenerative diseases. As such, we provide initial investigations of RNA oxidation as a potentially novel mechanism underlying formaldehyde-induced tumorigenesis.
Collapse
Affiliation(s)
- Juan C Gonzalez-Rivera
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78714, USA
| | - Mark W Sherman
- Department of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78714, USA
| | - Dongyu S Wang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78714, USA
| | | | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78714, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78714, USA.
- Department of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78714, USA.
| |
Collapse
|
34
|
Charazac A, Fayyad N, Beal D, Bourgoin-Voillard S, Seve M, Sauvaigo S, Lamartine J, Soularue P, Moratille S, Martin MT, Ravanat JL, Douki T, Rachidi W. Impairment of Base Excision Repair in Dermal Fibroblasts Isolated From Nevoid Basal Cell Carcinoma Patients. Front Oncol 2020; 10:1551. [PMID: 32850458 PMCID: PMC7427476 DOI: 10.3389/fonc.2020.01551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/20/2020] [Indexed: 12/04/2022] Open
Abstract
The nevoid basal cell carcinoma syndrome (NBCCS), also called Gorlin syndrome is an autosomal dominant disorder whose incidence is estimated at about 1 per 55,600–256,000 individuals. It is characterized by several developmental abnormalities and an increased predisposition to the development of basal cell carcinomas (BCCs). Cutaneous fibroblasts from Gorlin patients have been shown to exhibit an increased sensitivity to ionizing radiations. Mutations in the tumor suppressor gene PTCH1, which is part of the Sonic Hedgehog (SHH) signaling pathway, are responsible for these clinical manifestations. As several genetic mutations in the DNA repair genes are responsible of photo or radiosensitivity and high predisposition to cancers, we hypothesized that these effects in Gorlin syndrome might be due to a defect in the DNA damage response (DDR) and/or the DNA repair capacities. Therefore, the objective of this work was to investigate the sensitivity of skin fibroblasts from NBCCS patients to different DNA damaging agents and to determine the ability of these agents to modulate the DNA repair capacities. Gorlin fibroblasts showed high radiosensitivity and also less resistance to oxidative stress-inducing agents when compared to control fibroblasts obtained from healthy individuals. Gorlin fibroblasts harboring PTCH1 mutations were more sensitive to the exposure to ionizing radiation and to UVA. However, no difference in cell viability was shown after exposure to UVB or bleomycin. As BER is responsible for the repair of oxidative DNA damage, we decided to assess the BER pathway efficacy in Gorlin fibroblasts. Interestingly, a concomitant decrease of both BER gene expression and BER protein activity was observed in Gorlin fibroblasts when compared to control. Our results suggest that low levels of DNA repair within Gorlin cells may lead to an accumulation of oxidative DNA damage that could participate and partly explain the radiosensitivity and the BCC-prone phenotype in Gorlin syndrome.
Collapse
Affiliation(s)
- Aurélie Charazac
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| | - Nour Fayyad
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| | - David Beal
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| | - Sandrine Bourgoin-Voillard
- LBFA and BEeSy, PROMETHEE Proteomic Platform, Université Grenoble Alpes, Grenoble, France.,Inserm, U1055, PROMETHEE Proteomic Platform, Saint-Martin-d'Heres, France.,CHU Grenoble Alpes, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform, La Tronche, France
| | - Michel Seve
- LBFA and BEeSy, PROMETHEE Proteomic Platform, Université Grenoble Alpes, Grenoble, France.,Inserm, U1055, PROMETHEE Proteomic Platform, Saint-Martin-d'Heres, France.,CHU Grenoble Alpes, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform, La Tronche, France
| | | | - Jérôme Lamartine
- CNRS UMR 5305, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Lyon, France
| | - Pascal Soularue
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Université Paris-Saclay, Evry, France
| | - Sandra Moratille
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Université Paris-Saclay, Evry, France
| | - Michèle T Martin
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Université Paris-Saclay, Evry, France
| | - Jean-Luc Ravanat
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| | - Thierry Douki
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| | - Walid Rachidi
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| |
Collapse
|
35
|
