1
|
Arslan NP, Azad F, Orak T, Budak-Savas A, Ortucu S, Dawar P, Baltaci MO, Ozkan H, Esim N, Taskin M. A review on bacteria-derived antioxidant metabolites: their production, purification, characterization, potential applications, and limitations. Arch Pharm Res 2025:10.1007/s12272-025-01541-5. [PMID: 40208553 DOI: 10.1007/s12272-025-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Antioxidants are organic molecules that scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS), thereby maintaining cellular redox balance in living organisms. The human body synthesizes endogenous antioxidants, whereas humans obtain exogenous antioxidants from other organisms such as plants, animals, fungi, and bacteria. This review primarily focuses on the antioxidant potential of natural metabolites and extracts from five major bacterial phyla, including the well-studied Actinobacteria and Cyanobacteria, as well as less-studied Bacteroides, Firmicutes, and Proteobacteria. The literature survey revealed that the metabolites and the extracts with antioxidant activity can be obtained from bacterial cells and their culture supernatants. The metabolites with antioxidant activity include pigments, phycobiliproteins, polysaccharides, mycosporins-like amino acids, peptides, phenolic compounds, and alkaloids. Both metabolites and extracts demonstrate in vitro antioxidant capacity through radical-scavenging, metal-reducing, and metal-chelating activity assays. In in vivo models, they can scavenge ROS and RNS directly and/or indirectly eliminate them by enhancing the activities of antioxidant enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase. Due to their antioxidant activities, they may find applications in the cosmetic industry as anti-aging agents for the skin and in medicine as drugs or supplements for combating oxidative stress-related disorders, such as neurodegenerative diseases and diabetes. The literature survey also elucidated that some metabolites and extracts with antioxidant activity also exhibited strong antimicrobial properties. Therefore, we consider that they may have future applications in the treatment of infectious diseases, the preparation of pathogen-free healthy foods, and the extension of food shelf life.
Collapse
Affiliation(s)
| | - Fakhrul Azad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Tugba Orak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Aysenur Budak-Savas
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Ortucu
- Department of Molecular Biology and Genetics, Science Faculty, Erzurum Technical University, Erzurum, Turkey
| | - Pranav Dawar
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Hakan Ozkan
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art Faculty, Bingol University, Bingol, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey.
| |
Collapse
|
2
|
Dai X, Xi M, Li J. Cancer metastasis: molecular mechanisms and therapeutic interventions. MOLECULAR BIOMEDICINE 2025; 6:20. [PMID: 40192949 PMCID: PMC11977077 DOI: 10.1186/s43556-025-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
The metastatic cascade is a complicated process where cancer cells travel across multiple organs distant from their primary site of onset. Despite the wide acceptance of the 'seed and soil' theory, mechanisms driving metastasis organotropism remain mystery. Using breast cancer of different subtypes as the disease model, we characterized the 'metastatic profile of cancer cells' and the 'redox status of the organ microenvironment' as the primary determinants of cancer metastasis organotropism. Mechanically, we identified a positive correlation between cancer metabolic plasticity and stemness, and proposed oxidative stress as the selection power of cancer cells succeeding the metastasis cascade. Therapeutically, we proposed the use of pro-oxidative therapeutics in ablating cancer cells taking advantages of this fragile moment during metastasis. We comprehensively reviewed current pro-oxidative strategies for treating cancers that cover the first line chemo- and radio-therapies, approaches relying on naturally existing power including magnetic field, electric field, light and sound, nanoparticle-based anti-cancer composites obtained through artificial design, as well as cold atmospheric plasma as an innovative pro-oxidative multi-modal modality. We discussed possible combinations of pro-oxidative approaches with existing therapeutics in oncology prior to the forecast of future research directions. This paper identified the fundamental mechanics driving metastasis organotropism and proposed intervention strategies accordingly. Insights provided here may offer clues for the design of innovative solutions that may open a new paradigm for cancer treatment.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Ming Xi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jitian Li
- Molecular Biology Lab, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Henan Province, Zhengzhou, 450000, China
| |
Collapse
|
3
|
Bao Q, Wang Z, Yang T, Su X, Chen Y, Liu L, Deng Q, Liu Q, Shao C, Zhu W. Curcumin induces mitochondrial dysfunction-associated oxidative DNA damage in ovarian cancer cells. PLoS One 2025; 20:e0319846. [PMID: 40163489 PMCID: PMC11957317 DOI: 10.1371/journal.pone.0319846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/08/2025] [Indexed: 04/02/2025] Open
Abstract
Resistance to chemotherapeutic agents is a critical challenge for the clinical management of ovarian cancer. While curcumin has been reported to possess anti-cancer properties, how it exerts its anti-neoplastic effect on ovarian cancer cells remains to be explored. We here characterized the fate of human ovarian cancer cell lines HO8910 and OVCAR3 treated with curcumin. Cell proliferation, cell death, mitochondrial function, oxidative damage and tumor formation in nude mice were examined. Significant inhibition of proliferation and induction of apoptosis were observed in ovarian cells treated with curcumin. The cancer cells exhibit cell cycle arrest at G2/M phase, mitochondrial accumulation, mitochondrial oxidative stress and high level of DNA damage after curcumin treatment. This effect of curcumin is independent of the BRCA mutation status. Curcumin-induced proliferation inhibition and apoptosis were effectively attenuated by the application of antioxidant N-acetylcysteine (NAC), suggesting that curcumin exerts its anti-cancer effect by inflicting oxidative stress. Curcumin applied at 200 mg/kg intraperitoneal infusion daily also inhibited the growth, oxidative damage, and mitochondrial accumulation of tumor xenografts in vivo. Together, the results indicate that curcumin can exert its anti-tumor effect via inducing mitochondrial dysfunction-associated oxidative DNA damage and can be potentially used in combination with other DNA repair-interfering therapeutics, such as PARP inhibitor, in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Qi Bao
- Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Liyang Peoples Hospital, Liyang, Jiangsu, China
| | - Zihan Wang
- Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tingting Yang
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
| | - Xiao Su
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
- Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ying Chen
- Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lifen Liu
- Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qicheng Deng
- Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qingyang Liu
- Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
| | - Weipei Zhu
- Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Nascentes Melo LM, Sabatier M, Ramesh V, Szylo KJ, Fraser CS, Pon A, Mitchell EC, Servage KA, Allies G, Westedt IV, Cansiz F, Krystkiewicz J, Kutritz A, Schadendorf D, Morrison SJ, Ubellacker JM, Sreelatha A, Tasdogan A. Selenoprotein O Promotes Melanoma Metastasis and Regulates Mitochondrial Complex II Activity. Cancer Res 2025; 85:942-955. [PMID: 39700395 PMCID: PMC11873727 DOI: 10.1158/0008-5472.can-23-2194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/12/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Evolutionarily conserved selenoprotein O (SELENOO) catalyzes a posttranslational protein modification known as AMPylation that is essential for the oxidative stress response in bacteria and yeast. Given that oxidative stress experienced in the blood limits survival of metastasizing melanoma cells, SELENOO might be able to affect metastatic potential. However, further work is needed to elucidate the substrates and functional relevance of the mammalian homolog of SELENOO. In this study, we revealed that SELENOO promotes cancer metastasis and identified substrates of SELENOO in mammalian mitochondria. In patients with melanoma, high SELENOO expression was correlated with metastasis and poor overall survival. In a murine model of spontaneous melanoma metastasis, SELENOO deficiency significantly reduced metastasis to distant visceral organs, which could be rescued by treatment with the antioxidant N-acetylcysteine. Mechanistically, SELENOO AMPylated multiple mitochondrial substrates, including succinate dehydrogenase subunit A, one of the four key subunits of mitochondrial complex II. Consistently, SELENOO-deficient cells featured increased mitochondrial complex II activity. Together, these findings demonstrate that SELENOO deficiency limits melanoma metastasis by modulating mitochondrial function and oxidative stress. Significance: SELENOO alters mitochondrial function and supports metastasis in melanoma, highlighting the impact of SELENOO-mediated posttranslational modification of mitochondrial substrates and selenoproteins in cancer progression.
Collapse
Affiliation(s)
| | - Marie Sabatier
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Vijayashree Ramesh
- Children’s Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Krystina J. Szylo
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Cameron S. Fraser
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Alex Pon
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Evann C. Mitchell
- Children’s Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kelly A. Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gabriele Allies
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, Germany
| | - Isa V. Westedt
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, Germany
| | - Feyza Cansiz
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, Germany
| | - Jonathan Krystkiewicz
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, Germany
| | - Andrea Kutritz
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, Germany
| | - Sean J. Morrison
- Children’s Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jessalyn M. Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Anju Sreelatha
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
- Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, Germany
| |
Collapse
|
5
|
Fujii J, Ochi H, Yamada S. A comprehensive review of peroxiredoxin 4, a redox protein evolved in oxidative protein folding coupled with hydrogen peroxide detoxification. Free Radic Biol Med 2025; 227:336-354. [PMID: 39643136 DOI: 10.1016/j.freeradbiomed.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Peroxiredoxin (PRDX) primarily employs electrons from thioredoxin in order to reduce peroxides. PRDX4 mainly resides either in the endoplasmic reticulum (ER) lumen or in extracellular spaces. Due to the usage of alternative promoters, a first exon is transcribed from different regions of the Prdx4 gene, which results in two types of mRNAs. The first type is designated as Prdx4. It is translated with a cleavable, hydrophobic signal sequence and is expressed in most cells throughout the body. The second type is designated as Prdx4t. The peroxidase activity of PRDX4 is involved in both the reduction of hydrogen peroxides and in the oxidative folding of nascent proteins in the ER. Prdx4 appears to have evolved from an ancestral gene in Eutherians simultaneously with the evolution of sperm protamine to cysteine-rich peptides, and, therefore, the testis-specific PRDX4t is likely involved in spermatogenesis through the oxidative folding of protamine. The dysfunction of PRDX4 leads to oxidative damage and ER stress, and is related to various diseases including diabetes and cancer. In this review article we refer to the results of biological and medical research in order to unveil the functional consequences of this unique member of the PRDX family.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Sohsuke Yamada
- Departments of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
6
|
Li J, Liu Y, Li J, Feng Z, Bai L, Feng Y, Zhang P, Song F. Association between the oxidative balance score with metabolic syndrome traits in US adults. Diabetol Metab Syndr 2024; 16:263. [PMID: 39497207 PMCID: PMC11536893 DOI: 10.1186/s13098-024-01500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024] Open
Abstract
OBJECTIVE To explore the association between the Oxidative Balance Score (OBS), which represents the balance of multiple oxidative stress-related dietary and lifestyle exposures, and the risk of metabolic syndrome (MetS). METHODS A population-based cross-sectional study design was adopted and 16,850 participants in NHANES database were included in the statistics analysis stage. The OBS was constructed by combining information from 20 a priori selected pro- and antioxidant factors. Weighted logistic regression and restricted cubic splines (RCS) were used to estimate the association between OBS and MetS. RESULTS Participants in the highest OBS quartile, indicating low oxidative stress (OS) levels, exhibited a significantly lower risk of MetS (odds Ratio [OR] = 0.55, 95% confidence Interval [CI]: 0.47-0.64) compared to the lowest quartile. Specifically, higher OBS was inversely associated with abdominal obesity (OR = 0.61, 95% CI: 0.54-0.69), hypertension (OR = 0.69, 95% CI: 0.58-0.83), elevated triglycerides (OR = 0.68, 95% CI: 0.57-0.82), low high-density lipoprotein cholesterol (HDL-C) levels (OR = 0.60, 95% CI: 0.50-0.70) and fasting blood glucose (FBG) levels (OR = 0.74, 95% CI: 0.62-0.88). The observed inverse association between OBS and hypertension or FBG levels appeared to primarily influenced by BMI. The association between dietary OBS intervals and elevated FBG levels was not statistically significant in men, whereas the risk was lower by 25% in women. CONCLUSIONS A higher OBS, representing a balance of multiple oxidative stress-related dietary and lifestyle exposures, is associated with a lower risk of MetS. Therefore, adhering to an antioxidant diet and lifestyle may help prevent the occurrence of metabolic disorders.
