1
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Zbucka-Krętowska M. The Role of Oxidative Stress in Trisomy 21 Phenotype. Cell Mol Neurobiol 2023; 43:3943-3963. [PMID: 37819608 PMCID: PMC10661812 DOI: 10.1007/s10571-023-01417-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023]
Abstract
Extensive research has been conducted to gain a deeper understanding of the deregulated metabolic pathways in the development of trisomy 21 (T21) or Down syndrome. This research has shed light on the hypothesis that oxidative stress plays a significant role in the manifestation of the T21 phenotype. Although in vivo studies have shown promising results in mitigating the detrimental effects of oxidative stress, there is currently a lack of introduced antioxidant treatment options targeting cognitive impairments associated with T21. To address this gap, a comprehensive literature review was conducted to provide an updated overview of the involvement of oxidative stress in T21. The review aimed to summarize the insights into the pathogenesis of the Down syndrome phenotype and present the findings of recent innovative research that focuses on improving cognitive function in T21 through various antioxidant interventions. By examining the existing literature, this research seeks to provide a holistic understanding of the role oxidative stress plays in the development of T21 and to explore novel approaches that target multiple aspects of antioxidant intervention to improve cognitive function in individuals with Down syndrome. The guides -base systematic review process (Hutton et al. 2015).
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland.
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, ul. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland.
| |
Collapse
|
2
|
Murotomi K, Umeno A, Shichiri M, Tanito M, Yoshida Y. Significance of Singlet Oxygen Molecule in Pathologies. Int J Mol Sci 2023; 24:ijms24032739. [PMID: 36769060 PMCID: PMC9917472 DOI: 10.3390/ijms24032739] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species, including singlet oxygen, play an important role in the onset and progression of disease, as well as in aging. Singlet oxygen can be formed non-enzymatically by chemical, photochemical, and electron transfer reactions, or as a byproduct of endogenous enzymatic reactions in phagocytosis during inflammation. The imbalance of antioxidant enzymes and antioxidant networks with the generation of singlet oxygen increases oxidative stress, resulting in the undesirable oxidation and modification of biomolecules, such as proteins, DNA, and lipids. This review describes the molecular mechanisms of singlet oxygen production in vivo and methods for the evaluation of damage induced by singlet oxygen. The involvement of singlet oxygen in the pathogenesis of skin and eye diseases is also discussed from the biomolecular perspective. We also present our findings on lipid oxidation products derived from singlet oxygen-mediated oxidation in glaucoma, early diabetes patients, and a mouse model of bronchial asthma. Even in these diseases, oxidation products due to singlet oxygen have not been measured clinically. This review discusses their potential as biomarkers for diagnosis. Recent developments in singlet oxygen scavengers such as carotenoids, which can be utilized to prevent the onset and progression of disease, are also described.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Aya Umeno
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan
- Correspondence: ; Tel.: +81-72-751-8234
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | |
Collapse
|
3
|
Ishihara K, Kawashita E, Akiba S. Bio-Metal Dyshomeostasis-Associated Acceleration of Aging and Cognitive Decline in Down Syndrome. Biol Pharm Bull 2023; 46:1169-1175. [PMID: 37661395 DOI: 10.1248/bpb.b23-00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Down syndrome (DS), which is caused by triplication of human chromosome 21 (Hsa21), exhibits some physical signs of accelerated aging, such as graying hair, wrinkles and menopause at an unusually young age. Development of early-onset Alzheimer's disease, which is frequently observed in adults with DS, is also suggested to occur due to accelerated aging of the brain. Several Hsa21 genes are suggested to be responsible for the accelerated aging in DS. In this review, we summarize these candidate genes and possible molecular mechanisms, and discuss the related key factors. In particular, we focus on copper, an essential trace element, as a key factor in the accelerated aging in DS. In addition, the physiological significance of brain copper accumulation in cognitive impairment is discussed. We herein provide our hypothesis on the copper dyshomeostasis-based pathophysiology of DS.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry (Currently known as Laboratory of Pathological Biochemistry), Kyoto Pharmaceutical University
| | - Eri Kawashita
- Department of Pathological Biochemistry (Currently known as Laboratory of Pathological Biochemistry), Kyoto Pharmaceutical University
| | - Satoshi Akiba
- Department of Pathological Biochemistry (Currently known as Laboratory of Pathological Biochemistry), Kyoto Pharmaceutical University
| |
Collapse
|
4
|
Ganguly BB, Kadam NN. Therapeutics for mitochondrial dysfunction-linked diseases in Down syndrome. Mitochondrion 2023; 68:25-43. [PMID: 36371073 DOI: 10.1016/j.mito.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Genome-wide deregulation contributes to mitochondrial dysfunction and impairment in oxidative phosphorylation (OXPHOS) mechanism resulting in oxidative stress, increased production of reactive oxygen species (ROS) and cell death in individuals with Down syndrome (DS). The cells, which require more energy, such as muscles, brain and heart are greatly affected. Impairment in mitochondrial network has a direct link with patho-mechanism at cellular and systemic levels at the backdrop of generalized metabolic perturbations in individuals with DS. Myriads of clinico-phenotypic features, including intellectual disability, early aging and neurodegeneration, and Alzheimer disease (AD)-related dementia are inevitable in DS-population where mitochondrial dysfunctions play the central role. Collectively, the mitochondrial abnormalities and altered energy metabolism perturbs several signaling pathways, particularly related to neurogenesis, which are directly associated with cognitive development and early onset of AD in individuals with DS. Therefore, therapeutic challenges for amelioration of the mitochondrial defects were perceived to improve the quality of life of the DS population. A number of pharmacologically active natural compounds such as polyphenols, antioxidants and flavonoids have shown convincing outcome for reversal of the dysfunctional mitochondrial network and oxidative metabolism, and improvement in intellectual skill in mouse models of DS and humans with DS.
Collapse
Affiliation(s)
- Bani Bandana Ganguly
- MGM New Bombay Hospital and MGM Institute of Health Sciences, Navi Mumbai, India.
| | - Nitin N Kadam
- MGM New Bombay Hospital and MGM Institute of Health Sciences, Navi Mumbai, India
| |
Collapse
|
5
|
Shichiri M, Suzuki H, Isegawa Y, Tamai H. Application of regulation of reactive oxygen species and lipid peroxidation to disease treatment. J Clin Biochem Nutr 2023; 72:13-22. [PMID: 36777080 PMCID: PMC9899923 DOI: 10.3164/jcbn.22-61] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/02/2022] [Indexed: 11/05/2022] Open
Abstract
Although many diseases in which reactive oxygen species (ROS) and free radicals are involved in their pathogenesis are known, and antioxidants that effectively capture ROS have been identified and developed, there are only a few diseases for which antioxidants have been used for treatment. Here, we discuss on the following four concepts regarding the development of applications for disease treatment by regulating ROS, free radicals, and lipid oxidation with the findings of our research and previous reports. Concept 1) Utilization of antioxidants for disease treatment. In particular, the importance of the timing of starting antioxidant will be discussed. Concept 2) Therapeutic strategies using ROS and free radicals. Methods of inducing ferroptosis, which has been advocated as an iron-dependent cell death, are mentioned. Concept 3) Treatment with drugs that inhibit the synthesis of lipid mediators. In addition to the reduction of inflammatory lipid mediators by inhibiting cyclooxygenase and leukotriene synthesis, we will introduce the possibility of disease treatment with lipoxygenase inhibitors. Concept 4) Disease treatment by inducing the production of useful lipid mediators for disease control. We describe the treatment of inflammatory diseases utilizing pro-resolving mediators and propose potential compounds that activate lipoxygenase to produce these beneficial mediators.
Collapse
Affiliation(s)
- Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Yuji Isegawa
- Department of Food Sciences and Nutrition, Mukogawa Women’s University, 6-46 Ikebiraki, Nishinomiya, Hyogo 663-8558, Japan
| | - Hiroshi Tamai
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
6
|
Oxidative-Stress-Associated Proteostasis Disturbances and Increased DNA Damage in the Hippocampal Granule Cells of the Ts65Dn Model of Down Syndrome. Antioxidants (Basel) 2022; 11:antiox11122438. [PMID: 36552646 PMCID: PMC9774833 DOI: 10.3390/antiox11122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) is one of the neuropathological mechanisms responsible for the deficits in cognition and neuronal function in Down syndrome (DS). The Ts65Dn (TS) mouse replicates multiple DS phenotypes including hippocampal-dependent learning and memory deficits and similar brain oxidative status. To better understand the hippocampal oxidative profile in the adult TS mouse, we analyzed cellular OS-associated alterations in hippocampal granule cells (GCs), a neuronal population that plays an important role in memory formation and that is particularly affected in DS. For this purpose, we used biochemical, molecular, immunohistochemical, and electron microscopy techniques. Our results indicate that TS GCs show important OS-associated alterations in the systems essential for neuronal homeostasis: DNA damage response and proteostasis, particularly of the proteasome and lysosomal system. Specifically, TS GCs showed: (i) increased DNA damage, (ii) reorganization of nuclear proteolytic factories accompanied by a decline in proteasome activity and cytoplasmic aggregation of ubiquitinated proteins, (iii) formation of lysosomal-related structures containing lipid droplets of cytotoxic peroxidation products, and (iv) mitochondrial ultrastructural defects. These alterations could be implicated in enhanced cellular senescence, accelerated aging and neurodegeneration, and the early development of Alzheimer's disease neuropathology present in TS mice and the DS population.
Collapse
|
7
|
Scarfò G, Piccarducci R, Daniele S, Franzoni F, Martini C. Exploring the Role of Lipid-Binding Proteins and Oxidative Stress in Neurodegenerative Disorders: A Focus on the Neuroprotective Effects of Nutraceutical Supplementation and Physical Exercise. Antioxidants (Basel) 2022; 11:2116. [PMID: 36358488 PMCID: PMC9686611 DOI: 10.3390/antiox11112116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
The human brain is primarily composed of lipids, and their homeostasis is crucial to carry on normal neuronal functions. In order to provide an adequate amount of lipid transport in and out of the central nervous system, organisms need a set of proteins able to bind them. Therefore, alterations in the structure or function of lipid-binding proteins negatively affect brain homeostasis, as well as increase inflammation and oxidative stress with the consequent risk of neurodegeneration. In this regard, lifestyle changes seem to be protective against neurodegenerative processes. Nutraceutical supplementation with antioxidant molecules has proven to be useful in proving cognitive functions. Additionally, regular physical activity seems to protect neuronal vitality and increases antioxidant defenses. The aim of the present review was to investigate mechanisms that link lipid-binding protein dysfunction and oxidative stress to cognitive decline, also underlining the neuroprotective effects of diet and exercise.