Curia MC, Catalano T, Aceto GM. MUTYH: Not just polyposis. World J Clin Oncol 2020; 11:428-449. [PMID: 32821650 PMCID: PMC7407923 DOI: 10.5306/wjco.v11.i7.428] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
MUTYH is a base excision repair enzyme, it plays a crucial role in the correction of DNA errors from guanine oxidation and may be considered a cell protective factor. In humans it is an adenine DNA glycosylase that removes adenine misincorporated in 7,8-dihydro-8-oxoguanine (8-oxoG) pairs, inducing G:C to T:A transversions. MUTYH functionally cooperates with OGG1 that eliminates 8-oxodG derived from excessive reactive oxygen species production. MUTYH mutations have been linked to MUTYH associated polyposis syndrome (MAP), an autosomal recessive disorder characterized by multiple colorectal adenomas. MAP patients show a greatly increased lifetime risk for gastrointestinal cancers. The cancer risk in mono-allelic carriers associated with one MUTYH mutant allele is controversial and it remains to be clarified whether the altered functions of this protein may have a pathophysiological involvement in other diseases besides familial gastrointestinal diseases. This review evaluates the role of MUTYH, focusing on current studies of human neoplastic and non-neoplastic diseases different to colon polyposis and colorectal cancer. This will provide novel insights into the understanding of the molecular basis underlying MUTYH-related pathogenesis. Furthermore, we describe the association between MUTYH single nucleotide polymorphisms (SNPs) and different cancer and non-cancer diseases. We address the utility to increase our knowledge regarding MUTYH in the light of recent advances in the literature with the aim of a better understanding of the potential for identifying new therapeutic targets. Considering the multiple functions and interactions of MUTYH protein, its involvement in pathologies based on oxidative stress damage could be hypothesized. Although the development of extraintestinal cancer in MUTYH heterozygotes is not completely defined, the risk for malignancies of the duodenum, ovary, and bladder is also increased as well as the onset of benign and malignant endocrine tumors. The presence of MUTYH pathogenic variants is an independent predictor of poor prognosis in sporadic gastric cancer and in salivary gland secretory carcinoma, while its inhibition has been shown to reduce the survival of pancreatic ductal adenocarcinoma cells. Furthermore, some MUTYH SNPs have been associated with lung, hepatocellular and cervical cancer risk. An additional role of MUTYH seems to contribute to the prevention of numerous other disorders with an inflammatory/degenerative basis, including neurological and ocular diseases. Finally, it is interesting to note that MUTYH could be a new therapeutic target and future studies will shed light on its specific functions in the prevention of diseases and in the improvement of the chemo-sensitivity of cancer cells.
Collapse
Affiliation(s)
- Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Via Consolare Valeria 98125, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| |
Collapse
|
36
|
Xie X, Chen Y, Liu J, Zhang W, Zhang X, Zha L, Liu W, Ling Y, Li S, Tang S. High glucose induced endothelial cell reactive oxygen species via OGG1/PKC/NADPH oxidase pathway. Life Sci 2020; 256:117886. [PMID: 32497631 DOI: 10.1016/j.lfs.2020.117886] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 01/23/2023]
Abstract
AIMS Reactive oxygen species (ROS) caused by high glucose (HG) is involved in a lot of diseases including diabetes. However, the underlying mechanism of ROS induction by HG remains unclear. Emerging evidence has shown the 8-oxoguanine glycosylase (OGG1) is the main DNA glycosylase responsible for atherosclerosis, obesity, hepatic steatosis, and insulin resistance, and so on. Our aim was to explore the role of OGG1 on HG-mediated endothelial ROS. MAIN METHODS Human umbilical vein endothelial cells (HUVECs) were exposed to HG (30 mM) for different time periods. HG predominantly inhibited OGG1 expression in a time-dependent manner measured by western blotting, qPCR and immunofluorescence. Additionally, HUVECs were cultured with a fluorescent probe, DCFH and DHE, after being subjected to HG. Cell chemiluminescence and flow cytometry results revealed that HG caused endothelial ROS activation. KEY FINDINGS High glucose remarkably decreased endothelial OGG1 expression. The overexpression of OGG1 significantly reversed HG-mediated PKC and NADPH oxidase activities and ROS levels. Moreover, manipulated expression of PKC significantly contacted the role of OGG1 on NADPH oxidase activation. SIGNIFICANCE These results suggest that OGG1 downregulation promoted HG-induced endothelial ROS production and might be a potential clinical treatment target of diabetics.
