1
|
Ha JH, Lee BW, Yi DH, Jeong SH, Kim JH, Jang HJ, Jeong JH, Park JY, Jeong HJ, Kwon HJ, Ryu YB, Lee IC. Dendranthema oreastrum (Hance) Y.Ling Attenuates Oxidative Stress and Airway Inflammation in a Murine Model of Lipopolysaccharide-Induced Acute Lung Injury. ENVIRONMENTAL TOXICOLOGY 2025. [PMID: 40265676 DOI: 10.1002/tox.24520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/19/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
We examined the antioxidant and anti-inflammatory effects of the methanolic extract of Dendranthema oreastrum (Hance) Y.Ling, commonly known as "Gu-Jeol-Cho" in Korea and widely found across East Asia, using an LPS-induced acute lung injury (ALI) mouse model and TNF-α-stimulated NCI-H292 cells. LPS was intratracheally administered at 20 μg/50 μL/mouse for 3 days. From test day 1 to 5, experimental mice were administered DO (100 and 200 mg/kg/day) or dexamethasone (3 mg/kg/day). DO treatment decreased pro-inflammatory cytokines in bronchoalveolar lavage fluid and TNF-α-stimulated NCI-H292 cells. Additionally, DO treatment decreased alveolar wall thickening and inflammatory cell infiltration in lung tissues. DO down-regulated TXNIP expression, inhibiting NF-κB activation. Furthermore, DO administration reduced NLRP3 inflammasome activity by preventing the activation of caspase-1 and IL-1β. Additionally, DO promoted the nuclear translocation of Nrf2-related factors, leading to an upregulation of antioxidant enzymes. The study demonstrated that DO administration markedly decreased reactive oxygen species and lipid peroxidation. These observations indicate that DO is a therapeutic agent for ALI.
Collapse
Affiliation(s)
- Ji-Hye Ha
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ba-Wool Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Da-Hye Yi
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Ju-Hong Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Hyun-Jae Jang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Republic of Korea
| | - Ju Hwan Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Ji-Young Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Hyung Jae Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Young-Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| |
Collapse
|
2
|
Fernández-Villa D, Herraiz A, de Wit K, Herranz F, Aguilar MR, Rojo L. Design of tunable hyaluronic acid and O'-carboxymethyl chitosan formulations for the minimally invasive delivery of multifunctional therapies targeting rheumatoid arthritis. Carbohydr Polym 2025; 349:123018. [PMID: 39638525 DOI: 10.1016/j.carbpol.2024.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
The development of injectable, dual-component formulations based on natural-based polysaccharides is a promising strategy for the localized treatment of rheumatoid arthritis (RA). In the present study, biomimetic formulations consisting of aldehyde-functionalized hyaluronic acid (AHA) and O-carboxymethyl chitosan (OCC) were developed, presenting rapid in situ gelation rates and finely tunable physicochemical properties. These two properties allowed for the controlled delivery of anti-inflammatory, antioxidant, and pro-regenerative agents (i.e., strontium-methotrexate (SrMTX) and europium-tannic acid nanocomplexes (EuTA NCs), making them suitable for application in in vivo RA-models. Biological analyses demonstrated the system's cytocompatibility and its ability to modulate the activity of human articular chondrocytes at the secretome level and scavenge nitric oxide (NO). Moreover, the loaded cargoes not only extended the anti-inflammatory properties of the formulation but also the radiolabeling of EuTA NCs with 68Ga allowed the visualization of the gel by positron emission tomography (PET). Overall, this work presents the design and in vitro evaluation of an easily modulable polymeric system that allows the in situ release of a multifunctional therapy with promising perspectives for RA treatment.
Collapse
Affiliation(s)
- Daniel Fernández-Villa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - Aitor Herraiz
- Instituto de Química Médica (IQM), CSIC, 28006 Madrid, Spain.
| | - Kyra de Wit
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain
| | - Fernando Herranz
- Instituto de Química Médica (IQM), CSIC, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
3
|
Tang MDQ, Tran NB, Nguyen THT, Nguyen KUH, Trinh NT, Van Vo T, Kobayashi M, Yoshitomi T, Nagasaki Y, Vong LB. Development of oral pH-sensitive redox nanotherapeutics for gastric ulcer therapy. J Control Release 2024; 375:758-766. [PMID: 39326501 DOI: 10.1016/j.jconrel.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Gastric ulcer is a common gastrointestinal disorder worldwide. Although its pathogenesis is unclear, the overproduction of reactive oxygen species (ROS), which results in an oxidative imbalance, has been reported as a central driving mechanism. Within the scope of this investigation, we developed two different self-assembling redox nanoparticles (RNPs) with ROS-scavenging features for the oral treatment of gastric ulcers. One of them, referred to as RNPN, disintegrates in response to acidic pH, whereas the other, denoted as RNPO, remains intact regardless of pH variations. Both types of RNPs showed different free radical scavenging activities in vitro. Protonation of the amino linkages in the side chains of RNPN caused the micelle structure to collapse and the nitroxide radicals encapsulated in the core were exposed to the outside, resulting in a significant increase in antioxidant capacity as the pH decreases. In contrast, RNPO maintained its spherical structure and consistent antioxidant reactivity irrespective of pH changes. The in vivo gastric retention of orally administered RNPN was significantly improved compared to that of RNPO which might be explained by the increased exposure of cationic protonating segments in RNPN on the negatively charged gastric mucosal surface. Owing to its improved gastric retention and enhanced ROS scavenging capacity under acidic pH conditions, RNPN exhibited superior protective effects against oxidative stress induced by aspirin in a gastric ulcer mouse model compared to RNPO. In addition, neither RNPN nor RNPO resulted in severe lethal effects or significant changes in the morphology of zebrafish embryos, indicating their biosafety. Our results suggest that the oral administration of RNPs has a high therapeutic potential for gastric ulcer treatment.