Collapse
Affiliation(s)
- Junxian Li
- Department of Blood Transfusion, Key Laboratory of Cancer Prevention and Therapy in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Ya Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Jingjing Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Ziwei Feng
- Nosocomial Infection Management Department, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Lili Bai
- Department of Blood Transfusion, Key Laboratory of Cancer Prevention and Therapy in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yujie Feng
- Department of Blood Transfusion, Key Laboratory of Cancer Prevention and Therapy in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Pengyu Zhang
- Department of Blood Transfusion, Key Laboratory of Cancer Prevention and Therapy in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
| |
Collapse
|
7
|
Kozlov AV, Javadov S, Sommer N. Cellular ROS and Antioxidants: Physiological and Pathological Role. Antioxidants (Basel) 2024; 13:602. [PMID: 38790707 PMCID: PMC11117742 DOI: 10.3390/antiox13050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen derivatives that include free radicals such as superoxide anion radical (O2•-) and hydroxyl radical (HO•), as well as non-radical molecules hydrogen peroxide (H2O2), peroxynitrite (ONOO-), and hypochlorous acid (HOCl) [...].
Collapse
Affiliation(s)
- Andrey V. Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
8
|
Zhang Z, Zhao Q, Wang Z, Xu F, Liu Y, Guo Y, Li C, Liu T, Zhao Y, Tang X, Zhang J. Hepatocellular carcinoma cells downregulate NADH:Ubiquinone Oxidoreductase Subunit B3 to maintain reactive oxygen species homeostasis. Hepatol Commun 2024; 8:e0395. [PMID: 38437062 PMCID: PMC10914236 DOI: 10.1097/hc9.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND HCC is a leading cause of cancer-related death. The role of reactive oxygen species (ROS) in HCC remains elusive. Since a primary ROS source is the mitochondrial electron transport chain complex Ι and the NADH:ubiquinone Oxidoreductase Subunit B3 (NDUFB3), a complex I subunit, is critical for complex I assembly and regulates the associated ROS production, we hypothesize that some HCCs progress by hijacking NDUFB3 to maintain ROS homeostasis. METHODS NDUFB3 in human HCC lines was either knocked down or overexpressed. The cells were then analyzed in vitro for proliferation, migration, invasiveness, colony formation, complex I activity, ROS production, oxygen consumption, apoptosis, and cell cycle. In addition, the in vivo growth of the cells was evaluated in nude mice. Moreover, the role of ROS in the NDUFB3-mediated changes in the HCC lines was determined using cellular and mitochondrion-targeted ROS scavengers. RESULTS HCC tissues showed reduced NDUFB3 protein expression compared to adjacent healthy tissues. In addition, NDUFB3 knockdown promoted, while its overexpression suppressed, HCC cells' growth, migration, and invasiveness. Moreover, NDUFB3 knockdown significantly decreased, whereas its overexpression increased complex I activity. Further studies revealed that NDUFB3 overexpression elevated mitochondrial ROS production, causing cell apoptosis, as manifested by the enhanced expressions of proapoptotic molecules and the suppressed expression of the antiapoptotic molecule B cell lymphoma 2. Finally, our data demonstrated that the apoptosis was due to the activation of the c-Jun N-terminal kinase (JNK) signaling pathway and cell cycle arrest at G0/G1 phase. CONCLUSIONS Because ROS plays essential roles in many biological processes, such as aging and cancers, our findings suggest that NDFUB3 can be targeted for treating HCC and other human diseases.
Collapse
Affiliation(s)
- Zhendong Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Qianwei Zhao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Zexuan Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Fang Xu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Yixian Liu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Yaoyu Guo
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Chenglong Li
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ting Liu
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Ying Zhao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
- Department of Medicine, Division of Regenerative Medicine, School of Medicine, Loma Linda University, Loma Linda, California, USA
- Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Jintao Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Vaidya AD. Integrative vision in cancer research, prevention and therapy. J Ayurveda Integr Med 2024; 15:100856. [PMID: 38176303 PMCID: PMC10805757 DOI: 10.1016/j.jaim.2023.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
There is already a significant global initiative to explore the synergy between traditional medicine (TM) and oncology, for holistic best care of cancer patients. Integrative oncology clinics have emerged with operational efficiency. What is needed now is an integrative vision that inspires to seamlessly coordinate the trans-system efforts in cancer research and rapidly translate the positive outcomes into prevention and treatment of cancer. The current dominant paradigm to consider TM only for complementary and alternative adjunct usage cannot inspire state-of-the art research and development on TM leads and serendipitous discoveries. Ayurvedic concepts of Vyadhi-kshamatwa (Immune resistance), Shatkriyakala (Six stages of a disease) and Hetuviparya Chikitsa (Reversal of pathogenetic factors) need to be synergized with ayurvedic pharmacoepidemiology, reverse pharmacology, observational therapeutics, ayurgenomics, ayurvedic biology, and reverse ayurceutics. Such a paradigm-shifting vision may lead to pragmatic translational research/practice and system obstacles and novel bridges in Integrative Oncology.
Collapse
Affiliation(s)
- Ashok Db Vaidya
- Kasturba Health Society- Medical Research Centre, Mumbai, India.
| |
Collapse
|
10
|
Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol 2024; 25:13-33. [PMID: 37714962 DOI: 10.1038/s41580-023-00645-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
Several different reactive oxygen species (ROS) are generated in vivo. They have roles in the development of certain human diseases whilst also performing physiological functions. ROS are counterbalanced by an antioxidant defence network, which functions to modulate ROS levels to allow their physiological roles whilst minimizing the oxidative damage they cause that can contribute to disease development. This Review describes the mechanisms of action of antioxidants synthesized in vivo, antioxidants derived from the human diet and synthetic antioxidants developed as therapeutic agents, with a focus on the gaps in our current knowledge and the approaches needed to close them. The Review also explores the reasons behind the successes and failures of antioxidants in treating or preventing human disease. Antioxidants may have special roles in the gastrointestinal tract, and many lifestyle features known to promote health (especially diet, exercise and the control of blood glucose and cholesterol levels) may be acting, at least in part, by antioxidant mechanisms. Certain reactive sulfur species may be important antioxidants but more accurate determinations of their concentrations in vivo are needed to help assess their contributions.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Babapoor-Farrokhran S, Qin Y, Flores-Bellver M, Niu Y, Bhutto IA, Aparicio-Domingo S, Guo C, Rodrigues M, Domashevich T, Deshpande M, Megarity H, Chopde R, Eberhart CG, Canto-Soler V, Montaner S, Sodhi A. Pathologic vs. protective roles of hypoxia-inducible factor 1 in RPE and photoreceptors in wet vs. dry age-related macular degeneration. Proc Natl Acad Sci U S A 2023; 120:e2302845120. [PMID: 38055741 PMCID: PMC10723156 DOI: 10.1073/pnas.2302845120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/20/2023] [Indexed: 12/08/2023] Open
Abstract
It has previously been reported that antioxidant vitamins can help reduce the risk of vision loss associated with progression to advanced age-related macular degeneration (AMD), a leading cause of visual impairment among the elderly. Nonetheless, how oxidative stress contributes to the development of choroidal neovascularization (CNV) in some AMD patients and geographic atrophy (GA) in others is poorly understood. Here, we provide evidence demonstrating that oxidative stress cooperates with hypoxia to synergistically stimulate the accumulation of hypoxia-inducible factor (HIF)-1α in the retinal pigment epithelium (RPE), resulting in increased expression of the HIF-1-dependent angiogenic mediators that promote CNV. HIF-1 inhibition blocked the expression of these angiogenic mediators and prevented CNV development in an animal model of ocular oxidative stress, demonstrating the pathological role of HIF-1 in response to oxidative stress stimulation in neovascular AMD. While human-induced pluripotent stem cell (hiPSC)-derived RPE monolayers exposed to chemical oxidants resulted in disorganization and disruption of their normal architecture, RPE cells proved remarkably resistant to oxidative stress. Conversely, equivalent doses of chemical oxidants resulted in apoptosis of hiPSC-derived retinal photoreceptors. Pharmacologic inhibition of HIF-1 in the mouse retina enhanced-while HIF-1 augmentation reduced-photoreceptor apoptosis in two mouse models for oxidative stress, consistent with a protective role for HIF-1 in photoreceptors in patients with advanced dry AMD. Collectively, these results suggest that in patients with AMD, increased expression of HIF-1α in RPE exposed to oxidative stress promotes the development of CNV, but inadequate HIF-1α expression in photoreceptors contributes to the development of GA.