Collapse
Affiliation(s)
- Xiangrong Xie
- Department of Cardiology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, PR China
| | - Yan Chen
- Department of Cardiology, Taishan People's Hospital, Taishan, Guangdong 529200, PR China
| | - Jichun Liu
- Department of Cardiology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, PR China
| | - Wenbo Zhang
- Department of Cardiology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, PR China
| | - Xuan Zhang
- Department of Cardiology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, PR China
| | - Lintao Zha
- Department of Cardiology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, PR China
| | - Wenjie Liu
- Department of Cardiology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, PR China
| | - Yang Ling
- Department of Cardiology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, PR China
| | - Shu Li
- Department of Pathophysiology, Wannan Medical College, Wuhu, Anhui 241002, PR China.
| | - Shengxing Tang
- Department of Cardiology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, PR China.
| |
Collapse
|
37
|
Short NJ, Kantarjian H, Kanagal-Shamanna R, Sasaki K, Ravandi F, Cortes J, Konopleva M, Issa GC, Kornblau SM, Garcia-Manero G, Garris R, Higgins J, Pratt G, Williams LN, Valentine CC, Rivera VM, Pritchard J, Salk JJ, Radich J, Jabbour E. Ultra-accurate Duplex Sequencing for the assessment of pretreatment ABL1 kinase domain mutations in Ph+ ALL. Blood Cancer J 2020; 10:61. [PMID: 32457305 PMCID: PMC7250857 DOI: 10.1038/s41408-020-0329-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 11/24/2022] Open
Abstract
Mutations of ABL1 are the dominant mechanism of relapse in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL). We performed highly accurate Duplex Sequencing of exons 4-10 of ABL1 on bone marrow or peripheral blood samples from 63 adult patients with previously untreated Ph + ALL who received induction with intensive chemotherapy plus a BCR-ABL1 TKI. We identified ABL1 mutations prior to BCR-ABL1 TKI exposure in 78% of patients. However, these mutations were generally present at extremely low levels (median variant allelic frequency 0.008% [range, 0.004%-3.71%] and did not clonally expand and lead to relapse in any patient, even when the pretreatment mutation was known to confer resistance to the TKI received. In relapse samples harboring a TKI-resistant ABL1 mutation, the corresponding mutation could not be detected pretreatment, despite validated sequencing sensitivity of Duplex Sequencing down to 0.005%. In samples under the selective pressure of ongoing TKI therapy, we detected low-level, emerging resistance mutations up to 5 months prior to relapse. These findings suggest that pretreatment ABL1 mutation assessment should not guide upfront TKI selection in Ph + ALL, although serial testing while on TKI therapy may allow for early detection of clinically actionable resistant clones.
Collapse
Affiliation(s)
- Nicholas J Short
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Koji Sasaki
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge Cortes
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ghayas C Issa
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Rebecca Garris
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | - Jerald Radich
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elias Jabbour
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
38
|
Hao W, Wang J, Zhang Y, Wang C, Xia L, Zhang W, Zafar M, Kang JY, Wang R, Ali Bohio A, Pan L, Zeng X, Wei M, Boldogh I, Ba X. Enzymatically inactive OGG1 binds to DNA and steers base excision repair toward gene transcription. FASEB J 2020; 34:7427-7441. [PMID: 32378256 PMCID: PMC7318607 DOI: 10.1096/fj.201902243r] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/19/2019] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
8‐Oxoguanine DNA glycosylase1 (OGG1)‐initiated base excision repair (BER) is the primary pathway to remove the pre‐mutagenic 8‐oxo‐7,8‐dihydroguanine (8‐oxoG) from DNA. Recent studies documented 8‐oxoG serves as an epigenetic‐like mark and OGG1 modulates gene expression in oxidatively stressed cells. For this new role of OGG1, two distinct mechanisms have been proposed: one is coupled to base excision, while the other only requires substrate binding of OGG1––both resulting in conformational adjustment in the adjacent DNA sequences providing access for transcription factors to their cis‐elements. The present study aimed to examine if BER activity of OGG1 is required for pro‐inflammatory gene expression. To this end, Ogg1/OGG1 knockout/depleted cells were transfected with constructs expressing wild‐type (wt) and repair‐deficient mutants of OGG1. OGG1's promoter enrichment, oxidative state, and gene expression were examined. Results showed that TNFα exposure increased levels of oxidatively modified cysteine(s) of wt OGG1 without impairing its association with promoter and facilitated gene expression. The excision deficient K249Q mutant was even a more potent activator of gene expression; whereas, mutant OGG1 with impaired substrate recognition/binding was not. These data suggested the interaction of OGG1 with its substrate at regulatory regions followed by conformational adjustment in the adjacent DNA is the primary mode to modulate inflammatory gene expression.