Collapse
Affiliation(s)
- Minh-Dat Quoc Tang
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Nhi Bao Tran
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Thu-Ha Thi Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Khanh-Uyen Hoang Nguyen
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam; Faculty of Biology and Biotechnology, University of Science Ho Chi Minh 700000, Viet Nam
| | - Nhu-Thuy Trinh
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Toi Van Vo
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Makoto Kobayashi
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Radiation and Earth System Science (CRiES), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; High-Value Biomaterials Research and Commercialization Center (HBRCC), National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Long Binh Vong
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam.
| |
Collapse
|
4
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
5
|
Wu Z, Yang L, Wang R, Yang J, Liang P, Ren W, Yu H. Exploring the Mechanism of Asiatic Acid against Atherosclerosis Based on Molecular Docking, Molecular Dynamics, and Experimental Verification. Pharmaceuticals (Basel) 2024; 17:969. [PMID: 39065817 PMCID: PMC11279847 DOI: 10.3390/ph17070969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Asiatic acid (AA) is a pentacyclic triterpene derived from the traditional medicine Centella asiatica. It is known for its anti-inflammatory, antioxidant, and lipid-regulating properties. Though previous studies have suggested its potential therapeutic benefits for atherosclerosis, its pharmacological mechanism is unclear. The objective of this study was to investigate the molecular mechanism of AA in the treatment of atherosclerosis. Therefore, network pharmacology was employed to uncover the mechanism by which AA acts as an anti-atherosclerotic agent. Furthermore, molecular docking, molecular dynamics (MD) simulation, and in vitro experiments were performed to elucidate the mechanism of AA's anti-atherosclerotic effects. Molecular docking analysis demonstrated a strong affinity between AA and PPARγ. Further MD simulations demonstrated the favorable stability of AA-PPARγ protein complexes. In vitro experiments demonstrated that AA can dose-dependently inhibit the expression of inflammatory factors induced by lipopolysaccharide (LPS) in RAW264.7 cells. This effect may be mediated through the PPARγ/NF-κB signaling pathway. This research underscores anti-inflammation as a crucial biological process in AA treatments for atherosclerosis, with PPARγ potentially serving as a key target.
Collapse
Affiliation(s)
- Zhihao Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (Z.W.); (R.W.)
| | - Luyin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; (L.Y.); (P.L.)
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Rong Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (Z.W.); (R.W.)
| | - Jie Yang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (Z.W.); (R.W.)
| | - Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; (L.Y.); (P.L.)
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; (L.Y.); (P.L.)
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Hong Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (Z.W.); (R.W.)
- Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
6
|
Manoharan RR, Sedlářová M, Pospíšil P, Prasad A. Detection and characterization of free oxygen radicals induced protein adduct formation in differentiating macrophages. Biochim Biophys Acta Gen Subj 2023; 1867:130324. [PMID: 36775000 DOI: 10.1016/j.bbagen.2023.130324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Reactive oxygen species play a key role in cellular homeostasis and redox signaling at physiological levels, where excessive production affects the function and integrity of macromolecules, specifically proteins. Therefore, it is important to define radical-mediated proteotoxic stress in macrophages and identify target protein to prevent tissue dysfunction. A well employed, THP-1 cell line was utilized as in vitro model to study immune response and herein we employ immuno-spin trapping technique to investigate radical-mediated protein oxidation in macrophages. Hydroxyl radical formation along macrophage differentiation was confirmed by electron paramagnetic resonance along with confocal laser scanning microscopy using hydroxyphenyl fluorescein. Lipid peroxidation product, malondialdehyde, generated under experimental conditions as detected using swallow-tailed perylene derivative fluorescence observed by confocal laser scanning microscopy and high-performance liquid chromatography, respectively. The results obtained from this study warrant further corroboration and study of specific proteins involved in the macrophage activation and their role in inflammations.