Collapse
Affiliation(s)
| | - Yu Qin
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang110005, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang110005, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang110005, China
| | - Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO80045
| | - Yueqi Niu
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Imran A. Bhutto
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Silvia Aparicio-Domingo
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO80045
| | - Chuanyu Guo
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Murilo Rodrigues
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Timothy Domashevich
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO80045
| | - Monika Deshpande
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Haley Megarity
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Rakesh Chopde
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Charles G. Eberhart
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO80045
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, Greenebaum Cancer Center, University of Maryland, Baltimore, MD21201
| | - Akrit Sodhi
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| |
Collapse
|
12
|
Li J, Song F. A causal relationship between antioxidants, minerals and vitamins and metabolic syndrome traits: a Mendelian randomization study. Diabetol Metab Syndr 2023; 15:194. [PMID: 37817280 PMCID: PMC10563368 DOI: 10.1186/s13098-023-01174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND The available evidence regarding the association of antioxidants, minerals, and vitamins with the risk of metabolic syndrome (MetS) traits is currently limited and inconsistent. Therefore, the purpose of this Mendelian randomization (MR) study was to investigate the potential causal relationship between genetically predicted antioxidants, minerals, and vitamins, and MetS. METHODS In this study, we utilized genetic variation as instrumental variable (IV) to capture exposure data related to commonly consumed dietary nutrients, including antioxidants (β-carotene, lycopene, and uric acid), minerals (copper, calcium, iron, magnesium, phosphorus, zinc, and selenium), and vitamins (folate, vitamin A, B6, B12, C, D, E, and K1). The outcomes of interest, namely MetS (n = 291,107), waist circumference (n = 462,166), hypertension (n = 463,010), fasting blood glucose (FBG) (n = 281,416), triglycerides (n = 441,016), and high-density lipoprotein cholesterol (HDL-C) (n = 403,943), were assessed using pooled data obtained from the most comprehensive genome-wide association study (GWAS) available. Finally, we applied the inverse variance weighting method as the result and conducted a sensitivity analysis for further validation. RESULTS Genetically predicted higher iron (OR = 1.070, 95% CI 1.037-1.105, P = 2.91E-05) and magnesium levels (OR = 1.130, 95% CI 1.058-1.208, P = 2.80E-04) were positively associated with increased risk of MetS. For each component of MetS, higher level of genetically predicted selenium (OR = 0.971, 95% CI 0.957-0.986, P = 1.09E-04) was negatively correlated with HDL-C levels, while vitamin K1 (OR = 1.023, 95% CI 1.012-1.033, P = 2.90E-05) was positively correlated with HDL-C levels. Moreover, genetically predicted vitamin D (OR = 0.985, 95% CI 0.978-0.992, P = 5.51E-5) had a protective effect on FBG levels. Genetically predicted iron level (OR = 1.043, 95% CI 1.022-1.064, P = 4.33E-05) had a risk effect on TG level. CONCLUSIONS Our study provides evidence that genetically predicted some specific, but not all, antioxidants, minerals, and vitamins may be causally related to the development of MetS traits.
Collapse
Affiliation(s)
- Junxian Li
- Department of Blood Transfusion, Key Laboratory of Cancer Prevention and Therapy in Tianjin, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
13
|
Ren Y, DeRose K, Li L, Gallucci JC, Yu J, Douglas Kinghorn A. Vincamine, from an antioxidant and a cerebral vasodilator to its anticancer potential. Bioorg Med Chem 2023; 92:117439. [PMID: 37579526 PMCID: PMC10530545 DOI: 10.1016/j.bmc.2023.117439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Vincamine is a naturally occurring indole alkaloid showing antioxidant activity and has been used clinically for the prevention and treatment of cerebrovascular disorders and insufficiencies. It has been well documented that antioxidants may contribute to cancer treatment, and thus, vincamine has been investigated recently for its potential antitumor activity. Vincamine was found to show cancer cell cytotoxicity and to modulate several important proteins involved in tumor growth, including acetylcholinesterase (AChE), mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and T-box 3 (TBX3). Several bisindole alkaloids, including vinblastine and vincristine and their synthetic derivatives, vindesine, vinflunine, and vinorelbine, have been used as clinically effective cancer chemotherapeutic agents. In the present review, the discovery and development of vincamine as a useful therapeutic agent and its antioxidant and antitumor activity are summarized, with its antioxidant-related mechanisms of anticancer potential being described. Also, discussed herein are the design of the potential vincamine-based oncolytic agents, which could contribute to the discovery of further new agents for cancer treatment.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| | - Kevin DeRose
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Leyan Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Judith C Gallucci
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Jianhua Yu
- City of Hope National Medical Center, Duarte, CA 91010, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
14
|
Yi J, Wang Z, Hu J, Yu T, Wang Y, Ge P, Xianyu Y. Point-of-Care Detection of Antioxidant in Agarose-Based Test Strip through Antietching of Au@Ag Nanostars. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37328300 DOI: 10.1021/acsami.3c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antioxidants are crucial for human health, and the detection of antioxidants can provide valuable information for disease diagnosis and health management. In this work, we report a plasmonic sensing approach for the determination of antioxidants based on their antietching capacity toward plasmonic nanoparticles. The Ag shell of core-shell Au@Ag nanostars can be etched by chloroauric acid (HAuCl4), whereas antioxidants can interact with HAuCl4, which prevents the surface etching of Au@Ag nanostars. We modulate the thickness of the Ag shell and morphology of the nanostructures, showing that the core-shell nanostars with the smallest thickness of Ag shell have the best etching sensitivity. Owing to the extraordinary surface plasmon resonance (SPR) property of Au@Ag nanostars, the antietching effect of antioxidants can induce a significant change in both the SPR spectrum and the color of solution, facilitating both the quantitative detection and naked-eye readout. This antietching strategy enables the determination of antioxidants such as cystine and gallic acid with a linear range of 0.1-10 μM. The core-shell Au@Ag nanostars are further immobilized in agarose gels to fabricate test strips, which can display different color changes in the presence of HAuCl4 from 0 to 1000 μM. The agarose-based test strip is also capable of detecting antioxidants in real samples, which allows naked-eye readout and quantitative detection by a smartphone.
Collapse
Affiliation(s)
- Jiuhong Yi
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Zexiang Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Jing Hu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Ting Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Yidan Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Pengfei Ge
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Yunlei Xianyu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, 310016 Hangzhou, China
- Ningbo Research Institute, Zhejiang University, 315100 Ningbo, China
| |
Collapse
|
15
|
Florek E, Witkowska M, Szukalska M, Richter M, Trzeciak T, Miechowicz I, Marszałek A, Piekoszewski W, Wyrwa Z, Giersig M. Oxidative Stress in Long-Term Exposure to Multi-Walled Carbon Nanotubes in Male Rats. Antioxidants (Basel) 2023; 12:464. [PMID: 36830022 PMCID: PMC9952213 DOI: 10.3390/antiox12020464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Multi-walled carbon nanotubes (MWCNTs) serve as nanoparticles due to their size, and for that reason, when in contact with the biological system, they can have toxic effects. One of the main mechanisms responsible for nanotoxicity is oxidative stress resulting from the production of intracellular reactive oxygen species (ROS). Therefore, oxidative stress biomarkers are important tools for assessing MWCNTs toxicity. The aim of this study was to evaluate the oxidative stress of multi-walled carbon nanotubes in male rats. Our animal model studies of MWCNTs (diameter ~15-30 nm, length ~15-20 μm) include measurement of oxidative stress parameters in the body fluid and tissues of animals after long-term exposure. Rattus Norvegicus/Wistar male rats were administrated a single injection to the knee joint at three concentrations: 0.03 mg/mL, 0.25 mg/mL, and 0.5 mg/mL. The rats were euthanized 12 and 18 months post-exposure by drawing blood from the heart, and their liver and kidney tissues were removed. To evaluate toxicity, the enzymatic activity of total protein (TP), reduced glutathione (GSH), glutathione S-transferase (GST), thiobarbituric acid reactive substances (TBARS), Trolox equivalent antioxidant capacity (TEAC), nitric oxide (NO), and catalase (CAT) was measured and histopathological examination was conducted. Results in rat livers showed that TEAC level was decreased in rats receiving nanotubes at higher concentrations. Results in kidneys report that the level of NO showed higher concentration after long exposure, and results in animal serums showed lower levels of GSH in rats exposed to nanotubes at higher concentrations. The 18-month exposure also resulted in a statistically significant increase in GST activity in the group of rats exposed to nanotubes at higher concentrations compared to animals receiving MWCNTs at lower concentrations and compared to the control group. Therefore, an analysis of oxidative stress parameters can be a key indicator of the toxic potential of multi-walled carbon nanotubes.
Collapse
Affiliation(s)
- Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Marta Witkowska
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Marta Szukalska
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Magdalena Richter
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Izabela Miechowicz
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Andrzej Marszałek
- Oncologic Pathology and Prophylaxis, Greater Poland Cancer Centre, Poznan University of Medical Sciences, 61-866 Poznan, Poland
| | - Wojciech Piekoszewski
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Zuzanna Wyrwa
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Michael Giersig
- Centre for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
- Department of Theory of Continuous Media and Nanostructures, Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
16
|
Ghoneum M, Alaa El-Dein M, Badr El-Din NK. Anticancer potential of Marina Crystal Minerals (MCM) against the growth of murine mammary adenocarcinoma cells in vivo. Biomed Pharmacother 2023; 157:113975. [PMID: 36371853 DOI: 10.1016/j.biopha.2022.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
In vitro studies have shown that Marina Crystal Minerals (MCM), a crystallized mixture of minerals and trace elements from sea water, possesses apoptotic and immune modulatory effects in human breast cancer cells MDA-MB-231. The current study aimed to evaluate MCM's anticancer effect in vivo against murine mammary adenocarcinoma cells and to explore its underlying mechanisms. Mice were inoculated intramuscularly with Ehrlich ascites carcinoma (EAC) cells, a breast adenocarcinoma. Tumors became palpable within 9 days. Tumor-bearing mice were injected with MCM intraperitoneally (IP) or intratumorally (IT) at a dose of 40 mg/kg BW for 6 days/week until day 28 post-inoculation. Tumor growth, cell cycle progression, cell cycle regulatory proteins, apoptosis, apoptotic regulatory markers, mitochondrial membrane potential (MMP), natural killer (NK) cell activity, and histopathological effects were investigated. Treatment with MCM reduced tumor volume by 49.4% for IP and 59.5% for IT injection. MCM induced cancer cell apoptosis, as indicated by a sub-G1 peak and confirmed by Annexin V/PI assay and histopathological examination. This was mediated by increased Bax expression, caspase-3 activation, decreased Bcl-2 expression, and MMP disruption. Furthermore, MCM treatment induced G1 cell cycle arrest, mediated through significantly increased expression of p53, p21, and p27 and decreased expression of cyclin D1 and PCNA in cancer cells. Finally, MCM treatment markedly enhanced NK cell cytotoxicity. MCM possesses chemopreventive potential to reduce tumor growth by suppressing cell proliferation, inducing apoptosis in EAC cells via a mitochondrial dependent pathway, and activating the immune system. Our results suggest MCM's beneficial potential for treating breast adenocarcinoma.