Collapse
Affiliation(s)
- Giorgia Scarfò
- Department of Clinical and Experimental Medicine, Division of General Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Rehabilitative Medicine “Sport and Anatomy”, University of Pisa, 56126 Pisa, Italy
| | | | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, Division of General Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Rehabilitative Medicine “Sport and Anatomy”, University of Pisa, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
8
|
Stagni F, Bartesaghi R. The Challenging Pathway of Treatment for Neurogenesis Impairment in Down Syndrome: Achievements and Perspectives. Front Cell Neurosci 2022; 16:903729. [PMID: 35634470 PMCID: PMC9130961 DOI: 10.3389/fncel.2022.903729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS), also known as trisomy 21, is a genetic disorder caused by triplication of Chromosome 21. Gene triplication may compromise different body functions but invariably impairs intellectual abilities starting from infancy. Moreover, after the fourth decade of life people with DS are likely to develop Alzheimer’s disease. Neurogenesis impairment during fetal life stages and dendritic pathology emerging in early infancy are thought to be key determinants of alterations in brain functioning in DS. Although the progressive improvement in medical care has led to a notable increase in life expectancy for people with DS, there are currently no treatments for intellectual disability. Increasing evidence in mouse models of DS reveals that pharmacological interventions in the embryonic and neonatal periods may greatly benefit brain development and cognitive performance. The most striking results have been obtained with pharmacotherapies during embryonic life stages, indicating that it is possible to pharmacologically rescue the severe neurodevelopmental defects linked to the trisomic condition. These findings provide hope that similar benefits may be possible for people with DS. This review summarizes current knowledge regarding (i) the scope and timeline of neurogenesis (and dendritic) alterations in DS, in order to delineate suitable windows for treatment; (ii) the role of triplicated genes that are most likely to be the key determinants of these alterations, in order to highlight possible therapeutic targets; and (iii) prenatal and neonatal treatments that have proved to be effective in mouse models, in order to rationalize the choice of treatment for human application. Based on this body of evidence we will discuss prospects and challenges for fetal therapy in individuals with DS as a potential means of drastically counteracting the deleterious effects of gene triplication.
Collapse
Affiliation(s)
- Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- *Correspondence: Renata Bartesaghi,
| |
Collapse
|
9
|
Buczyńska A, Sidorkiewicz I, Hameed A, Krętowski AJ, Zbucka-Krętowska M. Future Perspectives in Oxidative Stress in Trisomy 13 and 18 Evaluation. J Clin Med 2022; 11:jcm11071787. [PMID: 35407395 PMCID: PMC8999694 DOI: 10.3390/jcm11071787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Autosomal aneuploidies are the most frequently occurring congenital abnormalities and are related to many metabolic disorders, hormonal dysfunctions, neurotransmitter abnormalities, and intellectual disabilities. Trisomies are generated by an error of chromosomal segregation during cell division. Accumulating evidence has shown that deregulated gene expression resulting from the triplication of chromosomes 13 and 18 is associated with many disturbed cellular processes. Moreover, a disturbed oxidative stress status may be implicated in the occurrence of fetal malformations. Therefore, a literature review was undertaken to provide novel insights into the evaluation of trisomy 13 (T13) and 18 (T18) pathogeneses, with a particular concern on the oxidative stress. Corresponding to the limited literature data focused on factors leading to T13 and T18 phenotype occurrence, the importance of oxidative stress evaluation in T13 and T18 could enable the determination of subsequent disturbed metabolic pathways, highlighting the related role of mitochondrial dysfunction or epigenetics. This review illustrates up-to-date T13 and T18 research and discusses the strengths, limitations, and possible directions for future studies. The progressive unification of trisomy-related research protocols might provide potential medical targets in the future along with the implementation of the foundation of modern prenatal medicine.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
- Correspondence: (A.B.); (M.Z.-K.); Tel.: +48-85-746-85-13 (A.B.); +48-85-746-83-36 (M.Z.-K.)
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
| | - Ahsan Hameed
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: (A.B.); (M.Z.-K.); Tel.: +48-85-746-85-13 (A.B.); +48-85-746-83-36 (M.Z.-K.)
| |
Collapse
|
10
|
Cirsium japonicum var. Maackii Improves Cognitive Impairment under Amyloid Beta25-35-Induced Alzheimer’s Disease Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4513998. [PMID: 35036433 PMCID: PMC8759886 DOI: 10.1155/2022/4513998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/20/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Abnormal production and degradation of amyloid beta (Aβ) in the brain lead to oxidative stress and cognitive impairment in Alzheimer’s disease (AD). Cirsium japonicum var. maackii (CJM) is widely used as an herbal medicine and has antibacterial and anti-inflammatory properties. This study focused on the protective effect of the ethyl acetate fraction from CJM (ECJM) on Aβ25-35-induced control mice. In the T-maze and novel object recognition test, ECJM provided higher spatial memory and object recognition compared to Aβ25-35 treatment alone. In the Morris water maze test, ECJM-administered mice showed greater learning and memory abilities than Aβ25-35-induced control mice. Additionally, ECJM-administered mice experienced inhibited lipid peroxidation and nitric oxide production in a dose-dependent manner. The present study indicates that ECJM improves cognitive impairment by inhibiting oxidative stress in Aβ25-35-induced mice. Therefore, CJM may be useful for the treatment of AD and may be a potential material for functional foods.
Collapse
|
11
|
Bartesaghi R, Vicari S, Mobley WC. Prenatal and Postnatal Pharmacotherapy in Down Syndrome: The Search to Prevent or Ameliorate Neurodevelopmental and Neurodegenerative Disorders. Annu Rev Pharmacol Toxicol 2022; 62:211-233. [PMID: 34990205 PMCID: PMC9632639 DOI: 10.1146/annurev-pharmtox-041521-103641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Those with Down syndrome (DS)-trisomy for chromosome 21-are routinely impacted by cognitive dysfunction and behavioral challenges in children and adults and Alzheimer's disease in older adults. No proven treatments specifically address these cognitive or behavioral changes. However, advances in the establishment of rodent models and human cell models promise to support development of such treatments. A research agenda that emphasizes the identification of overexpressed genes that contribute demonstrably to abnormalities in cognition and behavior in model systems constitutes a rational next step. Normalizing expression of such genes may usher in an era of successful treatments applicable across the life span for those with DS.
Collapse
Affiliation(s)
- Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Vicari
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, 00168 Rome, Italy,Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165-00146 Rome, Italy
| | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
12
|
Ishihara K. The accumulation of copper in the brain of Down syndrome promotes oxidative stress: possible mechanism underlying cognitive impairment. J Clin Biochem Nutr 2022; 71:16-21. [PMID: 35903608 PMCID: PMC9309086 DOI: 10.3164/jcbn.21-155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| |
Collapse
|
13
|
Shichiri M, Ishida N, Aoki Y, Koike T, Hagihara Y. Stress-activated leukocyte 12/15-lipoxygenase metabolite enhances struggle behaviour and tocotrienols relieve stress-induced behaviour alteration. Free Radic Biol Med 2021; 175:171-183. [PMID: 34474105 DOI: 10.1016/j.freeradbiomed.2021.08.236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Abstract
Stress induces emotional arousal causing anxiety, irritability, exaggerated startle behaviour, and hypervigilance observed in patients with trauma and stress-related mental disorders, including acute stress disorder and post-traumatic stress disorder. Central norepinephrine release promotes stress-induced emotional arousal. However, the regulator of emotional arousal remains unknown. Here, we show that the arachidonate-derived metabolite produced by stress-activated leukocyte 12/15-lipoxygenase is remarkably elevated in the plasma and upregulates the central norepinephrine release, resulting in the enhancement of the struggle behaviour (= escape behaviour) in the tail suspension test. Struggle behaviour is mimicking a symptom of emotional arousal. This stress-induced struggle behaviour was absent in 12/15-lipoxygenase deficient mice; however, intravenous administration of a 12/15-lipoxygenase metabolite to these mice after stress exposure rekindled the struggle behaviour. Furthermore, tocotrienols and geranylgeraniol reduced stress-induced 12/15-lipoxygenase metabolite production and suppressed the struggle behaviour. Our findings indicate that arachidonate-derived 12/15-lipoxygenase metabolite is involved in the regulation of stress-enhanced central norepinephrine release and struggle behaviour. In addition, we propose 12/15-lipoxygenase as a potential therapeutic target for the treatment of emotional arousal observed in stress-related mental disorders.
Collapse
Affiliation(s)
- Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), 1-1-1 Higashi, Tsukuba-shi, Ibaraki, 305-8562, Japan.
| | - Noriko Ishida
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Yoshinori Aoki
- Healthcare Solutions Unit, Life Solutions Sector, Amenity Life Division, Advanced Solutions Domain, Mitsubishi Chemical Corporation, 1-1-1, Marunouchi, Chiyoda-ku, Tokyo, 100-8251, Japan
| | - Taisuke Koike
- Strategy Department, Advanced Solutions Planning Division, Advanced Solutions Domain, Mitsubishi Chemical Corporation, 1-1-1, Marunouchi, Chiyoda-ku, Tokyo, 100-8251, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| |
Collapse
|
14
|
Toshikawa H, Ikenaka A, Li L, Nishinaka-Arai Y, Niwa A, Ashida A, Kazuki Y, Nakahata T, Tamai H, Russell DW, Saito MK. N-Acetylcysteine prevents amyloid-β secretion in neurons derived from human pluripotent stem cells with trisomy 21. Sci Rep 2021; 11:17377. [PMID: 34462463 PMCID: PMC8405674 DOI: 10.1038/s41598-021-96697-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
Down syndrome (DS) is caused by the trisomy of chromosome 21. Among the many disabilities found in individuals with DS is an increased risk of early-onset Alzheimer's disease (AD). Although higher oxidative stress and an upregulation of amyloid β (Aβ) peptides from an extra copy of the APP gene are attributed to the AD susceptibility, the relationship between the two factors is unclear. To address this issue, we established an in vitro cellular model using neurons differentiated from DS patient-derived induced pluripotent stem cells (iPSCs) and isogenic euploid iPSCs. Neurons differentiated from DS patient-derived iPSCs secreted more Aβ compared to those differentiated from the euploid iPSCs. Treatment of the neurons with an antioxidant, N-acetylcysteine, significantly suppressed the Aβ secretion. These findings suggest that oxidative stress has an important role in controlling the Aβ level in neurons differentiated from DS patient-derived iPSCs and that N-acetylcysteine can be a potential therapeutic option to ameliorate the Aβ secretion.
