1
|
He X, Wang Q, Cheng X, Wang W, Li Y, Nan Y, Wu J, Xiu B, Jiang T, Bergholz JS, Gu H, Chen F, Fan G, Sun L, Xie S, Zou J, Lin S, Wei Y, Lee J, Asara JM, Zhang K, Cantley LC, Zhao JJ. Lysine vitcylation is a vitamin C-derived protein modification that enhances STAT1-mediated immune response. Cell 2025; 188:1858-1877.e21. [PMID: 40023152 DOI: 10.1016/j.cell.2025.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/04/2025] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Vitamin C (vitC) is essential for health and shows promise in treating diseases like cancer, yet its mechanisms remain elusive. Here, we report that vitC directly modifies lysine residues to form "vitcyl-lysine"-a process termed vitcylation. Vitcylation occurs in a dose-, pH-, and sequence-dependent manner in both cell-free systems and living cells. Mechanistically, vitC vitcylates signal transducer and activator of transcription-1 (STAT1)- lysine-298 (K298), impairing its interaction with T cell protein-tyrosine phosphatase (TCPTP) and preventing STAT1-Y701 dephosphorylation. This leads to enhanced STAT1-mediated interferon (IFN) signaling in tumor cells, increased major histocompatibility complex (MHC)/human leukocyte antigen (HLA) class I expression, and activation of anti-tumor immunity in vitro and in vivo. The discovery of vitcylation as a distinctive post-translational modification provides significant insights into vitC's cellular function and therapeutic potential, opening avenues for understanding its biological effects and applications in disease treatment.
Collapse
Affiliation(s)
- Xiadi He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Lifecycle Health Management Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiwei Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Xin Cheng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Weihua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yutong Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yabing Nan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Wu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bingqiu Xiu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tao Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Johann S Bergholz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Hao Gu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Fuhui Chen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Guangjian Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lianhui Sun
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
| | - Shaozhen Xie
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Junjie Zou
- XtalPi Technology Co., Ltd., Shanghai 200131, China
| | - Sheng Lin
- XtalPi Technology Co., Ltd., Shanghai 200131, China
| | - Yun Wei
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - James Lee
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - John M Asara
- Division of Signal Transduction/Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lewis C Cantley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Agathocleous M. The physiological functions of ascorbate in the development of cancer. Dis Model Mech 2025; 18:dmm052201. [PMID: 40213851 PMCID: PMC12010911 DOI: 10.1242/dmm.052201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
The metabolite ascorbate (vitamin C) is synthesized endogenously in most animals or, in humans and some other species, obtained from the diet. Its role in cancer development is controversial. Addition of ascorbate to cultured cells or high-dose administration in animals can inhibit growth of many cancers, but most of these effects are caused by non-physiological biochemical activities. Few experiments have tested the physiological roles of ascorbate in cancer development by depleting it in physiological settings. Ascorbate depletion inhibits the activity of ten-eleven translocation (TET) enzymes in hematopoietic and leukemia cells and accelerates myeloid leukemia development. Many clinical trials have tested ascorbate supplementation in cancers and shown little or no evidence that it has a beneficial role. I propose that depletion experiments are needed to define the cancers in which ascorbate has a physiological role, establish its cellular and molecular targets, and provide a rationale for clinical trials.
Collapse
Affiliation(s)
- Michalis Agathocleous
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
3
|
Gencheva R, Coppo L, Arnér ESJ, Ren X. Selenium supplementation protects cancer cells from the oxidative stress and cytotoxicity induced by the combination of ascorbate and menadione sodium bisulfite. Free Radic Biol Med 2025; 233:317-329. [PMID: 40180024 DOI: 10.1016/j.freeradbiomed.2025.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
The combination of ascorbate (vitamin C) and menadione sodium bisulfite (MSB, vitamin K3), here called VC/VK3 (also named Apatone®, or M/A), has shown selective cytotoxicity in cancer cells and is under clinical investigation as a cancer therapy. However, the mechanisms of VC/VK3-induced cell death are not fully understood. In this in vitro study using human glioblastoma and non-transformed glial cell lines, we found that VC/VK3 caused higher toxicity in cancer cells in an H2O2- and iron-dependent manner, suggesting that ferroptosis may play a role in the cell death process. Furthermore, selenium supplementation significantly protected cancer cells from VC/VK3 treatment concomitantly with enhanced expression levels and enzymatic activity of antioxidant selenoproteins, including thioredoxin reductases (TXNRDs) and glutathione reductases (GPXs). We also found that VC/VK3 competes for electrons with thioredoxin (TXN), impairing peroxiredoxin 1 (PRDX1) in cells. Finally, chemically inhibiting TXNRDs or the glutathione-dependent antioxidant systems exaggerated the toxicity of VC/VK3. Overall, this study elucidated parts of the cell death mechanisms of VC/VK3 and identified combination strategies to overcome selenium-mediated resistance, advancing the translational potential of this prooxidant treatment.
Collapse
Affiliation(s)
- Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Selenoprotein Research, National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; IC-MedTech Corporation, Las Vegas, NV, USA.
| |
Collapse
|
4
|
Lykkesfeldt J, Carr AC, Tveden-Nyborg P. The pharmacology of vitamin C. Pharmacol Rev 2025; 77:100043. [PMID: 39986139 DOI: 10.1016/j.pharmr.2025.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/14/2025] [Indexed: 02/24/2025] Open
Abstract
Ascorbic acid, the reduced form of vitamin C, is a ubiquitous small carbohydrate. Despite decades of focused research, new metabolic functions of this universal electron donor are still being discovered and add to the complexity of our view of vitamin C in human health. Although praised as an unsurpassed water-soluble antioxidant in plasma and cells, the most interesting functions of vitamin C seem to be its roles as specific electron donor in numerous biological reactions ranging from the well-known hydroxylation of proline to cofactor for the epigenetic master regulators ten-eleven translocation enzymes and Jumonji domain-containing histone-lysine demethylases. Some of these functions may have important implications for disease prevention and treatment and have spiked renewed interest in, eg, vitamin C's potential in cancer therapy. Moreover, some fundamental pharmacokinetic properties of vitamin C remain to be established including if other mechanisms than passive diffusion governs the efflux of ascorbate anions from the cell. Taken together, there still seems to be much to learn about the pharmacology of vitamin C and its role in health and disease. This review explores new avenues of vitamin C and integrates our present knowledge of its pharmacology. SIGNIFICANCE STATEMENT: Vitamin C is involved in multiple biological reactions of which most are essential to human health. Hundreds of millions of people are considered deficient in vitamin C according to accepted guidelines, but little is known about the long-term consequences. Although the complexity of vitamin C's physiology and pharmacology has been widely disregarded in clinical studies for decades, it seems clear that a deeper understanding of particularly its pharmacology holds the key to unravel and possibly exploit the potential of vitamin C in disease prevention and therapy.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Pernille Tveden-Nyborg
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Alberts A, Moldoveanu ET, Niculescu AG, Grumezescu AM. Vitamin C: A Comprehensive Review of Its Role in Health, Disease Prevention, and Therapeutic Potential. Molecules 2025; 30:748. [PMID: 39942850 PMCID: PMC11820684 DOI: 10.3390/molecules30030748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Since Albert Szent-Györgyi discovered it and it became used in treating scurvy, vitamin C has attracted interest in many studies due to its unique properties. It is an important cofactor in the synthesis of collagen and hormones, and it is involved in immunity, iron absorption, and processes requiring antioxidants. Thus, this review aims to emphasize the importance and usefulness of vitamin C in improving quality of life and preventing various diseases (e.g., chronic diseases, cardiovascular diseases, cancer) but also for its use in treatments against infections, neurodegenerative diseases, and cancer. Although the studies presented provide essential information about the properties of VIC and its beneficial effect on health, some studies contradict these theories. In this respect, further studies on larger samples and over a longer period are needed to demonstrate the therapeutic potential of this nutrient. However, VIC remains a necessary vitamin that should be consumed daily to maintain optimal health and prevent deficiencies that can lead to scurvy and its associated complications.
Collapse
Affiliation(s)
- Adina Alberts
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Elena-Theodora Moldoveanu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
6
|
Schleinhege R, Neumann I, Oeckinghaus A, Schwab A, Pethő Z. A CNA-35-based high-throughput fibrosis assay reveals ORAI1 as a regulator of collagen release from pancreatic stellate cells. Matrix Biol 2025; 135:70-86. [PMID: 39662708 DOI: 10.1016/j.matbio.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
RATIONALE Pancreatic stellate cells (PSCs) produce a collagen-rich connective tissue in chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). Ca2+-permeable ion channels such as ORAI1 are known to affect PSC proliferation and myofibroblastic phenotype. However, it is unknown whether these channels play a role in collagen secretion. METHODS Using the PSC cell line PS-1, we characterized their cell-derived matrices using staining, mass spectroscopy, and cell migration assays. We developed and validated a high-throughput in vitro fibrosis assay to rapidly determine collagen quantity either with Sirius Red or, in the optimized version, with the collagen-binding peptide CNA-35-tdTomato. We assessed collagen deposition upon stimulating cells with transforming growth factor β1 (TGF-β1) and/or vitamin C without or with ORAI1 modulation. Orai1 expression was assessed by immunohistochemistry in the fibrotic tumor tissue of a murine PDAC model (KPfC). RESULTS We found that TGF-β1 and vitamin C promote collagen deposition from PSCs. We used small interfering RNA (siRNA) and the inhibitor Synta-66 to demonstrate that ORAI1 regulates collagen secretion of PSCs but not NIH-3T3 fibroblasts. Physiological levels of vitamin C induce a drastic increase of the intracellular [Ca2+] in PSCs, with Synta-66 inhibiting Ca2+ influx. Lastly, we revealed Orai1 expression in cancer-associated fibroblasts (CAFs) in murine PDAC (KPfC) samples. CONCLUSION In conclusion, our study introduces a robust in vitro assay for fibrosis and identifies ORAI1 as being engaged in PSC-driven fibrosis.
Collapse
Affiliation(s)
- Rieke Schleinhege
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | - Ilka Neumann
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, University of Münster, 48149, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | - Zoltán Pethő
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany.
| |
Collapse
|
7
|
Piotrowsky A, Burkard M, Schmieder H, Venturelli S, Renner O, Marongiu L. The therapeutic potential of vitamins A, C, and D in pancreatic cancer. Heliyon 2025; 11:e41598. [PMID: 39850424 PMCID: PMC11754517 DOI: 10.1016/j.heliyon.2024.e41598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/05/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
The pancreatic ductal adenocarcinoma (PDAC) is among the deadliest tumor diseases worldwide. While treatment options have generally become more diverse, little progress has been made in the treatment of PDAC and the median survival time for patients with locally advanced PDAC is between 8.7 and 13.7 months despite treatment. The aim of this review was to explore the therapeutic potential of complementing standard therapy with natural or synthetic forms of vitamins A, C, and D. The therapeutic use of vitamins A, C, and D could be a promising addition to the treatment of PDAC. For all three vitamins and their derivatives, tumor cell-specific cytotoxicity and growth inhibition against PDAC cells has been demonstrated in vitro and in preclinical animal models. While the antitumor effect of vitamin C is probably mainly due to its pro-oxidative effect in supraphysiological concentrations, vitamin A and vitamin D exert their effect by activating nuclear receptors and influencing gene transcription. In addition, there is increasing evidence that vitamin A and vitamin D influence the tumor stroma, making the tumor tissue more accessible to other therapeutic agents. Based on these promising findings, there is a high urgency to investigate vitamins A, C, and D in a clinical context as a supplement to standard therapy in PDAC. Further studies are needed to better understand the exact mechanism of action of the individual compounds and to develop the best possible treatment regimen. This could contribute to the long-awaited progress in the treatment of this highly lethal tumor entity.