Collapse
Affiliation(s)
- Mamdooh Ghoneum
- Charles Drew University of Medicine and Science, Los Angeles, CA 90059, USA; University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Mai Alaa El-Dein
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
17
|
Van de Gucht M, Dufait I, Kerkhove L, Corbet C, de Mey S, Jiang H, Law KL, Gevaert T, Feron O, De Ridder M. Inhibition of Phosphoglycerate Dehydrogenase Radiosensitizes Human Colorectal Cancer Cells under Hypoxic Conditions. Cancers (Basel) 2022; 14:cancers14205060. [PMID: 36291844 PMCID: PMC9599856 DOI: 10.3390/cancers14205060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Colorectal cancer is the third most prevalent cancer worldwide. Treatment options for these patients consist of surgery combined with chemotherapy and/or radiotherapy. However, a subset of tumors will not respond to therapy or acquire resistance during the course of the treatment, leading to patient relapse. The interplay between reprogramming cancer metabolism and radiotherapy has become an appealing strategy to improve a patient’s outcome. Due to the overexpression of certain enzymes in a variety of cancer types, including colorectal cancer, the serine synthesis pathway has recently become an attractive metabolic target. We demonstrated that by inhibiting the first enzyme of this pathway, namely phosphoglycerate dehydrogenase (PHGDH), tumor cells that are deprived of oxygen (as is generally the case in solid tumors) respond better to radiation, leading to increased tumor cell killing in an experimental model of human colorectal cancer. Abstract Augmented de novo serine synthesis activity is increasingly apparent in distinct types of cancers and has mainly sparked interest by investigation of phosphoglycerate dehydrogenase (PHGDH). Overexpression of PHGDH has been associated with higher tumor grade, shorter relapse time and decreased overall survival. It is well known that therapeutic outcomes in cancer patients can be improved by reprogramming metabolic pathways in combination with standard treatment options, for example, radiotherapy. In this study, possible metabolic changes related to radioresponse were explored upon PHGDH inhibition. Additionally, we evaluated whether PHGDH inhibition could improve radioresponse in human colorectal cancer cell lines in both aerobic and radiobiological relevant hypoxic conditions. Dysregulation of reactive oxygen species (ROS) homeostasis and dysfunction in mitochondrial energy metabolism and oxygen consumption rate were indicative of potential radiomodulatory effects. We demonstrated that PHGDH inhibition radiosensitized hypoxic human colorectal cancer cells while leaving intrinsic radiosensitivity unaffected. In a xenograft model, the first hints of additive effects between PHGDH inhibition and radiotherapy were demonstrated. In conclusion, this study is the first to show that modulation of de novo serine biosynthesis enhances radioresponse in hypoxic colorectal cancer cells, mainly mediated by increased levels of intracellular ROS.
Collapse
Affiliation(s)
- Melissa Van de Gucht
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Lisa Kerkhove
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Mounier 53, 1200 Brussels, Belgium
| | - Sven de Mey
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Ka Lun Law
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Mounier 53, 1200 Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-2-4776144
| |
Collapse
|
18
|
Passaniti A, Kim MS, Polster BM, Shapiro P. Targeting mitochondrial metabolism for metastatic cancer therapy. Mol Carcinog 2022; 61:827-838. [PMID: 35723497 PMCID: PMC9378505 DOI: 10.1002/mc.23436] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Abstract
Primary tumors evolve metabolic mechanisms favoring glycolysis for adenosine triphosphate (ATP) generation and antioxidant defenses. In contrast, metastatic cells frequently depend on mitochondrial respiration and oxidative phosphorylation (OxPhos). This reliance of metastatic cells on OxPhos can be exploited using drugs that target mitochondrial metabolism. Therefore, therapeutic agents that act via diverse mechanisms, including the activation of signaling pathways that promote the production of reactive oxygen species (ROS) and/or a reduction in antioxidant defenses may elevate oxidative stress and inhibit tumor cell survival. In this review, we will provide (1) a mechanistic analysis of function-selective extracellular signal-regulated kinase-1/2 (ERK1/2) inhibitors that inhibit cancer cells through enhanced ROS, (2) a review of the role of mitochondrial ATP synthase in redox regulation and drug resistance, (3) a rationale for inhibiting ERK signaling and mitochondrial OxPhos toward the therapeutic goal of reducing tumor metastasis and treatment resistance. Recent reports from our laboratories using metastatic melanoma and breast cancer models have shown the preclinical efficacy of novel and rationally designed therapeutic agents that target ERK1/2 signaling and mitochondrial ATP synthase, which modulate ROS events that may prevent or treat metastatic cancer. These findings and those of others suggest that targeting a tumor's metabolic requirements and vulnerabilities may inhibit metastatic pathways and tumor growth. Approaches that exploit the ability of therapeutic agents to alter oxidative balance in tumor cells may be selective for cancer cells and may ultimately have an impact on clinical efficacy and safety. Elucidating the translational potential of metabolic targeting could lead to the discovery of new approaches for treatment of metastatic cancer.
Collapse
Affiliation(s)
- Antonino Passaniti
- Research Health Scientist, The Veteran's Health Administration Research & Development Service (VAMHCS), VA Maryland Health Care System (VAMHCS), Baltimore VA Medical Center, Baltimore, Maryland, USA
- Department of Pathology and Department of Biochemistry & Molecular Biology, the Program in Molecular Medicine and the Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland USA
| | - Myoung Sook Kim
- Department of Pathology and Department of Biochemistry & Molecular Biology, the Program in Molecular Medicine and the Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland USA
| | - Brian M. Polster
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore Maryland, USA
| |
Collapse
|
19
|
Anik MI, Mahmud N, Masud AA, Khan MI, Islam MN, Uddin S, Hossain MK. Role of Reactive Oxygen Species in Aging and Age-Related Diseases: A Review. ACS APPLIED BIO MATERIALS 2022; 5:4028-4054. [PMID: 36043942 DOI: 10.1021/acsabm.2c00411] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research on the role of reactive oxygen species (ROS) in the aging process has advanced significantly over the last two decades. In light of recent findings, ROS takes part in the aging process of cells along with contributing to various physiological signaling pathways. Antioxidants being cells' natural defense mechanism against ROS-mediated alteration, play an imperative role to maintain intracellular ROS homeostasis. Although the complete understanding of the ROS regulated aging process is yet to be fully comprehended, current insights into various sources of cellular ROS and their correlation with the aging process and age-related diseases are portrayed in this review. In addition, results on the effect of antioxidants on ROS homeostasis and the aging process as well as their advances in clinical trials are also discussed in detail. The future perspective in ROS-antioxidant dynamics on antiaging research is also marshaled to provide future directions for ROS-mediated antiaging research fields.
Collapse
Affiliation(s)
- Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Niaz Mahmud
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Md Nurul Islam
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Shihab Uddin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - M Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan
| |
Collapse
|
20
|
Ascorbate as a Bioactive Compound in Cancer Therapy: The Old Classic Strikes Back. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123818. [PMID: 35744943 PMCID: PMC9229419 DOI: 10.3390/molecules27123818] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Cancer is a disease of high mortality, and its prevalence has increased steadily in the last few years. However, during the last decade, the development of modern chemotherapy schemes, new radiotherapy techniques, targeted therapies and immunotherapy has brought new hope in the treatment of these diseases. Unfortunately, cancer therapies are also associated with frequent and, sometimes, severe adverse events. Ascorbate (ascorbic acid or vitamin C) is a potent water-soluble antioxidant that is produced in most mammals but is not synthesised endogenously in humans, which lack enzymes for its synthesis. Ascorbate has antioxidant effects that correspond closely to the dose administered. Interestingly, this natural antioxidant induces oxidative stress when given intravenously at a high dose, a paradoxical effect due to its interactions with iron. Importantly, this deleterious property of ascorbate can result in increased cell death. Although, historically, ascorbate has been reported to exhibit anti-tumour properties, this effect has been questioned due to the lack of available mechanistic detail. Recently, new evidence has emerged implicating ferroptosis in several types of oxidative stress-mediated cell death, such as those associated with ischemia–reperfusion. This effect could be positively modulated by the interaction of iron and high ascorbate dosing, particularly in cell systems having a high mitotic index. In addition, it has been reported that ascorbate may behave as an adjuvant of favourable anti-tumour effects in cancer therapies such as radiotherapy, radio-chemotherapy, chemotherapy, immunotherapy, or even in monotherapy, as it facilitates tumour cell death through the generation of reactive oxygen species and ferroptosis. In this review, we provide evidence supporting the view that ascorbate should be revisited to develop novel, safe strategies in the treatment of cancer to achieve their application in human medicine.
Collapse
|
21
|
Thomas C, Wurzer L, Malle E, Ristow M, Madreiter-Sokolowski CT. Modulation of Reactive Oxygen Species Homeostasis as a Pleiotropic Effect of Commonly Used Drugs. FRONTIERS IN AGING 2022; 3:905261. [PMID: 35821802 PMCID: PMC9261327 DOI: 10.3389/fragi.2022.905261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Age-associated diseases represent a growing burden for global health systems in our aging society. Consequently, we urgently need innovative strategies to counteract these pathological disturbances. Overwhelming generation of reactive oxygen species (ROS) is associated with age-related damage, leading to cellular dysfunction and, ultimately, diseases. However, low-dose ROS act as crucial signaling molecules and inducers of a vaccination-like response to boost antioxidant defense mechanisms, known as mitohormesis. Consequently, modulation of ROS homeostasis by nutrition, exercise, or pharmacological interventions is critical in aging. Numerous nutrients and approved drugs exhibit pleiotropic effects on ROS homeostasis. In the current review, we provide an overview of drugs affecting ROS generation and ROS detoxification and evaluate the potential of these effects to counteract the development and progression of age-related diseases. In case of inflammation-related dysfunctions, cardiovascular- and neurodegenerative diseases, it might be essential to strengthen antioxidant defense mechanisms in advance by low ROS level rises to boost the individual ROS defense mechanisms. In contrast, induction of overwhelming ROS production might be helpful to fight pathogens and kill cancer cells. While we outline the potential of ROS manipulation to counteract age-related dysfunction and diseases, we also raise the question about the proper intervention time and dosage.
Collapse
Affiliation(s)
- Carolin Thomas
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Lia Wurzer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael Ristow
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | | |
Collapse
|
22
|
Phenolic Compound Profile by UPLC-MS/MS and Encapsulation with Chitosan of Spondias mombin L. Fruit Peel Extract from Cerrado Hotspot-Brazil. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082382. [PMID: 35458580 PMCID: PMC9028924 DOI: 10.3390/molecules27082382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022]
Abstract
Taperebá (Spondias mombin L.) is a native species of the Brazilian Cerrado that has shown important characteristics such as a significant phenolic compound content and biological activities. The present study aimed to characterize the phenolic compound profile and antioxidant activity in taperebá peel extract, as well as microencapsulating the extract with chitosan and evaluating the stability of the microparticles. The evaluation of the profile of phenolic compounds was carried out by UPLC-MS/MS. The in vitro antioxidant activity was evaluated by DPPH and ABTS methods. The microparticles were obtained by spray drying and were submitted to a stability study under different temperatures. In general, the results showed a significant content of polyphenols and antioxidant activity. The results of UPLC-MS/MS demonstrated a significant content of polyphenols in taperebá peel, highlighting the high content of ellagic acid and quercetin compounds. There was significant retention of phenolic compounds when microencapsulated, demonstrating high retention at all evaluated temperatures. This study is the first to microencapsulate the extract of taperebá peel, in addition to identifying and quantifying some compounds in this fruit.