Collapse
Affiliation(s)
- Renuka Ramalingam Manoharan
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
7
|
Timalsina D, Pokhrel KP, Bhusal D. Pharmacologic Activities of Plant-Derived Natural Products on Respiratory Diseases and Inflammations. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1636816. [PMID: 34646882 PMCID: PMC8505070 DOI: 10.1155/2021/1636816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Respiratory inflammation is caused by an air-mediated disease induced by polluted air, smoke, bacteria, and viruses. The COVID-19 pandemic is also a kind of respiratory disease, induced by a virus causing a serious effect on the lungs, bronchioles, and pharynges that results in oxygen deficiency. Extensive research has been conducted to find out the potent natural products that help to prevent, treat, and manage respiratory diseases. Traditionally, wider floras were reported to be used, such as Morus alba, Artemisia indica, Azadirachta indica, Calotropis gigantea, but only some of the potent compounds from some of the plants have been scientifically validated. Plant-derived natural products such as colchicine, zingerone, forsythiaside A, mangiferin, glycyrrhizin, curcumin, and many other compounds are found to have a promising effect on treating and managing respiratory inflammation. In this review, current clinically approved drugs along with the efficacy and side effects have been studied. The study also focuses on the traditional uses of medicinal plants on reducing respiratory complications and their bioactive phytoconstituents. The pharmacological evidence of lowering respiratory complications by plant-derived natural products has been critically studied with detailed mechanism and action. However, the scientific validation of such compounds requires clinical study and evidence on animal and human models to replace modern commercial medicine.
Collapse
Affiliation(s)
- Deepak Timalsina
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | | | - Deepti Bhusal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
8
|
De La Cruz JA, Ganesh T, Diebold BA, Cao W, Hofstetter A, Singh N, Kumar A, McCoy J, Ranjan P, Smith SME, Sambhara S, Lambeth JD, Gangappa S. Quinazolin-derived myeloperoxidase inhibitor suppresses influenza A virus-induced reactive oxygen species, pro-inflammatory mediators and improves cell survival. PLoS One 2021; 16:e0254632. [PMID: 34280220 PMCID: PMC8289044 DOI: 10.1371/journal.pone.0254632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
Superoxide radicals and other reactive oxygen species (ROS) are implicated in influenza A virus-induced inflammation. In this in vitro study, we evaluated the effects of TG6-44, a novel quinazolin-derived myeloperoxidase-specific ROS inhibitor, on influenza A virus (A/X31) infection using THP-1 lung monocytic cells and freshly isolated peripheral blood mononuclear cells (PBMC). TG6-44 significantly decreased A/X31-induced ROS and virus-induced inflammatory mediators in THP-1 cells (IL-6, IFN-γ, MCP-1, TNF-α, MIP-1β) and in human PBMC (IL-6, IL-8, TNF-α, MCP-1). Interestingly, TG6-44-treated THP-1 cells showed a decrease in percent cells expressing viral nucleoprotein, as well as a delay in translocation of viral nucleoprotein into the nucleus. Furthermore, in influenza A virus-infected cells, TG6-44 treatment led to suppression of virus-induced cell death as evidenced by decreased caspase-3 activation, decreased proportion of Annexin V+PI+ cells, and increased Bcl-2 phosphorylation. Taken together, our results demonstrate the anti-inflammatory and anti-infective effects of TG6-44.
Collapse
Affiliation(s)
- Juan A. De La Cruz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Thota Ganesh
- Department of Pharmacology, Emory University, Atlanta, Georgia, United States of America
| | - Becky A. Diebold
- Department of Pathology, Emory University, Atlanta, Georgia, United States of America
| | - Weiping Cao
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Amelia Hofstetter
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Neetu Singh
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Amrita Kumar
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James McCoy
- Department of Pathology, Emory University, Atlanta, Georgia, United States of America
| | - Priya Ranjan
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Susan M. E. Smith
- Department of Pathology, Emory University, Atlanta, Georgia, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - J. David Lambeth
- Department of Pathology, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (SG); (JDL)
| | - Shivaprakash Gangappa
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail: (SG); (JDL)
| |
Collapse
|
9
|
Borghi SM, Mizokami SS, Carvalho TT, Rasquel-Oliveira FS, Ferraz CR, Fattori V, Hayashida TH, Peron JPS, Camilios-Neto D, Ambrosio SR, Arakawa NS, Casagrande R, Verri WA. The diterpene from Sphagneticola trilobata (L.) Pruski, kaurenoic acid, reduces lipopolysaccharide-induced peritonitis and pain in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113980. [PMID: 33652112 DOI: 10.1016/j.jep.2021.113980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sphagneticola trilobata (L.) Pruski is a plant species belonging to the Asteraceae family. Kaurenoid acid (KA) is a diterpene metabolite and one of the active ingredients of Sphagneticola trilobata (L.) Pruski. Extracts containing KA are used in traditional medicine to treat pain, inflammation, and infection. AIM The goal of the present study was to investigate the in vivo effects of KA (1-10 mg/kg, per oral gavage) upon LPS inoculation in mice by intraperitoneal (i.p.) or intraplantar (i.pl.; subcutaneous plantar injection) routes at the dose of 200 ng (200 μL or 25 μL, respectively). METHODS In LPS paw inflammation, mechanical and thermal hyperalgesia MPO activity and oxidative imbalance (TBARS, GSH, ABTS and FRAP assays) were evaluated. In LPS peritonitis we evaluated leukocyte migration, cytokine production, oxidative stress, and NF-κB activation. RESULTS KA inhibited LPS-induced mechanical and thermal hyperalgesia, MPO activity and modulated redox status in the mice paw. Pre- and post-treatment with KA inhibited migration of neutrophils and monocytes in LPS peritonitis. KA inhibited the pro-inflammatory/hyperalgesic cytokine (e.g., TNF-α, IL-1β and IL-33) production while enhanced anti-inflammatory/analgesic cytokine IL-10 in peritoneal cavity. In agreement with the effect of KA over pro-inflammatory cytokines it inhibited oxidative stress (total ROS, superoxide production and superoxide positive cells) and NF-κB activation during peritonitis. CONCLUSION KA efficiently dampens LPS-induced peritonitis and hyperalgesia in vivo, suggesting it as a suitable candidate to control excessive inflammation and pain during gram-negative bacterial infections and bringing mechanistic explanation to the ethnopharmacological application of Sphagneticola trilobata (L.) Pruski in inflammation and infection.