Collapse
Affiliation(s)
- Hiromitsu Toshikawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Osaka Medical and Pharmaceutical University, Takatsuki, 5690801, Japan.,Social Welfare Organization "SAISEIKAI" Imperial Gift Foundation Inc., Saiseikai Suita Hospital, Suita, 5640013, Japan
| | - Akihiro Ikenaka
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Li Li
- Division of Hematology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Yoko Nishinaka-Arai
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Ashida
- Osaka Medical and Pharmaceutical University, Takatsuki, 5690801, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan.,Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Tamai
- Osaka Medical and Pharmaceutical University, Takatsuki, 5690801, Japan.,Institute for Developmental Brain Research, Osaka Medical and Pharmaceutical University, Takatsuki, 5690801, Japan
| | - David W Russell
- Division of Hematology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
15
|
Hepatic resistance to cold ferroptosis in a mammalian hibernator Syrian hamster depends on effective storage of diet-derived α-tocopherol. Commun Biol 2021; 4:796. [PMID: 34172811 PMCID: PMC8233303 DOI: 10.1038/s42003-021-02297-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Mammalian hibernators endure severe and prolonged hypothermia that is lethal to non-hibernators, including humans and mice. The mechanisms responsible for the cold resistance remain poorly understood. Here, we found that hepatocytes from a mammalian hibernator, the Syrian hamster, exhibited remarkable resistance to prolonged cold culture, whereas murine hepatocytes underwent cold-induced cell death that fulfills the hallmarks of ferroptosis such as necrotic morphology, lipid peroxidation and prevention by an iron chelator. Unexpectedly, hepatocytes from Syrian hamsters exerted resistance to cold- and drug-induced ferroptosis in a diet-dependent manner, with the aid of their superior ability to retain dietary α-tocopherol (αT), a vitamin E analog, in the liver and blood compared with those of mice. The liver phospholipid composition is less susceptible to peroxidation in Syrian hamsters than in mice. Altogether, the cold resistance of the hibernator’s liver is established by the ability to utilize αT effectively to prevent lipid peroxidation and ferroptosis. Daisuke Anegawa et al. investigated the mechanisms responsible for cold resistance in the Syrian hamster’s hepatocytes, which exhibited remarkable resistance to prolonged cold culture. Their results suggest that hepatocytes exhibit diet-dependent resistance to cold, which is linked to the retention of α-tocopherol in the liver.
Collapse
|
16
|
Vidal V, Puente A, García-Cerro S, García Unzueta MT, Rueda N, Riancho J, Martínez-Cué C. Bexarotene Impairs Cognition and Produces Hypothyroidism in a Mouse Model of Down Syndrome and Alzheimer's Disease. Front Pharmacol 2021; 12:613211. [PMID: 33935706 PMCID: PMC8082148 DOI: 10.3389/fphar.2021.613211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
All individuals with Down syndrome (DS) eventually develop Alzheimer's disease (AD) neuropathology, including neurodegeneration, increases in β-amyloid (Aβ) expression, and aggregation and neurofibrillary tangles, between the third and fourth decade of their lives. There is currently no effective treatment to prevent AD neuropathology and the associated cognitive degeneration in DS patients. Due to evidence that the accumulation of Aβ aggregates in the brain produces the neurodegenerative cascade characteristic of AD, many strategies which promote the clearance of Aβ peptides have been assessed as potential therapeutics for this disease. Bexarotene, a member of a subclass of retinoids that selectively activates retinoid receptors, modulates several pathways essential for cognitive performance and Aβ clearance. Consequently, bexarotene might be a good candidate to treat AD-associated neuropathology. However, the effects of bexarotene treatment in AD remain controversial. In the present study, we aimed to elucidate whether chronic bexarotene treatment administered to the most commonly used murine model of DS, the Ts65Dn (TS) mouse could reduce Aβ expression in their brains and improve their cognitive abilities. Chronic administration of bexarotene to aged TS mice and their CO littermates for 9 weeks diminished the reference, working, and spatial learning and memory of TS mice, and the spatial memory of CO mice in the Morris water maze. This treatment also produced marked hypoactivity in the plus maze, open field, and hole board tests in TS mice, and in the open field and hole board tests in CO mice. Administration of bexarotene reduced the expression of Aβ1-40, but not of Aβ1-42, in the hippocampi of TS mice. Finally, bexarotene increased Thyroid-stimulating hormone levels in TS mice and reduced Thyroid-stimulating hormone levels in CO mice, while animals of both karyotypes displayed reduced thyroxine levels after bexarotene administration. The bexarotene-induced hypothyroidism could be responsible for the hypoactivity of TS and CO mice and their diminished performance in the Morris water maze. Together, these results do not provide support for the use of bexarotene as a potential treatment of AD neuropathology in the DS population.
Collapse
Affiliation(s)
- Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Alba Puente
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Susana García-Cerro
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain.,CIBERSAM, Madrid, Spain
| | | | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Javier Riancho
- Neurology Service, Hospital Sierrallana-IDIVAL, Torrelavega, Spain.,Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain.,CIBERNED, Madrid, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
17
|
Lanzillotta C, Di Domenico F. Stress Responses in Down Syndrome Neurodegeneration: State of the Art and Therapeutic Molecules. Biomolecules 2021; 11:biom11020266. [PMID: 33670211 PMCID: PMC7916967 DOI: 10.3390/biom11020266] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Down syndrome (DS) is the most common genomic disorder characterized by the increased incidence of developing early Alzheimer’s disease (AD). In DS, the triplication of genes on chromosome 21 is intimately associated with the increase of AD pathological hallmarks and with the development of brain redox imbalance and aberrant proteostasis. Increasing evidence has recently shown that oxidative stress (OS), associated with mitochondrial dysfunction and with the failure of antioxidant responses (e.g., SOD1 and Nrf2), is an early signature of DS, promoting protein oxidation and the formation of toxic protein aggregates. In turn, systems involved in the surveillance of protein synthesis/folding/degradation mechanisms, such as the integrated stress response (ISR), the unfolded stress response (UPR), and autophagy, are impaired in DS, thus exacerbating brain damage. A number of pre-clinical and clinical studies have been applied to the context of DS with the aim of rescuing redox balance and proteostasis by boosting the antioxidant response and/or inducing the mechanisms of protein re-folding and clearance, and at final of reducing cognitive decline. So far, such therapeutic approaches demonstrated their efficacy in reverting several aspects of DS phenotype in murine models, however, additional studies aimed to translate these approaches in clinical practice are still needed.
Collapse
|
18
|
Niki E, Noguchi N. Antioxidant action of vitamin E in vivo as assessed from its reaction products with multiple biological oxidants. Free Radic Res 2021; 55:352-363. [PMID: 33327809 DOI: 10.1080/10715762.2020.1866181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vitamin E acts as essential antioxidant against detrimental oxidation of biological molecules induced by multiple reactive species. To gain more insight into the physiological role of vitamin E, the levels of its oxidation products in humans under normal and pathological conditions were compared. α-Tocopherol quinone (α-TQ) and 5-nitro-γ-tocopherol (5-NgT) were focused. α-TQ is produced by multiple oxidants including oxygen radicals, peroxynitrite, hypochlorite, singlet oxygen, and ozone, while 5-NgT is produced by nitrogen dioxide radical derived from peroxynitrite and the reaction of nitrite and hypochlorite. The reported concentrations of α-TQ and 5-NgT in healthy human plasma are highly variable ranging from 15 to 360 and 4 to 170 nM, respectively. In general, the molar ratio 5-NgT/γ-tocopherol was higher than the ratio α-TQ/α-tocopherol. Both absolute concentrations of α-TQ and 5-NgT and the molar ratios to the parent tocopherols were elevated significantly in the plasma of patients with various diseases compared with healthy subjects except neurological diseases. The molar ratios of the products to the respective parent compounds decreased in the order of 5-NgT/γ-tocopherol > α-TQ/α-tocopherol > hydroxyoctadecadienoate/linoleate > 3-nitrotyrosine/tyrosine > isoprostane/arachidonate. The molar ratios of nitrated products to the respective parent compounds in human plasma are approximately 10-2 for 5-NgT and 10-5 for 3-nitrotyrosine, nitro-oleic acid, and 8-nitroguaine. These data indicate that vitamin E acts as an important physiological antioxidant and that α-TQ and 5-NgT represent biomarker for oxidative stress and nitrative stress respectively.
Collapse
Affiliation(s)
- Etsuo Niki
- Research Center for Advanced Science and Technology, University of Tokyo, Komaba, Japan
| | - Noriko Noguchi
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|
19
|
Abnormalities of synaptic mitochondria in autism spectrum disorder and related neurodevelopmental disorders. J Mol Med (Berl) 2020; 99:161-178. [PMID: 33340060 PMCID: PMC7819932 DOI: 10.1007/s00109-020-02018-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition primarily characterized by an impairment of social interaction combined with the occurrence of repetitive behaviors. ASD starts in childhood and prevails across the lifespan. The variability of its clinical presentation renders early diagnosis difficult. Mutations in synaptic genes and alterations of mitochondrial functions are considered important underlying pathogenic factors, but it is obvious that we are far from a comprehensive understanding of ASD pathophysiology. At the synapse, mitochondria perform diverse functions, which are clearly not limited to their classical role as energy providers. Here, we review the current knowledge about mitochondria at the synapse and summarize the mitochondrial disturbances found in mouse models of ASD and other ASD-related neurodevelopmental disorders, like DiGeorge syndrome, Rett syndrome, Tuberous sclerosis complex, and Down syndrome.
Collapse
|
20
|
Petrovic S, Arsic A, Ristic-Medic D, Cvetkovic Z, Vucic V. Lipid Peroxidation and Antioxidant Supplementation in Neurodegenerative Diseases: A Review of Human Studies. Antioxidants (Basel) 2020; 9:1128. [PMID: 33202952 PMCID: PMC7696060 DOI: 10.3390/antiox9111128] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023] Open
Abstract
Being characterized by progressive and severe damage in neuronal cells, neurodegenerative diseases (NDDs) are the major cause of disability and morbidity in the elderly, imposing a significant economic and social burden. As major components of the central nervous system, lipids play important roles in neural health and pathology. Disturbed lipid metabolism, particularly lipid peroxidation (LPO), is associated with the development of many NDDs, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), all of which show elevated levels of LPO products and LPO-modified proteins. Thus, the inhibition of neuronal oxidation might slow the progression and reduce the severity of NDD; natural antioxidants, such as polyphenols and antioxidant vitamins, seem to be the most promising agents. Here, we summarize current literature data that were derived from human studies on the effect of natural polyphenols and vitamins A, C, and E supplementation in patients with AD, PD, and ALS. Although these compounds may reduce the severity and slow the progression of NDD, research gaps remain in antioxidants supplementation in AD, PD, and ALS patients, which indicates that further human studies applying antioxidant supplementation in different forms of NDDs are urgently needed.