Collapse
|
23
|
Ricci A, Arboleda Mejia JA, Versari A, Chiarello E, Bordoni A, Parpinello GP. Microencapsulation of polyphenolic compounds recovered from red wine lees: Process optimization and nutraceutical study. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Lim HM, Park SH. Regulation of reactive oxygen species by phytochemicals for the management of cancer and diabetes. Crit Rev Food Sci Nutr 2022; 63:5911-5936. [PMID: 34996316 DOI: 10.1080/10408398.2022.2025574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer and diabetes mellitus are served as typical life-threatening diseases with common risk factors. Developing therapeutic measures in cancers and diabetes have aroused attention for a long time. However, the problems with conventional treatments are in challenge, including side effects, economic burdens, and patient compliance. It is essential to secure safe and efficient therapeutic methods to overcome these issues. As an alternative method, antioxidant and pro-oxidant properties of phytochemicals from edible plants have come to the fore. Phytochemicals are naturally occurring compounds, considered promising agent applicable in treatment of various diseases with beneficial effects. Either antioxidative or pro-oxidative activity of various phytochemicals were found to contribute to regulation of cell proliferation, differentiation, cell cycle arrest, and apoptosis, which can exert preventive and therapeutic effects against cancer and diabetes. In this article, the antioxidant or pro-oxidant effects and underlying mechanisms of flavonoids, alkaloids, and saponins in cancer or diabetic models demonstrated by the recent studies are summarized.
Collapse
Affiliation(s)
- Heui Min Lim
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| |
Collapse
|
25
|
Therapeutic targeting of the hypoxic tumour microenvironment. Nat Rev Clin Oncol 2021; 18:751-772. [PMID: 34326502 DOI: 10.1038/s41571-021-00539-4] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Hypoxia is prevalent in human tumours and contributes to microenvironments that shape cancer evolution and adversely affect therapeutic outcomes. Historically, two different tumour microenvironment (TME) research communities have been discernible. One has focused on physicochemical gradients of oxygen, pH and nutrients in the tumour interstitium, motivated in part by the barrier that hypoxia poses to effective radiotherapy. The other has focused on cellular interactions involving tumour and non-tumour cells within the TME. Over the past decade, strong links have been established between these two themes, providing new insights into fundamental aspects of tumour biology and presenting new strategies for addressing the effects of hypoxia and other microenvironmental features that arise from the inefficient microvascular system in solid tumours. This Review provides a perspective on advances at the interface between these two aspects of the TME, with a focus on translational therapeutic opportunities relating to the elimination and/or exploitation of tumour hypoxia.
Collapse
|
26
|
Mineral Composition, Phenolic Content, and In Vitro Antidiabetic and Antioxidant Properties of Aqueous and Organic Extracts of Haloxylon scoparium Aerial Parts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9011168. [PMID: 34691229 PMCID: PMC8531785 DOI: 10.1155/2021/9011168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022]
Abstract
Haloxylon scoparium is a plant widely used in traditional medicine for the treatment of diabetes. Hence, this study focuses on the mineralogical and chemical composition and evaluation of the antidiabetic and antioxidant activities of the aerial part of this species. The mineralogical analysis was done by inductively coupled plasma atomic emission spectrometry (ICP-AES). The phytochemical study consisted in the preparation of different extracts from the aerial part by aqueous and organic extraction using Soxhlet and cold maceration. Then, phytochemical screening was performed on the plant powder and on the extracts, which is completed by spectrophotometric quantification of total polyphenols, flavonoids, and catechic tannins. The evaluation of antidiabetic activity was done by three enzymes: a-amylase, a-glucosidase, and ß-galactosidase, and that of antioxidant activity was done by five methods: H2O2, DPPH, ABTS, FRAP, and reducing power (RP). Mineralogical analysis revealed the presence of iron, potassium, magnesium, phosphorus, sodium, copper, calcium, strontium, selenium, and zinc. The studied part is rich in alkaloids, flavonoids, catechic tannins, and saponins. The methanolic extract is rich in total polyphenols (161.65 ± 1.52 Ug EAG/mg E), and the ethyl acetate extract has high levels of catechic tannins (23.69 ± 0.6 Ug EC/mg E). In addition, the decoctate expresses a high flavonoid content of 306.59 ± 4.35 Ug EQ/mg E. The in vitro evaluation of the antidiabetic activity showed that the decoctate has a higher inhibitory capacity on a-glucosidase (IC50 = 181.7 ± 21.15 ug/mL) than acarbose (IC50 = 195 ± 6.12 ug/mL). The results of the antioxidant activity showed that the methanolic extract and the decoctate present a percentage of hydrogen peroxide (H2O2) scavenging (20.91 ± 0.27 and 16.21 ± 0.39%) higher than that of ascorbic acid (14.35 ± 0.002%). Positive correlations obtained between the total polyphenol content and the antioxidant activity of the extracts were studied. A positive correlation of a-amylase inhibitory activity was also recorded with the antioxidant activity tests.
Collapse
|
27
|
Tasdogan A, Ubellacker JM, Morrison SJ. Redox Regulation in Cancer Cells during Metastasis. Cancer Discov 2021; 11:2682-2692. [PMID: 34649956 DOI: 10.1158/2159-8290.cd-21-0558] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Metastasis is an inefficient process in which the vast majority of cancer cells are fated to die, partly because they experience oxidative stress. Metastasizing cancer cells migrate through diverse environments that differ dramatically from their tumor of origin, leading to redox imbalances. The rare metastasizing cells that survive undergo reversible metabolic changes that confer oxidative stress resistance. We review the changes in redox regulation that cancer cells undergo during metastasis. By better understanding these mechanisms, it may be possible to develop pro-oxidant therapies that block disease progression by exacerbating oxidative stress in cancer cells. SIGNIFICANCE: Oxidative stress often limits cancer cell survival during metastasis, raising the possibility of inhibiting cancer progression with pro-oxidant therapies. This is the opposite strategy of treating patients with antioxidants, an approach that worsened outcomes in large clinical trials.
Collapse
Affiliation(s)
- Alpaslan Tasdogan
- Children's Research Institute and Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jessalyn M Ubellacker
- Children's Research Institute and Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sean J Morrison
- Children's Research Institute and Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas. .,Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
28
|
Xue H, Qiao R, Yan L, Yang S, Liang Y, Liu Y, Xie Q, Cui L, Cao B. The Correlation Between Potential "Anti- Cancer" Trace Elements and the Risk of Breast Cancer: A Case-Control Study in a Chinese Population. Front Oncol 2021; 11:646534. [PMID: 34447692 PMCID: PMC8383177 DOI: 10.3389/fonc.2021.646534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/20/2021] [Indexed: 01/22/2023] Open
Abstract
Backgrounds Breast cancer is a heterogeneous disease without clear pathogenesis and effective primary prevention. The “anti-cancer” effects of several trace elements have received increasing attention in recent years. The main purpose of current study is to explore the differences of three potential “anti-cancer” trace elements selenium (Se), molybdenum (Mo), and strontium (Sr) between patients with malignant breast tumors and healthy controls. Methods We conducted a case–control study in 45 patients with malignant breast tumors as cases and 95 healthy volunteers as controls from Peking University Third Hospital, Beijing, China. The serum concentrations of trace elements were evaluated by using inductively coupled plasma mass spectrometry (ICP-MS). Results The cases may have a lower Se levels when compared with controls (cases: 106.22 ng/ml, SD: 20.95 ng/ml; controls: 117.02 ng/ml, IQR: 22.79 ng/ml, p = 0.014). High levels of Se were a protective factor from breast cancer after adjusting the potential confounders of age, BMI, smoking, drinking, and menopause status (OR = 0.395, 95% CI, 0.178, 0.877, p = 0.023). The levels of Sr were lower in cases with high histologic grade when compared to low histologic grade (low histologic grade: 49.83 ng/ml, IQR: 41.35–62.60 ng/ml; high histologic grade: 40.19 ng/ml, IQR: 39.24–47.16 ng/ml, p < 0.05). Conclusions Our findings herein supported that Se has protective effects to avoid malignant breast tumors and Sr has protective effects to avoid poorly differentiated malignant breast tumors. Exploring “anti-cancer” related trace elements and their associations with breast cancer will assist for the early prevention and intervention for the disease.
Collapse
Affiliation(s)
- Heng Xue
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Rui Qiao
- Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Siyu Yang
- Tianjin Center for Disease Control and Prevention, Tianjin, China
| | - Yongming Liang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Yaqiong Liu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Qing Xie
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Bing Cao
- Key Laboratory of Cognition and Personality (SWU), Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, China
| |
Collapse
|
29
|
Le Gal K, Schmidt EE, Sayin VI. Cellular Redox Homeostasis. Antioxidants (Basel) 2021; 10:antiox10091377. [PMID: 34573009 PMCID: PMC8469889 DOI: 10.3390/antiox10091377] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
Cellular redox homeostasis is an essential and dynamic process that ensures the balance between reducing and oxidizing reactions within cells and regulates a plethora of biological responses and events. The study of these biochemical reactions has proven difficult over time, but recent technical and methodological developments have contributed to the rapid growth of the redox field and to our understanding of its importance in biology. The aim of this short review is to give the reader an overall understanding of redox regulation in the areas of cellular signaling, development, and disease, as well as to introduce some recent discoveries in those fields.
Collapse
Affiliation(s)
- Kristell Le Gal
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, 405 30 Gothenburg, Sweden;
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Edward E. Schmidt
- Microbiology & Cell Biology, Montana State University, Bozeman, MT 59718, USA;
- McLaughlin Research Institute, Great Falls, MT 59405, USA
- Laboratory of Redox Biology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Volkan I. Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, 405 30 Gothenburg, Sweden;
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
30
|
Ganamé HT, Karanga Y, Tapsoba I, Dicato M, Diederich MF, Cerella C, Sawadogo RW. Phytochemical Screening and Antioxidant and Cytotoxic Effects of Acacia macrostachya. PLANTS 2021; 10:plants10071353. [PMID: 34371557 PMCID: PMC8309326 DOI: 10.3390/plants10071353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
Acacia macrostachya is used in Burkina Faso folk medicine for the treatment of inflammation and cancer. The purpose of this study was to evaluate the antioxidant and cytotoxic effects of this plant. The cytotoxic effects of root (dichloromethane B1 and methanol B2) and stem (dichloromethane B3 and methanol B4) bark extracts of A. macrostachya were assessed on chronic K562 and acute U937 myeloid leukemia cancer cells using trypan blue, Hoechst, and MitoTracker Red staining methods. The antioxidant content of extracts was evaluated using DPPH (2,2-diphenyl-1-picryl-hydrazyl) and FRAP (ferric reducing antioxidant power) methods. The root bark extracts B1 and B2 of A. macrostachya demonstrated higher cytotoxicity with IC50 values in a low µg/mL range on both U937 and K562 cells, while the stem bark B4 extract selectively affected U937 cells. Overall, healthy proliferating peripheral blood mononuclear cells (pPBMCs) were not or barely impacted in the range of concentrations cytotoxic to cancer cells. In addition, A. macrostachya exhibited significant antioxidant content with 646.06 and 428.08 µg ET/mg of extract for the B4 and B2 extracts, respectively. Phytochemical screening showed the presence of flavonoids, tannins, alkaloids, and terpenoids/steroids. The results of this study highlight the interest of A. macrostachya extracts for the isolation of anticancer molecules.
Collapse
Affiliation(s)
- Hamidou Têeda Ganamé
- Laboratoire de Chimie Analytique, Environnementale et Bio-Organique (LCAEBiO), Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (H.T.G.); (Y.K.); (I.T.)