Collapse
Affiliation(s)
- Alban Piotrowsky
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Hendrik Schmieder
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
- Institute of Physiology, Department of Vegetative and Clinical Physiology, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Olga Renner
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
- Faculty of Food and Nutrition Sciences, University of Applied Sciences, Hochschule Niederrhein, 41065, Moenchengladbach, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, 70599, Stuttgart, Germany
| |
Collapse
|
8
|
Kishimoto S, Crooks DR, Yasunori O, Kota Y, Yamamoto K, Linehan WM, Levine M, Krishna MC, Brender JR. Pharmacologic ascorbate induces transient hypoxia sensitizing pancreatic ductal adenocarcinoma to a hypoxia activated prodrug. Free Radic Biol Med 2024; 222:579-587. [PMID: 38992394 DOI: 10.1016/j.freeradbiomed.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Hypoxic tumor microenvironments pose a significant challenge in cancer treatment. Hypoxia-activated prodrugs like evofosfamide aim to specifically target and eliminate these resistant cells. However, their effectiveness is often limited by reoxygenation after cell death. We hypothesized that ascorbate's pro-oxidant properties could be harnessed to induce transient hypoxia, enhancing the efficacy of evofosfamide by overcoming reoxygenation. To test this hypothesis, we investigated the sensitivity of MIA Paca-2 and A549 cancer cells to ascorbate in vitro and in vivo. Ascorbate induced a cytotoxic effect at 5 mM that could be alleviated by endogenous administration of catalase, suggesting a role for hydrogen peroxide in its cytotoxic mechanism. In vitro, Seahorse experiments indicated that the generation of hydrogen peroxide consumes oxygen, which is offset at later time points by a reduction in oxygen consumption due to hydrogen peroxide's cytotoxic effect. In vivo, photoacoustic imaging showed pharmacologic ascorbate treatment at sublethal levels triggered a complex, multi-phasic response in tumor oxygenation across both cell lines. Initially, ascorbate generated transient hypoxia within minutes through hydrogen peroxide production, via reactions that consume oxygen. This initial hypoxic phase peaked at around 150 s and then gradually subsided. However, at longer time scales (approximately 300 s) a vasodilation effect triggered by ascorbate resulted in increased blood flow and subsequent reoxygenation. Combining sublethal levels of i. p. Ascorbate with evofosfamide significantly prolonged tumor doubling time in MIA Paca-2 and A549 xenografts compared to either treatment alone. This improvement, however, was only observed in a subpopulation of tumors, highlighting the complexity of the oxygenation response.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Clinical Cancer Metabolism Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Otowa Yasunori
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yamashita Kota
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Clinical Cancer Metabolism Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Murali C Krishna
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jeffrey R Brender
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Yi Z, Yang X, Liang Y, Tong S. Iron oxide nanozymes enhanced by ascorbic acid for macrophage-based cancer therapy. NANOSCALE 2024; 16:14330-14338. [PMID: 39015956 PMCID: PMC11305150 DOI: 10.1039/d4nr01208a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
In recent years, using pharmacological ascorbic acid has emerged as a promising therapeutic approach in cancer treatment, owing to its capacity to induce extracellular hydrogen peroxide (H2O2) production in solid tumors. The H2O2 is then converted into cytotoxic hydroxyl free radicals (HO˙) by redox-active Fe2+ inside cells. However, the high dosage of ascorbic acid required for efficacy is hampered by adverse effects such as kidney stone formation. In a recent study, we demonstrated the efficient catalytic conversion of H2O2 to HO˙ by wüstite (Fe1-xO) nanoparticles (WNPs) through a heterogenous Fenton reaction. Here, we explore whether WNPs can enhance the therapeutic potential of ascorbic acid, thus mitigating its dose-related limitations. Our findings reveal distinct pH dependencies for WNPs and ascorbic acid in the Fenton reaction and H2O2 generation, respectively. Importantly, WNPs exhibit the capability to either impede or enhance the cytotoxic effect of ascorbic acid, depending on the spatial segregation of the two reagents by cellular compartments. Furthermore, our study demonstrates that treatment with ascorbic acid promotes the polarization of WNP-loaded macrophages toward a pro-inflammatory M1 phenotype, significantly suppressing the growth of 4T1 breast cancer cells. This study highlights the importance of orchestrating the interplay between ascorbic acid and nanozymes in cancer therapy and presents a novel macrophage-based cell therapy approach.
Collapse
Affiliation(s)
- Zhongchao Yi
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
| | - Xiaoyue Yang
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
| | - Ying Liang
- New York Blood Center, New York, New York 10065, USA
| | - Sheng Tong
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
| |
Collapse
|
10
|
Wang X, Zhu X, Liu Y, Liu H, Xiao Z, Luo G. Efficacy of vitamin C on chemotherapy-related anemia in pancreatic cancer: study protocol for a randomized controlled trial. Trials 2024; 25:512. [PMID: 39075587 PMCID: PMC11285318 DOI: 10.1186/s13063-024-08345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND In the treatment of advanced pancreatic cancer, chemotherapy plays a pivotal role. Despite its effectiveness, this regimen is often marred by side effects such as anemia, neuropathy, fatigue, nausea, and malnutrition, which significantly affect patients' tolerance to the treatment. Some studies have shown that vitamin C could potentially augment chemotherapy's tolerability, notably by boosting iron absorption, ameliorating anemia, and relieving pain and numbness in hands and feet. Nevertheless, the integration of vitamin C with chemotherapy to mitigate toxic side effects and enhance the quality of life for advanced pancreatic cancer patients has not been examined in any randomized controlled trials to date. METHODS A prospective, single-center, open-label, randomized controlled trial will be conducted at Fudan University Shanghai Cancer Center from September 2023 to September 2026. A total of at least 100 patients with advanced pancreatic adenocarcinoma exhibiting distant metastases will be recruited and randomly assigned to the chemotherapy group or the chemotherapy plus vitamin C group. The primary endpoint is the rate of anemia. Secondary endpoints include the rate of grade 3 neuropathy, change of numeric rating scale, quality of life, and overall survival. DISCUSSION This study aims to assess the impact of low-dose vitamin C on enhancing the quality of life for patients with metastatic pancreatic cancer undergoing gemcitabine and nab-paclitaxel chemotherapy. TRIAL REGISTRATION The trial was registered with the ClinicalTrials.gov (NCT06018883) on August 31, 2023.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Xuhui District, No. 270, Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xinzhe Zhu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Xuhui District, No. 270, Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Xuhui District, No. 270, Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - He Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Xuhui District, No. 270, Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zhiwen Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Xuhui District, No. 270, Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Xuhui District, No. 270, Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Chen GY, O’Leary BR, Du J, Carroll RS, Steers GJ, Buettner GR, Cullen JJ. Pharmacologic Ascorbate Radiosensitizes Pancreatic Cancer but Radioprotects Normal Tissue: The Role of Oxidative Stress-Induced Lipid Peroxidation. Antioxidants (Basel) 2024; 13:361. [PMID: 38539894 PMCID: PMC10967795 DOI: 10.3390/antiox13030361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 12/08/2024] Open
Abstract
The toxicity of ionizing radiation limits its effectiveness in the treatment of pancreatic ductal adenocarcinoma. Pharmacologic ascorbate (P-AscH-) has been shown to radiosensitize pancreatic cancer cells while simultaneously radioprotecting normal cells. We hypothesize that P-AscH- protects the small intestine while radiosensitizing pancreatic cancer cells partially through an oxidative stress mechanism. Duodenal samples from pancreaticoduodenectomy specimens of patients who underwent radio-chemotherapy ± P-AscH- and mouse tumor and jejunal samples treated with radiation ± P-AscH- were evaluated. Pancreatic cancer and non-tumorigenic cells were treated with radiation ± P-AscH- to assess lipid peroxidation. To determine the mechanism, pancreatic cancer cells were treated with selenomethionine or RSL3, an inhibitor of glutathione peroxidase 4 (GPx4). Radiation-induced decreases in villi length and increases in 4-HNE immunofluorescence were reversed with P-AscH- in human duodenum. In vivo, radiation-induced decreases in villi length and increased collagen deposition were reversed in P-AscH--treated jejunal samples. P-AscH- and radiation increased BODIPY oxidation in pancreatic cancer cells but not in non-tumorigenic cells. Selenomethionine increased GPx4 protein and activity in pancreatic cancer and reversed P-AscH--induced toxicity and lipid peroxidation. RSL3 treatment inhibited GPx4 activity and increased lipid peroxidation. Differences in oxidative stress may play a role in radioprotecting normal cells while radiosensitizing pancreatic cancer cells when treated with P-AscH-.
Collapse
Affiliation(s)
- Gloria Y. Chen
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
| | - Brianne R. O’Leary
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| | - Juan Du
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| | - Rory S. Carroll
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
| | - Garett J. Steers
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
| | - Garry R. Buettner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| | - Joseph J. Cullen
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
12
|
Solst SR, Mapuskar KA, Graham CH, King SA, Rheem R, Current K, Allen BG, Caster JM, Spitz DR, Howard ME. Rapid Peroxide Removal Limits the Radiosensitization of Diffuse Intrinsic Pontine Glioma (DIPG) Cells by Pharmacologic Ascorbate. Radiat Res 2023; 200:456-461. [PMID: 37758035 PMCID: PMC10759934 DOI: 10.1667/rade-23-00006.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023]
Abstract
Diffuse intrinsic pontine gliomas (DIPG) are an aggressive type of pediatric brain tumor with a very high mortality rate. Surgery has a limited role given the tumor's location. Palliative radiation therapy alleviates symptoms and prolongs survival, but median survival remains less than 1 year. There is no clear role for chemotherapy in DIPGs as trials adding chemotherapy to palliative radiation therapy have failed to improve survival compared to radiation alone. Thus, there is a critical need to identify tissue-specific radiosensitizers to improve clinical outcomes for patients with DIPGs. Pharmacologic (high dose) ascorbate (P-AscH-) is a promising anticancer therapy that sensitizes human tumors, including adult high-grade gliomas, to radiation by acting selectively as a generator of hydrogen peroxide (H2O2) in cancer cells. In this study we demonstrate that in contrast to adult glioma models, P-AscH- does not radiosensitize DIPG. DIPG cells were sensitive to bolus of H2O2 but have faster H2O2 removal rates than GBM models which are radiosensitized by P-AscH-. These data support the hypothesis that P-AscH- does not enhance DIPG radiosensitivity, likely due to a robust capacity to detoxify and remove hydroperoxides.