Collapse
Affiliation(s)
- Wenjing Hao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China.,School of Life Science, Northeast Normal University, Changchun, China
| | - Jing Wang
- Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuanhang Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China.,School of Life Science, Northeast Normal University, Changchun, China
| | - Chenxin Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China.,School of Life Science, Northeast Normal University, Changchun, China
| | - Lan Xia
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China.,School of Life Science, Northeast Normal University, Changchun, China
| | - Wenhe Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China.,School of Life Science, Northeast Normal University, Changchun, China
| | - Muhammad Zafar
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China.,School of Life Science, Northeast Normal University, Changchun, China
| | - Ju-Yong Kang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China.,Faculty of Life Science, Kim Il Sung University, Pyongyang, DPRK
| | - Ruoxi Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China.,School of Life Science, Northeast Normal University, Changchun, China.,Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ameer Ali Bohio
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China.,School of Life Science, Northeast Normal University, Changchun, China
| | - Lang Pan
- School of Life Science, Northeast Normal University, Changchun, China.,Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China.,School of Life Science, Northeast Normal University, Changchun, China
| | - Min Wei
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China.,School of Life Science, Northeast Normal University, Changchun, China
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China.,School of Life Science, Northeast Normal University, Changchun, China
| |
Collapse
|
39
|
Pahattuge TN, Jackson JM, Digamber R, Wijerathne H, Brown V, Witek MA, Perera C, Givens RS, Peterson BR, Soper SA. Visible photorelease of liquid biopsy markers following microfluidic affinity-enrichment. Chem Commun (Camb) 2020; 56:4098-4101. [PMID: 32163053 PMCID: PMC7469076 DOI: 10.1039/c9cc09598e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We detail a heterobifunctional, 7-aminocoumarin photocleavable (PC) linker with unique properties to covalently attach Abs to surfaces and subsequently release them with visible light (400-450 nm). The PC linker allowed rapid (2 min) and efficient (>90%) release of CTCs and EVs without damaging their molecular cargo.
Collapse
Affiliation(s)
- Thilanga N Pahattuge
- Center of BioModular Multi-Scale Systems, Department of Chemistry, University of Kansas, 1567 Irving Hill Rd., Lawrence, KS 66045, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Quan H, Koltai E, Suzuki K, Aguiar AS, Pinho R, Boldogh I, Berkes I, Radak Z. Exercise, redox system and neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165778. [PMID: 32222542 DOI: 10.1016/j.bbadis.2020.165778] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022]
Abstract
Regular exercise induces a wide range of redox system-associated molecular adaptive responses to the nervous system. The intermittent induction of reactive oxygen species (ROS) during acute exercise sessions and the related upregulation of antioxidant/repair and housekeeping systems are associated with improved physiological function. Exercise-induced proliferation and differentiation of neuronal stem cells are ROS dependent processes. The increased production of brain derived neurotrophic factor (BDNF) and the regulation by regular exercise are dependent upon redox sensitive pathways. ROS are causative and associative factors of neurodegenerative diseases and regular exercise provides significant neuroprotective effects against Alzheimer's disease, Parkinson's disease, and hypoxia/reperfusion related disorders. Regular exercise regulates redox homeostasis in the brain with complex multi-level molecular pathways.