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg;
| | - Yssouf Karanga
- Laboratoire de Chimie Analytique, Environnementale et Bio-Organique (LCAEBiO), Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (H.T.G.); (Y.K.); (I.T.)
- Laboratoire de Chimie des Matériaux et de l’Environnement (LCME), Université Norbert ZONGO, Avce Maurice Yameogo, Koudougou BP 376, Burkina Faso
| | - Issa Tapsoba
- Laboratoire de Chimie Analytique, Environnementale et Bio-Organique (LCAEBiO), Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (H.T.G.); (Y.K.); (I.T.)
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg;
| | | | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg;
- Correspondence: (C.C.); (R.W.S.); Tel.: +352-2468-4050 (C.C.); +226-70-24-57-96 (R.W.S.)
| | - Richard Wamtinga Sawadogo
- Institut de Recherche en Sciences de la Santé (IRSS/CNRST), Ouagadougou 03 BP 7192, Burkina Faso
- Correspondence: (C.C.); (R.W.S.); Tel.: +352-2468-4050 (C.C.); +226-70-24-57-96 (R.W.S.)
| |
Collapse
|
31
|
Talib WH, Mahmod AI, Abuarab SF, Hasen E, Munaim AA, Haif SK, Ayyash AM, Khater S, AL-Yasari IH, Kury LTA. Diabetes and Cancer: Metabolic Association, Therapeutic Challenges, and the Role of Natural Products. Molecules 2021; 26:2179. [PMID: 33920079 PMCID: PMC8070467 DOI: 10.3390/molecules26082179] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is considered the second leading cause of death worldwide and in 2018 it was responsible for approximately 9.6 million deaths. Globally, about one in six deaths are caused by cancer. A strong correlation was found between diabetes mellitus and carcinogenesis with the most evident correlation was with type 2 diabetes mellitus (T2DM). Research has proven that elevated blood glucose levels take part in cell proliferation and cancer cell progression. However, limited studies were conducted to evaluate the efficiency of conventional therapies in diabetic cancer patients. In this review, the correlation between cancer and diabetes will be discussed and the mechanisms by which the two diseases interact with each other, as well as the therapeutics challenges in treating patients with diabetes and cancer with possible solutions to overcome these challenges. Natural products targeting both diseases were discussed with detailed mechanisms of action. This review will provide a solid base for researchers and physicians to test natural products as adjuvant alternative therapies to treat cancer in diabetic patients.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Sara Feras. Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Eliza Hasen
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Amer A. Munaim
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Shatha Khaled Haif
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Amani Marwan Ayyash
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Intisar Hadi AL-Yasari
- Department of Genetic Engineering, College of Biotechnology, Al-Qasim Green University, Babylon 00964, Iraq;
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
32
|
Barbouti A, Lagopati N, Veroutis D, Goulas V, Evangelou K, Kanavaros P, Gorgoulis VG, Galaris D. Implication of Dietary Iron-Chelating Bioactive Compounds in Molecular Mechanisms of Oxidative Stress-Induced Cell Ageing. Antioxidants (Basel) 2021; 10:491. [PMID: 33800975 PMCID: PMC8003849 DOI: 10.3390/antiox10030491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
One of the prevailing perceptions regarding the ageing of cells and organisms is the intracellular gradual accumulation of oxidatively damaged macromolecules, leading to the decline of cell and organ function (free radical theory of ageing). This chemically undefined material known as "lipofuscin," "ceroid," or "age pigment" is mainly formed through unregulated and nonspecific oxidative modifications of cellular macromolecules that are induced by highly reactive free radicals. A necessary precondition for reactive free radical generation and lipofuscin formation is the intracellular availability of ferrous iron (Fe2+) ("labile iron"), catalyzing the conversion of weak oxidants such as peroxides, to extremely reactive ones like hydroxyl (HO•) or alcoxyl (RO•) radicals. If the oxidized materials remain unrepaired for extended periods of time, they can be further oxidized to generate ultimate over-oxidized products that are unable to be repaired, degraded, or exocytosed by the relevant cellular systems. Additionally, over-oxidized materials might inactivate cellular protection and repair mechanisms, thus allowing for futile cycles of increasingly rapid lipofuscin accumulation. In this review paper, we present evidence that the modulation of the labile iron pool distribution by nutritional or pharmacological means represents a hitherto unappreciated target for hampering lipofuscin accumulation and cellular ageing.
Collapse
Affiliation(s)
- Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Nefeli Lagopati
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (D.V.); (K.E.); (V.G.G.)
| | - Dimitris Veroutis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (D.V.); (K.E.); (V.G.G.)
| | - Vlasios Goulas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Lemesos, Cyprus;
| | - Konstantinos Evangelou
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (D.V.); (K.E.); (V.G.G.)
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Vassilis G. Gorgoulis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (D.V.); (K.E.); (V.G.G.)
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Galaris
- Laboratory of Biological Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
33
|
Li Z, Gao Y, Byrd DA, Gibbs DC, Prizment AE, Lazovich D, Bostick RM. Novel Dietary and Lifestyle Inflammation Scores Directly Associated with All-Cause, All-Cancer, and All-Cardiovascular Disease Mortality Risks Among Women. J Nutr 2021; 151:930-939. [PMID: 33693725 PMCID: PMC8030700 DOI: 10.1093/jn/nxaa388] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Exogenous exposures collectively may contribute to chronic, low-grade inflammation and increase risks for major chronic diseases and mortality. We previously developed, validated, and reported a novel, FFQ-based and lifestyle questionnaire-based, inflammation biomarker panel-weighted, predominantly whole foods-based 19-component dietary inflammation score (DIS) and 4-component lifestyle inflammation score (LIS; comprising physical activity, alcohol intake, BMI, and current smoking status). Both scores were more strongly associated with circulating biomarkers of inflammation in 3 populations than were previously reported dietary inflammation indices. Associations of the DIS and LIS with mortality risk have not been reported. OBJECTIVES To investigate separate and joint associations of the DIS and LIS with all-cause, all-cancer, and cardiovascular disease (CVD) mortality risks in the prospective Iowa Women's Health Study (1986-2012; n = 33,155 women, ages 55-69 years, of whom 17,431 died during follow-up, including 4379 from cancer and 6574 from CVD). METHODS We summed each study participant's scores' components, weighted by their published weights, to yield the participant's inflammation score; a higher score was considered more pro-inflammatory. We assessed DIS and LIS mortality associations using multivariable Cox proportional hazards regression. RESULTS Among participants in the highest relative to the lowest DIS and LIS quintiles, the adjusted HRs for all-cause mortality were 1.11 (95% CI: 1.05-1.16) and 1.60 (95% CI: 1.53-1.68), respectively; for all-cancer mortality were 1.07 (95% CI: 0.97-1.17) and 1.51 (95% CI: 1.38-1.66), respectively; and for CVD mortality were 1.12 (95% CI: 1.03-1.21) and 1.79 (95% CI: 1.66-1.94), respectively (all Ptrend values < 0.01). Among those in the highest relative to the lowest joint LIS/DIS quintiles, the HRs for all-cause, all-cancer, and all-CVD mortality were 1.88 (95% CI: 1.71-2.08), 1.82 (95% CI: 1.50-2.20), and 1.92 (95% CI: 1.64-2.24), respectively. CONCLUSIONS More pro-inflammatory diets and lifestyles, separately but especially jointly, may be associated with higher all-cause, all-cancer, and all-CVD mortality risks among women.
Collapse
Affiliation(s)
- Zhuoyun Li
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yasheen Gao
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Doratha A Byrd
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - David C Gibbs
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anna E Prizment
- Division of Hematology, Oncology and Transplantation, Medical School, University of Minnesota, Minneapolis, MN, USA,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - DeAnn Lazovich
- Division of Hematology, Oncology and Transplantation, Medical School, University of Minnesota, Minneapolis, MN, USA,Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
34
|
Martinez R, Huang W, Samadani R, Mackowiak B, Centola G, Chen L, Conlon IL, Hom K, Kane MA, Fletcher S, Shapiro P. Mechanistic Analysis of an Extracellular Signal-Regulated Kinase 2-Interacting Compound that Inhibits Mutant BRAF-Expressing Melanoma Cells by Inducing Oxidative Stress. J Pharmacol Exp Ther 2021; 376:84-97. [PMID: 33109619 PMCID: PMC7788356 DOI: 10.1124/jpet.120.000266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022] Open
Abstract
Constitutively active extracellular signal-regulated kinase (ERK) 1/2 signaling promotes cancer cell proliferation and survival. We previously described a class of compounds containing a 1,1-dioxido-2,5-dihydrothiophen-3-yl 4-benzenesulfonate scaffold that targeted ERK2 substrate docking sites and selectively inhibited ERK1/2-dependent functions, including activator protein-1-mediated transcription and growth of cancer cells containing active ERK1/2 due to mutations in Ras G-proteins or BRAF, Proto-oncogene B-RAF (Rapidly Acclerated Fibrosarcoma) kinase. The current study identified chemical features required for biologic activity and global effects on gene and protein levels in A375 melanoma cells containing mutant BRAF (V600E). Saturation transfer difference-NMR and mass spectrometry analyses revealed interactions between a lead compound (SF-3-030) and ERK2, including the formation of a covalent adduct on cysteine 252 that is located near the docking site for ERK/FXF (DEF) motif for substrate recruitment. Cells treated with SF-3-030 showed rapid changes in immediate early gene levels, including DEF motif-containing ERK1/2 substrates in the Fos family. Analysis of transcriptome and proteome changes showed that the SF-3-030 effects overlapped with ATP-competitive or catalytic site inhibitors of MAPK/ERK Kinase 1/2 (MEK1/2) or ERK1/2. Like other ERK1/2 pathway inhibitors, SF-3-030 induced reactive oxygen species (ROS) and genes associated with oxidative stress, including nuclear factor erythroid 2-related factor 2 (NRF2). Whereas the addition of the ROS inhibitor N-acetyl cysteine reversed SF-3-030-induced ROS and inhibition of A375 cell proliferation, the addition of NRF2 inhibitors has little effect on cell proliferation. These studies provide mechanistic information on a novel chemical scaffold that selectively regulates ERK1/2-targeted transcription factors and inhibits the proliferation of A375 melanoma cells through a ROS-dependent mechanism. SIGNIFICANCE STATEMENT: Constitutive activation of the extracellular signal-regulated kinase (ERK1/2) pathway drives the proliferation and survival of many cancer cell types. Given the diversity of cellular functions regulated by ERK1/2, the current studies have examined the mechanism of a novel chemical scaffold that targets ERK2 near a substrate binding site and inhibits select ERK functions. Using transcriptomic and proteomic analyses, we provide a mechanistic basis for how this class of compounds inhibits melanoma cells containing mutated BRAF and active ERK1/2.