Collapse
Affiliation(s)
- Shane R. Solst
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Kranti A. Mapuskar
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Claire H. Graham
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Sarah A. King
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Rana Rheem
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Kyle Current
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Joseph M. Caster
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Michelle E. Howard
- Free Radical and Radiation Biology Program, B180 Medical Laboratories, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
13
|
Sanookpan K, Chantaravisoot N, Kalpongnukul N, Chuenjit C, Wattanathamsan O, Shoaib S, Chanvorachote P, Buranasudja V. Pharmacological Ascorbate Elicits Anti-Cancer Activities against Non-Small Cell Lung Cancer through Hydrogen-Peroxide-Induced-DNA-Damage. Antioxidants (Basel) 2023; 12:1775. [PMID: 37760080 PMCID: PMC10525775 DOI: 10.3390/antiox12091775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) poses a significant global health burden with unsatisfactory survival rates, despite advancements in diagnostic and therapeutic modalities. Novel therapeutic approaches are urgently required to improve patient outcomes. Pharmacological ascorbate (P-AscH-; ascorbate at millimolar concentration in plasma) emerged as a potential candidate for cancer therapy for recent decades. In this present study, we explore the anti-cancer effects of P-AscH- on NSCLC and elucidate its underlying mechanisms. P-AscH- treatment induces formation of cellular oxidative distress; disrupts cellular bioenergetics; and leads to induction of apoptotic cell death and ultimately reduction in clonogenic survival. Remarkably, DNA and DNA damage response machineries are identified as vulnerable targets for P-AscH- in NSCLC therapy. Treatments with P-AscH- increase the formation of DNA damage and replication stress markers while inducing mislocalization of DNA repair machineries. The cytotoxic and genotoxic effects of P-AscH- on NSCLC were reversed by co-treatment with catalase, highlighting the roles of extracellular hydrogen peroxide in anti-cancer activities of P-AscH-. The data from this current research advance our understanding of P-AscH- in cancer treatment and support its potential clinical use as a therapeutic option for NSCLC therapy.
Collapse
Affiliation(s)
- Kittipong Sanookpan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
- Nabsolute Co., Ltd., Bangkok 10330, Thailand
| | - Naphat Chantaravisoot
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (C.C.)
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nuttiya Kalpongnukul
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchapon Chuenjit
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (C.C.)
| | - Onsurang Wattanathamsan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
| | - Sara Shoaib
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Visarut Buranasudja
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Tomizawa S, Takano S, Eto R, Takayashiki T, Kuboki S, Ohtsuka M. Semaphorin 3 C enhances putative cancer stemness and accelerates peritoneal dissemination in pancreatic cancer. Cancer Cell Int 2023; 23:155. [PMID: 37537633 PMCID: PMC10401755 DOI: 10.1186/s12935-023-03008-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
PURPOSE Semaphorins, axon guidance cues in neuronal network formation, have been implicated in cancer progression. We previously identified semaphorin 3 C (SEMA3C) as a secreted protein overexpressed in pancreatic ductal adenocarcinoma (PDAC). We, therefore, hypothesized that SEMA3C supports PDAC progression. In this study, we aimed to investigate the clinical features of SEMA3C, especially its association with chemo-resistance and peritoneal dissemination. METHODS In resected PDAC tissues, we assessed the relationship between SEMA3C expression and clinicopathological features by immunohistochemistry. In vitro studies, we have shown invasion assay, pancreatosphere formation assay, colony formation assay, cytotoxicity assay, and activation of SEMA3C downstream targets (c-Met, Akt, mTOR). In vivo, we performed a preclinical trial to confirm the efficacy of SEMA3C shRNA knockdown and Gemcitabine and nab-Paclitaxel (GnP) in an orthotopic transplantation mouse model and in peritoneal dissemination mouse model. RESULTS In resected PDAC tissues, SEMA3C expression correlated with invasion and peritoneal dissemination after surgery. SEMA3C promoted cell invasion, self-renewal, and colony formation in vitro. We further demonstrated that SEMA3C knockdown increased Gem-induced cytotoxicity by suppressing the activation of the Akt/mTOR pathway via the c-Met receptor. Combination therapy with SEMA3C knockdown and GnP reduced tumor growth and peritoneal dissemination. CONCLUSIONS SEMA3C enhances peritoneal dissemination by regulating putative cancer stemness and Gem resistance and activates phosphorylation of the Akt/mTOR pathway via c-Met. Our findings provide a new avenue for therapeutic strategies in regulating peritoneal dissemination during PDAC progression.
Collapse
Affiliation(s)
- Satoshi Tomizawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8677, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8677, Japan.
| | - Ryotaro Eto
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8677, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8677, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8677, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8677, Japan
| |
Collapse
|
15
|
He X, Wei Y, Wu J, Wang Q, Bergholz JS, Gu H, Zou J, Lin S, Wang W, Xie S, Jiang T, Lee J, Asara JM, Zhang K, Cantley LC, Zhao JJ. Lysine vitcylation is a novel vitamin C-derived protein modification that enhances STAT1-mediated immune response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546774. [PMID: 37425798 PMCID: PMC10327172 DOI: 10.1101/2023.06.27.546774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Vitamin C (vitC) is a vital nutrient for health and also used as a therapeutic agent in diseases such as cancer. However, the mechanisms underlying vitC's effects remain elusive. Here we report that vitC directly modifies lysine without enzymes to form vitcyl-lysine, termed "vitcylation", in a dose-, pH-, and sequence-dependent manner across diverse proteins in cells. We further discover that vitC vitcylates K298 site of STAT1, which impairs its interaction with the phosphatase PTPN2, preventing STAT1 Y701 dephosphorylation and leading to increased STAT1-mediated IFN pathway activation in tumor cells. As a result, these cells have increased MHC/HLA class-I expression and activate immune cells in co-cultures. Tumors collected from vitC-treated tumor-bearing mice have enhanced vitcylation, STAT1 phosphorylation and antigen presentation. The identification of vitcylation as a novel PTM and the characterization of its effect in tumor cells opens a new avenue for understanding vitC in cellular processes, disease mechanisms, and therapeutics.
Collapse
|
16
|
Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Combination Therapy as a Promising Way to Fight Oral Cancer. Pharmaceutics 2023; 15:1653. [PMID: 37376101 PMCID: PMC10301495 DOI: 10.3390/pharmaceutics15061653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Oral cancer is a highly aggressive tumor with invasive properties that can lead to metastasis and high mortality rates. Conventional treatment strategies, such as surgery, chemotherapy, and radiation therapy, alone or in combination, are associated with significant side effects. Currently, combination therapy has become the standard practice for the treatment of locally advanced oral cancer, emerging as an effective approach in improving outcomes. In this review, we present an in-depth analysis of the current advancements in combination therapies for oral cancer. The review explores the current therapeutic options and highlights the limitations of monotherapy approaches. It then focuses on combinatorial approaches that target microtubules, as well as various signaling pathway components implicated in oral cancer progression, namely, DNA repair players, the epidermal growth factor receptor, cyclin-dependent kinases, epigenetic readers, and immune checkpoint proteins. The review discusses the rationale behind combining different agents and examines the preclinical and clinical evidence supporting the effectiveness of these combinations, emphasizing their ability to enhance treatment response and overcome drug resistance. Challenges and limitations associated with combination therapy are discussed, including potential toxicity and the need for personalized treatment approaches. A future perspective is also provided to highlight the existing challenges and possible resolutions toward the clinical translation of current oral cancer therapies.
Collapse
Affiliation(s)
- João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Bárbara Pinto
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Luís Monteiro
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| |
Collapse
|
17
|
Mohseni S, Tabatabaei-Malazy O, Ejtahed HS, Qorbani M, Azadbakht L, Khashayar P, Larijani B. Effect of vitamins C and E on cancer survival; a systematic review. Daru 2022; 30:427-441. [PMID: 36136247 PMCID: PMC9715902 DOI: 10.1007/s40199-022-00451-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022] Open
Abstract
PURPOSE Association between vitamins C (VC)/ E (VE) and cancer survival is inconsistent. This systematic review is aimed to summarize trials for effects of VC/VE on cancer survival. METHODS Relevant English trials were retrieved from PubMed, Cochrane Library, Embase, Web of Science, Scopus databases, and Clinicaltrials.gov through 21/June/2022. Inclusion criteria were all trials which assessed sole/combinations intake of VC/VE on survival rate, mortality, or remission of any cancer. Exclusion criteria were observational and animal studies. RESULTS We reached 30 trials conducted on 38,936 patients with various cancers. Due to severe methodological heterogeneity, meta-analysis was impossible. High dose VC + chemotherapy or radiation was safe with an overall survival (OS) 182 days - 21.5 months. Sole oral or intravenous high dose VC was safe with non-significant change in OS (2.9-8.2 months). VE plus chemotherapy was safe, resulted in stabling diseases for 5 years in 70- 86.7% of patients and OS 109 months. It was found 60% and 16% non-significant reductions in adjusted hazard ratio (HR) deaths or recurrence by 200 mg/d tocotrienol + tamoxifen in breast cancer, respectively. Sole intake of 200-3200 mg/d tocotrienol before resectable pancreatic cancer was safe and significantly increased cancer cells' apoptosis. Combination VC and VE was non-significantly reduced 7% in rate of neoplastic gastric polyp. CONCLUSION Although our study is supported improvement of survival and progression rates of cancers by VC/VE, more high quality trials with large sample sizes are required to confirm. PROSPERO REGISTRATION NUMBER CRD42020152795.
Collapse
Affiliation(s)
- Shahrzad Mohseni
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Patricia Khashayar
- Center for microsystem technology, Imec and Ghent University, 9052 Gent, Zwijnaarde, Belgium
- Osteoporosis Research Center, Endocrinology & Metabolism Clinical Science Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Jankowski CS, Rabinowitz JD. Selenium Modulates Cancer Cell Response to Pharmacologic Ascorbate. Cancer Res 2022; 82:3486-3498. [PMID: 35916672 PMCID: PMC9532358 DOI: 10.1158/0008-5472.can-22-0408] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
High-dose ascorbate (vitamin C) has shown promising anticancer activity. Two redox mechanisms have been proposed: hydrogen peroxide generation by ascorbate itself or glutathione depletion by dehydroascorbate (formed by ascorbate oxidation). Here we show that the metabolic effects and cytotoxicity of high-dose ascorbate in vitro result from hydrogen peroxide independently of dehydroascorbate. These effects were suppressed by selenium through antioxidant selenoenzymes including glutathione peroxidase 1 (GPX1) but not the classic ferroptosis-inhibiting selenoenzyme GPX4. Selenium-mediated protection from ascorbate was powered by NADPH from the pentose phosphate pathway. In vivo, dietary selenium deficiency resulted in significant enhancement of ascorbate activity against glioblastoma xenografts. These data establish selenoproteins as key mediators of cancer redox homeostasis. Cancer sensitivity to free radical-inducing therapies, including ascorbate, may depend on selenium, providing a dietary approach for improving their anticancer efficacy. SIGNIFICANCE Selenium restriction augments ascorbate efficacy and extends lifespan in a mouse xenograft model of glioblastoma, suggesting that targeting selenium-mediated antioxidant defenses merits clinical evaluation in combination with ascorbate and other pro-oxidant therapies.