Collapse
Affiliation(s)
- Snjezana Petrovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.A.); (D.R.-M.)
| | - Aleksandra Arsic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.A.); (D.R.-M.)
| | - Danijela Ristic-Medic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.A.); (D.R.-M.)
| | - Zorica Cvetkovic
- Department of Hematology, Clinical Hospital Center Zemun, 11000 Belgrade, Serbia;
- Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Vesna Vucic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.A.); (D.R.-M.)
| |
Collapse
|
21
|
Rueda Revilla N, Martínez-Cué C. Antioxidants in Down Syndrome: From Preclinical Studies to Clinical Trials. Antioxidants (Basel) 2020; 9:antiox9080692. [PMID: 32756318 PMCID: PMC7464577 DOI: 10.3390/antiox9080692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
There is currently no effective pharmacological therapy to improve the cognitive dysfunction of individuals with Down syndrome (DS). Due to the overexpression of several chromosome 21 genes, cellular and systemic oxidative stress (OS) is one of the most important neuropathological processes that contributes to the cognitive deficits and multiple neuronal alterations in DS. In this condition, OS is an early event that negatively affects brain development, which is also aggravated in later life stages, contributing to neurodegeneration, accelerated aging, and the development of Alzheimer's disease neuropathology. Thus, therapeutic interventions that reduce OS have been proposed as a promising strategy to avoid neurodegeneration and to improve cognition in DS patients. Several antioxidant molecules have been proven to be effective in preclinical studies; however, clinical trials have failed to show evidence of the efficacy of different antioxidants to improve cognitive deficits in individuals with DS. In this review we summarize preclinical studies of cell cultures and mouse models, as well as clinical studies in which the effect of therapies which reduce oxidative stress and mitochondrial alterations on the cognitive dysfunction associated with DS have been assessed.
Collapse
|
22
|
Tsuji M, Ohshima M, Yamamoto Y, Saito S, Hattori Y, Tanaka E, Taguchi A, Ihara M, Ogawa Y. Cilostazol, a Phosphodiesterase 3 Inhibitor, Moderately Attenuates Behaviors Depending on Sex in the Ts65Dn Mouse Model of Down Syndrome. Front Aging Neurosci 2020; 12:106. [PMID: 32372946 PMCID: PMC7186592 DOI: 10.3389/fnagi.2020.00106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/30/2020] [Indexed: 11/16/2022] Open
Abstract
People with Down syndrome, which is a trisomy of chromosome 21, exhibit intellectual disability from infancy and neuropathology similar to Alzheimer’s disease, such as amyloid plaques, from an early age. Recently, we showed that cilostazol, a selective inhibitor of phosphodiesterase (PDE) 3, promotes the clearance of amyloid β and rescues cognitive deficits in a mouse model of Alzheimer’s disease. The objective of the present study was to examine whether cilostazol improves behaviors in the most widely used animal model of Down syndrome, i.e., Ts65Dn mice. Mice were supplemented with cilostazol from the fetal period until young adulthood. Supplementation significantly ameliorated novel-object recognition in Ts65Dn females and partially ameliorated sensorimotor function as determined by the rotarod test in Ts65Dn females and hyperactive locomotion in Ts65Dn males. Cilostazol supplementation significantly shortened swimming distance in Ts65Dn males in the Morris water maze test, suggesting that the drug improved cognitive function, although it did not shorten swimming duration, which was due to decreased swimming speed. Thus, this study suggests that early supplementation with cilostazol partially rescues behavioral abnormalities seen in Down syndrome and indicates that the effects are sex-dependent.
Collapse
Affiliation(s)
- Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Makiko Ohshima
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yumi Yamamoto
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satoshi Saito
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan.,Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yorito Hattori
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Emi Tanaka
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yuko Ogawa
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
23
|
Martínez-Cué C, Rueda N. Cellular Senescence in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:16. [PMID: 32116562 PMCID: PMC7026683 DOI: 10.3389/fncel.2020.00016] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a homeostatic biological process characterized by a permanent state of cell cycle arrest that can contribute to the decline of the regenerative potential and function of tissues. The increased presence of senescent cells in different neurodegenerative diseases suggests the contribution of senescence in the pathophysiology of these disorders. Although several factors can induce senescence, DNA damage, oxidative stress, neuroinflammation, and altered proteostasis have been shown to play a role in its onset. Oxidative stress contributes to accelerated aging and cognitive dysfunction stages affecting neurogenesis, neuronal differentiation, connectivity, and survival. During later life stages, it is implicated in the progression of cognitive decline, synapse loss, and neuronal degeneration. Also, neuroinflammation exacerbates oxidative stress, synaptic dysfunction, and neuronal death through the harmful effects of pro-inflammatory cytokines on cell proliferation and maturation. Both oxidative stress and neuroinflammation can induce DNA damage and alterations in DNA repair that, in turn, can exacerbate them. Another important feature associated with senescence is altered proteostasis. Because of the disruption in the function and balance of the proteome, senescence can modify the proper synthesis, folding, quality control, and degradation rate of proteins producing, in some diseases, misfolded proteins or aggregation of abnormal proteins. There is an extensive body of literature that associates cellular senescence with several neurodegenerative disorders including Alzheimer’s disease (AD), Down syndrome (DS), and Parkinson’s disease (PD). This review summarizes the evidence of the shared neuropathological events in these neurodegenerative diseases and the implication of cellular senescence in their onset or aggravation. Understanding the role that cellular senescence plays in them could help to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
24
|
Martínez Cué C, Dierssen M. Plasticity as a therapeutic target for improving cognition and behavior in Down syndrome. PROGRESS IN BRAIN RESEARCH 2020; 251:269-302. [DOI: 10.1016/bs.pbr.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Rueda N, Flórez J, Dierssen M, Martínez-Cué C. Translational validity and implications of pharmacotherapies in preclinical models of Down syndrome. PROGRESS IN BRAIN RESEARCH 2019; 251:245-268. [PMID: 32057309 DOI: 10.1016/bs.pbr.2019.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders are challenging to study in the laboratory, and despite a large investment, few novel treatments have been developed in the last decade. While animal models have been valuable in elucidating disease mechanisms and in providing insights into the function of specific genes, the predictive validity of preclinical models to test potential therapies has been questioned. In the last two decades, diverse new murine models of Down syndrome (DS) have been developed and numerous studies have demonstrated neurobiological alterations that could be responsible for the cognitive and behavioral phenotypes found in this syndrome. In many cases, similar alterations were found in murine models and in individuals with DS, although several phenotypes shown in animals have yet not been confirmed in the human condition. Some of the neurobiological alterations observed in mice have been proposed to account for their changes in cognition and behavior, and have received special attention because of being putative therapeutic targets. Those include increased oxidative stress, altered neurogenesis, overexpression of the Dyrk1A gene, GABA-mediated overinhibition and Alzheimer's disease-related neurodegeneration. Subsequently, different laboratories have tested the efficacy of pharmacotherapies targeting these alterations. Unfortunately, animal models are limited in their ability to mimic the extremely complex process of human neurodevelopment and neuropathology. Therefore, the safety and efficacy identified in animal studies are not always translated to humans, and most of the drugs tested have not demonstrated any positive effect or very limited efficacy in clinical trials. Despite their limitations, though, animal trials give us extremely valuable information for developing and testing drugs for human use that cannot be obtained from molecular or cellular experiments alone. This chapter reviews some of these therapeutic approaches and discusses some reasons that could account for the discrepancy between the findings in mouse models of DS and in humans, including: (i) the incomplete resemble of the genetic alterations of available mouse models of DS and human trisomy 21, (ii) the lack of evidence that some of the phenotypic alterations found in mice (e.g., GABA-mediated overinhibition, and alterations in adult neurogenesis) are also present in DS individuals, and (iii) the inaccuracy and/or inadequacy of the methods used in clinical trials to detect changes in the cognitive and behavioral functions of people with DS. Despite the shortcomings of animal models, animal experimentation remains an invaluable tool in developing drugs. Thus, we will also discuss how to increase predictive validity of mouse models.
Collapse
Affiliation(s)
- Noemí Rueda
- Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Jesús Flórez
- Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Mara Dierssen
- Cellular and Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain.
| |
Collapse
|
26
|
Unbalanced dendritic inhibition of CA1 neurons drives spatial-memory deficits in the Ts2Cje Down syndrome model. Nat Commun 2019; 10:4991. [PMID: 31676751 PMCID: PMC6825203 DOI: 10.1038/s41467-019-13004-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Overinhibition is assumed one of the main causes of cognitive deficits (e.g. memory impairment) in mouse models of Down syndrome (DS). Yet the mechanisms that drive such exaggerated synaptic inhibition and their behavioral effects remain unclear. Here we report the existence of bidirectional alterations to the synaptic inhibition on CA1 pyramidal cells in the Ts2Cje mouse model of DS which are associated to impaired spatial memory. Furthermore, we identify triplication of the kainate receptor (KAR) encoding gene Grik1 as the cause of these phenotypes. Normalization of Grik1 dosage in Ts2Cje mice specifically restored spatial memory and reversed the bidirectional alterations to CA1 inhibition, but not the changes in synaptic plasticity or the other behavioral modifications observed. We propose that modified information gating caused by disturbed inhibitory tone rather than generalized overinhibition underlies some of the characteristic cognitive deficits in DS. Exaggerated synaptic inhibition is hypothesised to be a main cause of cognitive deficits in Down syndrome models. The authors identify triplication of the kainate receptor encoding gene Grik1 as the cause of memory deficits due to a reorganization of synaptic inhibition along the CA1 dendritic tree.