Collapse
Affiliation(s)
- Ramon Martinez
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Ramin Samadani
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Garrick Centola
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Lijia Chen
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Ivie L Conlon
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| |
Collapse
|
35
|
Yang D, Zhao C, Zhang M, Zhang S, Zhai J, Gao X, Liu C, Lv X, Zheng S. Changes in oxidation-antioxidation function on the thymus of chickens infected with reticuloendotheliosis virus. BMC Vet Res 2020; 16:483. [PMID: 33308224 PMCID: PMC7731740 DOI: 10.1186/s12917-020-02708-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
Background Reticuloendotheliosis virus (REV) is a retrovirus that causes severe immunosuppression in poultry. Animals grow slowly under conditions of oxidative stress. In addition, long-term oxidative stress can impair immune function, as well as accelerate aging and death. This study aimed to elucidate the pathogenesis of REV from the perspective of changes in oxidative-antioxidative function following REV infection. Methods A total of 80 one-day-old specific pathogen free (SPF) chickens were randomly divided into a control group (Group C) and an REV-infected group (Group I). The chickens in Group I received intraperitoneal injections of REV with 104.62/0.1 mL TCID50. Thymus was collected on day 1, 3, 7, 14, 21, 28, 35, and 49 for histopathology and assessed the status of oxidative stress. Results In chickens infected with REV, the levels of H2O2 and MDA in the thymus increased, the levels of TAC, SOD, CAT, and GPx1 decreased, and there was a reduction in CAT and Gpx1 mRNA expression compared with the control group. The thymus index was also significantly reduced. Morphological analysis showed that REV infection caused an increase in the thymic reticular endothelial cells, inflammatory cell infiltration, mitochondrial swelling, and nuclear damage. Conclusions These results indicate that an increase in oxidative stress enhanced lipid peroxidation, markedly decreased antioxidant function, caused thymus atrophy, and immunosuppression in REV-infected chickens.
Collapse
Affiliation(s)
- Dahan Yang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Chenhui Zhao
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Meixi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,WuXi AppTec (Suzhou)Co., Ltd, 215000, Suzhou, People's Republic of China
| | - Shujun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Jie Zhai
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - XueLi Gao
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Chaonan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Xiaoping Lv
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Shimin Zheng
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China. .,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China.
| |
Collapse
|
36
|
Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, van der Hoek SA, Kell DB. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev 2020; 33:190-217. [PMID: 32051057 PMCID: PMC7653990 DOI: 10.1017/s0954422419000301] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Ergothioneine (ERG) is an unusual thio-histidine betaine amino acid that has potent antioxidant activities. It is synthesised by a variety of microbes, especially fungi (including in mushroom fruiting bodies) and actinobacteria, but is not synthesised by plants and animals who acquire it via the soil and their diet, respectively. Animals have evolved a highly selective transporter for it, known as solute carrier family 22, member 4 (SLC22A4) in humans, signifying its importance, and ERG may even have the status of a vitamin. ERG accumulates differentially in various tissues, according to their expression of SLC22A4, favouring those such as erythrocytes that may be subject to oxidative stress. Mushroom or ERG consumption seems to provide significant prevention against oxidative stress in a large variety of systems. ERG seems to have strong cytoprotective status, and its concentration is lowered in a number of chronic inflammatory diseases. It has been passed as safe by regulatory agencies, and may have value as a nutraceutical and antioxidant more generally.
Collapse
Affiliation(s)
- Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Louise C. Kenny
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Crown Street, LiverpoolL8 7SS, UK
| | - Cathal M. McCarthy
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Republic of Ireland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Republic of Ireland
| | - Kalaivani Paramasivan
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Timothy J. Roberts
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| | - Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| |
Collapse
|
37
|
Abstract
In this mini-reflection, I explain how during my doctoral work in a Botany Department I first became interested in H2O2 and later in my career in other reactive oxygen species, especially the role of "catalytic" iron and haem compounds (including leghaemoglobin) in promoting oxidative damage. The important roles that H2O2, other ROS and dietary plants play in respect to humans are discussed. I also review the roles of diet-derived antioxidants in relation to human disease, presenting reasons why clinical trials using high doses of natural antioxidants have generally given disappointing results. Iron chelators and ergothioneine are reviewed as potential cytoprotective agents with antioxidant properties that may be useful therapeutically. The discovery of ferroptosis may also lead to novel agents that can be used to treat certain diseases.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| |
Collapse
|
38
|
Vega-Granados K, Cruz-Reyes J, Horta-Marrón JF, Marí-Beffa M, Díaz-Rubio L, Córdova-Guerrero I, Chávez-Velasco D, Ocaña MC, Medina MA, Romero-Sánchez LB. Synthesis, characterization and biological evaluation of octyltrimethylammonium tetrathiotungstate. Biometals 2020; 34:107-117. [PMID: 33180255 DOI: 10.1007/s10534-020-00267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Octyltrimethylammonium tetrathiotungstate salt (ATT-C8) was synthesized and its ability to chelate copper was evaluated. The biological and toxic aspects were evaluated by in vitro and in vivo assays, using bovine aorta endothelial cells (BAEC) and zebrafish (Danio rerio) embryos. The obtained results suggest that ATT-C8 has better biocompatibility, showing a significantly lower lethal concentration 50 (LC50) value in comparison to ammonium tetrathiotungstate (ATT). Zebrafish embryos assay results indicate that both tetrathiotungstate salts at the studied concentrations increase the hatching time. Even more, an in vivo assay showed that synthesized materials behave as copper antagonists and have the ability to inhibit its toxicological effects. Also, both materials were found to be active for the in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The characterization of the materials was carried out using the following spectroscopic techniques: Ultraviolet-Visible (UV-Vis), Fourier Transform Infrared (FTIR) and proton nuclear magnetic resonance (1H-NRM).
Collapse
Affiliation(s)
- Karla Vega-Granados
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California (UABC), Universidad 14418, Parque Internacional Industrial Tijuana, 22390, Tijuana, BC, Mexico
| | - Juan Cruz-Reyes
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California (UABC), Universidad 14418, Parque Internacional Industrial Tijuana, 22390, Tijuana, BC, Mexico
| | - José F Horta-Marrón
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California (UABC), Universidad 14418, Parque Internacional Industrial Tijuana, 22390, Tijuana, BC, Mexico
| | - Manuel Marí-Beffa
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29071, Malaga, Spain
| | - Laura Díaz-Rubio
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California (UABC), Universidad 14418, Parque Internacional Industrial Tijuana, 22390, Tijuana, BC, Mexico
| | - Iván Córdova-Guerrero
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California (UABC), Universidad 14418, Parque Internacional Industrial Tijuana, 22390, Tijuana, BC, Mexico
| | - Daniel Chávez-Velasco
- Center for Graduates and Research in Chemistry, National Technological Institute of Mexico/ Technological Institute of Tijuana, 22510, Tijuana, BC, Mexico
| | - M Carmen Ocaña
- Department of Molecular Biology and Biochemistry, Faculty of Science, University of Malaga, 29071, Malaga, Spain
| | - Miguel A Medina
- Department of Molecular Biology and Biochemistry, Faculty of Science, University of Malaga, 29071, Malaga, Spain
| | - Lilian B Romero-Sánchez
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California (UABC), Universidad 14418, Parque Internacional Industrial Tijuana, 22390, Tijuana, BC, Mexico.
| |
Collapse
|
39
|
Kirtonia A, Sethi G, Garg M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell Mol Life Sci 2020; 77:4459-4483. [PMID: 32358622 PMCID: PMC11105050 DOI: 10.1007/s00018-020-03536-5] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/29/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Redox homeostasis is an essential requirement of the biological systems for performing various normal cellular functions including cellular growth, differentiation, senescence, survival and aging in humans. The changes in the basal levels of reactive oxygen species (ROS) are detrimental to cells and often lead to several disease conditions including cardiovascular, neurological, diabetes and cancer. During the last two decades, substantial research has been done which clearly suggests that ROS are essential for the initiation, progression, angiogenesis as well as metastasis of cancer in several ways. During the last two decades, the potential of dysregulated ROS to enhance tumor formation through the activation of various oncogenic signaling pathways, DNA mutations, immune escape, tumor microenvironment, metastasis, angiogenesis and extension of telomere has been discovered. At present, surgery followed by chemotherapy and/or radiotherapy is the major therapeutic modality for treating patients with either early or advanced stages of cancer. However, the majority of patients relapse or did not respond to initial treatment. One of the reasons for recurrence/relapse is the altered levels of ROS in tumor cells as well as in cancer-initiating stem cells. One of the critical issues is targeting the intracellular/extracellular ROS for significant antitumor response and relapse-free survival. Indeed, a large number of FDA-approved anticancer drugs are efficient to eliminate cancer cells and drug resistance by increasing ROS production. Thus, the modulation of oxidative stress response might represent a potential approach to eradicate cancer in combination with FDA-approved chemotherapies, radiotherapies as well as immunotherapies.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
40
|
Mao Z, Prizment AE, Lazovich D, Gibbs DC, Bostick RM. Dietary and Lifestyle Oxidative Balance Scores and Incident Colorectal Cancer Risk among Older Women; the Iowa Women's Health Study. Nutr Cancer 2020; 73:2323-2335. [PMID: 32981353 DOI: 10.1080/01635581.2020.1821904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Basic science literature strongly supports a role of oxidative stress in colorectal cancer (CRC) etiology, but in epidemiologic studies, associations of most individual exposures with CRC have been weak or inconsistent. However, recent epidemiologic evidence suggests that the collective effects of these exposures on oxidative balance and CRC risk may be substantial. METHODS Using food frequency and lifestyle questionnaire data from the prospective Iowa Women's Health Study (1986-2012), we investigated associations of 11-component dietary and 4-component lifestyle oxidative balance scores (OBS) with incident CRC using multivariable Cox proportional hazards regression. RESULTS Of the 33,736 cancer-free women aged 55-69 years at baseline, 1,632 developed CRC during follow-up. Among participants in the highest relative to the lowest dietary and lifestyle OBS quintiles (higher anti-oxidant relative to pro-oxidant exposures), the adjusted hazard ratios (HRs) and their 95% confidence intervals (CI) were, respectively, 0.77 (0.63, 0.94) (Ptrend=0.02) and 0.61 (0.52, 0.71) (Ptrend<0.0001). Among those in the highest relative to the lowest joint lifestyle/dietary OBS quintile, the HR was 0.45 (95% CI 0.26, 0.77). CONCLUSIONS Our findings suggest that a predominance of antioxidant over pro-oxidant dietary and lifestyle exposures-separately and especially jointly-may be inversely associated with CRC risk among older women.
