1
|
Hines MR, Gomez-Contreras PC, Liman S, Wilson AM, Lu KJ, O'Neill JA, Fisher JS, Fredericks DC, Wagner BA, Buettner GR, Van Remmen H, Coleman MC. A reciprocal relationship between mitochondria and lipid peroxidation determines the chondrocyte intracellular redox environment. Redox Biol 2024; 75:103306. [PMID: 39133964 PMCID: PMC11366903 DOI: 10.1016/j.redox.2024.103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
In orthopedic research, many studies have applied vitamin E as a protective antioxidant or used tert-butyl hydroperoxide to induce oxidative injury to chondrocytes. These studies often support the hypothesis that joint pathology causes oxidative stress and increased lipid peroxidation that might be prevented with lipid antioxidants to improve cell survival or function and joint health; however, lipid antioxidant supplementation was ineffective against osteoarthritis in clinical trials and animal data have been equivocal. Moreover, increased circulating vitamin E is associated with increased rates of osteoarthritis. This disconnect between benchtop and clinical results led us to hypothesize that oxidative stress-driven paradigms of chondrocyte redox function do not capture the metabolic and physiologic effects of lipid antioxidants and prooxidants on articular chondrocytes. We used ex vivo and in vivo cartilage models to investigate the effect of lipid antioxidants on healthy, primary, articular chondrocytes and applied immuno-spin trapping techniques to provide a broad indicator of high levels of oxidative stress independent of specific reactive oxygen species. Key findings demonstrate lipid antioxidants were pro-mitochondrial while lipid prooxidants decreased mitochondrial measures. In the absence of injury, radical formation was increased by lipid antioxidants; however, in the presence of injury, radical formation was decreased. In unstressed conditions, this relationship between chondrocyte mitochondria and redox regulation was reproduced in vivo with overexpression of glutathione peroxidase 4. In mice aged 18 months or more, overexpression of glutathione peroxidase 4 significantly decreased the presence of pro-mitochondrial peroxisome proliferation activated receptor gamma and deranged the relationship between mitochondria and the redox environment. This complex interaction suggests strategies targeting articular cartilage may benefit from adopting more nuanced paradigms of articular chondrocyte redox metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Kevin J Lu
- The University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Burrage EN, Coblentz T, Prabhu SS, Childers R, Bryner RW, Lewis SE, DeVallance E, Kelley EE, Chantler PD. Xanthine oxidase mediates chronic stress-induced cerebrovascular dysfunction and cognitive impairment. J Cereb Blood Flow Metab 2023; 43:905-920. [PMID: 36655326 PMCID: PMC10196752 DOI: 10.1177/0271678x231152551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
Xanthine oxidase (XO) mediates vascular function. Chronic stress impairs cerebrovascular function and increases the risk of stroke and cognitive decline. Our study determined the role of XO on stress-induced cerebrovascular dysfunction and cognitive decline. We measured middle cerebral artery (MCA) function, free radical formation, and working memory in 6-month-old C57BL/6 mice who underwent 8 weeks of control conditions or unpredictable chronic mild stress (UCMS) with or without febuxostat (50 mg/L), a XO inhibitor. UCMS mice had an impaired MCA dilation to acetylcholine vs. controls (p < 0.0001), and increased total free radical formation, XOR protein levels, and hydrogen peroxide production in the liver compared to controls. UCMS increased hydrogen peroxide production in the brain and cerebrovasculature compared to controls. Working memory, using the y-maze test, was impaired (p < 0.05) in UCMS mice compared to control mice. However, blocking XO using febuxostat prevented the UCMS-induced impaired MCA response, while free radical production and hydrogen peroxide levels were similar to controls in the liver and brain of UCMS mice treated with febuxostat. Further, UCMS + Feb mice did not have a significant reduction in working memory. These data suggest that the cerebrovascular dysfunction associated with chronic stress may be driven by XO, which leads to a reduction in working memory.
Collapse
Affiliation(s)
- Emily N Burrage
- Department of Neuroscience, West
Virginia University School of Medicine, Morgantown, WV, USA
| | - Tyler Coblentz
- Division of Exercise Physiology,
West Virginia University School of Medicine, Morgantown, WV, USA
| | - Saina S Prabhu
- Department of Pharmaceutical
Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Ryan Childers
- Division of Exercise Physiology,
West Virginia University School of Medicine, Morgantown, WV, USA
| | - Randy W Bryner
- Division of Exercise Physiology,
West Virginia University School of Medicine, Morgantown, WV, USA
| | - Sarah E Lewis
- Department of Physiology and
Pharmacology, West Virginia University School of Medicine, Morgantown, WV,
USA
| | - Evan DeVallance
- Department of Physiology and
Pharmacology, West Virginia University School of Medicine, Morgantown, WV,
USA
| | - Eric E Kelley
- Department of Physiology and
Pharmacology, West Virginia University School of Medicine, Morgantown, WV,
USA
| | - Paul D Chantler
- Department of Neuroscience, West
Virginia University School of Medicine, Morgantown, WV, USA
- Division of Exercise Physiology,
West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
3
|
Ng ML, Ang X, Yap KY, Ng JJ, Goh ECH, Khoo BBJ, Richards AM, Drum CL. Novel Oxidative Stress Biomarkers with Risk Prognosis Values in Heart Failure. Biomedicines 2023; 11:917. [PMID: 36979896 PMCID: PMC10046491 DOI: 10.3390/biomedicines11030917] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023] Open
Abstract
Oxidative stress (OS) is mediated by reactive oxygen species (ROS), which in cardiovascular and other disease states, damage DNA, lipids, proteins, other cellular and extra-cellular components. OS is both initiated by, and triggers inflammation, cardiomyocyte apoptosis, matrix remodeling, myocardial fibrosis, and neurohumoral activation. These have been linked to the development of heart failure (HF). Circulating biomarkers generated by OS offer potential utility in patient management and therapeutic targeting. Novel OS-related biomarkers such as NADPH oxidases (sNox2-dp, Nrf2), advanced glycation end-products (AGE), and myeloperoxidase (MPO), are signaling molecules reflecting pathobiological changes in HF. This review aims to evaluate current OS-related biomarkers and their associations with clinical outcomes and to highlight those with greatest promise in diagnosis, risk stratification and therapeutic targeting in HF.