Collapse
Affiliation(s)
- Connor S.R. Jankowski
- Department of Molecular Biology
- Lewis-Sigler Institute for Integrative Genomics
- Ludwig Institute for Cancer Research, Princeton Branch
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics
- Ludwig Institute for Cancer Research, Princeton Branch
- Department of Chemistry, Princeton University
| |
Collapse
|
19
|
Zaher A, Stephens LM, Miller AM, Hartwig SM, Stolwijk JM, Petronek MS, Zacharias ZR, Wadas TJ, Monga V, Cullen JJ, Furqan M, Houtman JCD, Varga SM, Spitz DR, Allen BG. Pharmacological ascorbate as a novel therapeutic strategy to enhance cancer immunotherapy. Front Immunol 2022; 13:989000. [PMID: 36072595 PMCID: PMC9444023 DOI: 10.3389/fimmu.2022.989000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Pharmacological ascorbate (i.e., intravenous infusions of vitamin C reaching ~ 20 mM in plasma) is under active investigation as an adjuvant to standard of care anti-cancer treatments due to its dual redox roles as an antioxidant in normal tissues and as a prooxidant in malignant tissues. Immune checkpoint inhibitors (ICIs) are highly promising therapies for many cancer patients but face several challenges including low response rates, primary or acquired resistance, and toxicity. Ascorbate modulates both innate and adaptive immune functions and plays a key role in maintaining the balance between pro and anti-inflammatory states. Furthermore, the success of pharmacological ascorbate as a radiosensitizer and a chemosensitizer in pre-clinical studies and early phase clinical trials suggests that it may also enhance the efficacy and expand the benefits of ICIs.
Collapse
Affiliation(s)
- Amira Zaher
- Cancer Biology Program, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Laura M. Stephens
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Ann M. Miller
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Stacey M. Hartwig
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Jeffrey M. Stolwijk
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Michael S. Petronek
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Zeb R. Zacharias
- Human Immunology Core & Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Thaddeus J. Wadas
- Department of Radiology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Varun Monga
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Joseph J. Cullen
- Department of Surgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Muhammad Furqan
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Jon C. D. Houtman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Steven M. Varga
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Bryan G. Allen,
| |
Collapse
|
20
|
Metabolic targeting of malignant tumors: a need for systemic approach. J Cancer Res Clin Oncol 2022; 149:2115-2138. [PMID: 35925428 DOI: 10.1007/s00432-022-04212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Dysregulated metabolism is now recognized as a fundamental hallmark of carcinogenesis inducing aggressive features and additional hallmarks. In this review, well-established metabolic changes displayed by tumors are highlighted in a comprehensive manner and corresponding therapeutical targets are discussed to set up a framework for integrating basic research findings with clinical translation in oncology setting. METHODS Recent manuscripts of high research impact and relevant to the field from PubMed (2000-2021) have been reviewed for this article. RESULTS Metabolic pathway disruption during tumor evolution is a dynamic process potentiating cell survival, dormancy, proliferation and invasion even under dismal conditions. Apart from cancer cells, though, tumor microenvironment has an acting role as extracellular metabolites, pH alterations and stromal cells reciprocally interact with malignant cells, ultimately dictating tumor-promoting responses, disabling anti-tumor immunity and promoting resistance to treatments. CONCLUSION In the field of cancer metabolism, there are several emerging prognostic and therapeutic targets either in the form of gene expression, enzyme activity or metabolites which could be exploited for clinical purposes; both standard-of-care and novel treatments may be evaluated in the context of metabolism rewiring and indeed, synergistic effects between metabolism-targeting and other therapies would be an attractive perspective for further research.
Collapse
|
21
|
Synthesis of Metal–Organic Frameworks Quantum Dots Composites as Sensors for Endocrine-Disrupting Chemicals. Int J Mol Sci 2022; 23:ijms23147980. [PMID: 35887328 PMCID: PMC9324456 DOI: 10.3390/ijms23147980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Hazardous chemical compounds such as endocrine-disrupting chemicals (EDCs) are widespread and part of the materials we use daily. Among these compounds, bisphenol A (BPA) is the most common endocrine-disrupting chemical and is prevalent due to the chemical raw materials used to manufacture thermoplastic polymers, rigid foams, and industrial coatings. General exposure to endocrine-disrupting chemicals constitutes a serious health hazard, especially to reproductive systems, and can lead to transgenerational diseases in adults due to exposure to these chemicals over several years. Thus, it is necessary to develop sensors for early detection of endocrine-disrupting chemicals. In recent years, the use of metal–organic frameworks (MOFs) as sensors for EDCs has been explored due to their distinctive characteristics, such as wide surface area, outstanding chemical fastness, structural tuneability, gas storage, molecular separation, proton conductivity, and catalyst activity, among others which can be modified to sense hazardous environmental pollutants such as EDCs. In order to improve the versatility of MOFs as sensors, semiconductor quantum dots have been introduced into the MOF pores to form metal–organic frameworks/quantum dots composites. These composites possess a large optical absorption coefficient, low toxicity, direct bandgap, formidable sensing capacity, high resistance to change under light and tunable visual qualities by varying the size and compositions, which make them useful for applications as sensors for probing of dangerous and risky environmental contaminants such as EDCs and more. In this review, we explore various synthetic strategies of (MOFs), quantum dots (QDs), and metal–organic framework quantum dots composites (MOFs@QDs) as efficient compounds for the sensing of ecological pollutants, contaminants, and toxicants such as EDCs. We also summarize various compounds or materials used in the detection of BPA as well as the sensing ability and capability of MOFs, QDs, and MOFs@QDs composites that can be used as sensors for EDCs and BPA.
Collapse
|
22
|
O’Leary BR, Ruppenkamp EK, Steers GJ, Du J, Carroll RS, Wagner BA, Buettner GR, Cullen JJ. Pharmacological Ascorbate Enhances Chemotherapies in Pancreatic Ductal Adenocarcinoma. Pancreas 2022; 51:684-693. [PMID: 36099493 PMCID: PMC9547864 DOI: 10.1097/mpa.0000000000002086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Pharmacological ascorbate (P-AscH - , high-dose, intravenous vitamin C) has shown promise as an adjuvant therapy for pancreatic ductal adenocarcinoma (PDAC) treatment. The objective of this study was to determine the effects of P-AscH - when combined with PDAC chemotherapies. METHODS Clonogenic survival, combination indices, and DNA damage were determined in human PDAC cell lines treated with P-AscH - in combination with 5-fluorouracil, paclitaxel, or FOLFIRINOX (combination of leucovorin, 5-fluorouracil, irinotecan, oxaliplatin). Tumor volume changes, overall survival, blood analysis, and plasma ascorbate concentration were determined in vivo in mice treated with P-AscH - with or without FOLFIRINOX. RESULTS P-AscH - combined with 5-fluorouracil, paclitaxel, or FOLFIRINOX significantly reduced clonogenic survival in vitro. The DNA damage, measured by γH2AX protein expression, was increased after treatment with P-AscH - , FOLFIRINOX, and their combination. In vivo, tumor growth rate was significantly reduced by P-AscH - , FOLFIRINOX, and their combination. Overall survival was significantly increased by the combination of P-AscH - and FOLFIRINOX. Treatment with P-AscH - increased red blood cell and hemoglobin values but had no effect on white blood cell counts. Plasma ascorbate concentrations were significantly elevated in mice treated with P-AscH - with or without FOLFIRINOX. CONCLUSIONS The addition of P-AscH - to standard of care chemotherapy has the potential to be an effective adjuvant for PDAC treatment.
Collapse
Affiliation(s)
- Brianne R. O’Leary
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Elena K. Ruppenkamp
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Garett J. Steers
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Juan Du
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Rory S. Carroll
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Brett A. Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Garry R. Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Joseph J. Cullen
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
23
|
Auranofin and Pharmacologic Ascorbate as Radiomodulators in the Treatment of Pancreatic Cancer. Antioxidants (Basel) 2022; 11:antiox11050971. [PMID: 35624835 PMCID: PMC9137675 DOI: 10.3390/antiox11050971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer accounts for nearly one fourth of all new cancers worldwide. Little progress in the development of novel or adjuvant therapies has been made over the past few decades and new approaches to the treatment of pancreatic cancer are desperately needed. Pharmacologic ascorbate (P-AscH−, high-dose, intravenous vitamin C) is being investigated in clinical trials as an adjunct to standard-of-care chemoradiation treatments. In vitro, P-AscH− has been shown to sensitize cancer cells to ionizing radiation in a manner that is dependent on the generation of H2O2 while simultaneously protecting normal tissue from radiation damage. There is renewed interest in Auranofin (Au), an FDA-approved medication utilized in the treatment of rheumatoid arthritis, as an anti-cancer agent. Au inhibits the thioredoxin antioxidant system, thus increasing the overall peroxide burden on cancer cells. In support of current literature demonstrating Au’s effectiveness in breast, colon, lung, and ovarian cancer, we offer additional data that demonstrate the effectiveness of Au alone and in combination with P-AscH− and ionizing radiation in pancreatic cancer treatment. Combining P-AscH− and Au in the treatment of pancreatic cancer may confer multiple mechanisms to increase H2O2-dependent toxicity amongst cancer cells and provide a promising translatable avenue by which to enhance radiation effectiveness and improve patient outcomes.