Collapse
Affiliation(s)
- Helong Quan
- Exercise and Metabolism Research Center, Zhejiang Normal University, Jinhua City, Zhejiang, China
| | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan
| | - Aderbal S Aguiar
- Research Group on Biology of Exercise, Department of Health Sciences, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Ricardo Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Istvan Berkes
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan.
| |
Collapse
|
41
|
Takac P, Kello M, Vilkova M, Vaskova J, Michalkova R, Mojzisova G, Mojzis J. Antiproliferative Effect of Acridine Chalcone Is Mediated by Induction of Oxidative Stress. Biomolecules 2020; 10:biom10020345. [PMID: 32098428 PMCID: PMC7072140 DOI: 10.3390/biom10020345] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Chalcones are naturally occurring phytochemicals with diverse biological activities including antioxidant, antiproliferative, and anticancer effects. Some studies indicate that the antiproliferative effect of chalcones may be associated with their pro-oxidant effect. In the present study, we evaluated contribution of oxidative stress in the antiproliferative effect of acridine chalcone 1C ((2 E)-3-(acridin-9-yl)-1-(2,6-dimethoxyphenyl)prop-2-en-1-one) in human colorectal HCT116 cells. We demonstrated that chalcone 1C induced oxidative stress via increased reactive oxygen/nitrogen species (ROS/RNS) and superoxide production with a simultaneous weak adaptive activation of the cellular antioxidant defence mechanism. Furthermore, we also showed chalcone-induced mitochondrial dysfunction, DNA damage, and apoptosis induction. Moreover, activation of mitogen activated phosphokinase (MAPK) signalling pathway in 1C-treated cancer cells was also observed. On the other hand, co-treatment of cells with strong antioxidant, N-acetyl cysteine (NAC), significantly attenuated all of the above-mentioned effects of chalcone 1C, that is, decreased oxidant production, prevent mitochondrial dysfunction, DNA damage, and induction of apoptosis, as well as partially preventing the activation of MAPK signalling. Taken together, we documented the role of ROS in the antiproliferative/pro-apoptotic effects of acridine chalcone 1C. Moreover, these data suggest that this chalcone may be useful as a promising anti-cancer agent for treating colon cancer.
Collapse
Affiliation(s)
- Peter Takac
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 040 11 Kosice, Slovakia (R.M.)
- Institute of Human and Clinical Pharmacology, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 040 11 Kosice, Slovakia (R.M.)
- Correspondence: (M.K.); (J.M.)
| | - Maria Vilkova
- Department of Organic Chemistry, Faculty of Science, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia;
| | - Janka Vaskova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia;
| | - Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 040 11 Kosice, Slovakia (R.M.)
| | - Gabriela Mojzisova
- Department of Experimental Medicine, Faculty of Medicine, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia;
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 040 11 Kosice, Slovakia (R.M.)
- Correspondence: (M.K.); (J.M.)