Collapse
|
27
|
Ishihara K, Kawashita E, Shimizu R, Nagasawa K, Yasui H, Sago H, Yamakawa K, Akiba S. Copper accumulation in the brain causes the elevation of oxidative stress and less anxious behavior in Ts1Cje mice, a model of Down syndrome. Free Radic Biol Med 2019; 134:248-259. [PMID: 30660502 DOI: 10.1016/j.freeradbiomed.2019.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 11/19/2022]
Abstract
Elevated oxidative stress (OS) is widely accepted to be involved in the pathogenesis of Down syndrome (DS). However, the mechanisms underlying the elevation of OS in DS are poorly understood. Biometals, in particular copper and iron, play roles in OS. We therefore focused on biometals in the brain with DS. In this study, we analyzed the profile of elements, including biometals, in the brain of Ts1Cje mice, a widely used genetic model of DS. An inductively coupled plasma-mass spectrometry (ICP-MS)-based comparative metallomic/elementomic analysis of Ts1Cje mouse brain revealed a higher level of copper in the hippocampus and cerebral cortex, but not in the striatum, in comparison to wild-type littermates. The expression of the copper transporter CTR1, which is involved in the transport of copper into cells, was decreased in the ependymal cells of Ts1Cje mice, suggesting a decrease in the CTR1-mediated transport of copper into the ependymal cells, which excrete copper into the cerebrospinal fluid. To evaluate the pathological significance of the accumulation of copper in the brain of Ts1Cje mice, we examined the effects of a diet with a low copper content (LoCD) on the elevated lipid peroxidation, the accumulation of hyperphosphorylated tau, and some behavioral anomalies. Reducing the copper concentration in the brain by an LoCD restored the enhanced lipid peroxidation and phosphorylation of tau in the brain and reduced anxiety-like behavior, but not hyperactivity or impaired spatial leaning, in Ts1Cje mice. The findings highlight the reduction of accumulation of copper in the brain may be a novel therapeutic strategy for DS.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto-shi, Kyoto 607-8414, Japan.
| | - Eri Kawashita
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto-shi, Kyoto 607-8414, Japan
| | - Ryohei Shimizu
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto-shi, Kyoto 607-8414, Japan
| | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto-shi, Kyoto 607-8414, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto-shi, Kyoto 607-8414, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medecine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto-shi, Kyoto 607-8414, Japan
| |
Collapse
|
28
|
Down syndrome: Neurobiological alterations and therapeutic targets. Neurosci Biobehav Rev 2019; 98:234-255. [DOI: 10.1016/j.neubiorev.2019.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
|
29
|
Nagib MM, Tadros MG, Rahmo RM, Sabri NA, Khalifa AE, Masoud SI. Ameliorative Effects of α-Tocopherol and/or Coenzyme Q10 on Phenytoin-Induced Cognitive Impairment in Rats: Role of VEGF and BDNF-TrkB-CREB Pathway. Neurotox Res 2019; 35:451-462. [PMID: 30374909 DOI: 10.1007/s12640-018-9971-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022]
Abstract
Phenytoin is one of the most well-known antiepileptic drugs that cause cognitive impairment which is closely related to cAMP response element-binding protein (CREB) brain-derived neurotrophic factor (BDNF) signaling pathway. Moreover, vascular endothelial growth factor (VEGF), an endothelial growth factor, has a documented role in neurogenesis and neuronal survival and cognitive impairment. Therefore, this study aimed to investigate the influence of powerful antioxidants: α-Toc and CoQ10 alone or combined in the preservation of brain tissues and the maintenance of memory formation in phenytoin-induced cognitive impairment in rats. The following behavioral test novel object recognition and elevated plus maze were assessed after 14 days of treatment. Moreover, VEGF, BDNF, TrkB, and CREB gene expression levels in the hippocampus and prefrontal cortex were estimated using RT-PCR. Both α-Toc and CoQ10 alone or combined with phenytoin showed improvement in behavioral tests compared to phenytoin. Mechanistically, α-Toc and/or CoQ10 decreases the VEGF mRNA expression, while increases BDNF-TrKB-CREB mRNA levels in hippocampus and cortex of phenytoin-treated rats. Collectively, α-Toc and/or CoQ10 alleviated the phenytoin-induced cognitive impairment through suppressing oxidative damage. The underlying molecular mechanism of the treating compounds is related to the VEGF and enhancing BDNF-TrkB-CREB signaling pathway. Our study indicated the usefulness α-Toc or CoQ10 as an adjuvant to antiepileptic drugs with an advantage of preventing cognitive impairment and oxidative stress.
Collapse
Affiliation(s)
- Marwa M Nagib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, KM 28 Cairo - Ismailia Road Ahmed Orabi District, Cairo, Egypt.
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M Rahmo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, KM 28 Cairo - Ismailia Road Ahmed Orabi District, Cairo, Egypt
| | - Nagwa Ali Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amani E Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University seconded to 57357 Children Cancer Hospital, Cairo, Egypt
| | - Somaia I Masoud
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
30
|
Hopkins BL, Neumann CA. Redoxins as gatekeepers of the transcriptional oxidative stress response. Redox Biol 2019; 21:101104. [PMID: 30690320 PMCID: PMC6351230 DOI: 10.1016/j.redox.2019.101104] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Transcription factors control the rate of transcription of genetic information from DNA to messenger RNA, by binding specific DNA sequences in promoter regions. Transcriptional gene control is a rate-limiting process that is tightly regulated and based on transient environmental signals which are translated into long-term changes in gene transcription. Post-translational modifications (PTMs) on transcription factors by phosphorylation or acetylation have profound effects not only on sub-cellular localization but also on substrate specificity through changes in DNA binding capacity. During times of cellular stress, specific transcription factors are in place to help protect the cell from damage by initiating the transcription of antioxidant response genes. Here we discuss PTMs caused by reactive oxygen species (ROS), such as H2O2, that can expeditiously regulate the activation of transcription factors involved in the oxidative stress response. Part of this rapid regulation are proteins involved in H2O2-related reduction and oxidation (redox) reactions such as redoxins, H2O2 scavengers described to interact with transcription factors. Redoxins have highly reactive cysteines of rate constants around 6–10−1 s−1 that engage in nucleophilic substitution of a thiol-disulfide with another thiol in inter-disulfide exchange reactions. We propose here that H2O2 signal transduction induced inter-disulfide exchange reactions between redoxin cysteines and cysteine thiols of transcription factors to allow for rapid and precise on and off switching of transcription factor activity. Thus, redoxins are essential modulators of stress response pathways beyond H2O2 scavenging capacity.
Collapse
Affiliation(s)
- Barbara L Hopkins
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | - Carola A Neumann
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
31
|
Laforgia N, Di Mauro A, Favia Guarnieri G, Varvara D, De Cosmo L, Panza R, Capozza M, Baldassarre ME, Resta N. The Role of Oxidative Stress in the Pathomechanism of Congenital Malformations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7404082. [PMID: 30693064 PMCID: PMC6332879 DOI: 10.1155/2018/7404082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/20/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Congenital anomalies are significant causes of mortality and morbidity in infancy and childhood. Embryogenesis requires specific signaling pathways to regulate cell proliferation and differentiation. These signaling pathways are sensitive to endogenous and exogenous agents able to produce several structural changes of the developing fetus. Oxidative stress, due to an imbalance between the production of reactive oxygen species and antioxidant defenses, disrupts signaling pathways with a causative role in birth defects. This review provides a basis for understanding the role of oxidative stress in the pathomechanism of congenital malformations, discussing the mechanisms related to some congenital malformations. New insights in the knowledge of pathomechanism of oxidative stress-related congenital malformations, according to experimental and human studies, represent the basis of possible clinical applications in screening, prevention, and therapies.
Collapse
Affiliation(s)
- Nicola Laforgia
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Antonio Di Mauro
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Giovanna Favia Guarnieri
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Dora Varvara
- Medical Genetics Unit, Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Lucrezia De Cosmo
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Raffaella Panza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Manuela Capozza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Maria Elisabetta Baldassarre
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Nicoletta Resta
- Medical Genetics Unit, Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
32
|
Greene LE, Lincoln R, Cosa G. Spatio-temporal monitoring of lipid peroxyl radicals in live cell studies combining fluorogenic antioxidants and fluorescence microscopy methods. Free Radic Biol Med 2018; 128:124-136. [PMID: 29649566 DOI: 10.1016/j.freeradbiomed.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/28/2022]
Abstract
Lipid peroxidation of polyunsaturated fatty acids in cells may occur via their catalytic autoxidation through peroxyl radicals under oxidative stress conditions. Lipid peroxidation is related to a number of pathologies, and may be invoked in new forms of regulated cell death, yet it may also have beneficial roles in cell signaling cascades. Antioxidants are a natural line of defense against lipid peroxidation, and may accordingly impact the biological outcome associated with the redox chemistry of lipid peroxidation. Critical to unraveling the physiological and pathological role of lipid peroxidation is the development of novel probes with the partition, chemical sensitivity and more importantly, molecular specificity, enabling the spatial and temporal imaging of peroxyl radicals in the lipid membranes of live cells, reporting on the redox status of the cell membrane. This review describes our recent progress to visualize lipid peroxidation in model membrane systems and in live cell studies. Our work portrays the mechanistic insight leading to the development of a highly sensitive probe to monitor lipid peroxyl radicals (LOO•). It also describes technical aspects including reagents and fluorescence microscopy methodologies to consider in order to achieve the much sought after monitoring of rates of lipid peroxyl radical production in live cell studies, be it under oxidative stress but also under cell homeostasis. This review seeks to bring attention to the study of lipid redox reactions and to lay the groundwork for the adoption of fluorogenic antioxidant probeshancement and maximum intensity recorded in turn provide a benchmark to estimate, when compared to the control BODIPY dye lacking the intramolecular PeT based switch, the overall exte and related fluorescence microscopy methods toward gaining rich spatiotemporal information on lipid peroxidation in live cells.
Collapse
Affiliation(s)
- Lana E Greene
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8
| | - Richard Lincoln
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8.
| |
Collapse
|
33
|
Rueda N, Vidal V, García-Cerro S, Narcís JO, Llorens-Martín M, Corrales A, Lantigua S, Iglesias M, Merino J, Merino R, Martínez-Cué C. Anti-IL17 treatment ameliorates Down syndrome phenotypes in mice. Brain Behav Immun 2018; 73:235-251. [PMID: 29758264 DOI: 10.1016/j.bbi.2018.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Down syndrome (DS) is characterized by structural and functional anomalies that are present prenatally and that lead to intellectual disabilities. Later in life, the cognitive abilities of DS individuals progressively deteriorate due to the development of Alzheimer's disease (AD)-associated neuropathology (i.e., β-amyloid (Aβ) plaques, neurofibrillary tangles (NFTs), neurodegeneration, synaptic pathology, neuroinflammation and increased oxidative stress). Increasing evidence has shown that among these pathological processes, neuroinflammation plays a predominant role in AD etiopathology. In AD mouse models, increased neuroinflammation appears earlier than Aβ plaques and NFTs, and in DS and AD models, neuroinflammation exacerbates the levels of soluble and insoluble Aβ species, favoring neurodegeneration. The Ts65Dn (TS) mouse, the most commonly used murine model of DS, recapitulates many alterations present in both DS and AD individuals, including enhanced neuroinflammation. In this study, we observed an altered neuroinflammatory milieu in the hippocampus of the TS mouse model. Pro-inflammatory mediators that were elevated in the hippocampus of this model included pro-inflammatory cytokine IL17A, which has a fundamental role in mediating brain damage in neuroinflammatory processes. Here, we analyzed the ability of an anti-IL17A antibody to reduce the neuropathological alterations that are present in TS mice during early neurodevelopmental stages (i.e., hippocampal neurogenesis and hypocellularity) or that are aggravated in later-life stages (i.e., cognitive abilities, cholinergic neuronal loss and increased cellular senescence, APP expression, Aβ peptide expression and neuroinflammation). Administration of anti-IL17 for 5 months, starting at the age of 7 months, partially improved the cognitive abilities of the TS mice, reduced the expression of several pro-inflammatory cytokines and the density of activated microglia and normalized the APP and Aβ1-42 levels in the hippocampi of the TS mice. These results suggest that IL17-mediated neuroinflammation is involved in several AD phenotypes in TS mice and provide a new therapeutic target to reduce these pathological characteristics.