Collapse
Affiliation(s)
- Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Xu Ang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kwan Yi Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Jun Jie Ng
- Vascular Surgery, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Eugene Chen Howe Goh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Benjamin Bing Jie Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Arthur Mark Richards
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, NUHCS, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Chester Lee Drum
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, NUHCS, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
4
|
McCrimmon A, Corbin S, Shrestha B, Roman G, Dhungana S, Stadler K. Redox phospholipidomics analysis reveals specific oxidized phospholipids and regions in the diabetic mouse kidney. Redox Biol 2022; 58:102520. [PMID: 36334379 PMCID: PMC9640328 DOI: 10.1016/j.redox.2022.102520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/08/2022] Open
Abstract
While it is generally accepted that oxidative stress impacts the diabetic kidney and contributes to pathogenesis, there is a substantial lack of knowledge about the molecular entity and anatomic location of a variety of reactive species. Here we provide a novel "oxidative stress map" of the diabetic kidney - the first of its kind, and identify specific, oxidized and other reactive lipids and their location. We used the db/db mouse model and Desorption Electrospray Ionization (DESI) mass spectrometry combined with heatmap image analysis. We analyzed a comprehensive array of phospholipid peroxide species in normal (db/m) and diabetic (db/db) kidneys using DESI imaging. Oxilipidomics heatmaps of the kidneys were generated focusing on phospholipids and their potential peroxidized products. We identified those lipids that undergo peroxidation in diabetic nephropathy. Several phospholipid peroxides and their spatial distribution were identified that were specific to the diabetic kidney, with significant enrichment in oxygenated phosphatidylethanolamines (PE) and lysophosphatidylethanolamine. Beyond qualitative and semi-quantitative information about the targets, the approach also reveals the anatomic location and the extent of lipid peroxide signal propagation across the kidney. Our approach provides novel, in-depth information of the location and molecular entity of reactive lipids in an organ with a very heterogeneous landscape. Many of these reactive lipids have been previously linked to programmed cell death mechanisms. Thus, the findings may be relevant to understand what impact phospholipid peroxidation has on cell and mitochondria membrane integrity and redox lipid signaling in diabetic nephropathy.
Collapse
Affiliation(s)
- Allison McCrimmon
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, 70808, LA, USA
| | - Sydney Corbin
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, 70808, LA, USA
| | | | | | | | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, 70808, LA, USA.
| |
Collapse
|
5
|
Hines MR, Goetz JE, Gomez-Contreras PC, Rodman SN, Liman S, Femino EL, Kluz PN, Wagner BA, Buettner GR, Kelley EE, Coleman MC. Extracellular biomolecular free radical formation during injury. Free Radic Biol Med 2022; 188:175-184. [PMID: 35724853 PMCID: PMC9725094 DOI: 10.1016/j.freeradbiomed.2022.06.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/15/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022]
Abstract
Determine if oxidative damage increases in articular cartilage as a result of injury and matrix failure and whether modulation of the local redox environment influences this damage. Osteoarthritis is an age associated disease with no current disease modifying approaches available. Mechanisms of cartilage damage in vitro suggest tissue free radical production could be critical to early degeneration, but these mechanisms have not been described in intact tissue. To assess free radical production as a result of traumatic injury, we measured biomolecular free radical generation via immuno-spin trapping (IST) of protein/proteoglycan/lipid free radicals after a 2 J/cm2 impact to swine articular cartilage explants. This technique allows visualization of free radical formation upon a wide variety of molecules using formalin-fixed, paraffin-embedded approaches. Scoring of extracellular staining by trained, blinded scorers demonstrated significant increases with impact injury, particularly at sites of cartilage cracking. Increases remain in the absence of live chondrocytes but are diminished; thus, they appear to be a cell-dependent and -independent feature of injury. We then modulated the extracellular environment with a pulse of heparin to demonstrate the responsiveness of the IST signal to changes in cartilage biology. Addition of heparin caused a distinct change in the distribution of protein/lipid free radicals at sites of failure alongside a variety of pertinent redox changes related to osteoarthritis. This study directly confirms the production of biomolecular free radicals from articular trauma, providing a rigorous characterization of their formation by injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paige N Kluz
- University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | |
Collapse
|
6
|
Mikhael M, Makar C, Wissa A, Le T, Eghbali M, Umar S. Oxidative Stress and Its Implications in the Right Ventricular Remodeling Secondary to Pulmonary Hypertension. Front Physiol 2019; 10:1233. [PMID: 31607955 PMCID: PMC6769067 DOI: 10.3389/fphys.2019.01233] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by increased pulmonary artery pressures. Long standing pulmonary arterial pressure overload leads to right ventricular (RV) hypertrophy, RV failure, and death. RV failure is a major determinant of survival in PH. Oxidative stress has been associated with the development of RV failure secondary to PH. Here we summarize the structural and functional changes in the RV in response to sustained pulmonary arterial pressure overload. Furthermore, we review the pre-clinical and clinical studies highlighting the association of oxidative stress with pulmonary vasculature and RV remodeling in chronic PH. Targeting oxidative stress promises to be an effective therapeutic strategy for the treatment of RV failure.
Collapse
Affiliation(s)
- Matthew Mikhael
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Christian Makar
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Amir Wissa
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Trixie Le
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
7
|
Multiorgan Development of Oxidative and Nitrosative Stress in LPS-Induced Endotoxemia in C57Bl/6 Mice: DHE-Based In Vivo Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7838406. [PMID: 31249650 PMCID: PMC6556324 DOI: 10.1155/2019/7838406] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022]
Abstract
Detection of free radicals in tissues is challenging. Most approaches rely on incubating excised sections or homogenates with reagents, typically at supraphysiologic oxygen tensions, to finally detect surrogate, nonspecific end products. In the present work, we explored the potential of using intravenously (i.v.) injected dihydroethidine (DHE) to detect superoxide radical (O2 ∙-) abundance in vivo by quantification of the superoxide-specific DHE oxidation product, 2-hydroxyethidium (2-OH-E+), as well as ethidium (E+) and DHE in multiple tissues in a murine model of endotoxemia induced by lipopolysaccharide (LPS). LPS was injected intraperitoneally (i.p.), while DHE was delivered via the tail vein one hour before sacrifice. Tissues (kidney, lung, liver, and brain) were harvested and subjected to HPLC/fluorescent analysis of DHE and its monomeric oxidation products. In parallel, electron spin resonance (EPR) spin trapping was used to measure nitric oxide (∙NO) production in the aorta, lung, and liver isolated from the same mice. Endotoxemic inflammation was validated by analysis of plasma biomarkers. The concentration of 2-OH-E+ varied in the liver, lung, and kidney; however, the ratios of 2-OH-E+/E+ and 2-OH-E+/DHE were increased in the liver and kidney but not in the lung or the brain. An LPS-induced robust level of ∙NO burst was observed in the liver, whereas the lung demonstrated a moderate yet progressive increase in the rate of ∙NO production. Interestingly, endothelial dysfunction was observed in the aorta, as evidenced by decreased ∙NO production 6 hours post-LPS injection that coincided with the inflammatory burden of endotoxemia (e.g. elevated serum amyloid A and prostaglandin E2). Combined, these data demonstrate that systemic delivery of DHE affords the capacity to specifically detect O2 ∙- production in vivo. Furthermore, the ratio of 2-OH-E+/E+ oxidation products in tissues provides a tool for comparative insight into the oxidative environments in various organs. Based on our findings, we demonstrate that the endotoxemic liver is susceptible to both O2 ∙--mediated and nonspecific oxidant stress as well as nitrosative stress. Oxidant stress in the lung was detected to a lesser extent, thus underscoring a differential response of liver and lung to endotoxemic injury induced by intraperitoneal LPS injection.