| |
Collapse
|
42
|
Radak Z, Suzuki K, Posa A, Petrovszky Z, Koltai E, Boldogh I. The systemic role of SIRT1 in exercise mediated adaptation. Redox Biol 2020; 35:101467. [PMID: 32086007 PMCID: PMC7284913 DOI: 10.1016/j.redox.2020.101467] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/30/2022] Open
Abstract
Cellular energy demands are readily changed during physical exercise resulting in adaptive responses by signaling proteins of metabolic processes, including the NAD+ dependent lysine deacetylase SIRT1. Regular exercise results in systemic adaptation that restores the level of SIRT1 in the kidney, liver, and brain in patients with neurodegenerative diseases, and thereby normalizes cellular metabolic processes to attenuate the severity of these diseases. In skeletal muscle, over-expression of SIRT1 results in enhanced numbers of myonuclei improves the repair process after injury and is actively involved in muscle hypertrophy by up-regulating anabolic and downregulating catabolic processes. The present review discusses the different views of SIRT1 dependent deacetylation of PGC-α.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Saitama, 359-1192, Japan; University of Szeged, Szeged, Hungary.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Saitama, 359-1192, Japan
| | | | | | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| |
Collapse
|
43
|
Abstract
Huntington's disease (HD) is a fatal, inherited neurodegenerative disorder caused by a mutation in the huntingtin gene (HTT). While mutant HTT is present ubiquitously throughout life, HD onset typically occurs in mid-life, suggesting that aging may play an active role in pathogenesis. Cellular aging is defined as the slow decline in stress resistance and accumulation of damage over time. While different cells and tissues can age at different rates, 9 hallmarks of aging have emerged to better define the cellular aging process. Strikingly, many of the hallmarks of aging are also hallmarks of HD pathology. Models of HD and HD patients possess markers of accelerated aging, and processes that decline during aging also decline at a more rapid rate in HD, further implicating the role of aging in HD pathogenesis. Furthermore, accelerating aging in HD mouse and patient-derived neurons unmasks HD-specific phenotypes, suggesting an active role for the aging process in the onset and progression of HD. Here, we review the overlap between the hallmarks of aging and HD and discuss how aging may contribute to pathogenesis in HD.
Collapse
Affiliation(s)
- Emily Machiela
- University of Central Florida, College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Amber L. Southwell
- University of Central Florida, College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| |
Collapse
|
44
|
Guo C, Chen Q, Chen J, Yu J, Hu Y, Zhang S, Zheng S. 8-Hydroxyguanosine as a possible RNA oxidative modification marker in urine from colorectal cancer patients: Evaluation by ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1136:121931. [PMID: 31855840 DOI: 10.1016/j.jchromb.2019.121931] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Oxidative RNA damage has been found to be associated with a variety of diseases, and 8-hydroxyguanosine (8-OHG) is a typical marker of oxidative modification of RNA. This guanosine modification is an emerging biomarker for disease detection and determination of 8-OHG in human urine is favored because it is noninvasive to patients. However, due to its poor ionization efficiency in mass spectrometry and trace amount in urine, accurate quantification of this modified nucleoside is still challenging. Herein, a rapid, accurate, sensitive and robust method using solid-phase extraction (SPE) combined with isotope dilution ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was developed for detection of this oxidative RNA modification in human urine. The limit of detection can reach 1.5 fmol and the method exhibits good precision on intra-day (1.8-3.3%) and inter-day (0.6-1.2%) analyses. Satisfactory recovery (87.5-107.2%) at three spiked levels was achieved by using HLB cartridge for urine pretreatment. Using this method, we quantified 8-OHG in urine from 65 colorectal cancer (CRC) patients and 76 healthy volunteers. The measured level of urinary 8-OHG for CRC patients and healthy controls is 1.91 ± 0.63 nmol/mmol creatinine and 1.33 ± 0.35 nmol/mmol creatinine, respectively. We found the content of 8-OHG in urine was raised in CRC patients patients, implying this oxidative RNA modification marker could act as a potential noninvasive indicator for early screening of CRC. In addition, this study will make contributions to the investigations of the influences of oxidative stress on the formation and development of CRC.