Collapse
Affiliation(s)
- Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Susana García-Cerro
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Josep Oriol Narcís
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSICUAM, Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Andrea Corrales
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Sara Lantigua
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Marcos Iglesias
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, USA
| | - Jesús Merino
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Ramón Merino
- Institute of Biomedicine and Biotechnology of Cantabria, Consejo Superior de Investigaciones Científicas-University of Cantabria, Santander, Spain.
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain.
| |
Collapse
|
34
|
Hinman A, Holst CR, Latham JC, Bruegger JJ, Ulas G, McCusker KP, Amagata A, Davis D, Hoff KG, Kahn-Kirby AH, Kim V, Kosaka Y, Lee E, Malone SA, Mei JJ, Richards SJ, Rivera V, Miller G, Trimmer JK, Shrader WD. Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase. PLoS One 2018; 13:e0201369. [PMID: 30110365 PMCID: PMC6093661 DOI: 10.1371/journal.pone.0201369] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023] Open
Abstract
Ferroptosis is a form of programmed cell death associated with inflammation, neurodegeneration, and ischemia. Vitamin E (alpha-tocopherol) has been reported to prevent ferroptosis, but the mechanism by which this occurs is controversial. To elucidate the biochemical mechanism of vitamin E activity, we systematically investigated the effects of its major vitamers and metabolites on lipid oxidation and ferroptosis in a striatal cell model. We found that a specific endogenous metabolite of vitamin E, alpha-tocopherol hydroquinone, was a dramatically more potent inhibitor of ferroptosis than its parent compound, and inhibits 15-lipoxygenase via reduction of the enzyme's non-heme iron from its active Fe3+ state to an inactive Fe2+ state. Furthermore, a non-metabolizable isosteric analog of vitamin E which retains antioxidant activity neither inhibited 15-lipoxygenase nor prevented ferroptosis. These results call into question the prevailing model that vitamin E acts predominantly as a non-specific lipophilic antioxidant. We propose that, similar to the other lipophilic vitamins A, D and K, vitamin E is instead a pro-vitamin, with its quinone/hydroquinone metabolites responsible for its anti-ferroptotic cytoprotective activity.
Collapse
Affiliation(s)
- Andrew Hinman
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Charles R. Holst
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Joey C. Latham
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Joel J. Bruegger
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Gözde Ulas
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Kevin P. McCusker
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Akiko Amagata
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Dana Davis
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Kevin G. Hoff
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Amanda H. Kahn-Kirby
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Virna Kim
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Yuko Kosaka
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Edgar Lee
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Stephanie A. Malone
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Janet J. Mei
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Steve James Richards
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Veronica Rivera
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Guy Miller
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Jeffrey K. Trimmer
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - William D. Shrader
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| |
Collapse
|
35
|
Herault Y, Delabar JM, Fisher EMC, Tybulewicz VLJ, Yu E, Brault V. Rodent models in Down syndrome research: impact and future opportunities. Dis Model Mech 2018; 10:1165-1186. [PMID: 28993310 PMCID: PMC5665454 DOI: 10.1242/dmm.029728] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Down syndrome is caused by trisomy of chromosome 21. To date, a multiplicity of mouse models with Down-syndrome-related features has been developed to understand this complex human chromosomal disorder. These mouse models have been important for determining genotype-phenotype relationships and identification of dosage-sensitive genes involved in the pathophysiology of the condition, and in exploring the impact of the additional chromosome on the whole genome. Mouse models of Down syndrome have also been used to test therapeutic strategies. Here, we provide an overview of research in the last 15 years dedicated to the development and application of rodent models for Down syndrome. We also speculate on possible and probable future directions of research in this fast-moving field. As our understanding of the syndrome improves and genome engineering technologies evolve, it is necessary to coordinate efforts to make all Down syndrome models available to the community, to test therapeutics in models that replicate the whole trisomy and design new animal models to promote further discovery of potential therapeutic targets. Summary: Mouse models have boosted therapeutic options for Down syndrome, and improved models are being developed to better understand the pathophysiology of this genetic condition.
Collapse
Affiliation(s)
- Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France.,T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris
| | - Jean M Delabar
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, 75205 Paris, France.,INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et la Moelle épinière, ICM, 75013 Paris, France.,Brain and Spine Institute (ICM) CNRS UMR7225, INSERM UMRS 975, 75013 Paris, France
| | - Elizabeth M C Fisher
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, WC1N 3BG, UK.,LonDownS Consortium, London, W1T 7NF UK
| | - Victor L J Tybulewicz
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,LonDownS Consortium, London, W1T 7NF UK.,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Medicine, Imperial College, London, SW7 2AZ, UK
| | - Eugene Yu
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,The Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genetics Program, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.,Department of Cellular and Molecular Biology, Roswell Park Division of Graduate School, Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY 14263, USA
| | - Veronique Brault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
36
|
Developmental excitatory-to-inhibitory GABA polarity switch is delayed in Ts65Dn mice, a genetic model of Down syndrome. Neurobiol Dis 2018; 115:1-8. [PMID: 29550538 DOI: 10.1016/j.nbd.2018.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 11/23/2022] Open
Abstract
Down syndrome (DS) is the most frequent genetic cause of developmental abnormalities leading to intellectual disability. One notable phenomenon affecting the formation of nascent neural circuits during late developmental periods is developmental switch of GABA action from depolarizing to hyperpolarizing mode. We examined properties of this switch in DS using primary cultures and acute hippocampal slices from Ts65Dn mice, a genetic model of DS. Cultures of DIV3-DIV13 Ts65Dn and control normosomic (2 N) neurons were loaded with FURA-2 AM, and GABA action was assessed using local applications. In 2 N cultures, the number of GABA-activated cells dropped from ~100% to 20% between postnatal days 3-13 (P3-P13) reflecting the switch in GABA action polarity. In Ts65Dn cultures, the timing of this switch was delayed by 2-3 days. Next, microelectrode recordings of multi-unit activity (MUA) were performed in CA3 slices during bath application of the GABAA agonist isoguvacine. MUA frequency was increased in P8-P12 and reduced in P14-P22 slices reflecting the switch of GABA action from excitatory to inhibitory mode. The timing of this switch was delayed in Ts65Dn by approximately 2 days. Finally, frequency of giant depolarizing potentials (GDPs), a form of primordial neural activity, was significantly increased in slices from Ts65Dn pups at P12 and P14. These experimental evidences show that GABA action polarity switch is delayed in Ts65Dn model of DS, and that these changes lead to a delay in maturation of nascent neural circuits. These alterations may affect properties of neural circuits in adult animals and, therefore, represent a prospective target for pharmacotherapy of cognitive impairment in DS.
Collapse
|
37
|
Block A, Ahmed M, Rueda N, Hernandez MC, Martinez-Cué C, Gardiner K. The GABA A α5-selective Modulator, RO4938581, Rescues Protein Anomalies in the Ts65Dn Mouse Model of Down Syndrome. Neuroscience 2018; 372:192-212. [DOI: 10.1016/j.neuroscience.2017.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022]
|
38
|
Schubert M, Kluge S, Schmölz L, Wallert M, Galli F, Birringer M, Lorkowski S. Long-Chain Metabolites of Vitamin E: Metabolic Activation as a General Concept for Lipid-Soluble Vitamins? Antioxidants (Basel) 2018; 7:antiox7010010. [PMID: 29329238 PMCID: PMC5789320 DOI: 10.3390/antiox7010010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Vitamins E, A, D and K comprise the class of lipid-soluble vitamins. For vitamins A and D, a metabolic conversion of precursors to active metabolites has already been described. During the metabolism of vitamin E, the long-chain metabolites (LCMs) 13'-hydroxychromanol (13'-OH) and 13'-carboxychromanol (13'-COOH) are formed by oxidative modification of the side-chain. The occurrence of these metabolites in human serum indicates a physiological relevance. Indeed, effects of the LCMs on lipid metabolism, apoptosis, proliferation and inflammatory actions as well as tocopherol and xenobiotic metabolism have been shown. Interestingly, there are several parallels between the actions of the LCMs of vitamin E and the active metabolites of vitamin A and D. The recent findings that the LCMs exert effects different from that of their precursors support their putative role as regulatory metabolites. Hence, it could be proposed that the mode of action of the LCMs might be mediated by a mechanism similar to vitamin A and D metabolites. If the physiological relevance and this concept of action of the LCMs can be confirmed, a general concept of activation of lipid-soluble vitamins via their metabolites might be deduced.
Collapse
Affiliation(s)
- Martin Schubert
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| | - Stefan Kluge
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| | - Lisa Schmölz
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| | - Maria Wallert
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Baker IDI Heart and Diabetes Institute, Melbourne VIC 3004, Australia.