Collapse
|
8
|
Huang WQ, Long WQ, Mo XF, Zhang NQ, Luo H, Lin FY, Huang J, Zhang CX. Direct and indirect associations between dietary magnesium intake and breast cancer risk. Sci Rep 2019; 9:5764. [PMID: 30962499 PMCID: PMC6453912 DOI: 10.1038/s41598-019-42282-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/27/2019] [Indexed: 01/07/2023] Open
Abstract
This study aimed to explore the effect of dietary magnesium intake on breast cancer risk both directly and indirectly via its effect on inflammatory markers C-reactive protein (CRP) and interleukin-6 (IL-6). This case-control study recruited 1050 case patients and 1229 control subjects. Inflammatory marker levels of 322 cases and 322 controls, randomly selected, were measured using ELISA, and data on dietary magnesium intake were collected using a food frequency questionnaire. Multivariable logistic regression was used to estimate the odds ratio (OR) and 95% confidence interval (CI), and path analysis was used to investigate the mediating effect. A higher magnesium intake was associated with a lower breast cancer risk (adjusted OR = 0.80, 95% CI = 0.65, 0.99). A positive association was found between the CRP level and breast cancer risk (adjusted OR = 1.43, 95% CI = 1.02-2.01). However, IL-6 was not found to be associated with breast cancer risk. Path analysis revealed that dietary magnesium affected breast cancer risk both directly and indirectly by influencing the CRP level. The results indicate that a direct negative association and an indirect association through influencing the CRP level were observed between dietary magnesium intake and breast cancer risk.
Collapse
Affiliation(s)
- Wu-Qing Huang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wei-Qing Long
- Department of Clinical Laboratory, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiong-Fei Mo
- Department of Vascular Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Nai-Qi Zhang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong Luo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fang-Yu Lin
- Nursing Department, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Huang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Cai-Xia Zhang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Harmon DB, Wu C, Dedousis N, Sipula IJ, Stefanovic-Racic M, Schoiswohl G, O'Donnell CP, Alonso LC, Kershaw EE, Kelley EE, O'Doherty RM. Adipose tissue-derived free fatty acids initiate myeloid cell accumulation in mouse liver in states of lipid oversupply. Am J Physiol Endocrinol Metab 2018; 315:E758-E770. [PMID: 30086648 PMCID: PMC6293173 DOI: 10.1152/ajpendo.00172.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Accumulation of myeloid cells in the liver, notably dendritic cells (DCs) and monocytes/macrophages (MCs), is a major component of the metainflammation of obesity. However, the mechanism(s) stimulating hepatic DC/MC infiltration remain ill defined. Herein, we addressed the hypothesis that adipose tissue (AT) free fatty acids (FFAs) play a central role in the initiation of hepatic DC/MC accumulation, using a number of mouse models of altered FFA supply to the liver. In two models of acute FFA elevation (lipid infusion and fasting) hepatic DC/MC and triglycerides (TGs) but not AT DC/MC were increased without altering plasma cytokines (PCs; TNFα and monocyte chemoattractant protein 1) and with variable effects on oxidative stress (OxS) markers. However, fasting in mice with profoundly reduced AT lipolysis (AT-specific deletion of adipose TG lipase; AAKO) failed to elevate liver DC/MC, TG, or PC, but liver OxS increased. Livers of obese AAKO mice that are known to be resistant to steatosis were similarly protected from inflammation. In high-fat feeding studies of 1, 3, 6, or 20-wk duration, liver DC/MC accumulation dissociated from PC and OxS but tracked with liver TGs. Furthermore, decreasing OxS by ~80% in obese mice failed to decrease liver DC/MC. Therefore, FFA and more specifically AT-derived FFA stimulate hepatic DC/MC accumulation, thus recapitulating the pathology of the obese liver. In a number of cases the effects of FFA can be dissociated from OxS and PC but match well with liver TG, a marker of FFA oversupply.
Collapse
Affiliation(s)
- Daniel B Harmon
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh , Pittsburgh, Pennsylvania
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Chao Wu
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh , Pittsburgh, Pennsylvania
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University , Changsha , China
| | - Nikolaos Dedousis
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh , Pittsburgh, Pennsylvania
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Ian J Sipula
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh , Pittsburgh, Pennsylvania
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Maja Stefanovic-Racic
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh , Pittsburgh, Pennsylvania
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Gabriele Schoiswohl
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh , Pittsburgh, Pennsylvania
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Christopher P O'Donnell
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Laura C Alonso
- Department of Medicine, Diabetes Division, University of Massachusetts , Worcester, Massachusetts
| | - Erin E Kershaw
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh , Pittsburgh, Pennsylvania
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University , Morgantown, West Virginia
| | - Robert M O'Doherty
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh , Pittsburgh, Pennsylvania
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Berry JAD, Miulli DE, Lam B, Elia C, Minasian J, Podkovik S, Wacker MRS. The neurosurgical wound and factors that can affect cosmetic, functional, and neurological outcomes. Int Wound J 2018; 16:71-78. [PMID: 30251324 DOI: 10.1111/iwj.12993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023] Open
Abstract
Surgically accessing pathological lesions located within the central nervous system (CNS) frequently requires creating an incision in cosmetic regions of the head and neck. The biggest factors of surgical success typically tend to focus on the middle portion of the surgery, but a vast majority of surgical complications tend to happen towards the end of a case, during closure of the surgical site incisions. One of the most difficult complications for a surgeon to deal with is having to take a patient back to the operating room for wound breakdowns and, even worse, wound or CNS infections, which can negate all the positive outcomes from the surgery itself. In this paper, we discuss the underlying anatomy, pharmacological considerations, surgical techniques and nutritional needs necessary to help facilitate appropriate wound healing. A successful surgery begins with preoperative planning regarding the placement of the surgical incision, being cognizant of cosmetics, and the effects of possible adjuvant radiation therapy on healing incisions. We need to assess patient's medications and past medical history to make sure we can optimise conditions for proper wound reepithelialisation, such as minimizing the amount of steroids and certain antibiotics. Contrary to harmful medications, it is imperative to optimise nutritional intake with adequate supplementation and vitamin intake. The goals of this paper are to reinforce the mechanisms by which surgical wounds can fail, leading to postoperative complications, and to provide surgeons with the reminder and techniques that can help foster a more successful surgical outcome.