Collapse
|
24
|
Koo S, Lee M, Sharma A, Li M, Zhang X, Pu K, Chi S, Kim JS. Harnessing GLUT1‐Targeted Pro‐oxidant Ascorbate for Synergistic Phototherapeutics. Angew Chem Int Ed Engl 2022; 61:e202110832. [DOI: 10.1002/anie.202110832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 01/14/2023]
Affiliation(s)
- Seyoung Koo
- Department of Chemistry Korea University Seoul 02841 Korea
| | - Min‐Goo Lee
- Department of Life Science Korea University Seoul 02841 Korea
| | - Amit Sharma
- Central Scientific Instruments Organisation (CSIR) Sector-30C Chandigarh 160030 India
| | - Mingle Li
- Department of Chemistry Korea University Seoul 02841 Korea
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- School of Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive 637457 Singapore Singapore
| | - Sung‐Gil Chi
- Department of Life Science Korea University Seoul 02841 Korea
| | - Jong Seung Kim
- Department of Chemistry Korea University Seoul 02841 Korea
| |
Collapse
|
25
|
Hunyady J. The Result of Vitamin C Treatment of Patients with Cancer: Conditions Influencing the Effectiveness. Int J Mol Sci 2022; 23:ijms23084380. [PMID: 35457200 PMCID: PMC9030840 DOI: 10.3390/ijms23084380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin C (ascorbic acid, AA) is a weak sugar acid structurally related to glucose. All known physiological and biochemical functions of AA are due to its action as an electron donor. Ascorbate readily undergoes pH-dependent autoxidation creating hydrogen peroxide (H2O2). In vitro evidence suggests that vitamin C functions at low concentrations as an antioxidant while high concentration is pro-oxidant. Thus, both characters of AA might be translated into clinical benefits. In vitro obtained results and murine experiments consequently prove the cytotoxic effect of AA on cancer cells, but current clinical evidence for high-dose intravenous (i.v.) vitamin C's therapeutic effect is ambiguous. The difference might be caused by the missing knowledge of AA's actions. In the literature, there are many publications regarding vitamin C and cancer. Review papers of systematic analysis of human interventional and observational studies assessing i.v. AA for cancer patients' use helps the overview of the extensive literature. Based on the results of four review articles and the Cancer Information Summary of the National Cancer Institute's results, we analyzed 20 publications related to high-dose intravenous vitamin C therapy (HAAT). The analyzed results indicate that HAAT might be a useful cancer-treating tool in certain circumstances. The AA's cytotoxic effect is hypoxia-induced factor dependent. It impacts only the anoxic cells, using the Warburg metabolism. It prevents tumor growth. Accordingly, discontinuation of treatment leads to repeated expansion of the tumor. We believe that the clinical use of HAAT in cancer treatment should be reassessed. The accumulation of more study results on HAAT is desperately needed.
Collapse
Affiliation(s)
- János Hunyady
- Department of Dermatology, Medical Faculty, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
26
|
Burke B, Bailie JE. Randomized trial of topical ascorbic acid in DMSO versus imiquimod for the treatment of basal cell carcinoma. Biomed Pharmacother 2022; 148:112710. [PMID: 35217280 DOI: 10.1016/j.biopha.2022.112710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Skin cancer is the most common cancer in the United States and among Caucasians worldwide, with more people diagnosed each year than all other cancers combined. Basal cell cancer is the most common form with an estimated 4.3 million cases diagnosed annually, and treatment costs estimated at $4.8 billion. The objective of this study was to compare efficacy of a topical solution consisting of 30% ascorbic acid in 95% dimethylsulfoxide with topical imiquimod in the treatment of basal cell carcinoma. Twenty-five patients with 29 biopsy confirmed basal cell carcinomas were randomly assigned to receive either the topically applied ascorbic acid treatment twice daily for 8 weeks or topical imiquimod, a standard and well characterized topical treatment. After 8 weeks, post-treatment biopsy of lesions showed complete resolution of 13/15 (86.7%) in the ascorbic acid group, while 8/14 (57.1%) lesions in the IMQ group were resolved (p < 0.05 Chi Square). Topical ascorbic acid was superior at 8 weeks, and non-inferior at 12 weeks to topical imiquimod in the treatment of low risk nodular and superficial lesions. In addition, ascorbic acid was associated with fewer adverse effects than imiquimod. 70% of patients in the imiquinod group showed residual hypopigmentation at 30mo follow up versus 0% in the ascorbate group.
Collapse
Affiliation(s)
- Briant Burke
- Center for Biomedical Research, Inc., Boise, ID 83706, USA.
| | | |
Collapse
|
27
|
Koo S, Lee M, Sharma A, Li M, Zhang X, Pu K, Chi S, Kim JS. Harnessing GLUT1‐Targeted Pro‐oxidant Ascorbate for Synergistic Phototherapeutics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Seyoung Koo
- Department of Chemistry Korea University Seoul 02841 Korea
| | - Min‐Goo Lee
- Department of Life Science Korea University Seoul 02841 Korea
| | - Amit Sharma
- Central Scientific Instruments Organisation (CSIR) Sector-30C Chandigarh 160030 India
| | - Mingle Li
- Department of Chemistry Korea University Seoul 02841 Korea
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- School of Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive 637457 Singapore Singapore
| | - Sung‐Gil Chi
- Department of Life Science Korea University Seoul 02841 Korea
| | - Jong Seung Kim
- Department of Chemistry Korea University Seoul 02841 Korea
| |
Collapse
|
28
|
A Review on the Efficacy and Safety of Nab-Paclitaxel with Gemcitabine in Combination with Other Therapeutic Agents as New Treatment Strategies in Pancreatic Cancer. Life (Basel) 2022; 12:life12030327. [PMID: 35330078 PMCID: PMC8953820 DOI: 10.3390/life12030327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer has one of the highest mortality rates among cancers, and a combination of nab-paclitaxel with gemcitabine remains the cornerstone of first-line therapy. However, major advances are required to achieve improvements in patient outcomes. For this reason, several research groups have proposed supplementing treatment with other therapeutic agents. Ongoing studies are being conducted to find the optimal treatment in a first-line setting. In this work, we used a search strategy to compare studies on the efficacy and safety of nab-paclitaxel with gemcitabine in combination with other therapeutic agents based on the criteria of the Preferred Reporting Items for Systematic Reviews. We found seven studies in different clinical phases that met the inclusion criteria. The seven therapeutic agents were ibrutinib, necuparanib, tarextumab, apatorsen, cisplatin, enzalutamide, and momelotinib. Although these therapeutic agents have different mechanisms of action, and molecular biology studies are still needed, the present review was aimed to answer the following question: which formulations of the nab-paclitaxel/gemcitabine regimen in combination with other therapeutic agents are safest for patients with previously untreated metastatic pancreas ductal adenocarcinoma? The triple regimen is emerging as the first-line option for patients with pancreatic cancer, albeit with some limitations. Thus, further studies of this regimen are recommended.
Collapse
|
29
|
Fahmy SA, Ramzy A, Mandour AA, Nasr S, Abdelnaser A, Bakowsky U, Azzazy HMES. PEGylated Chitosan Nanoparticles Encapsulating Ascorbic Acid and Oxaliplatin Exhibit Dramatic Apoptotic Effects against Breast Cancer Cells. Pharmaceutics 2022; 14:407. [PMID: 35214139 PMCID: PMC8874531 DOI: 10.3390/pharmaceutics14020407] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 12/29/2022] Open
Abstract
This study aims to design a pH-responsive dual-loaded nanosystem based on PEGylated chitosan nanoparticles loaded with ascorbic acid (AA) and oxaliplatin (OX) for the effective treatment of breast cancer. In this regard, non-PEGylated and PEGylated chitosan nanoparticles (CS NPs) loaded with either ascorbic acid (AA), oxaliplatin (OX), or dual-loaded with AA-OX were fabricated using the ionotropic gelation method. The hydrodynamic diameters of the fabricated AA/CS NPs, OX/CS NPs, and AA-OX/CS NPs were 157.20 ± 2.40, 188.10 ± 9.70, and 261.10 ± 9.19 nm, respectively. While the hydrodynamic diameters of the designed AA/PEG-CS NPs, OX/PEG-CS NPs, and AA-OX/PEG-CS NPs were 152.20 ± 2.40, 156.60 ± 4.82, and 176.00 ± 4.21 nm, respectively. The ζ-potential of the prepared nanoparticles demonstrated high positive surface charges of +22.02 ± 1.50, +22.58 ± 1.85 and +40.4 ± 2.71 mV for AA/CS NPs, OX/CS NPs, and AA-OX/CS NPs, respectively. The ζ-potential of the PEGylated CS NPs was reduced owing to the shielding of the positive charges by the PEG chains. Additionally, all the prepared nanoparticles exhibited high entrapment efficiencies (EE%) and spherical-shaped morphology. The chemical features of the prepared nanoparticles were investigated using Fourier transform infrared (FTIR) spectroscopy. Release studies showed the capability of the prepared non-PEGylated and PEGylated chitosan NPs to release their cargo in the acidic environment of cancer tissue (pH 5.5). Furthermore, the AA/CS NPs, AA/PEG-CS NPs, OX/CS NPs, OX/PEG-CS NPs, AA-OX/CS NPs and AA-OX/PEG-CS NPs exhibited remarkable cytotoxic activities against breast adenocarcinoma (MCF-7) cells with IC50 values of 44.87 ± 11.49, 23.3 ± 3.73, 23.88 ± 6.29, 17.98 ± 3.99, 18.69 ± 2.22, and 7.5 ± 0.69 µg/mL, respectively; as compared to free AA and OX (IC50 of 150.80 ± 26.50 and 147.70 ± 63.91 µg/mL, respectively). Additionally, treatment of MCF-7 cells with IC50 concentrations of AA, AA/CS NPs, AA/PEG-CS NPs, OX, OX/CS NPs, OX/PEG-CS NPs, AA-OX/CS NPs or AA-OX/PEG-CS NPs increased the percentages of early apoptotic cells to 5.28%, 9.53%, 11.20%, 5.27%, 13.80%, 8.43%, 2.32%, and 10.10%, respectively, and increased the percentages of late apoptotic cells to 0.98%, 0.37%, 2.41%, 2.06%, 0.97%, 9.66%, 56%, and 81.50%, respectively. These results clearly indicate that PEGylation enhances the apoptotic effect of AA and OX alone, in addition to potentiating the apoptotic effect of AA and OX when combined on MCF-7 cells. In conclusion, PEGylated chitosan nanoparticles encapsulating AA, OX, or AA and OX represent an effective formula for induction of apoptosis in MCF-7 cells.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (S.A.F.); (A.R.)
| | - Asmaa Ramzy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (S.A.F.); (A.R.)
| | - Asmaa A. Mandour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| | - Soad Nasr
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (S.N.); (A.A.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (S.N.); (A.A.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (S.A.F.); (A.R.)
| |
Collapse
|
30
|
Exploring the Pivotal Neurophysiologic and Therapeutic Potentials of Vitamin C in Glioma. JOURNAL OF ONCOLOGY 2021. [PMID: 33598702 PMCID: PMC8691980 DOI: 10.1155/2021/6141591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gliomas represent solely primary brain cancers of glial cell or neuroepithelial origin. Gliomas are still the most lethal human cancers despite modern innovations in both diagnostic techniques as well as therapeutic regimes. Gliomas have the lowest overall survival rate compared to other cancers 5 years after definitive diagnosis. The dietary intake of vitamin C has protective effect on glioma risk. Vitamin C is an essential compound that plays a vital role in the regulation of lysyl and prolyl hydroxylase activity. Neurons store high levels of vitamin C via sodium dependent-vitamin C transporters (SVCTs) to protect them from oxidative ischemia-reperfusion injury. Vitamin C is a water-soluble enzyme, typically seen as a powerful antioxidant in plants as well as animals. The key function of vitamin C is the inhibition of redox imbalance from reactive oxygen species produced via the stimulation of glutamate receptors. Gliomas absorb vitamin C primarily via its oxidized dehydroascorbate form by means of GLUT 1, 3, and 4 and its reduced form, ascorbate, by SVCT2. Vitamin C is able to preserve prosthetic metal ions like Fe2+ and Cu+ in their reduced forms in several enzymatic reactions as well as scavenge free radicals in order to safeguard tissues from oxidative damage. Therapeutic concentrations of vitamin C are able to trigger H2O2 generation in glioma. High-dose combination of vitamin C and radiation has a much more profound cytotoxic effect on primary glioblastoma multiforme cells compared to normal astrocytes. Control trials are needed to validate the use of vitamin C and standardization of the doses of vitamin C in the treatment of patients with glioma.