Collapse
Affiliation(s)
- Sergio M Borghi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil; Centro de Pesquisa Em Ciências da Saúde, Universidade Norte Do Paraná, 86041-140, Londrina, Paraná, Brazil.
| | - Sandra S Mizokami
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil.
| | - Thacyana T Carvalho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil.
| | - Fernanda S Rasquel-Oliveira
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil.
| | - Camila R Ferraz
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil.
| | - Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil.
| | - Thiago H Hayashida
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, 86038-350, Londrina, Paraná, Brazil.
| | - Jean P S Peron
- Department of Immunology, Institute of Biomedical Sciences, Ed. Biomédicas IV, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 1730, 05508-900, São Paulo, Brazil.
| | - Doumit Camilios-Neto
- Department of Biochemistry and Biotechnology, Exact Sciences Center, Londrina State University, Londrina, 86057-970, Brazil.
| | - Sergio R Ambrosio
- Núcleo de Pesquisa Em Ciências Exatas e Tecnológicas, Universidade de Franca, 14404-600, Franca, São Paulo, Brazil.
| | - Nilton S Arakawa
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, 86038-350, Londrina, Paraná, Brazil.
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, 86038-350, Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
10
|
Li Y, Wei S, Zhang K, Fang Y, Liu H, Jin Z, Guo Q, He J, Song W, Zhang F. The inflammation and reactive oxygen species regulated by Nrf2 and NF-κB signaling pathways in 630-nm light-emitting diode irradiation treated THP-1 monocytes/macrophages. Lasers Med Sci 2020; 36:1411-1419. [PMID: 33128166 DOI: 10.1007/s10103-020-03172-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Because of a large number of macrophages and its secreted pro-inflammatory factors in the synovial fluid of patients with rheumatoid arthritis, the present study aimed to investigate the effect and mechanism of 630-nm LED exposure on monocytes/macrophages and its anti-inflammatory effect. The THP-1 monocytes and PMA-induced THP-1 macrophages (THP-1 macrophages) were employed and irradiated by 630-nm LED for different time and times, and then measure the pro-inflammatory cytokines production by RT-qPCR and Milliplex MAP Multiplex assay, the proteins involved in inflammation pathway and reactive oxygen species (ROS) levels in the cells were detected by Western blot and DCFH-DA method. The exposure dose of red LED (15.3 J/cm2, 30.6 J/cm2) were determined as no-influence on the cell proliferation, the pro-inflammatory factors TNF-α and IL-1β mRNAs, and secretions in supernatant of THP-1 macrophages were significantly decreased after LED exposure. The ROS production was blocked in THP-1 monocytes and THP-1 macrophages after treatment of LED. Finally, the phosphorylated NF-κB proteins which involved in inflammation pathway significantly decreased, and its inhibitors Nrf2 were slightly upregulated. The effects of LED anti-inflammation response are dependent on the mechanism of inhibiting ROS level and regulating NF-κB signaling pathways by increasing Nrf2 expression in the cells. It is suggested that 630-nm LED could decrease pro-inflammation in immune cells, and it may be a beneficial adjunct therapy in relieving inflammation of patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Yujun Li
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, 150086, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, China
| | - Shuang Wei
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, 150086, China
| | - Kaibo Zhang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, 150086, China
| | - Yong Fang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, 150086, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, China
| | - Hailiang Liu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, 150086, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, China
| | - Zhanfeng Jin
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, China
| | - Qingxia Guo
- Beijing Truwin Optoelectronic Medical Co., Ltd, Beijing, China
| | - Jun He
- Beijing Truwin Optoelectronic Medical Co., Ltd, Beijing, China
| | - Wuqi Song
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, 150086, China. .,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, China.
| | - Fengmin Zhang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, 150086, China. .,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, China.