Collapse
Affiliation(s)
- James A D Berry
- Division of Neurosurgery, Department of Surgery, Riverside University Health System, Moreno Valley, California
| | - Dan E Miulli
- Division of Neurosurgery, Department of Surgery, Arrowhead Regional Medical Center, Colton, California
| | - Benjamin Lam
- Department of Plastic and Reconstructive Surgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Christopher Elia
- Division of Neurosurgery, Department of Surgery, Riverside University Health System, Moreno Valley, California
| | - Julia Minasian
- Department of Neurosurgery, Western University College of Osteopathic Medicine, Pomona, California
| | - Stacey Podkovik
- Division of Neurosurgery, Department of Surgery, Riverside University Health System, Moreno Valley, California
| | - Margaret R S Wacker
- Division of Neurosurgery, Department of Surgery, Arrowhead Regional Medical Center, Colton, California
| |
Collapse
|
11
|
Proniewski B, Czarny J, Khomich TI, Kus K, Zakrzewska A, Chlopicki S. Immuno-Spin Trapping-Based Detection of Oxidative Modifications in Cardiomyocytes and Coronary Endothelium in the Progression of Heart Failure in Tgαq*44 Mice. Front Immunol 2018; 9:938. [PMID: 29867936 PMCID: PMC5949515 DOI: 10.3389/fimmu.2018.00938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/16/2018] [Indexed: 01/24/2023] Open
Abstract
Recent studies suggest both beneficial and detrimental role of increased reactive oxygen species and oxidative stress in heart failure (HF). However, it is not clear at which stage oxidative stress and oxidative modifications occur in the endothelium in relation to cardiomyocytes in non-ischemic HF. Furthermore, most methods used to date to study oxidative stress are either non-specific or require tissue homogenization. In this study, we used immuno-spin trapping (IST) technique with fluorescent microscopy-based detection of DMPO nitrone adducts to localize and quantify oxidative modifications of the hearts from Tgαq*44 mice; a murine model of HF driven by cardiomyocyte-specific overexpression of Gαq* protein. Tgαq*44 mice and age-matched FVB controls at early, transition, and late stages of HF progression were injected with DMPO in vivo and analyzed ex vivo for DMPO nitrone adducts signals. Progressive oxidative modifications in cardiomyocytes, as evidenced by the elevation of DMPO nitrone adducts, were detected in hearts from 10- to 16-month-old, but not in 8-month-old Tgαq*44 mice, as compared with age-matched FVB mice. The DMPO nitrone adducts were detected in left and right ventricle, septum, and papillary muscle. Surprisingly, significant elevation of DMPO nitrone adducts was also present in the coronary endothelium both in large arteries and in microcirculation simultaneously, as in cardiomyocytes, starting from 10-month-old Tgαq*44 mice. On the other hand, superoxide production in heart homogenates was elevated already in 6-month-old Tgαq*44 mice and progressively increased to high levels in 14-month-old Tgαq*44 mice, while the enzymatic activity of catalase, glutathione reductase, and glutathione peroxidase was all elevated as early as in 4-month-old Tgαq*44 mice and stayed at a similar level in 14-month-old Tgαq*44. In summary, this study demonstrates that IST represents a unique method that allows to quantify oxidative modifications in cardiomyocytes and coronary endothelium in the heart. In Tgαq*44 mice with slowly developing HF, driven by cardiomyocyte-specific overexpression of Gαq* protein, an increase in superoxide production, despite compensatory activation of antioxidative mechanisms, results in the development of oxidative modifications not only in cardiomyocytes but also in coronary endothelium, at the transition phase of HF, before the end-stage disease.
Collapse
Affiliation(s)
- Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Czarny
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Tamara I Khomich
- Institute of Pharmacology and Biochemistry, NAS of Belarus, Grodno, Belarus
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
12
|
The relation between pro-oxidant antioxidant balance and glycolipid profile, 6 months after gastric bypass surgery. Surg Obes Relat Dis 2018; 14:361-367. [DOI: 10.1016/j.soard.2017.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/16/2017] [Accepted: 12/03/2017] [Indexed: 12/28/2022]
|
13
|
EGCG Prevents High Fat Diet-Induced Changes in Gut Microbiota, Decreases of DNA Strand Breaks, and Changes in Expression and DNA Methylation of Dnmt1 and MLH1 in C57BL/6J Male Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3079148. [PMID: 28133504 PMCID: PMC5241499 DOI: 10.1155/2017/3079148] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022]
Abstract
Obesity as a multifactorial disorder involves low-grade inflammation, increased reactive oxygen species incidence, gut microbiota aberrations, and epigenetic consequences. Thus, prevention and therapies with epigenetic active antioxidants, (-)-Epigallocatechin-3-gallate (EGCG), are of increasing interest. DNA damage, DNA methylation and gene expression of DNA methyltransferase 1, interleukin 6, and MutL homologue 1 were analyzed in C57BL/6J male mice fed a high-fat diet (HFD) or a control diet (CD) with and without EGCG supplementation. Gut microbiota was analyzed with quantitative real-time polymerase chain reaction. An induction of DNA damage was observed, as a consequence of HFD-feeding, whereas EGCG supplementation decreased DNA damage. HFD-feeding induced a higher inflammatory status. Supplementation reversed these effects, resulting in tissue specific gene expression and methylation patterns of DNA methyltransferase 1 and MutL homologue 1. HFD feeding caused a significant lower bacterial abundance. The Firmicutes/Bacteroidetes ratio is significantly lower in HFD + EGCG but higher in CD + EGCG compared to control groups. The results demonstrate the impact of EGCG on the one hand on gut microbiota which together with dietary components affects host health. On the other hand effects may derive from antioxidative activities as well as epigenetic modifications observed on CpG methylation but also likely to include other epigenetic elements.