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Clinical Biochemistry, University of Perugia, 06123 Perugia, Italy.
| | - Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, 36037 Fulda, Germany.
| | - Stefan Lorkowski
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| |
Collapse
|
39
|
Valenti D, Braidy N, De Rasmo D, Signorile A, Rossi L, Atanasov AG, Volpicella M, Henrion-Caude A, Nabavi SM, Vacca RA. Mitochondria as pharmacological targets in Down syndrome. Free Radic Biol Med 2018; 114:69-83. [PMID: 28838841 DOI: 10.1016/j.freeradbiomed.2017.08.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022]
Abstract
Mitochondria play a pivotal role in cellular energy-generating processes and are considered master regulators of cell life and death fate. Mitochondrial function integrates signalling networks in several metabolic pathways controlling neurogenesis and neuroplasticity. Indeed, dysfunctional mitochondria and mitochondrial-dependent activation of intracellular stress cascades are critical initiating events in many human neurodegenerative or neurodevelopmental diseases including Down syndrome (DS). It is well established that trisomy of human chromosome 21 can cause DS. DS is associated with neurodevelopmental delay, intellectual disability and early neurodegeneration. Recently, molecular mechanisms responsible for mitochondrial damage and energy deficits have been identified and characterized in several DS-derived human cells and animal models of DS. Therefore, therapeutic strategies targeting mitochondria could have great potential for new treatment regimens in DS. The purpose of this review is to highlight recent studies concerning mitochondrial impairment in DS, focusing on alterations of the molecular pathways controlling mitochondrial function. We will also discuss the effects and molecular mechanisms of naturally occurring and chemically synthetized drugs that exert neuroprotective effects through modulation of mitochondrial function and attenuation of oxidative stress. These compounds might represent novel therapeutic tools for the modulation of energy deficits in DS.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Anna Signorile
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - A G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria; Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Alexandra Henrion-Caude
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, GenAtlas Platform, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - S M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - R A Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| |
Collapse
|
40
|
Rahim NS, Lim SM, Mani V, Abdul Majeed AB, Ramasamy K. Enhanced memory in Wistar rats by virgin coconut oil is associated with increased antioxidative, cholinergic activities and reduced oxidative stress. PHARMACEUTICAL BIOLOGY 2017; 55:825-832. [PMID: 28118770 PMCID: PMC6130622 DOI: 10.1080/13880209.2017.1280688] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT Virgin coconut oil (VCO) has been reported to possess antioxidative, anti-inflammatory and anti-stress properties. OBJECTIVE Capitalizing on these therapeutic effects, this study investigated for the first time the potential of VCO on memory improvement in vivo. MATERIALS AND METHODS Thirty male Wistar rats (7-8 weeks old) were randomly assigned to five groups (n = six per group). Treatment groups were administered with 1, 5 and 10 g/kg VCO for 31 days by oral gavages. The cognitive function of treated-rats were assessed using the Morris Water Maze Test. Brains were removed, homogenized and subjected to biochemical analyses of acetylcholine (ACh) and acetylcholinesterase (AChE), antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GRx)], lipid peroxidase [malondialdehyde (MDA)] as well as nitric oxide (NO). α-Tocopherol (αT; 150 mg/kg) was also included for comparison purposes. RESULTS VCO-fed Wistar rats exhibited significant (p < 0.05) improvement of cognitive functions [reduced escape latency (≥ 1.8 s), reduced escape distance (≥ 0.3 m) and increased total time spent on platform (≥ 1 s)]. The findings were accompanied by elevation of ACh (15%), SOD (8%), CAT (≥ 54%), GSH (≥ 20%) and GPx (≥ 12%) and reduction of AChE (≥17%), MDA (> 33%) and NO (≥ 34%). Overall, memory improvement by VCO was comparable to αT. DISCUSSION AND CONCLUSION VCO has the potential to be used as a memory enhancer, the effect of which was mediated, at least in part, through enhanced cholinergic activity, increased antioxidants level and reduced oxidative stress.
Collapse
Affiliation(s)
- Nur Syafiqah Rahim
- Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical and Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor Darul Ehsan, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau, Perlis, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical and Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor Darul Ehsan, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Darul Ehsan, Malaysia
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | | | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical and Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor Darul Ehsan, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Darul Ehsan, Malaysia
| |
Collapse
|
41
|
McDougall M, Choi J, Magnusson K, Truong L, Tanguay R, Traber MG. Chronic vitamin E deficiency impairs cognitive function in adult zebrafish via dysregulation of brain lipids and energy metabolism. Free Radic Biol Med 2017; 112:308-317. [PMID: 28790013 PMCID: PMC5629005 DOI: 10.1016/j.freeradbiomed.2017.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 01/18/2023]
Abstract
Zebrafish (Danio rerio) are a recognized model for studying the pathogenesis of cognitive deficits and the mechanisms underlying behavioral impairments, including the consequences of increased oxidative stress within the brain. The lipophilic antioxidant vitamin E (α-tocopherol; VitE) has an established role in neurological health and cognitive function, but the biological rationale for this action remains unknown. In the present study, we investigated behavioral perturbations due to chronic VitE deficiency in adult zebrafish fed from 45 days to 18-months of age diets that were either VitE-deficient (E-) or VitE-sufficient (E+). We hypothesized that E- zebrafish would display cognitive impairments associated with elevated lipid peroxidation and metabolic disruptions in the brain. Quantified VitE levels at 18-months in E- brains (5.7 ± 0.1 nmol/g tissue) were ~20-times lower than in E+ (122.8 ± 1.1; n = 10/group). Using assays of both associative (avoidance conditioning) and non-associative (habituation) learning, we found E- vs E+ fish were learning impaired. These functional deficits occurred concomitantly with the following observations in adult E- brains: decreased concentrations of and increased peroxidation of polyunsaturated fatty acids (especially docosahexaenoic acid, DHA), altered brain phospholipid and lysophospholipid composition, as well as perturbed energy (glucose/ketone), phosphatidylcholine and choline/methyl-donor metabolism. Collectively, these data suggest that chronic VitE deficiency leads to neurological dysfunction through multiple mechanisms that become dysregulated secondary to VitE deficiency. Apparently, the E- animals alter their metabolism to compensate for the VitE deficiency, but these compensatory mechanisms are insufficient to maintain cognitive function.
Collapse
Affiliation(s)
- Melissa McDougall
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA
| | - Kathy Magnusson
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Veterinary Medicine, Oregon State University, Corvallis, OR 97330, USA
| | - Lisa Truong
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97330, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97330, USA
| | - Robert Tanguay
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97330, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97330, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97330, USA.
| |
Collapse
|
42
|
Barone E, Head E, Butterfield DA, Perluigi M. HNE-modified proteins in Down syndrome: Involvement in development of Alzheimer disease neuropathology. Free Radic Biol Med 2017; 111:262-269. [PMID: 27838436 PMCID: PMC5639937 DOI: 10.1016/j.freeradbiomed.2016.10.508] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 11/25/2022]
Abstract
Down syndrome (DS), trisomy of chromosome 21, is the most common genetic form of intellectual disability. The neuropathology of DS involves multiple molecular mechanisms, similar to AD, including the deposition of beta-amyloid (Aβ) into senile plaques and tau hyperphosphorylationg in neurofibrillary tangles. Interestingly, many genes encoded by chromosome 21, in addition to being primarily linked to amyloid-beta peptide (Aβ) pathology, are responsible for increased oxidative stress (OS) conditions that also result as a consequence of reduced antioxidant system efficiency. However, redox homeostasis is disturbed by overproduction of Aβ, which accumulates into plaques across the lifespan in DS as well as in AD, thus generating a vicious cycle that amplifies OS-induced intracellular changes. The present review describes the current literature that demonstrates the accumulation of oxidative damage in DS with a focus on the lipid peroxidation by-product, 4-hydroxy-2-nonenal (HNE). HNE reacts with proteins and can irreversibly impair their functions. We suggest that among different post-translational modifications, HNE-adducts on proteins accumulate in DS brain and play a crucial role in causing the impairment of glucose metabolism, neuronal trafficking, protein quality control and antioxidant response. We hypothesize that dysfunction of these specific pathways contribute to accelerated neurodegeneration associated with AD neuropathology.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Biochemical Sciences, Sapienza University of Rome, Italy; Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de Salud, Avenida Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Elizabeth Head
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - D Allan Butterfield
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Italy.
| |
Collapse
|
43
|
Corrales A, Parisotto EB, Vidal V, García-Cerro S, Lantigua S, Diego M, Wilhem Filho D, Sanchez-Barceló EJ, Martínez-Cué C, Rueda N. Pre- and post-natal melatonin administration partially regulates brain oxidative stress but does not improve cognitive or histological alterations in the Ts65Dn mouse model of Down syndrome. Behav Brain Res 2017; 334:142-154. [PMID: 28743603 DOI: 10.1016/j.bbr.2017.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
Melatonin administered during adulthood induces beneficial effects on cognition and neuroprotection in the Ts65Dn (TS) mouse model of Down syndrome. Here, we investigated the effects of pre- and post-natal melatonin treatment on behavioral and cognitive abnormalities and on several neuromorphological alterations (hypocellularity, neurogenesis impairment and increased oxidative stress) that appear during the early developmental stages in TS mice. Pregnant TS females were orally treated with melatonin or vehicle from the time of conception until the weaning of the offspring, and the pups continued to receive the treatment from weaning until the age of 5 months. Melatonin administered during the pre- and post-natal periods did not improve the cognitive impairment of TS mice as measured by the Morris Water maze or fear conditioning tests. Histological alterations, such as decreased proliferation (Ki67+ cells) and hippocampal hypocellularity (DAPI+ cells), which are typical in TS mice, were not prevented by melatonin. However, melatonin partially regulated brain oxidative stress by modulating the activity of the primary antioxidant enzymes (superoxide dismutase in the cortex and catalase in the cortex and hippocampus) and slightly decreasing the levels of lipid peroxidation in the hippocampus of TS mice. These results show the inability of melatonin to prevent cognitive impairment in TS mice when it is administered at pre- and post-natal stages. Additionally, our findings suggest that to induce pro-cognitive effects in TS mice during the early stages of development, in addition to attenuating oxidative stress, therapies should aim to improve other altered processes, such as hippocampal neurogenesis and/or hypocellularity.
Collapse
Affiliation(s)
- Andrea Corrales
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Eduardo B Parisotto
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Verónica Vidal
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Susana García-Cerro
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Sara Lantigua
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Marian Diego
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Danilo Wilhem Filho
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Emilio J Sanchez-Barceló
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain.
| |
Collapse
|
44
|
Oxidant production and SOD1 protein expression in single skeletal myofibers from Down syndrome mice. Redox Biol 2017; 13:421-425. [PMID: 28697486 PMCID: PMC5828767 DOI: 10.1016/j.redox.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 11/24/2022] Open
Abstract
Down syndrome (DS) is a genetic condition caused by the triplication of chromosome 21. Persons with DS exhibit pronounced muscle weakness, which also occurs in the Ts65Dn mouse model of DS. Oxidative stress is thought to be an underlying factor in the development of DS-related pathologies including muscle dysfunction. High-levels of oxidative stress have been attributed to triplication and elevated expression of superoxide dismutase 1 (SOD1); a gene located on chromosome 21. The elevated expression of SOD1 is postulated to increase production of hydrogen peroxide and cause oxidative injury and cell death. However, it is unknown whether SOD1 protein expression is associated with greater oxidant production in skeletal muscle from Ts65Dn mice. Thus, our objective was to assess levels of SOD1 expression and oxidant production in skeletal myofibers from the flexor digitorum brevis obtained from Ts65Dn and control mice. Measurements of oxidant production were obtained from myofibers loaded with 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA) in the basal state and following 15 min of stimulated unloaded contraction. Ts65Dn myofibers exhibited a significant decrease in basal DCF emissions (p < 0.05) that was associated with an approximate 3-fold increase in SOD1 (p < 0.05). DCF emissions were not affected by stimulating contraction of Ts65Dn or wild-type myofibers (p > 0.05). Myofibers from Ts65Dn mice tended to be smaller and myonuclear domain was lower (p < 0.05). In summary, myofibers from Ts65Dn mice exhibited decreased basal DCF emissions that were coupled with elevated protein expression of SOD1. Stimulated contraction in isolated myofibers did not affect DCF emissions in either group. These findings suggest the skeletal muscle dysfunction in the adult Ts65Dn mouse is not associated with skeletal muscle oxidative stress. Decreased basal oxidant levels corresponded with greater SOD1 in Ts65Dn myofibers. Myofiber oxidant levels were similar between Ts65Dn and controls after contraction. Myonuclear domain was smaller in Ts65Dn myofibers.