| |
Collapse
|
11
|
Mongan D, Ramesar M, Föcking M, Cannon M, Cotter D. Role of inflammation in the pathogenesis of schizophrenia: A review of the evidence, proposed mechanisms and implications for treatment. Early Interv Psychiatry 2020; 14:385-397. [PMID: 31368253 DOI: 10.1111/eip.12859] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/13/2019] [Accepted: 07/14/2019] [Indexed: 12/28/2022]
Abstract
AIM Over the past several decades, there has been a growing research interest in the role of inflammation in the pathogenesis of schizophrenia. This review aims to summarize evidence in support of this relationship, to discuss biological mechanisms that might explain it, and to explore the translational impact by examining evidence from trials of anti-inflammatory and immunomodulatory agents in the treatment of schizophrenia. METHODS This narrative review of the literature summarizes evidence from observational studies, clinical trials and meta-analyses to evaluate the role of inflammation in the pathogenesis of schizophrenia and to discuss associated implications for treatment. RESULTS Epidemiological evidence and animal models support a hypothesis of maternal immune activation during pregnancy, which increases the risk of schizophrenia in the offspring. Several biomarker studies have found associations between classical pro-inflammatory cytokines and schizophrenia. The precise biological mechanisms by which inflammatory processes might contribute to the pathogenesis of schizophrenia remain unclear, but likely include the actions of microglia and the complement system. Importantly, several trials provide evidence that certain anti-inflammatory and immunomodulatory agents show beneficial effects in the treatment of schizophrenia. Nevertheless, there is a need for further precision-focused basic science and translational research. CONCLUSIONS Increasing our understanding of the role of inflammation in schizophrenia will enable novel opportunities for therapeutic and preventative interventions that are informed by the underlying pathogenesis of this complex disorder.
Collapse
Affiliation(s)
- David Mongan
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | - Mary Cannon
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Cotter
- Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
12
|
Ramirez DC, Gomez Mejiba SE. Pulmonary Neutrophilic Inflammation and Noncommunicable Diseases: Pathophysiology, Redox Mechanisms, Biomarkers, and Therapeutics. Antioxid Redox Signal 2020; 33:211-227. [PMID: 32319787 DOI: 10.1089/ars.2020.8098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Pulmonary neurophilic inflammation (PNI) is the homing and activation of neutrophil with damage to the microvasculature. This process is involved in pulmonary damage in patients exposed to airborne pollutants (exogenous stressors) and also to systemic inflammation/oxidative stress (endogenous stressors) associated with noncommunicable diseases (NCDs). Recent Advances: PNI is an important trigger of the early onset and progression of NCD in susceptible patients exposed to airborne pollutants. Irritation of the lung microvasculature by exogenous and endogenous stressors causes PNI. Circulating endogenous stressors in NCD can cause PNI. Critical Issues: Air pollution-triggered PNI causes increased circulating endogenous stressors that can trigger NCD in susceptible patients. Systemic inflammation/oxidative stress associated with NCD can cause PNI. Inflammation/end-oxidation products of macromolecules are also potential biomarkers and therapeutic targets for NCD-triggered PNI- and PNI-triggered NCD. Future Directions: Understanding the molecular mechanism of PNI triggered by exogenous or endogenous stressors will help explain the early onset of NCD in susceptible patients exposed to air pollution. It can also help undercover biomarkers and mechanism-based therapeutic targets in air pollutant-triggered PNI, PNI-triggered NCD, and NCD-triggered PNI.
Collapse
Affiliation(s)
- Dario C Ramirez
- Laboratory of Experimental and Translational Medicine, IMIBIO-SL, CCT-San Luis, CONICET, School of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - Sandra E Gomez Mejiba
- Laboratory of Experimental Therapeutics and Nutrition, IMIBIO-SL, CCT-San Luis, CONICET, School of Health Sciences, National University of San Luis, San Luis, Argentina
| |
Collapse
|
13
|
Gomez-Mejiba SE, Ramirez DC. Trapping of DNA radicals with the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide and genotoxic damage: Recent advances using the immuno-spin trapping technology. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 782:108283. [DOI: 10.1016/j.mrrev.2019.108283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/14/2019] [Accepted: 06/22/2019] [Indexed: 02/07/2023]
|
14
|
Muñoz MD, Gutierrez LJ, Delignat S, Russick J, Gomez Mejiba SE, Lacroix-Desmazes S, Enriz RD, Ramirez DC. The nitrone spin trap 5,5‑dimethyl‑1‑pyrroline N‑oxide binds to toll-like receptor-2-TIR-BB-loop domain and dampens downstream inflammatory signaling. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1152-1159. [DOI: 10.1016/j.bbadis.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
|
15
|