Collapse
|
14
|
Xu Y, Qian S. Techniques for Detecting Reactive Oxygen Species in Pulmonary Vasculature Redox Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:361-372. [DOI: 10.1007/978-3-319-63245-2_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Electrophilic Nitro-Fatty Acids: Nitric Oxide and Nitrite-Derived Metabolic and Inflammatory Signaling Mediators. Nitric Oxide 2017. [DOI: 10.1016/b978-0-12-804273-1.00016-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Dezfulian C, Kenny E, Lamade A, Misse A, Krehel N, St Croix C, Kelley EE, Jackson TC, Uray T, Rackley J, Kochanek PM, Clark RSB, Bayir H. Mechanistic characterization of nitrite-mediated neuroprotection after experimental cardiac arrest. J Neurochem 2016; 139:419-431. [PMID: 27507435 DOI: 10.1111/jnc.13764] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 12/27/2022]
Abstract
Nitrite acts as an ischemic reservoir of nitric oxide (NO) and a potent S-nitrosating agent which reduced histologic brain injury after rat asphyxial cardiac arrest (ACA). The mechanism(s) of nitrite-mediated neuroprotection remain to be defined. We hypothesized that nitrite-mediated brain mitochondrial S-nitrosation accounts for neuroprotection by reducing reperfusion reactive oxygen species (ROS) generation. Nitrite (4 μmol) or placebo was infused IV after normothermic (37°C) ACA in randomized, blinded fashion with evaluation of neurologic function, survival, brain mitochondrial function, and ROS. Blood and CSF nitrite were quantified using reductive chemiluminescence and S-nitrosation by biotin switch. Direct neuroprotection was verified in vitro after 1 and 4 h neuronal oxygen glucose deprivation measuring neuronal death with inhibition studies to examine mechanism. Mitochondrial ROS generation was quantified by live neuronal imaging using mitoSOX. Nitrite significantly reduced neurologic disability after ACA. ROS generation was reduced in brain mitochondria from nitrite- versus placebo-treated rats after ACA with congruent preservation of brain ascorbate and reduction of ROS in brain sections using immuno-spin trapping. ATP generation was maintained with nitrite up to 24 h after ACA. Nitrite rapidly entered CSF and increased brain mitochondrial S-nitrosation. Nitrite reduced in vitro mitochondrial superoxide generation and improved survival of neurons after oxygen glucose deprivation. Protection was maintained with inhibition of soluble guanylate cyclase but lost with NO scavenging and ultraviolet irradiation. Nitrite therapy results in direct neuroprotection from ACA mediated by reductions in brain mitochondrial ROS in association with protein S-nitrosation. Neuroprotection is dependent on NO and S-nitrosothiol generation, not soluble guanylate cyclase.
Collapse
Affiliation(s)
- Cameron Dezfulian
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. .,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. .,Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | - Elizabeth Kenny
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew Lamade
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amalea Misse
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nicholas Krehel
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Claudette St Croix
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Eric E Kelley
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Travis C Jackson
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas Uray
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Justin Rackley
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert S B Clark
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hulya Bayir
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Seillier M, Pouyet L, N'Guessan P, Nollet M, Capo F, Guillaumond F, Peyta L, Dumas JF, Varrault A, Bertrand G, Bonnafous S, Tran A, Meur G, Marchetti P, Ravier MA, Dalle S, Gual P, Muller D, Rutter GA, Servais S, Iovanna JL, Carrier A. Defects in mitophagy promote redox-driven metabolic syndrome in the absence of TP53INP1. EMBO Mol Med 2016; 7:802-18. [PMID: 25828351 PMCID: PMC4459819 DOI: 10.15252/emmm.201404318] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The metabolic syndrome covers metabolic abnormalities including obesity and type 2 diabetes (T2D). T2D is characterized by insulin resistance resulting from both environmental and genetic factors. A genome-wide association study (GWAS) published in 2010 identified TP53INP1 as a new T2D susceptibility locus, but a pathological mechanism was not identified. In this work, we show that mice lacking TP53INP1 are prone to redox-driven obesity and insulin resistance. Furthermore, we demonstrate that the reactive oxygen species increase in TP53INP1-deficient cells results from accumulation of defective mitochondria associated with impaired PINK/PARKIN mitophagy. This chronic oxidative stress also favors accumulation of lipid droplets. Taken together, our data provide evidence that the GWAS-identified TP53INP1 gene prevents metabolic syndrome, through a mechanism involving prevention of oxidative stress by mitochondrial homeostasis regulation. In conclusion, this study highlights TP53INP1 as a molecular regulator of redox-driven metabolic syndrome and provides a new preclinical mouse model for metabolic syndrome clinical research.
Collapse
Affiliation(s)
- Marion Seillier
- Inserm, U1068, CRCM, Marseille, France Institut Paoli-Calmettes, Marseille, France Aix-Marseille Université, Marseille, France CNRS, UMR7258, CRCM, Marseille, France
| | - Laurent Pouyet
- Inserm, U1068, CRCM, Marseille, France Institut Paoli-Calmettes, Marseille, France Aix-Marseille Université, Marseille, France CNRS, UMR7258, CRCM, Marseille, France
| | - Prudence N'Guessan
- Inserm, U1068, CRCM, Marseille, France Institut Paoli-Calmettes, Marseille, France Aix-Marseille Université, Marseille, France CNRS, UMR7258, CRCM, Marseille, France
| | - Marie Nollet
- Inserm, U1068, CRCM, Marseille, France Institut Paoli-Calmettes, Marseille, France Aix-Marseille Université, Marseille, France CNRS, UMR7258, CRCM, Marseille, France
| | - Florence Capo
- Inserm, U1068, CRCM, Marseille, France Institut Paoli-Calmettes, Marseille, France Aix-Marseille Université, Marseille, France CNRS, UMR7258, CRCM, Marseille, France
| | - Fabienne Guillaumond
- Inserm, U1068, CRCM, Marseille, France Institut Paoli-Calmettes, Marseille, France Aix-Marseille Université, Marseille, France CNRS, UMR7258, CRCM, Marseille, France
| | - Laure Peyta
- Inserm, U1069 Nutrition, Croissance et Cancer (N2C), Tours, France
| | | | - Annie Varrault
- CNRS, UMR5203, Inserm, U661 Universités de Montpellier 1 & 2, IGF, Montpellier, France
| | - Gyslaine Bertrand
- CNRS, UMR5203, Inserm, U661 Universités de Montpellier 1 & 2, IGF, Montpellier, France
| | - Stéphanie Bonnafous
- Inserm, U1065, C3M Team 8 "Hepatic Complications in Obesity", Nice, France Université de Nice-Sophia-Antipolis, Nice, France Centre Hospitalier Universitaire de Nice, Pôle Digestif Hôpital L'Archet, Nice, France
| | - Albert Tran
- Inserm, U1065, C3M Team 8 "Hepatic Complications in Obesity", Nice, France Université de Nice-Sophia-Antipolis, Nice, France Centre Hospitalier Universitaire de Nice, Pôle Digestif Hôpital L'Archet, Nice, France
| | - Gargi Meur
- Cell Biology, Department of Medicine, Imperial College, London, UK
| | - Piero Marchetti