Collapse
|
31
|
Abstract
Significance: Vitamin C (ascorbate), in regard to its effectiveness against malignancies, has had a controversial history in cancer treatment. It has been shown that in vitro and in vivo anticancer efficacy of ascorbate relies on its pro-oxidant effect mainly from an increased generation of reactive oxygen species (ROS). A growing understanding of its anticancer activities and pharmacokinetic properties has prompted scientists to re-evaluate the significance of ascorbate in cancer treatment. Recent Advances: A recent resurge in ascorbate research emerged after discovering that, at high doses, ascorbate preferentially kills Kirsten-Ras (K-ras)- and B-raf oncogene (BRAF)-mutant cancer cells. In addition, some of the main hallmarks of cancer cells, such as redox homeostasis and oxygen-sensing regulation (through inhibition of hypoxia-inducible factor-1 alpha [HIF-1α] activity), are affected by vitamin C. Critical Issues: Currently, there is no clear consensus from the literature in regard to the beneficial effects of antioxidants. Results from both human and animal studies provide no clear evidence about the benefit of antioxidant treatment in preventing or suppressing cancer development. Since pro-oxidants may affect both normal and tumor cells, the extremely low toxicity of ascorbate represents a main advantage. This guarantees the safe inclusion of ascorbate in clinical protocols to treat cancer patients. Future Directions: Current research could focus on elucidating the wide array of reactions between ascorbate and reactive species, namely ROS, reactive nitrogen species as well as reactive sulfide species, and their intracellular molecular targets. Unraveling these mechanisms could allow researchers to assess what could be the optimal combination of ascorbate with standard treatments.
Collapse
Affiliation(s)
- Christophe Glorieux
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile.,Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
32
|
Böttger F, Vallés-Martí A, Cahn L, Jimenez CR. High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:343. [PMID: 34717701 PMCID: PMC8557029 DOI: 10.1186/s13046-021-02134-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 12/21/2022]
Abstract
Mounting evidence indicates that vitamin C has the potential to be a potent anti-cancer agent when administered intravenously and in high doses (high-dose IVC). Early phase clinical trials have confirmed safety and indicated efficacy of IVC in eradicating tumour cells of various cancer types. In recent years, the multi-targeting effects of vitamin C were unravelled, demonstrating a role as cancer-specific, pro-oxidative cytotoxic agent, anti-cancer epigenetic regulator and immune modulator, reversing epithelial-to-mesenchymal transition, inhibiting hypoxia and oncogenic kinase signalling and boosting immune response. Moreover, high-dose IVC is powerful as an adjuvant treatment for cancer, acting synergistically with many standard (chemo-) therapies, as well as a method for mitigating the toxic side-effects of chemotherapy. Despite the rationale and ample evidence, strong clinical data and phase III studies are lacking. Therefore, there is a need for more extensive awareness of the use of this highly promising, non-toxic cancer treatment in the clinical setting. In this review, we provide an elaborate overview of pre-clinical and clinical studies using high-dose IVC as anti-cancer agent, as well as a detailed evaluation of the main known molecular mechanisms involved. A special focus is put on global molecular profiling studies in this respect. In addition, an outlook on future implications of high-dose vitamin C in cancer treatment is presented and recommendations for further research are discussed.
Collapse
Affiliation(s)
- Franziska Böttger
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Andrea Vallés-Martí
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Loraine Cahn
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
33
|
Cancer Therapy Challenge: It Is Time to Look in the "St. Patrick's Well" of the Nature. Int J Mol Sci 2021; 22:ijms221910380. [PMID: 34638721 PMCID: PMC8508794 DOI: 10.3390/ijms221910380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer still remains a leading cause of death despite improvements in diagnosis, drug discovery and therapy approach. Therefore, there is a strong need to improve methodologies as well as to increase the number of approaches available. Natural compounds of different origins (i.e., from fungi, plants, microbes, etc.) represent an interesting approach for fighting cancer. In particular, synergistic strategies may represent an intriguing approach, combining natural compounds with classic chemotherapeutic drugs to increase therapeutic efficacy and lower the required drug concentrations. In this review, we focus primarily on those natural compounds utilized in synergistic approached to treating cancer, with particular attention to those compounds that have gained the most research interest.
Collapse
|
34
|
KalantarMotamedi Y, Choi RJ, Koh SB, Bramhall JL, Fan TP, Bender A. Prediction and identification of synergistic compound combinations against pancreatic cancer cells. iScience 2021; 24:103080. [PMID: 34585118 PMCID: PMC8456050 DOI: 10.1016/j.isci.2021.103080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
Resistance to current therapies is common for pancreatic cancer and hence novel treatment options are urgently needed. In this work, we developed and validated a computational method to select synergistic compound combinations based on transcriptomic profiles from both the disease and compound side, combined with a pathway scoring system, which was then validated prospectively by testing 30 compounds (and their combinations) on PANC-1 cells. Some compounds selected as single agents showed lower GI50 values than the standard of care, gemcitabine. Compounds suggested as combination agents with standard therapy gemcitabine based on the best performing scoring system showed on average 2.82-5.18 times higher synergies compared to compounds that were predicted to be active as single agents. Examples of highly synergistic in vitro validated compound pairs include gemcitabine combined with Entinostat, thioridazine, loperamide, scriptaid and Saracatinib. Hence, the computational approach presented here was able to identify synergistic compound combinations against pancreatic cancer cells.
Collapse
Affiliation(s)
- Yasaman KalantarMotamedi
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Ran Joo Choi
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Siang-Boon Koh
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Jo L. Bramhall
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
35
|
Targeting Reactive Oxygen Species Capacity of Tumor Cells with Repurposed Drug as an Anticancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8532940. [PMID: 34539975 PMCID: PMC8443364 DOI: 10.1155/2021/8532940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Accumulating evidence shows that elevated levels of reactive oxygen species (ROS) are associated with cancer initiation, growth, and response to therapies. As concentrations increase, ROS influence cancer development in a paradoxical way, either triggering tumorigenesis and supporting the proliferation of cancer cells at moderate levels of ROS or causing cancer cell death at high levels of ROS. Thus, ROS can be considered an attractive target for therapy of cancer and two apparently contradictory but virtually complementary therapeutic strategies for the regulation of ROS to treat cancer. Despite tremendous resources being invested in prevention and treatment for cancer, cancer remains a leading cause of human deaths and brings a heavy burden to humans worldwide. Chemotherapy remains the key treatment for cancer therapy, but it produces harmful side effects. Meanwhile, the process of de novo development of new anticancer drugs generally needs increasing cost, long development cycle, and high risk of failure. The use of ROS-based repurposed drugs may be one of the promising ways to overcome current cancer treatment challenges. In this review, we briefly introduce the source and regulation of ROS and then focus on the status of repurposed drugs based on ROS regulation for cancer therapy and propose the challenges and direction of ROS-mediated cancer treatment.
Collapse
|
36
|
Cross-Talk between Oxidative Stress and m 6A RNA Methylation in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6545728. [PMID: 34484567 PMCID: PMC8416400 DOI: 10.1155/2021/6545728] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/03/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. Excessive ROS levels are an important factor in tumor development. Damage stimulation and excessive activation of oncogenes cause elevated ROS production in cancer, accompanied by an increase in the antioxidant capacity to retain redox homeostasis in tumor cells at an increased level. Although moderate concentrations of ROS produced in cancer cells contribute to maintaining cell survival and cancer progression, massive ROS accumulation can exert toxicity, leading to cancer cell death. RNA modification is a posttranscriptional control mechanism that regulates gene expression and RNA metabolism, and m6A RNA methylation is the most common type of RNA modification in eukaryotes. m6A modifications can modulate cellular ROS levels through different mechanisms. It is worth noting that ROS signaling also plays a regulatory role in m6A modifications. In this review, we concluded the effects of m6A modification and oxidative stress on tumor biological functions. In particular, we discuss the interplay between oxidative stress and m6A modifications.
Collapse
|
37
|
Doello K, Mesas C, Quiñonero F, Perazzoli G, Cabeza L, Prados J, Melguizo C, Ortiz R. The Antitumor Activity of Sodium Selenite Alone and in Combination with Gemcitabine in Pancreatic Cancer: An In Vitro and In Vivo Study. Cancers (Basel) 2021; 13:cancers13133169. [PMID: 34201986 PMCID: PMC8268835 DOI: 10.3390/cancers13133169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023] Open
Abstract
Sodium selenite acts by depleting enzymes that protect against cellular oxidative stress. To determine its effect alone or in combination with gemcitabine (GMZ) in pancreatic cancer, we used PANC-1 and Pan02 cell lines and C57BL mice bearing a Pan02-generated tumor. Our results demonstrated a significant inhibition of pancreatic cancer cell viability with the use of sodium selenite alone and a synergistic effect when associated with GMZ. The molecular mechanisms of the antitumor effect of sodium selenite alone involved apoptosis-inducing factor (AIF) and the expression of phospho-p38 in the combined therapy. In addition, sodium selenite alone and in association with GMZ significantly decreased the migration capacity and colony-forming ability, reduced tumor activity in multicellular tumor spheroids (MTS) and decreased sphere formation of cancer stem cells. In vivo studies demonstrated that combined therapy not only inhibited tumor growth (65%) compared to the untreated group but also relative to sodium selenite or GMZ used as monotherapy (up to 40%), increasing mice survival. These results were supported by the analysis of C57BL/6 albino mice bearing a Pan02-generated tumor, using the IVIS system. In conclusion, our results showed that sodium selenite is a potential agent for the improvement in the treatment of pancreatic cancer and should be considered for future human clinical trials.