Yang YQ, Yan XT, Wang K, Tian RM, Lu ZY, Wu LL, Xu HT, Wu YS, Liu XS, Mao W, Xu P, Liu B. Triptriolide Alleviates Lipopolysaccharide-Induced Liver Injury by Nrf2 and NF-κB Signaling Pathways. Front Pharmacol 2018; 9:999. [PMID: 30210350 PMCID: PMC6124152 DOI: 10.3389/fphar.2018.00999] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Nrf2 (Nuclear Factor Erythroid 2 Related Factor 2) transcription factor not only regulates oxidative stress response, but also represses inflammation by regulating cytokines production and cross-talking with NF-κB signaling pathways. Nrf2 plays an essential role in liver injury induced by oxidative stress and inflammation. Triptriolide (T11) is a minor component of Tripterygium wilfordii Hook F. (TwHF), which can be obtained by hydrolysis reaction of triptolide (T9). The major purpose of this study is to clarify the regulating effects of T11 on oxidative stress and inflammation in vivo and in vitro. LPS-stimulated RAW 264.7 cells were used to verify the regulating effects of T11 on oxidative stress (ROS and Nrf2 signaling pathway) and inflammatory cytokines production (TNF-α, IL-6 and IL-1β). The antioxidant responsive element (ARE) luciferase assay was employed to evaluate Nrf2 activation effect of T11 in HEK-293T cells. Lipopolysaccharides (LPS) induced acute liver injury (ALI) in BALB/c mice were used to study the protective effects (ALT, AST, MDA, SOD, histopathology and neutrophils/macrophages filtration) and the underlying protection mechanisms of ALI amelioration (Nrf2 and NF-κB signaling pathway) of T11. Firstly, the results showed that T11 can not only effectively decrease the productions of inflammatory cytokines (TNF-α, IL-6 and IL-1β), ROS and NO in LPS-stimulated RAW 264.7 cells, but also further significantly increase the activity of Nrf2 in HEK-293T cells. Secondly, the results suggested that T11 could dramatically decrease the oxidative stress responses (SOD and MDA) and inflammation (histopathology, neutrophils/macrophages filtration, TNF-α, IL-6 and IL-1β production) in LPS-induced ALI in BALB/c mice. Finally, the results implied that T11 could dramatically increase Nrf2 protein expression and decrease p-TAK1, p-IκBα and NF-κB protein expression both in vivo and in vitro. In conclusion, our findings indicated that T11 could alleviate LPS induced oxidative stress and inflammation by regulating Nrf2 and NF-κB signaling pathways in vitro and in vivo, which offers a novel insights for the application of TwHF in clinical.
Collapse
Affiliation(s)
- Yi-Qi Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Teng Yan
- Affiliated Huai'an Hospital, Xuzhou Medical University, Huai'an, China
| | - Kai Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui-Min Tian
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Zhao-Yu Lu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Li-Lan Wu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Hong-Tao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yun-Shan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xu-Sheng Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Wei Mao
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Peng Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Bo Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
16
|
Sgrott SM, Neves RD, D'Acampora AJ, Bernardes GJS, Belmonte L, Martins TC, Bobinski F, Cargnin-Ferreira E, Hoepers A, Comim CM, Martins DF, Piovezan AP. Early fragmentation of polyester urethane sheet neither causes persistent oxidative stress nor alters the outcome of normal tissue healing in rat skin. AN ACAD BRAS CIENC 2018; 90:2211-2222. [PMID: 30066747 DOI: 10.1590/0001-3765201820170676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/31/2017] [Indexed: 11/22/2022] Open
Abstract
Silicone breast implant is associated with complications inherent to the surgical procedure. Prosthesis coating with polyurethane, however, commonly reduces the incidence of such complications. In this paper, the authors evaluated the inflammatory histomorphometric profile and oxidative damage associated to the implant of polyester urethane sheets. Forty-eight Wistar rats were divided into Sham or polyester urethane groups (n = 8/group) and underwent a polyester urethane implant in the dorsal skinfold. Tissue samples were collected on days seven, 30, and 90 after surgery and subjected to histomorphometric analysis and biochemical tests. Results were analyzed by one-way ANOVA (p ≤ 0.05). Peri-implant tissue samples exhibited characteristic inflammatory response associated with the biomaterial, with increased vascularization on day seven and augmented levels of IL1-b and TNF-a after 30 days. Peri-implant fibrocystic population was small on day seven, but increased considerably after 90 days. A rise in the carbonyl group levels of skin samples in the polyester urethane group was observed on day seven. Findings suggest that polyester urethane sheets undergo biodegradation at an early stage after implantation, followed by increased vascularity and microencapsulation of biomaterial fragments, without persistent oxidative damage. Fiber arrangement inside the collagen matrix results in a fibrotic scar because of polyester urethane degradation.