Collapse
|
45
|
Kazim SF, Blanchard J, Bianchi R, Iqbal K. Early neurotrophic pharmacotherapy rescues developmental delay and Alzheimer's-like memory deficits in the Ts65Dn mouse model of Down syndrome. Sci Rep 2017; 7:45561. [PMID: 28368015 PMCID: PMC5377379 DOI: 10.1038/srep45561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/27/2017] [Indexed: 12/21/2022] Open
Abstract
Down syndrome (DS), caused by trisomy 21, is the most common genetic cause of intellectual disability and is associated with a greatly increased risk of early-onset Alzheimer’s disease (AD). The Ts65Dn mouse model of DS exhibits several key features of the disease including developmental delay and AD-like cognitive impairment. Accumulating evidence suggests that impairments in early brain development caused by trisomy 21 contribute significantly to memory deficits in adult life in DS. Prenatal genetic testing to diagnose DS in utero, provides the novel opportunity to initiate early pharmacological treatment to target this critical period of brain development. Here, we report that prenatal to early postnatal treatment with a ciliary neurotrophic factor (CNTF) small-molecule peptide mimetic, Peptide 021 (P021), rescued developmental delay in pups and AD-like hippocampus-dependent memory impairments in adult life in Ts65Dn mice. Furthermore, this treatment prevented pre-synaptic protein deficit, decreased glycogen synthase kinase-3beta (GSK3β) activity, and increased levels of synaptic plasticity markers including brain derived neurotrophic factor (BNDF) and phosphorylated CREB, both in young (3-week-old) and adult (~ 7-month-old) Ts65Dn mice. These findings provide novel evidence that providing neurotrophic support during early brain development can prevent developmental delay and AD-like memory impairments in a DS mouse model.
Collapse
Affiliation(s)
- Syed Faraz Kazim
- Department of Neurochemistry, and SUNY Downstate/NYSIBR Center for Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR), Staten Island, NY 10314, USA.,The Robert F. Furchgott Center for Neural and Behavioral Science, and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA.,Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Julie Blanchard
- Department of Neurochemistry, and SUNY Downstate/NYSIBR Center for Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR), Staten Island, NY 10314, USA
| | - Riccardo Bianchi
- The Robert F. Furchgott Center for Neural and Behavioral Science, and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Khalid Iqbal
- Department of Neurochemistry, and SUNY Downstate/NYSIBR Center for Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR), Staten Island, NY 10314, USA
| |
Collapse
|
46
|
Shimohata A, Ishihara K, Hattori S, Miyamoto H, Morishita H, Ornthanalai G, Raveau M, Ebrahim AS, Amano K, Yamada K, Sago H, Akiba S, Mataga N, Murphy NP, Miyakawa T, Yamakawa K. Ts1Cje Down syndrome model mice exhibit environmental stimuli-triggered locomotor hyperactivity and sociability concurrent with increased flux through central dopamine and serotonin metabolism. Exp Neurol 2017; 293:1-12. [PMID: 28336394 DOI: 10.1016/j.expneurol.2017.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/26/2022]
Abstract
Ts1Cje mice have a segmental trisomy of chromosome 16 that is orthologous to human chromosome 21 and display Down syndrome-like cognitive impairments. Despite the occurrence of affective and emotional impairments in patients with Down syndrome, these parameters are poorly documented in Down syndrome mouse models, including Ts1Cje mice. Here, we conducted comprehensive behavioral analyses, including anxiety-, sociability-, and depression-related tasks, and biochemical analyses of monoamines and their metabolites in Ts1Cje mice. Ts1Cje mice showed enhanced locomotor activity in novel environments and increased social contact with unfamiliar partners when compared with wild-type littermates, but a significantly lower activity in familiar environments. Ts1Cje mice also exhibited some signs of decreased depression like-behavior. Furthermore, Ts1Cje mice showed monoamine abnormalities, including increased extracellular dopamine and serotonin, and enhanced catabolism in the striatum and ventral forebrain. This study constitutes the first report of deviated monoamine metabolism that may help explain the basis for abnormal behaviors, including the environmental stimuli-triggered hyperactivity, increased sociability and decreased depression-like behavior in Ts1Cje mice.
Collapse
Affiliation(s)
- Atsushi Shimohata
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Keiichi Ishihara
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Hiroyuki Miyamoto
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hiromasa Morishita
- Support Unit for Bio-Material Analysis, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Guy Ornthanalai
- Molecular and Neuropathology Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Abdul Shukkur Ebrahim
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; Department of Internal Medicine-Lymphoma Research Lab, Wayne State University & School of Medicine, Room#8229, Scott Hall, 540E Canfield, Detroit, MI 48201, USA
| | - Kenji Amano
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kazuyuki Yamada
- School of Management, Shizuoka Sangyo University, 1572-1, Owara, Iwata-shi, Shizuoka 438-0043, Japan
| | - Haruhiko Sago
- Center of Maternal-Fetal, Neonatal and Reproductive Medecine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan
| | - Nobuko Mataga
- Support Unit for Bio-Material Analysis, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Niall P Murphy
- Molecular and Neuropathology Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 38 Nishigo-naka, Okazaki, Aichi 444-8585, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
47
|
Perez SD, Du K, Rendeiro C, Wang L, Wu Q, Rubakhin SS, Vazhappilly R, Baxter JH, Sweedler JV, Rhodes JS. A unique combination of micronutrients rejuvenates cognitive performance in aged mice. Behav Brain Res 2017; 320:97-112. [DOI: 10.1016/j.bbr.2016.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/30/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022]
|
48
|
Dong J, Shichiri M, Chung CI, Shibata T, Uchida K, Hagihara Y, Yoshida Y, Ueda H. An open sandwich immunoassay for detection of 13(R,S)-hydroxy-9(E),11(E)-octadecadienoic acid. Analyst 2017; 142:787-793. [DOI: 10.1039/c6an02437h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid peroxidation is involved in many disorders and diseases such as cardiovascular disease, cancers, neurodegenerative diseases, and even aging.
Collapse
Affiliation(s)
- Jinhua Dong
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
| | - Mototada Shichiri
- Health Research Institute
- National Institute of Advanced Industrial Science and Technology
- Japan
| | - Chan-I. Chung
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences
- Nagoya University
- Japan
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences
- Nagoya University
- Japan
| | - Yoshihisa Hagihara
- Health Research Institute
- National Institute of Advanced Industrial Science and Technology
- Japan
| | - Yasukazu Yoshida
- Health Research Institute
- National Institute of Advanced Industrial Science and Technology
- Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
| |
Collapse
|
49
|
Ambrogini P, Betti M, Galati C, Di Palma M, Lattanzi D, Savelli D, Galli F, Cuppini R, Minelli A. α-Tocopherol and Hippocampal Neural Plasticity in Physiological and Pathological Conditions. Int J Mol Sci 2016; 17:E2107. [PMID: 27983697 PMCID: PMC5187907 DOI: 10.3390/ijms17122107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/01/2016] [Accepted: 12/09/2016] [Indexed: 12/25/2022] Open
Abstract
Neuroplasticity is an "umbrella term" referring to the complex, multifaceted physiological processes that mediate the ongoing structural and functional modifications occurring, at various time- and size-scales, in the ever-changing immature and adult brain, and that represent the basis for fundamental neurocognitive behavioral functions; in addition, maladaptive neuroplasticity plays a role in the pathophysiology of neuropsychiatric dysfunctions. Experiential cues and several endogenous and exogenous factors can regulate neuroplasticity; among these, vitamin E, and in particular α-tocopherol (α-T), the isoform with highest bioactivity, exerts potent effects on many plasticity-related events in both the physiological and pathological brain. In this review, the role of vitamin E/α-T in regulating diverse aspects of neuroplasticity is analyzed and discussed, focusing on the hippocampus, a brain structure that remains highly plastic throughout the lifespan and is involved in cognitive functions. Vitamin E-mediated influences on hippocampal synaptic plasticity and related cognitive behavior, on post-natal development and adult hippocampal neurogenesis, as well as on cellular and molecular disruptions in kainate-induced temporal seizures are described. Besides underscoring the relevance of its antioxidant properties, non-antioxidant functions of vitamin E/α-T, mainly involving regulation of cell signaling molecules and their target proteins, have been highlighted to help interpret the possible mechanisms underlying the effects on neuroplasticity.
Collapse
Affiliation(s)
- Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Michele Betti
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Claudia Galati
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Michael Di Palma
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Davide Lattanzi
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - David Savelli
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Riccardo Cuppini
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Andrea Minelli
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| |
Collapse
|
50
|
Combined Treatment With Environmental Enrichment and (-)-Epigallocatechin-3-Gallate Ameliorates Learning Deficits and Hippocampal Alterations in a Mouse Model of Down Syndrome. eNeuro 2016; 3:eN-NWR-0103-16. [PMID: 27844057 PMCID: PMC5099603 DOI: 10.1523/eneuro.0103-16.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/26/2016] [Accepted: 09/08/2016] [Indexed: 12/22/2022] Open
Abstract
Intellectual disability in Down syndrome (DS) is accompanied by altered neuro-architecture, deficient synaptic plasticity, and excitation-inhibition imbalance in critical brain regions for learning and memory. Recently, we have demonstrated beneficial effects of a combined treatment with green tea extract containing (-)-epigallocatechin-3-gallate (EGCG) and cognitive stimulation in young adult DS individuals. Although we could reproduce the cognitive-enhancing effects in mouse models, the underlying mechanisms of these beneficial effects are unknown. Here, we explored the effects of a combined therapy with environmental enrichment (EE) and EGCG in the Ts65Dn mouse model of DS at young age. Our results show that combined EE-EGCG treatment improved corticohippocampal-dependent learning and memory. Cognitive improvements were accompanied by a rescue of cornu ammonis 1 (CA1) dendritic spine density and a normalization of the proportion of excitatory and inhibitory synaptic markers in CA1 and dentate gyrus.
Collapse
|