Collapse
Affiliation(s)
- Ziling Mao
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Anna E Prizment
- Division of Hematology, Oncology and Transplantation, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - DeAnn Lazovich
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - David C Gibbs
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Roberd M Bostick
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
41
|
Zhang XG, Guo SJ, Wang WN, Wei GX, Ma GY, Ma XD. Diversity and Bioactivity of Endophytes From Angelica sinensis in China. Front Microbiol 2020; 11:1489. [PMID: 33013716 PMCID: PMC7461802 DOI: 10.3389/fmicb.2020.01489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Plant seeds are not merely reproductive organs, they are also carriers of microorganism, particularly, inherent and non-invasive characteristic endophytes in host plant. Therefore, in this study, the endophytic diversity of Angelica seeds was studied and compared with endophytes isolated from healthy leaves, stems, roots, and seeds of A. sinensis using 20 different media. The metabolites of endophytic strains were evaluated with six different methods for their antioxidant activity and the paper disc diffusion method for antimicrobial activities. As a result, 226 endophytes were isolated. Compared with the biodiversity and abundance of uncultured fungi from Angelica seed, the result showed that the most frequent endophytic fungi were Alternaria sp. as seen in artificial media; moreover, compared with artificial media, the pathogenic fungi, including Fusarium sp. and Pseudallescheria sp., were not found from the Angelica seed, the results suggested it may not be inherent endophytes in plants. In addition, bacteria from seven phyla were identified by high-throughput sequencing, while five phyla of endophytic bacteria were not isolated on artificial media including Proteobacteria, Actinobacteria, Bacteroidetes, Microgenomates, and Saccharibacteria. Furthermore, the sample JH-4 mycelium displayed the best antioxidant activity, and the active constituent may be a flavonoid as determined by total phenol and flavonoid content. Moreover, YH-12-1 mycelium had strong inhibitory activity against the five tested strains and the minimum inhibitory concentration (MIC) against Pseudomonas aeruginosa and Streptococcus pneumoniae was found to be 25 μg/mL. Our results confirm that plant endophytes are rich in biodiversity and contain important resource of many uncultured microorganisms.
Collapse
Affiliation(s)
- Xin-Guo Zhang
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, China.,Key Laboratory of Screening and Processing in New Tibetan Medicine of Gansu Province, Gansu, China
| | - Si-Jia Guo
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, China.,Key Laboratory of Screening and Processing in New Tibetan Medicine of Gansu Province, Gansu, China
| | - Wen-Na Wang
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, China.,Key Laboratory of Screening and Processing in New Tibetan Medicine of Gansu Province, Gansu, China
| | - Guo-Xing Wei
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, China.,Key Laboratory of Screening and Processing in New Tibetan Medicine of Gansu Province, Gansu, China
| | - Guo-Yan Ma
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, China.,Key Laboratory of Screening and Processing in New Tibetan Medicine of Gansu Province, Gansu, China
| | - Xiao-Di Ma
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, China.,Key Laboratory of Screening and Processing in New Tibetan Medicine of Gansu Province, Gansu, China
| |
Collapse
|
42
|
Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell 2020; 38:167-197. [PMID: 32649885 PMCID: PMC7439808 DOI: 10.1016/j.ccell.2020.06.001] [Citation(s) in RCA: 1411] [Impact Index Per Article: 282.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/29/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Contingent upon concentration, reactive oxygen species (ROS) influence cancer evolution in apparently contradictory ways, either initiating/stimulating tumorigenesis and supporting transformation/proliferation of cancer cells or causing cell death. To accommodate high ROS levels, tumor cells modify sulfur-based metabolism, NADPH generation, and the activity of antioxidant transcription factors. During initiation, genetic changes enable cell survival under high ROS levels by activating antioxidant transcription factors or increasing NADPH via the pentose phosphate pathway (PPP). During progression and metastasis, tumor cells adapt to oxidative stress by increasing NADPH in various ways, including activation of AMPK, the PPP, and reductive glutamine and folate metabolism.
Collapse
Affiliation(s)
- John D Hayes
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK, Scotland.
| | - Albena T Dinkova-Kostova
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK, Scotland; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
43
|
Yagishita Y, Gatbonton-Schwager TN, McCallum ML, Kensler TW. Current Landscape of NRF2 Biomarkers in Clinical Trials. Antioxidants (Basel) 2020; 9:antiox9080716. [PMID: 32784785 PMCID: PMC7464243 DOI: 10.3390/antiox9080716] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
The transcription factor NF-E2 p45-related factor 2 (NRF2; encoded by NFE2L2) plays a critical role in the maintenance of cellular redox and metabolic homeostasis, as well as the regulation of inflammation and cellular detoxication pathways. The contribution of the NRF2 pathway to organismal homeostasis is seen in many studies using cell lines and animal models, raising intense attention towards targeting its clinical promise. Over the last three decades, an expanding number of clinical studies have examined NRF2 inducers targeting an ever-widening range of diseases. Full understanding of the pharmacokinetic and pharmacodynamic properties of drug candidates rely partly on the identification, validation, and use of biomarkers to optimize clinical applications. This review focuses on results from clinical trials with four agents known to target NRF2 signaling in preclinical studies (dimethyl fumarate, bardoxolone methyl, oltipraz, and sulforaphane), and evaluates the successes and limitations of biomarkers focused on expression of NRF2 target genes and others, inflammation and oxidative stress biomarkers, carcinogen metabolism and adduct biomarkers in unavoidably exposed populations, and targeted and untargeted metabolomics. While no biomarkers excel at defining pharmacodynamic actions in this setting, it is clear that these four lead clinical compounds do touch the NRF2 pathway in humans.
Collapse
|
44
|
Chang C, Worley BL, Phaëton R, Hempel N. Extracellular Glutathione Peroxidase GPx3 and Its Role in Cancer. Cancers (Basel) 2020; 12:cancers12082197. [PMID: 32781581 PMCID: PMC7464599 DOI: 10.3390/cancers12082197] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Mammalian cells possess a multifaceted antioxidant enzyme system, which includes superoxide dismutases, catalase, the peroxiredoxin/thioredoxin and the glutathione peroxidase systems. The dichotomous role of reactive oxygen species and antioxidant enzymes in tumorigenesis and cancer progression complicates the use of small molecule antioxidants, pro-oxidants, and targeting of antioxidant enzymes as therapeutic approaches for cancer treatment. It also highlights the need for additional studies to investigate the role and regulation of these antioxidant enzymes in cancer. The focus of this review is on glutathione peroxidase 3 (GPx3), a selenoprotein, and the only extracellular GPx of a family of oxidoreductases that catalyze the detoxification of hydro- and soluble lipid hydroperoxides by reduced glutathione. In addition to summarizing the biochemical function, regulation, and disease associations of GPx3, we specifically discuss the role and regulation of systemic and tumor cell expressed GPx3 in cancer. From this it is evident that GPx3 has a dichotomous role in different tumor types, acting as both a tumor suppressor and pro-survival protein. Further studies are needed to examine how loss or gain of GPx3 specifically affects oxidant scavenging and redox signaling in the extracellular tumor microenvironment, and how GPx3 might be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Caroline Chang
- Department of Comparative Medicine, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Beth L. Worley
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Rébécca Phaëton
- Department of Obstetrics & Gynecology & Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Nadine Hempel
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA;
- Correspondence: ; Tel.: +1-717-531-4037
| |
Collapse
|
45
|
Lipid peroxidation inhibition study: A promising case of 1,3-di([1,1'-biphenyl]-3-yl)urea. Chem Biol Interact 2020; 326:109137. [PMID: 32442417 DOI: 10.1016/j.cbi.2020.109137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
Abstract
In the present study eighteen inhibitors of the hydrolytic enzymes of the endocannabinoid system were investigated for antioxidant activity using lipid peroxidation (LP) method. Among the assayed compounds ten belong to carbamates with phenyl [1,1'-biphenyl]-3-ylcarbamate (6), reported for the first time, and eight are retro-amide derivatives of palmitamine. Interestingly, results indicated that most of the tested compounds have good antioxidant properties. In particular, 1,3-di([1,1'-biphenyl]-3-yl)urea (3) shows IC50 = 26 ± 6 μM comparable to ones obtained for standard antioxidants trolox and quercetin (IC50 = 22 ± 6 μM and 23 ± 6 μM, respectively). Compound 3 was investigated further by means of DFT calculations, to clarify a possible mechanism of the antioxidant action. In order to estimate the capability of 3 to act as radical scavenger the structure was optimized at B3LYP/6-311++G** level and the respective bond dissociation enthalpies were calculated. The calculations in non-polar medium predicted as favorable mechanism a donation of a hydrogen atom to the free radical and formation of N-centered radical, while in polar solvents the mechanism of free radical scavenging by SPLET dominates over HAT H-abstraction. The possible radical scavenging mechanisms of another compound with potent antioxidant properties (IC50 = 53 ± 12 μM), the retro-amide derivative of palmitamine (compound 18), was estimated computationally based on the reaction enthalpies of a model compound (structural analogue to 18). The computations indicated that the most favorable mechanisms are hydrogen atom transfer from the hydroxyl group in meta-position of the benzamide fragment in nonpolar medium, and proton transfer from the hydroxyl group in ortho-position of the benzamide fragment in polar medium.
Collapse
|
46
|
Mohebali N, Pandurangan AK, Mustafa MR, Anandasadagopan SK, Alagumuthu T. Vernodalin induces apoptosis through the activation of ROS/JNK pathway in human colon cancer cells. J Biochem Mol Toxicol 2020; 34:e22587. [PMID: 32726518 DOI: 10.1002/jbt.22587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/29/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Colorectal cancer is one of the most leading death-causing cancers in the world. Vernodalin, a cytotoxic sesquiterpene, has been reported to possess anticancer properties against human breast cancer cells. We aimed to examine the anticancer mechanism of vernodalin on human colon cancer cells. Vernodalin was used on human colon cancer cells, HT-29 and HCT116. The cytotoxicity of vernodalin on human colon cancer cells was determined through in vitro 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Small interfering RNA was used to analyze the cascade activation of mitogen-activated protein kinase (MAPK) pathway, c-Jun N-terminal kinase (JNK) in HT-29, and HCT116 cells against vernodalin treatment. The protein expressions of caspase 3, Bcl-2, and Bax were examined through Western blot analysis. Immunoblot analysis on the JNK, ERK, and p38 MAPK pathways showed increased activation due to vernodalin treatment. It was proven from the JNK and p38 inhibition test that both pathways are significantly activated by vernodalin to induce apoptosis. Our results, collectively, showed the apoptosis-induced anticancer mechanism of vernodalin on human colon cancer cells that was mediated through the activation of JNK pathway and apoptotic regulator proteins. These results suggest that vernodalin could be developed as a potent chemotherapeutic agent for human colorectal cancer treatment.
Collapse
Affiliation(s)
- Nooshin Mohebali
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ashok Kumar Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Pharmacology, Faculty of Medicine, Centre for Natural Products and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
47
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694] [Citation(s) in RCA: 847] [Impact Index Per Article: 169.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694+10.3389/fphys.2020.00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 01/20/2024] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694 10.3389/fphys.2020.00694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 06/13/2023] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Wu X, Li M, Xiao Z, Daglia M, Dragan S, Delmas D, Vong CT, Wang Y, Zhao Y, Shen J, Nabavi SM, Sureda A, Cao H, Simal-Gandara J, Wang M, Sun C, Wang S, Xiao J. Dietary polyphenols for managing cancers: What have we ignored? Trends Food Sci Technol 2020; 101:150-164. [DOI: 10.1016/j.tifs.2020.05.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|