Collapse
Affiliation(s)
- Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| | - Qin Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jiani Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Suzhan Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
45
|
Shcherbik N, Pestov DG. The Impact of Oxidative Stress on Ribosomes: From Injury to Regulation. Cells 2019; 8:cells8111379. [PMID: 31684095 PMCID: PMC6912279 DOI: 10.3390/cells8111379] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The ribosome is a complex ribonucleoprotein-based molecular machine that orchestrates protein synthesis in the cell. Both ribosomal RNA and ribosomal proteins can be chemically modified by reactive oxygen species, which may alter the ribosome′s functions or cause a complete loss of functionality. The oxidative damage that ribosomes accumulate during their lifespan in a cell may lead to reduced or faulty translation and contribute to various pathologies. However, remarkably little is known about the biological consequences of oxidative damage to the ribosome. Here, we provide a concise summary of the known types of changes induced by reactive oxygen species in rRNA and ribosomal proteins and discuss the existing experimental evidence of how these modifications may affect ribosome dynamics and function. We emphasize the special role that redox-active transition metals, such as iron, play in ribosome homeostasis and stability. We also discuss the hypothesis that redox-mediated ribosome modifications may contribute to adaptive cellular responses to stress.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| |
Collapse
|
46
|
8-OxoG in GC-rich Sp1 binding sites enhances gene transcription in adipose tissue of juvenile mice. Sci Rep 2019; 9:15618. [PMID: 31666587 PMCID: PMC6821754 DOI: 10.1038/s41598-019-52139-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/12/2019] [Indexed: 12/27/2022] Open
Abstract
The oxidation of guanine to 8-oxoguanine (8-oxoG) is the most common type of oxidative DNA lesion. There is a growing body of evidence indicating that 8-oxoG is not only pre-mutagenic, but also plays an essential role in modulating gene expression along with its cognate repair proteins. In this study, we investigated the relationship between 8-oxoG formed under intrinsic oxidative stress conditions and gene expression in adipose and lung tissues of juvenile mice. We observed that transcriptional activity and the number of active genes were significantly correlated with the distribution of 8-oxoG in gene promoter regions, as determined by reverse-phase liquid chromatography/mass spectrometry (RP-LC/MS), and 8-oxoG and RNA sequencing. Gene regulation by 8-oxoG was not associated with the degree of 8-oxoG formation. Instead, genes with GC-rich transcription factor binding sites in their promoters became more active with increasing 8-oxoG abundance as also demonstrated by specificity protein 1 (Sp1)- and estrogen response element (ERE)-luciferase assays in human embryonic kidney (HEK293T) cells. These results indicate that the occurrence of 8-oxoG in GC-rich Sp1 binding sites is important for gene regulation during adipose tissue development.
Collapse
|
47
|
Total DNA Methylation Changes Reflect Random Oxidative DNA Damage in Gliomas. Cells 2019; 8:cells8091065. [PMID: 31514401 PMCID: PMC6770701 DOI: 10.3390/cells8091065] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 01/12/2023] Open
Abstract
DNA modifications can be used to monitor pathological processes. We have previously shown that estimating the amount of the main DNA epigenetic mark, 5-methylcytosine (m5C), is an efficient and reliable way to diagnose brain tumors, hypertension, and other diseases. Abnormal increases of reactive oxygen species (ROS) are a driving factor for mutations that lead to changes in m5C levels and cancer evolution. 8-oxo-deoxyguanosine (8-oxo-dG) is a specific marker of ROS-driven DNA-damage, and its accumulation makes m5C a hotspot for mutations. It is unknown how m5C and 8-oxo-dG correlate with the malignancy of gliomas. We analyzed the total contents of m5C and 8-oxo-dG in DNA from tumor tissue and peripheral blood samples from brain glioma patients. We found an opposite relationship in the amounts of m5C and 8-oxo-dG, which correlated with glioma grade in the way that low level of m5C and high level of 8-oxo-dG indicated increased glioma malignancy grade. Our results could be directly applied to patient monitoring and treatment protocols for gliomas, as well as bolster previous findings, suggesting that spontaneously generated ROS react with m5C. Because of the similar mechanisms of m5C and guanosine oxidation, we concluded that 8-oxo-dG could also predict glioma malignancy grade and global DNA demethylation in cancer cells.