Collapse
Affiliation(s)
- Sandro M Sgrott
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina/UNISUL, Avenida Pedra Branca, 25, 88137-270 Palhoça, SC, Brazil.,Laboratório de Técnicas Cirúrgica e Experimental/TOCE, Universidade do Sul de Santa Catarina/UNISUL, Avenida Pedra Branca, 25, 88137-270 Palhoça, SC, Brazil
| | - Rodrigo D Neves
- Laboratório de Técnicas Cirúrgica e Experimental/TOCE, Universidade do Sul de Santa Catarina/UNISUL, Avenida Pedra Branca, 25, 88137-270 Palhoça, SC, Brazil
| | - Armando J D'Acampora
- Laboratório de Técnicas Cirúrgica e Experimental/TOCE, Universidade do Sul de Santa Catarina/UNISUL, Avenida Pedra Branca, 25, 88137-270 Palhoça, SC, Brazil
| | - Geraldo J S Bernardes
- Laboratório de Técnicas Cirúrgica e Experimental/TOCE, Universidade do Sul de Santa Catarina/UNISUL, Avenida Pedra Branca, 25, 88137-270 Palhoça, SC, Brazil
| | - Luiz Belmonte
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina/UNISUL, Avenida Pedra Branca, 25, 88137-270 Palhoça, SC, Brazil.,Laboratório de Neurociência Experimental/LaNex, Universidade do Sul de Santa Catarina/UNISUL, Avenida Pedra Branca, 25, 88137-270 Palhoça, SC, Brazil
| | - Thiago C Martins
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina/UFSC, Centro de Ciências Biológicas, 88040-900 Florianópolis, SC, Brazil
| | - Franciane Bobinski
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina/UNISUL, Avenida Pedra Branca, 25, 88137-270 Palhoça, SC, Brazil
| | - Eduardo Cargnin-Ferreira
- Laboratório de Marcadores Histológicos, Instituto Federal de Santa Catarina/IFSC, Rua Maria Aparecida Barbosa, 153, Bairro Campo D'Una, 88495-000 Garopaba, SC, Brazil
| | - Andreza Hoepers
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina/UNISUL, Avenida Pedra Branca, 25, 88137-270 Palhoça, SC, Brazil
| | - Clarissa M Comim
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina/UNISUL, Avenida Pedra Branca, 25, 88137-270 Palhoça, SC, Brazil.,Laboratório de Neurociência Experimental/LaNex, Universidade do Sul de Santa Catarina/UNISUL, Avenida Pedra Branca, 25, 88137-270 Palhoça, SC, Brazil
| | - Daniel F Martins
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina/UNISUL, Avenida Pedra Branca, 25, 88137-270 Palhoça, SC, Brazil.,Laboratório de Neurociência Experimental/LaNex, Universidade do Sul de Santa Catarina/UNISUL, Avenida Pedra Branca, 25, 88137-270 Palhoça, SC, Brazil
| | - Anna P Piovezan
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina/UNISUL, Avenida Pedra Branca, 25, 88137-270 Palhoça, SC, Brazil.,Laboratório de Neurociência Experimental/LaNex, Universidade do Sul de Santa Catarina/UNISUL, Avenida Pedra Branca, 25, 88137-270 Palhoça, SC, Brazil
| |
Collapse
|
17
|
Vitexin attenuates lipopolysaccharide-induced acute lung injury by controlling the Nrf2 pathway. PLoS One 2018; 13:e0196405. [PMID: 29694408 PMCID: PMC5942793 DOI: 10.1371/journal.pone.0196405] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/12/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND A major feature of acute lung injury (ALI) is excessive inflammation in the lung. Vitexin is an active component from medicinal plants which has antioxidant and anti-inflammatory activities. Oxidative stress and inflammation play important roles in the pathophysiological processes in ALI. In the current study, we investigate the effect and potential mechanisms of Vitexin on lipopolysaccharide (LPS)-induced ALI. METHODS ALI was induced by LPS intratracheal instillation in C57BL/6 wild-type mice and Nrf2 gene knocked down (Nrf2-/-) mice. One hour before LPS challenge, Vitexin or vehicle intraperitoneal injection was performed. Bronchoalveolar lavage fluid and lung tissues were examined for lung inflammation and injury at 24 h after LPS challenge. RESULTS Our animal study's results showed that LPS-induced recruitment of neutrophils and elevation of proinflammatory cytokine levels were attenuated by Vitexin treatment. Vitexin decreased lung edema and alveolar protein content. Moreover, Vitexin activated nuclear factor erythroid-2-related factor 2 (Nrf2), and increased the activity of its target gene heme oxygenase (HO)-1. The LPS-induced reactive oxygen species were inhibited by Vitexin. In addition, the activation of the nucleotide-binding domain and leucine-rich repeat PYD-containing protein 3 (NLRP3) inflammasome was suppressed by Vitexin. However, these effects of Vitexin were abolished in the Nrf2-/- mice. Our cell studies showed that Vitexin enhanced the expression of Nrf2 and HO-1 activity. Moreover, reactive oxygen species (ROS) and IL-1β productions were reduced in Vitexin-treated cells. However, knockdown of Nrf2 by siRNA in RAW cells reversed the benefit of Vitexin. CONCLUSIONS Vitexin suppresses LPS-induced ALI by controlling Nrf2 pathway.
Collapse
|
18
|
Muñoz MD, Della Vedova MC, Bushel PR, Ganini da Silva D, Mason RP, Zhai Z, Gomez Mejiba SE, Ramirez DC. The nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide dampens lipopolysaccharide-induced transcriptomic changes in macrophages. Inflamm Res 2018; 67:515-530. [PMID: 29589052 DOI: 10.1007/s00011-018-1141-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/26/2018] [Accepted: 03/21/2018] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE M1-like inflammatory phenotype of macrophages plays a critical role in tissue damage in chronic inflammatory diseases. Previously, we found that the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) dampens lipopolysaccharide (LPS)-triggered inflammatory priming of RAW 264.7 cells. Herein, we tested whether DMPO by itself can induce changes in macrophage transcriptome, and that these effects may prevent LPS-induced activation of macrophages. MATERIALS AND METHODS To test our hypothesis, we performed a transcriptomic and bioinformatics analysis in RAW 264.7 cells incubated with or without LPS, in the presence or in the absence of DMPO. RESULTS Functional data analysis showed 79 differentially expressed genes (DEGs) when comparing DMPO vs Control. We used DAVID databases for identifying enriched gene ontology terms and Ingenuity Pathway Analysis for functional analysis. Our data showed that DMPO vs Control comparison of DEGs is related to downregulation immune-system processes among others. Functional analysis indicated that interferon-response factor 7 and toll-like receptor were related (predicted inhibitions) to the observed transcriptomic effects of DMPO. Functional data analyses of the DMPO + LPS vs LPS DEGs were consistent with DMPO-dampening LPS-induced inflammatory transcriptomic profile in RAW 264.7. These changes were confirmed using Nanostring technology. CONCLUSIONS Taking together our data, surprisingly, indicate that DMPO by itself affects gene expression related to regulation of immune system and that DMPO dampens LPS-triggered MyD88- and TRIF-dependent signaling pathways. Our research provides critical data for further studies on the possible use of DMPO as a structural platform for the design of novel mechanism-based anti-inflammatory drugs.