- Islet Cell Laboratory, University of Pisa - Cisanello Hospital, Pisa, Italy
| | - Magalie A Ravier
- CNRS, UMR5203, Inserm, U661 Universités de Montpellier 1 & 2, IGF, Montpellier, France
| | - Stéphane Dalle
- CNRS, UMR5203, Inserm, U661 Universités de Montpellier 1 & 2, IGF, Montpellier, France
| | - Philippe Gual
- Inserm, U1065, C3M Team 8 "Hepatic Complications in Obesity", Nice, France Université de Nice-Sophia-Antipolis, Nice, France Centre Hospitalier Universitaire de Nice, Pôle Digestif Hôpital L'Archet, Nice, France
| | - Dany Muller
- CNRS, UMR5203, Inserm, U661 Universités de Montpellier 1 & 2, IGF, Montpellier, France
| | - Guy A Rutter
- Cell Biology, Department of Medicine, Imperial College, London, UK
| | - Stéphane Servais
- Inserm, U1069 Nutrition, Croissance et Cancer (N2C), Tours, France
| | - Juan L Iovanna
- Inserm, U1068, CRCM, Marseille, France Institut Paoli-Calmettes, Marseille, France Aix-Marseille Université, Marseille, France CNRS, UMR7258, CRCM, Marseille, France
| | - Alice Carrier
- Inserm, U1068, CRCM, Marseille, France Institut Paoli-Calmettes, Marseille, France Aix-Marseille Université, Marseille, France CNRS, UMR7258, CRCM, Marseille, France
| |
Collapse
|
18
|
Suzuki S, Fujita N, Hosogane N, Watanabe K, Ishii K, Toyama Y, Takubo K, Horiuchi K, Miyamoto T, Nakamura M, Matsumoto M. Excessive reactive oxygen species are therapeutic targets for intervertebral disc degeneration. Arthritis Res Ther 2015; 17:316. [PMID: 26542776 PMCID: PMC4635526 DOI: 10.1186/s13075-015-0834-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/21/2015] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Oxidative stress has been reported to be involved in numerous human diseases, including musculoskeletal disorders such as osteoarthritis. However, the interaction between intervertebral disc (IVD) degeneration and oxidative stress is not well understood. The purpose of the present study was to elucidate the contribution of oxidative stress to IVD degeneration and the efficacy of antioxidant treatment for degenerative discs. METHODS The expression level of an oxidative stress marker, nitrotyrosine, was assessed by immunohistochemistry and Western blotting. For evaluating intracellular reactive oxygen species (ROS) levels and oxidative stress in rat annulus fibrosus (AF) cells, flow cytometry and luciferase assay with an OKD48 construct were performed. The grade of IVD degeneration was assessed by magnetic resonance imaging and histological analysis. RESULTS A high frequency of nitrotyrosine-positive cells was observed in rat and human degenerative discs. mRNA expression of catabolic factors such as tumor necrosis factor-alpha (TNF-alpha), matrix metalloprotease-3 (MMP-3), and cyclooxygenase-2 (COX-2) was significantly induced by treatment with H2O2 or buthionine sulfoximine, whereas that of aggrecan, an important chondrogenic proteoglycan, was reduced in a dose-dependent manner. Treatment with mitogen-activated protein kinase (MAPK) inhibitors blocked the inductive effect of excessive ROS on COX-2 mRNA expression. Western blotting confirmed the phosphorylation of MAPKs in H2O2 and BSO-treated AF cells. Conversely, we showed that TNF-α induced oxidative stress with increased intracellular ROS levels in AF cells. Treatment with the antioxidant N-acetyl cysteine (NAC) abrogated the catabolic effect of excessive ROS and TNF-alpha in vitro. Finally, we showed that oral administration of NAC prevented IVD degeneration in rat degenerative model. CONCLUSIONS A positive feedback loop was formed between excessive ROS and TNF-alpha in AF cells. Thus, oxidative stress contributes to the progression of IVD degeneration and NAC can be a therapeutic option for IVD degeneration.
Collapse
Affiliation(s)
- Satoshi Suzuki
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
| | - Naobumi Hosogane
- Department of Orthopaedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
| | - Ken Ishii
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
| | - Yoshiaki Toyama
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Keisuke Horiuchi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
19
|
Khoo NKH, Cantu-Medellin N, St Croix C, Kelley EE. In Vivo Immuno-Spin Trapping: Imaging the Footprints of Oxidative Stress. CURRENT PROTOCOLS IN CYTOMETRY 2015; 74:12.42.1-12.42.11. [PMID: 26423693 PMCID: PMC4889111 DOI: 10.1002/0471142956.cy1242s74] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A plethora of disease processes are associated with elevated reactive species formation and allied reactions with biomolecules that alter cell signaling, induce overt damage, and promote dysfunction of tissues. Unfortunately, effective detection of reactive species in tissues is wrought with issues that significantly limit capacity for validating species identity, establishing accurate concentrations, and identifying anatomic sites of production. These shortcomings reveal the pressing need for new approaches to more precisely assess reactive species generation in vivo. Herein, we describe an in vivo immuno-spin trapping method for indirectly assessing oxidant levels by detecting free radicals resulting from reaction of oxidants with biomolecules to form stable, immunologically detectable nitrone-biomolecular adducts. This process couples the reactivity and sensitivity of an electron paramagnetic resonance spin trap with the resolution of confocal imaging to visualize the extent of cell and tissue oxidation and anatomic sites of production by detecting resultant free radical formation.
Collapse
Affiliation(s)
- Nicholas K H Khoo
- Departments of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Claudette St Croix
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eric E Kelley
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Saadi H, Seillier M, Carrier A. The stress protein TP53INP1 plays a tumor suppressive role by regulating metabolic homeostasis. Biochimie 2015. [PMID: 26225460 DOI: 10.1016/j.biochi.2015.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the recent years, we have provided evidence that Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) is a key stress protein with antioxidant-associated tumor suppressive function. The TP53INP1 gene, which is highly conserved in mammals, is over-expressed during stress responses including inflammation. This gene encodes two protein isoforms with nuclear or cytoplasmic subcellular localization depending on the context. TP53INP1 contributes to stress responses, thus preventing stress-induced dysfunctions leading to pathologies such as cancer. Two major mechanisms by which TP53INP1 functions have been unveiled. First, in the nucleus, TP53INP1 was shown to regulate the transcriptional activity of p53 and p73 by direct interaction, and to mediate the antioxidant activity of p53. Second, independently of p53, TP53INP1 contributes to autophagy and more particularly mitophagy through direct interaction with molecular actors of autophagy. TP53INP1 is thus required for the homeostasis of the mitochondrial compartment, and is therefore involved in the regulation of energetic metabolism. Finally, the antioxidant function of TP53INP1 stems from the control of mitochondrial reactive oxygen species production. In conclusion, TP53INP1 is a multifaceted protein endowed with multiple functions, including metabolic regulation, as is its main functional partner p53.