Collapse
|
48
|
Tangeretin-Assisted Platinum Nanoparticles Enhance the Apoptotic Properties of Doxorubicin: Combination Therapy for Osteosarcoma Treatment. NANOMATERIALS 2019; 9:nano9081089. [PMID: 31362420 PMCID: PMC6723885 DOI: 10.3390/nano9081089] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the most common type of cancer and the most frequent malignant bone tumor in childhood and adolescence. Nanomedicine has become an indispensable field in biomedical and clinical research, with nanoparticles (NPs) promising to increase the therapeutic efficacy of anticancer drugs. Doxorubicin (DOX) is a commonly used chemotherapeutic drug against OS; however, it causes severe side effects that restrict its clinical applications. Here, we investigated whether combining platinum NPs (PtNPs) and DOX could increase their anticancer activity in human bone OS epithelial cells (U2OS). PtNPs with nontoxic, effective, thermally stable, and thermoplasmonic properties were synthesized and characterized using tangeretin. We examined the combined effects of PtNPs and DOX on cell viability, proliferation, and morphology, reactive oxygen species (ROS) generation, lipid peroxidation, nitric oxide, protein carbonyl content, antioxidants, mitochondrial membrane potential (MMP), adenosine tri phosphate (ATP) level, apoptotic and antiapoptotic gene expression, oxidative stress-induced DNA damage, and DNA repair genes. PtNPs and DOX significantly inhibited U2OS viability and proliferation in a dose-dependent manner, increasing lactate dehydrogenase leakage, ROS generation, and malondialdehyde, nitric oxide, and carbonylated protein levels. Mitochondrial dysfunction was confirmed by reduced MMP, decreased ATP levels, and upregulated apoptotic/downregulated antiapoptotic gene expression. Oxidative stress was a major cause of cytotoxicity and genotoxicity, confirmed by decreased levels of various antioxidants. Furthermore, PtNPs and DOX increased 8-oxo-dG and 8-oxo-G levels and induced DNA damage and repair gene expression. Combination of cisplatin and DOX potentially induce apoptosis comparable to PtNPs and DOX. To the best of our knowledge, this is the first report to describe the combined effects of PtNPs and DOX in OS.
Collapse
|
49
|
Oxidized Cell-Free DNA Role in the Antioxidant Defense Mechanisms under Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1245749. [PMID: 31360293 PMCID: PMC6644271 DOI: 10.1155/2019/1245749] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/08/2019] [Indexed: 12/15/2022]
Abstract
The present study focuses on the investigation of the oxidized cell-free DNA (cfDNA) properties in several experimental models, including cultured cerebellum cells, peripheral blood lymphocytes (PBL), plasma, and hippocampus under an acute and chronic unpredictable stress model in rats. Firstly, our study shows that Spectrum Green fluorescence-labeled oxidized cfDNA fragments were transferred into the cytoplasm of 80% of the cerebellum culture cells; meanwhile, the nonoxidized cfDNA fragments do not pass into the cells. Oxidized cfDNA stimulates the antioxidant mechanisms and induction of transcription factor NRF2 expression, followed by an activation of NRF2 signaling pathway genes-rise of Nrf2 and Hmox1 gene expression and consequently NRF2 protein synthesis. Secondly, we showed that stress increases plasma cfDNA concentration in rats corresponding with the duration of the stress exposure. At the same time, our study did not reveal any significant changes of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) level in PBL of rats under acute or chronic stress, probably due to the significantly increased Nrf2 expression, that we found in such conditions. 8-oxodG is one of the most reliable markers of DNA oxidation. We also found an increased level of 8-oxodG in the hippocampal homogenates and hippocampal dentate gyrus in rats subjected to acute and chronic stress. Taken together, our data shows that oxidized cfDNA may play a significant role in systemic and neuronal physiological mechanisms of stress and adaptation.
Collapse
|
50
|
Scheffler K, Bjørås KØ, Bjørås M. Diverse functions of DNA glycosylases processing oxidative base lesions in brain. DNA Repair (Amst) 2019; 81:102665. [PMID: 31327582 DOI: 10.1016/j.dnarep.2019.102665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endogenous and exogenous oxidative agents continuously damage genomic DNA, with the brain being particularly vulnerable. Thus, preserving genomic integrity is key for brain health and neuronal function. Accumulation of DNA damage is one of the causative factors of ageing and increases the risk of a wide range of neurological disorders. Base excision repair is the major pathway for removal of oxidized bases in the genome and initiated by DNA glycosylases. Emerging evidence suggest that DNA glycosylases have non-canonical functions important for genome regulation. Understanding canonical and non-canonical functions of DNA glycosylases processing oxidative base lesions modulating brain function will be crucial for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Katja Scheffler
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491 Trondheim, Norway
| | - Karine Øian Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491 Trondheim, Norway; Department of Microbiology, Oslo University Hospital and University of Oslo, N-0424 Oslo, Norway.
| |
Collapse
|