Collapse
Affiliation(s)
- Kevin Doello
- Medical Oncology Service, Virgen de las Nieves Hospital, 18014 Granada, Spain;
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
| | - Cristina Mesas
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
| | - Francisco Quiñonero
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Gloria Perazzoli
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Medicine, Faculty of Health Sciences, University of Almería, 04120 Granada, Spain
| | - Laura Cabeza
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Correspondence:
| | - Consolacion Melguizo
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Raul Ortiz
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| |
Collapse
|
38
|
Hamaguchi R, Ito T, Narui R, Morikawa H, Uemoto S, Wada H. Effects of Alkalization Therapy on Chemotherapy Outcomes in Advanced Pancreatic Cancer: A Retrospective Case-Control Study. In Vivo 2021; 34:2623-2629. [PMID: 32871792 DOI: 10.21873/invivo.12080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM Neutralization of the acidic tumor microenvironment, which is associated with both progression and drug resistance of cancer cells, may be a new treatment option for progressing forms of cancer. We conducted a case-control study to investigate the effects of alkalization therapy, consisting of an alkaline diet with supplementary oral sodium bicarbonate, in patients with metastatic or recurrent pancreatic cancer (study registration no.: UMIN000036126). PATIENTS AND METHODS Thirty-six patients in the alkalization group (Karasuma Wada Clinic; alkalization therapy plus chemotherapy) were retrospectively compared to 89 patients in the control group (Kyoto University Hospital; chemotherapy only). RESULTS The median overall survival (OS) in the alkalization group was significantly longer than that in the control group (15.4 vs. 10.8 months; p<0.005). In the alkalization group, mean urine pH was significantly increased after alkalization therapy [6.38±0.85 (before) vs. 6.80±0.71 (after); p<0.05]. Furthermore, the median OS of patients with increased urine pH (pH>7.0 or ΔpH>1.0) in the alkalization group was significantly longer than that of the control group. CONCLUSION Alkalization therapy may enhance the effects of chemotherapy in patients with advanced pancreatic cancer.
Collapse
Affiliation(s)
| | - Takashi Ito
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Shinji Uemoto
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
39
|
Zhang Y, Zhang T, Yang W, Chen H, Geng X, Li G, Chen H, Wang Y, Li L, Sun B. Beneficial Diets and Pancreatic Cancer: Molecular Mechanisms and Clinical Practice. Front Oncol 2021; 11:630972. [PMID: 34123787 PMCID: PMC8193730 DOI: 10.3389/fonc.2021.630972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/19/2021] [Indexed: 01/02/2023] Open
Abstract
Pancreatic cancer (PC) is a malignant tumor with high invasiveness, easy metastatic ability, and chemoresistance. Patients with PC have an extremely low survival rate due to the difficulty in early diagnosis. It is estimated that nearly 90% of PC cases are caused by environmental risk factors. Approximately 50% of PC cases are induced by an unhealthy diet, which can be avoided. Given this large attribution to diet, numerous studies have assessed the relationship between various dietary factors and PC. This article reviews three beneficial diets: a ketogenic diet (KD), a Mediterranean diet (MD), and a low-sugar diet. Their composition and impact mechanism are summarized and discussed. The associations between these three diets and PC were analyzed, and we aimed to provide more help and new insights for the prevention and treatment of PC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbo Yang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| |
Collapse
|
40
|
Renner O, Burkard M, Michels H, Vollbracht C, Sinnberg T, Venturelli S. Parenteral high‑dose ascorbate - A possible approach for the treatment of glioblastoma (Review). Int J Oncol 2021; 58:35. [PMID: 33955499 PMCID: PMC8104923 DOI: 10.3892/ijo.2021.5215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
For glioblastoma, the treatment with standard of care therapy comprising resection, radiation, and temozolomide results in overall survival of approximately 14-18 months after initial diagnosis. Even though several new therapy approaches are under investigation, it is difficult to achieve life prolongation and/or improvement of patient's quality of life. The aggressiveness and progression of glioblastoma is initially orchestrated by the biological complexity of its genetic phenotype and ability to respond to cancer therapy via changing its molecular patterns, thereby developing resistance. Recent clinical studies of pharmacological ascorbate have demonstrated its safety and potential efficacy in different cancer entities regarding patient's quality of life and prolongation of survival. In this review article, the actual glioblastoma treatment possibilities are summarized, the evidence for pharmacological ascorbate in glioblastoma treatment is examined and questions are posed to identify current gaps of knowledge regarding accessibility of ascorbate to the tumor area. Experiments with glioblastoma cell lines and tumor xenografts have demonstrated that high-dose ascorbate induces cytotoxicity and oxidative stress largely selectively in malignant cells compared to normal cells suggesting ascorbate as a potential therapeutic agent. Further investigations in larger cohorts and randomized placebo-controlled trials should be performed to confirm these findings as well as to improve delivery strategies to the brain, through the inherent barriers and ultimately to the malignant cells.
Collapse
Affiliation(s)
- Olga Renner
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| | - Holger Michels
- Pascoe Pharmazeutische Praeparate GmbH, D‑35394 Giessen, Germany
| | | | - Tobias Sinnberg
- Department of Dermatology, University Hospital Tuebingen, D‑72076 Tuebingen, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| |
Collapse
|
41
|
Carroll RS, Buettner GR, Cullen JJ. Pharmacological ascorbate and use in pancreatic cancer. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Berretta M, Quagliariello V, Maurea N, Di Francia R, Sharifi S, Facchini G, Rinaldi L, Piezzo M, Manuela C, Nunnari G, Montopoli M. Multiple Effects of Ascorbic Acid against Chronic Diseases: Updated Evidence from Preclinical and Clinical Studies. Antioxidants (Basel) 2020; 9:antiox9121182. [PMID: 33256059 PMCID: PMC7761324 DOI: 10.3390/antiox9121182] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Severe disease commonly manifests as a systemic inflammatory process. Inflammation is associated withthe enhanced production of reactive oxygen and nitrogen species and with a marked reduction in the plasma concentrations of protective antioxidant molecules. This imbalance gives rise to oxidative stress, which is greater in patients with more severe conditions such as sepsis, cancer, cardiovascular disease, acute respiratory distress syndrome, and burns. In these patients, oxidative stress can trigger cell, tissue, and organ damage, thus increasing morbidity and mortality. Ascorbic acid (ASC) is a key nutrient thatserves as an antioxidant and a cofactor for numerous enzymatic reactions. However, humans, unlike most mammals, are unable to synthesize it. Consequently, ASC must be obtained through dietary sources, especially fresh fruit and vegetables. The value of administering exogenous micronutrients, to reestablish antioxidant concentrations in patients with severe disease, has been recognized for decades. Despite the suggestion that ASC supplementation may reduce oxidative stress and prevent several chronic conditions, few large, randomized clinical trials have tested it in patients with severe illness. This article reviews the recent literature on the pharmacological profile of ASC and the role of its supplementation in critically ill patients.
Collapse
Affiliation(s)
- Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
- Correspondence:
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), 60126 Ancona, Italy;
| | - Saman Sharifi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| | - Gaetano Facchini
- Division of Medical Oncology, “S. Maria delle Grazie” Hospital—ASL Napoli 2 Nord, 80126 Pozzuoli, Italy;
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 80121 Napoli, Italy;
| | - Michela Piezzo
- Division of Breast Medical Oncology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy;
| | - Ceccarelli Manuela
- Division of Infectious Disease, University of Catania, 95122 Catania, Italy;
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| |
Collapse
|
43
|
High-Dose Vitamin C Tends to Kill Colorectal Cancer with High MALAT1 Expression. JOURNAL OF ONCOLOGY 2020; 2020:2621308. [PMID: 33293956 PMCID: PMC7714606 DOI: 10.1155/2020/2621308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
Background Vitamin C (Vc) deficiency is frequently observed in cancer sites and has been proposed to have an antitumor effect. However, the mechanism of Vc's killing effect is not clear. Besides, epigenetic alterations exhibit significant effects on colorectal cancer (CRC). This study aimed to explore the mechanism of Vc's killing effect and its association to epigenetic alterations in CRC. Methods Cell morphology, apoptosis, proliferation, and cycle were assayed to test Vc's suppressive function in CRC cell lines. Xenograft and peritoneal implantation metastasis models were performed to evaluate the high-dose Vc's inhibitory effect on tumor growth and metastasis. Immunohistochemistry was used to measure CD31 expression in solid tumors. A literature summary was applied for screening differently expressed long noncoding RNAs (lncRNAs) in CRC tissues and was closely associated with CRC progression. The qPCR was used to detect the expression of these lncRNAs. The association between Vc and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was evaluated in MALAT1-transfected CRC cells and a xenograft model. Results Vc was confirmed to function in proliferation suppression, apoptosis induction, and S phase arresting in CRC cell lines. High-dose Vc, but not physiologically low-dose Vc, was identified as a suppressive function on tumor growth in xenograft models and an inhibitory effect on implantation metastasis in peritoneal implantation metastasis mice. Furthermore, a consistent downregulation of MALAT1 induced by Vc was verified among CRC cell lines and tumor tissues from both mouse models. Finally, experiments on MALAT1-knockdown CRC cells and its xenograft model suggested that Vc had a tendency in killing CRC with high MALAT1 expression. Conclusions Our findings demonstrate that high-dose Vc has more efficiency in suppressing CRC with higher MALAT1 expression. It gives high-dose Vc the possibility of a better curative effect on CRC with overexpressed MALAT1. Further clinical studies are still needed.
Collapse
|
44
|
Cushing CM, Petronek MS, Bodeker KL, Vollstedt S, Brown HA, Opat E, Hollenbeck NJ, Shanks T, Berg DJ, Smith BJ, Smith MC, Monga V, Furqan M, Howard MA, Greenlee JD, Mapuskar KA, St-Aubin J, Flynn RT, Cullen JJ, Buettner GR, Spitz DR, Buatti JM, Allen BG, Magnotta VA. Magnetic resonance imaging (MRI) of pharmacological ascorbate-induced iron redox state as a biomarker in subjects undergoing radio-chemotherapy. Redox Biol 2020; 38:101804. [PMID: 33260088 PMCID: PMC7708874 DOI: 10.1016/j.redox.2020.101804] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Pharmacological ascorbate (P-AscH-) combined with standard of care (SOC) radiation and temozolomide is being evaluated in a phase 2 clinical trial (NCT02344355) in the treatment of glioblastoma (GBM). Previously published data demonstrated that paramagnetic iron (Fe3+) catalyzes ascorbate's oxidation to form diamagnetic iron (Fe2+). Because paramagnetic Fe3+ may influence relaxation times observed in MR imaging, quantitative MR imaging of P-AscH--induced changes in redox-active Fe was assessed as a biomarker for therapy response. Gel phantoms containing either Fe3+ or Fe2+ were imaged with T2* and quantitative susceptibility mapping (QSM). Fifteen subjects receiving P-AscH- plus SOC underwent T2* and QSM imaging four weeks into treatment. Subjects were scanned: pre-P-AscH- infusion, post-P-AscH- infusion, and post-radiation (3-4 h between scans). Changes in T2* and QSM relaxation times in tumor and normal tissue were calculated and compared to changes in Fe3+ and Fe2+ gel phantoms. A GBM mouse model was used to study the relationship between the imaging findings and the labile iron pool. Phantoms containing Fe3+ demonstrated detectable changes in T2* and QSM relaxation times relative to Fe2+ phantoms. Compared to pre-P-AscH-, GBM T2* and QSM imaging were significantly changed post-P-AscH- infusion consistent with conversion of Fe3+ to Fe2+. No significant changes in T2* or QSM were observed in normal brain tissue. There was moderate concordance between T2* and QSM changes in both progression free survival and overall survival. The GBM mouse model showed similar results with P-AscH- inducing greater changes in tumor labile iron pools compared to the normal tissue. CONCLUSIONS: T2* and QSM MR-imaging responses are consistent with P-AscH- reducing Fe3+ to Fe2+, selectively in GBM tumor volumes and represent a potential biomarker of response. This study is the first application using MR imaging in humans to measure P-AscH--induced changes in redox-active iron.