Collapse
Affiliation(s)
- Houda Saadi
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Marion Seillier
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Alice Carrier
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France.
| |
Collapse
|
21
|
Horinouchi Y, Summers FA, Ehrenshaft M, Mason RP. Free radical generation from an aniline derivative in HepG2 cells: a possible captodative effect. Free Radic Biol Med 2015; 78:111-7. [PMID: 25450331 DOI: 10.1016/j.freeradbiomed.2014.10.577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 10/17/2014] [Accepted: 10/27/2014] [Indexed: 11/23/2022]
Abstract
Xenobiotic metabolism can induce the generation of protein radicals, which are believed to play an important role in the toxicity of chemicals and drugs. It is therefore important to identify chemical structures capable of inducing macromolecular free radical formation in living cells. In this study, we evaluated the ability of four structurally related environmental chemicals, aniline, nitrosobenzene, N,N-dimethylaniline, and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase assays, and morphological changes were observed using phase contrast microscopy. Protein free radicals were detected by immuno-spin trapping using in-cell western experiments and confocal microscopy to determine the subcellular locale of free radical generation. DMNA induced free radical generation, lactate dehydrogenase release, and morphological changes in HepG2 cells, whereas aniline, nitrosobenzene, N,N-dimethylaniline did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation on subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide had no effect. These results suggest that DMNA is metabolized to reactive free radicals capable of generating protein radicals which may play a critical role in DMNA toxicity. We propose that the captodative effect, the combined action of the electron-releasing dimethylamine substituent, and the electron-withdrawing nitroso substituent, leads to a thermodynamically stabilized radical, facilitating enhanced protein radical formation by DMNA.
Collapse
Affiliation(s)
- Yuya Horinouchi
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Fiona A Summers
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Marilyn Ehrenshaft
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Ronald P Mason
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
22
|
Nair AR, Elks CM, Vila J, Del Piero F, Paulsen DB, Francis J. A blueberry-enriched diet improves renal function and reduces oxidative stress in metabolic syndrome animals: potential mechanism of TLR4-MAPK signaling pathway. PLoS One 2014; 9:e111976. [PMID: 25372283 PMCID: PMC4221362 DOI: 10.1371/journal.pone.0111976] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/09/2014] [Indexed: 02/07/2023] Open
Abstract
Background Metabolic syndrome (MetS) is characterized by a cluster of health factors that indicate a higher risk for cardio-renal diseases. Recent evidence indicates that antioxidants from berries are alternative to attenuate oxidative stress and inflammation. We tested the hypothesis that inflammation-induced renal damage is triggered by the activation of TLR4, and subsequent modulation of redox-sensitive molecules and mitogen-activated protein kinase (MAPK) pathway. Methods Five-week old lean and obese Zucker rats (LZR and OZR) were fed a blueberry-enriched diet or an isocaloric control diet for 15 weeks. A glucose tolerance test and acute renal clearance experiments were performed. Gene and protein expression levels for TLR4, cytokines and phosphorylation of ERK and p38MAPK were measured. Kidney redox status and urinary albumin levels were quantified. Renal pathology was evaluated histologically. Results Control OZR exhibited lower glucose tolerance; exacerbated renal function parameters; increased oxidative stress. Gene and protein expression levels of TLR4 were higher and this was accompanied by increased renal pathology with extensive albuminuria and deterioration in antioxidant levels in OZR. In addition, OZR had increased phosphorylation of ERK and p38MAPK. Blueberry-fed OZR exhibited significant improvements in all these parameters compared to OZR. Conclusion TLR4-MAPK signaling pathway is a key to the renal structural injury and dysfunction in MetS and blueberry (BB) protect against this damage by inhibiting TLR4. Significance This is the first study to put forth a potential mechanism of TLR4-induced kidney damage in a model of MetS and to elucidate a downstream mechanism by which blueberry exert their reno-protective effects.
Collapse
Affiliation(s)
- Anand R. Nair
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Carrie M. Elks
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Jorge Vila
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Fabio Del Piero
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Daniel B. Paulsen
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Joseph Francis
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
23
|
Méndez L, Pazos M, Giralt M, Nogués MR, Pérez-Jiménez J, Torres JL, Gallardo JM, Medina I. Targets of protein carbonylation in spontaneously hypertensive obese Koletsky rats and healthy Wistar counterparts: a potential role on metabolic disorders. J Proteomics 2014; 106:246-59. [PMID: 24793432 DOI: 10.1016/j.jprot.2014.04.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/11/2014] [Accepted: 04/20/2014] [Indexed: 01/14/2023]
Abstract
The study innovatively pinpoints target proteins of carbonylation, a key PTM induced by oxidative stress, in the SHROB (genetically obese spontaneously hypertensive) rat model of metabolic syndrome (MetS). Protein carbonylation was assessed by a fluorescence-labeling proteomics approach, and complemented with biometric and biochemical markers of MetS. SHROB and healthy Wistar rats were fed two diets, soybean and linseed oil supplementations, in order to distinguish intrinsic carbonylation of SHROB animals from diet-modulated carbonylation unrelated to MetS. First exploratory data showed similar carbonylation patterns and metabolic conditions in SHROB rats fed soybean and linseed, but different from Wistar animals. A total of 18 carbonylated spots in liver, and 12 in skeletal tissue, related to pathways of lipid (29.6%), carbohydrate (25.9%) and amino acid (18.5%) metabolisms, were identified. In particular, SHROB animals present higher carbonylation in four liver proteins belonging to lipid metabolism, redox regulation and chaperone activity (ALDH2, PDI, PDIA3, PECR), and in the skeletal muscle ALDOA that is involved in muscle dysfunction. Conversely, SHROB rats display lower carbonylation in liver albumin, AKR1C9, ADH1 and catalase. This investigation provides a novel perspective of carbonylation in the context of metabolic disorders, and may be a starting point to characterize new redox pathways exacerbating MetS. BIOLOGICAL SIGNIFICANCE Oxidative stress is a concomitant factor in the pathogenesis of MetS that induces oxidative PTM as carbonylation. Through the use of a redox proteomics approach, we have thoroughly mapped the occurrence of protein targets of carbonylation in the genetically-induced MetS model SHROB rat. The present research brings a new insight of MetS pathogenesis and it may provide valuable information to understand the biological impact of oxidative stress in patients with MetS.
Collapse
Affiliation(s)
- Lucía Méndez
- Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain
| | - Manuel Pazos
- Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain.
| | - Montserrat Giralt
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - M Rosa Nogués
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - Jara Pérez-Jiménez
- Instituto de Química Avanzada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josep L Torres
- Instituto de Química Avanzada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - J M Gallardo
- Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain
| |
Collapse
|
24
|
Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci U S A 2014; 111:3182-7. [PMID: 24516168 DOI: 10.1073/pnas.1321871111] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous studies have demonstrated that hydrogen sulfide (H2S) protects against multiple cardiovascular disease states in a similar manner as nitric oxide (NO). H2S therapy also has been shown to augment NO bioavailability and signaling. The purpose of this study was to investigate the impact of H2S deficiency on endothelial NO synthase (eNOS) function, NO production, and ischemia/reperfusion (I/R) injury. We found that mice lacking the H2S-producing enzyme cystathionine γ-lyase (CSE) exhibit elevated oxidative stress, dysfunctional eNOS, diminished NO levels, and exacerbated myocardial and hepatic I/R injury. In CSE KO mice, acute H2S therapy restored eNOS function and NO bioavailability and attenuated I/R injury. In addition, we found that H2S therapy fails to protect against I/R in eNOS phosphomutant mice (S1179A). Our results suggest that H2S-mediated cytoprotective signaling in the setting of I/R injury is dependent in large part on eNOS activation and NO generation.
Collapse
|
25
|
Kelley EE, Baust J, Bonacci G, Golin-Bisello F, Devlin JE, St Croix CM, Watkins SC, Gor S, Cantu-Medellin N, Weidert ER, Frisbee JC, Gladwin MT, Champion HC, Freeman BA, Khoo NKH. Fatty acid nitroalkenes ameliorate glucose intolerance and pulmonary hypertension in high-fat diet-induced obesity. Cardiovasc Res 2014; 101:352-63. [PMID: 24385344 DOI: 10.1093/cvr/cvt341] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS Obesity is a risk factor for diabetes and cardiovascular diseases, with the incidence of these disorders becoming epidemic. Pathogenic responses to obesity have been ascribed to adipose tissue (AT) dysfunction that promotes bioactive mediator secretion from visceral AT and the initiation of pro-inflammatory events that induce oxidative stress and tissue dysfunction. Current understanding supports that suppressing pro-inflammatory and oxidative events promotes improved metabolic and cardiovascular function. In this regard, electrophilic nitro-fatty acids display pleiotropic anti-inflammatory signalling actions. METHODS AND RESULTS It was hypothesized that high-fat diet (HFD)-induced inflammatory and metabolic responses, manifested by loss of glucose tolerance and vascular dysfunction, would be attenuated by systemic administration of nitrooctadecenoic acid (OA-NO2). Male C57BL/6j mice subjected to a HFD for 20 weeks displayed increased adiposity, fasting glucose, and insulin levels, which led to glucose intolerance and pulmonary hypertension, characterized by increased right ventricular (RV) end-systolic pressure (RVESP) and pulmonary vascular resistance (PVR). This was associated with increased lung xanthine oxidoreductase (XO) activity, macrophage infiltration, and enhanced expression of pro-inflammatory cytokines. Left ventricular (LV) end-diastolic pressure remained unaltered, indicating that the HFD produces pulmonary vascular remodelling, rather than LV dysfunction and pulmonary venous hypertension. Administration of OA-NO2 for the final 6.5 weeks of HFD improved glucose tolerance and significantly attenuated HFD-induced RVESP, PVR, RV hypertrophy, lung XO activity, oxidative stress, and pro-inflammatory pulmonary cytokine levels. CONCLUSIONS These observations support that the pleiotropic signalling actions of electrophilic fatty acids represent a therapeutic strategy for limiting the complex pathogenic responses instigated by obesity.
Collapse
Affiliation(s)
- Eric E Kelley
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesity-associated oxidative stress: strategies finalized to improve redox state. Int J Mol Sci 2013; 14:10497-538. [PMID: 23698776 PMCID: PMC3676851 DOI: 10.3390/ijms140510497] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/18/2013] [Accepted: 05/06/2013] [Indexed: 12/14/2022] Open
Abstract
Obesity represents a major risk factor for a plethora of severe diseases, including diabetes, cardiovascular disease, non-alcoholic fatty liver disease, and cancer. It is often accompanied by an increased risk of mortality and, in the case of non-fatal health problems, the quality of life is impaired because of associated conditions, including sleep apnea, respiratory problems, osteoarthritis, and infertility. Recent evidence suggests that oxidative stress may be the mechanistic link between obesity and related complications. In obese patients, antioxidant defenses are lower than normal weight counterparts and their levels inversely correlate with central adiposity; obesity is also characterized by enhanced levels of reactive oxygen or nitrogen species. Inadequacy of antioxidant defenses probably relies on different factors: obese individuals may have a lower intake of antioxidant- and phytochemical-rich foods, such as fruits, vegetables, and legumes; otherwise, consumption of antioxidant nutrients is normal, but obese individuals may have an increased utilization of these molecules, likewise to that reported in diabetic patients and smokers. Also inadequate physical activity may account for a decreased antioxidant state. In this review, we describe current concepts in the meaning of obesity as a state of chronic oxidative stress and the potential interventions to improve redox balance.
Collapse
Affiliation(s)
- Isabella Savini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | |
Collapse
|
27
|
Gomez-Mejiba SE, Zhai Z, Della-Vedova MC, Muñoz MD, Chatterjee S, Towner RA, Hensley K, Floyd RA, Mason RP, Ramirez DC. Immuno-spin trapping from biochemistry to medicine: advances, challenges, and pitfalls. Focus on protein-centered radicals. Biochim Biophys Acta Gen Subj 2013; 1840:722-9. [PMID: 23644035 DOI: 10.1016/j.bbagen.2013.04.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Immuno-spin trapping (IST) is based on the reaction of a spin trap with a free radical to form a stable nitrone adduct, followed by the use of antibodies, rather than traditional electron paramagnetic resonance spectroscopy, to detect the nitrone adduct. IST has been successfully applied to mechanistic in vitro studies, and recently, macromolecule-centered radicals have been detected in models of drug-induced agranulocytosis, hepatotoxicity, cardiotoxicity, and ischemia/reperfusion, as well as in models of neurological, metabolic and immunological diseases. SCOPE OF THE REVIEW To critically evaluate advances, challenges, and pitfalls as well as the scientific opportunities of IST as applied to the study of protein-centered free radicals generated in stressed organelles, cells, tissues and animal models of disease and exposure. MAJOR CONCLUSIONS Because the spin trap has to be present at high enough concentrations in the microenvironment where the radical is formed, the possible effects of the spin trap on gene expression, metabolism and cell physiology have to be considered in the use of IST and in the interpretation of results. These factors have not yet been thoroughly dealt with in the literature. GENERAL SIGNIFICANCE The identification of radicalized proteins during cell/tissue response to stressors will help define their role in the complex cellular response to stressors and pathogenesis; however, the fidelity of spin trapping/immuno-detection and the effects of the spin trap on the biological system should be considered. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Sandra E Gomez-Mejiba
- Laboratory of Experimental Medicine and Therapeutics, Institute Multidisciplinary of Biological Investigations-San Luis (IMIBIO-SL), National Bureau of Science and Technology (CONICET) and National University of San Luis, San Luis, 5700 San Luis, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|