Collapse
Affiliation(s)
- Cameron M Cushing
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA
| | - Michael S Petronek
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA
| | - Kellie L Bodeker
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA
| | - Sandy Vollstedt
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA
| | - Heather A Brown
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA
| | - Emyleigh Opat
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA
| | - Nancy J Hollenbeck
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA
| | - Thomas Shanks
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA
| | - Daniel J Berg
- Division of Hematology and Oncology, Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Brian J Smith
- Department of Biostatistics, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA
| | - Mark C Smith
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA
| | - Varun Monga
- Division of Hematology and Oncology, Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Muhammad Furqan
- Division of Hematology and Oncology, Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Jeremy D Greenlee
- Department of Neurosurgery, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA
| | - Joel St-Aubin
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA
| | - Ryan T Flynn
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA
| | - Joseph J Cullen
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA, USA; Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA; Holden Comprehensive Cancer Center, Iowa City, IA, USA; Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA
| | - John M Buatti
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA.
| | - Vincent A Magnotta
- Department of Radiology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, USA.
| |
Collapse
|
45
|
Codini M. Why Vitamin C Could Be an Excellent Complementary Remedy to Conventional Therapies for Breast Cancer. Int J Mol Sci 2020; 21:ijms21218397. [PMID: 33182353 PMCID: PMC7664876 DOI: 10.3390/ijms21218397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The most frequent cancer in women is breast cancer, which is a major cause of death. Currently, there are many pharmacological therapies that have made possible the cure and resolution of this tumor. However, these therapies are accompanied by numerous collateral effects that influence the quality of life (QoL) of the patients to varying degrees. For this reason, attention is turning to the use of complementary medicine to improve QoL. In particular, there are increased trials of intravenous injection of vitamin C at high doses to enhance the antitumor activity of drugs and/or decrease their side effects. This review intends to underline the anticancer mechanisms of vitamin C that could explain its efficacy for treating breast cancer, and why the use of vitamin C at high doses could help patients with breast cancer to enhance the efficacy of pharmacological therapies and/or decrease their side effects.
Collapse
Affiliation(s)
- Michela Codini
- Department of Pharmaceutical Science, University of Perugia, 06100 Perugia, Italy
| |
Collapse
|
46
|
Jentzsch V, Davis JAA, Djamgoz MBA. Pancreatic Cancer (PDAC): Introduction of Evidence-Based Complementary Measures into Integrative Clinical Management. Cancers (Basel) 2020; 12:E3096. [PMID: 33114159 PMCID: PMC7690843 DOI: 10.3390/cancers12113096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
The most common form of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), which comprises some 85% of all cases. Currently, this is the fourth highest cause of cancer mortality worldwide and its incidence is rising steeply. Commonly applied clinical therapies offer limited chance of a lasting cure and the five-year survival rate is one of the lowest of the commonly occurring cancers. This review cultivates the hypothesis that the best management of PDAC would be possible by integrating 'western' clinical medicine with evidence-based complementary measures. Protecting the liver, where PDAC frequently first spreads, is also given some consideration. Overall, the complementary measures are divided into three groups: dietary factors, nutraceutical agents and lifestyle. In turn, dietary factors are considered as general conditioners, multi-factorial foodstuffs and specific compounds. The general conditioners are alkalinity, low-glycemic index and low-cholesterol. The multi-factorial foodstuffs comprise red meat, fish, fruit/vegetables, dairy, honey and coffee. The available evidence for the beneficial effects of the specific dietary and nutraceutical agents was considered at four levels (in order of prominence): clinical trials, meta-analyses, in vivo tests and in vitro studies. Thus, 9 specific agents were identified (6 dietary and 3 nutraceutical) as acceptable for integration with gemcitabine chemotherapy, the first-line treatment for pancreatic cancer. The specific dietary agents were the following: Vitamins A, C, D and E, genistein and curcumin. As nutraceutical compounds, propolis, triptolide and cannabidiol were accepted. The 9 complementary agents were sub-grouped into two with reference to the main 'hallmarks of cancer'. Lifestyle factors covered obesity, diabetes, smoking, alcohol and exercise. An integrative treatment regimen was devised for the management of PDAC patients. This involved combining first-line gemcitabine chemotherapy with the two sub-groups of complementary agents alternately in weekly cycles. The review concludes that integrated management currently offers the best patient outcome. Opportunities to be investigated in the future include emerging modalities, precision medicine, the nerve input to tumors and, importantly, clinical trials.
Collapse
Affiliation(s)
- Valerie Jentzsch
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (V.J.); (J.A.A.D.)
- Business School, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - James A. A. Davis
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (V.J.); (J.A.A.D.)
| | - Mustafa B. A. Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (V.J.); (J.A.A.D.)
- Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
47
|
Kovina AP, Petrova NV, Razin SV, Kantidze OL. L-Ascorbic Acid in the Epigenetic Regulation of Cancer Development and Stem Cell Reprogramming. Acta Naturae 2020; 12:5-14. [PMID: 33456974 PMCID: PMC7800602 DOI: 10.32607/actanaturae.11060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/07/2020] [Indexed: 11/30/2022] Open
Abstract
Recent studies have significantly expanded our understanding of the mechanisms of L-ascorbic acid (ASC, vitamin C) action, leading to the emergence of several hypotheses that validate the possibility of using ASC in clinical practice. ASC may be considered an epigenetic drug capable of reducing aberrant DNA and histone hypermethylation, which could be helpful in the treatment of some cancers and neurodegenerative diseases. The clinical potency of ASC is also associated with regenerative medicine; in particular with the production of iPSCs. The effect of ASC on somatic cell reprogramming is most convincingly explained by a combined enhancement of the activity of the enzymes involved in the active demethylation of DNA and histones. This review describes how ASC can affect the epigenetic status of a cell and how it can be used in anticancer therapy and stem cell reprogramming.
Collapse
Affiliation(s)
- A. P. Kovina
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - N. V. Petrova
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - S. V. Razin
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - O. L. Kantidze
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
48
|
Confeld MI, Mamnoon B, Feng L, Jensen-Smith H, Ray P, Froberg J, Kim J, Hollingsworth MA, Quadir M, Choi Y, Mallik S. Targeting the Tumor Core: Hypoxia-Responsive Nanoparticles for the Delivery of Chemotherapy to Pancreatic Tumors. Mol Pharm 2020; 17:2849-2863. [PMID: 32521162 DOI: 10.1021/acs.molpharmaceut.0c00247] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), early onset of hypoxia triggers remodeling of the extracellular matrix, epithelial-to-mesenchymal transition, increased cell survival, the formation of cancer stem cells, and drug resistance. Hypoxia in PDAC is also associated with the development of collagen-rich, fibrous extracellular stroma (desmoplasia), resulting in severely impaired drug penetration. To overcome these daunting challenges, we created polymer nanoparticles (polymersomes) that target and penetrate pancreatic tumors, reach the hypoxic niches, undergo rapid structural destabilization, and release the encapsulated drugs. In vitro studies indicated a high cellular uptake of the polymersomes and increased cytotoxicity of the drugs under hypoxia compared to unencapsulated drugs. The polymersomes decreased tumor growth by nearly 250% and significantly increased necrosis within the tumors by 60% in mice compared to untreated controls. We anticipate that these polymer nanoparticles possess a considerable translational potential for delivering drugs to solid hypoxic tumors.
Collapse
Affiliation(s)
- Matthew I Confeld
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Babak Mamnoon
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Li Feng
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Heather Jensen-Smith
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Priyanka Ray
- Coatings and Polymeric Materials Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - James Froberg
- Physics Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Jiha Kim
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Michael A Hollingsworth
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Mohiuddin Quadir
- Coatings and Polymeric Materials Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Yongki Choi
- Physics Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Sanku Mallik
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
49
|
Abiri B, Vafa M. Vitamin C and Cancer: The Role of Vitamin C in Disease Progression and Quality of Life in Cancer Patients. Nutr Cancer 2020; 73:1282-1292. [PMID: 32691657 DOI: 10.1080/01635581.2020.1795692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Much attention has been put on antioxidants as potential preventive and therapeutic agents against cancer. Vitamin C, an important antioxidant with anti-inflammatory and immune system enhancement features, could provide protection against cancer. However, experimental and epidemiologic evidence on vitamin C and cancer risk are still indefinite. Substantial literature reports that cancer patients experience vitamin C deficiency associated with decreased oral intake, infection, inflammation, disease processes, and treatments such as radiation, chemotherapy, and surgery. Studies demonstrate associations between IVC and inflammation biomarkers and propose some amelioration in symptoms, with a possible advantage in quality of life (QoL) when intravenous vitamin C (IVC) alone or in combination with oral vitamin C is administered in oncologic care. While, the anticancer impact of high doses of IVC remains debatable in spite of growing evidence that high dose vitamin C shows anti-tumorigenic activity by elevating the amount of reactive oxygen species (ROS) in cancer cells without meaningful toxicities. Hence, there is an urgent requirement for rigorous and well-controlled assessments of IVC as an adjuvant therapy for cancer before clear conclusions can be drawn. Thus, more clinical trials are required to determine the additive impact of high dose vitamin C in cancer patients.
Collapse
Affiliation(s)
- Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Lykkesfeldt J. On the effect of vitamin C intake on human health: How to (mis)interprete the clinical evidence. Redox Biol 2020; 34:101532. [PMID: 32535545 PMCID: PMC7296342 DOI: 10.1016/j.redox.2020.101532] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
For decades, the potential beneficial effect of vitamin C on human health-beyond that of preventing scurvy-has been subject of much controversy. Hundreds of articles have appeared either in support of increased vitamin C intake through diet or supplements or rejecting the hypothesis that increased intake of vitamin C or supplementation may influence morbidity and mortality. The chemistry and pharmacology of vitamin C is complex and has unfortunately rarely been taken into account when designing clinical studies testing its effect on human health. However, ignoring its chemical lability, dose-dependent absorption and elimination kinetics, distribution via active transport, or complex dose-concentration-response relationships inevitably leads to poor study designs, inadequate inclusion and exclusion criteria and misinterpretation of results. The present review outlines the differences in vitamin C pharmacokinetics compared to normal low molecular weight drugs, focusses on potential pitfalls in study design and data interpretation, and re-examines major clinical studies of vitamin C in light of these.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Faculty of Health & Medical Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark.
| |
Collapse
|