Collapse
Affiliation(s)
- M D Muñoz
- Laboratory of Experimental and Translational Medicine, IMIBIO-SL-School of Chemistry, Biochemistry and Pharmacy, National University of San Luis-CONICET, San Luis, 5700, San Luis, Argentina.,Laboratory of Experimental Therapeutics, School of Health Sciences-IMIBIO-SL, CONICET-National University of San Luis, San Luis, 5700, San Luis, Argentina
| | - M C Della Vedova
- Laboratory of Experimental and Translational Medicine, IMIBIO-SL-School of Chemistry, Biochemistry and Pharmacy, National University of San Luis-CONICET, San Luis, 5700, San Luis, Argentina.,Laboratory of Experimental Therapeutics, School of Health Sciences-IMIBIO-SL, CONICET-National University of San Luis, San Luis, 5700, San Luis, Argentina
| | - P R Bushel
- Biostatistics and Computational Biology Branch, NIEHS, NIH, USDHHS, RTP, Durham, 27709, NC, USA
| | - D Ganini da Silva
- Immunity, Inflammation and Disease Laboratory, NIEHS, NIH, USDHHS, RTP, Durham, 27709, NC, USA
| | - R P Mason
- Immunity, Inflammation and Disease Laboratory, NIEHS, NIH, USDHHS, RTP, Durham, 27709, NC, USA
| | - Z Zhai
- Department of Dermatology, University of Colorado Denver, Aurora, 80045, CO, USA
| | - S E Gomez Mejiba
- Laboratory of Experimental Therapeutics, School of Health Sciences-IMIBIO-SL, CONICET-National University of San Luis, San Luis, 5700, San Luis, Argentina.
| | - D C Ramirez
- Laboratory of Experimental and Translational Medicine, IMIBIO-SL-School of Chemistry, Biochemistry and Pharmacy, National University of San Luis-CONICET, San Luis, 5700, San Luis, Argentina.
| |
Collapse
|
19
|
The Neuroprotective Effects of Muscle-Derived Stem Cells via Brain-Derived Neurotrophic Factor in Spinal Cord Injury Model. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1972608. [PMID: 28758111 PMCID: PMC5516736 DOI: 10.1155/2017/1972608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/17/2022]
Abstract
Muscle-derived stem cells (MDSCs) possess multipotent differentiation and self-renewal capacities; however, the effects and mechanism in neuron injury remain unclear. The aim of this study was to investigate the effects of MDSCs on neuron secondary injury, oxidative stress-induced apoptosis. An in vivo study showed the Basso, Beattie, and Bresnahan (BBB) score and number of neurons significantly increased after MDSCs' transplantation in spinal cord injury (SCI) rats. An in vitro study demonstrated that MDSCs attenuated neuron apoptosis, and the expression of antioxidants was upregulated as well as the ratio of Bcl-2 and Bax in the MNT (MDSCs cocultured with injured neurons) group compared with the NT (injured neurons) group. Both LC3II/LC3I and β-catenin were enhanced in the MNT group, while XAV939 (a β-catenin inhibitor) decreased the expression of nuclear erythroid-related factor 2 (Nrf2) and LC3II/LC3I. Moreover, MDSCs became NSE- (neuron-specific enolase-) positive neuron-like cells with brain-derived neurotrophic factor (BDNF) treatment. The correlation analysis indicated that there was a significant relation between the level of BDNF and neuron injury. These findings suggest that MDSCs may protect the spinal cord from injury by inhibiting apoptosis and replacing injured neurons, and the increased BDNF and β-catenin could contribute to MDSCs' effects.
Collapse
|
20
|
Agmatine Reduces Lipopolysaccharide-Mediated Oxidant Response via Activating PI3K/Akt Pathway and Up-Regulating Nrf2 and HO-1 Expression in Macrophages. PLoS One 2016; 11:e0163634. [PMID: 27685463 PMCID: PMC5042521 DOI: 10.1371/journal.pone.0163634] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/12/2016] [Indexed: 01/11/2023] Open
Abstract
Macrophages are key responders of inflammation and are closely related with oxidative stress. Activated macrophages can enhance oxygen depletion, which causes an overproduction of reactive oxygen species (ROS) and leads to further excessive inflammatory response and tissue damage. Agmatine, an endogenous metabolite of L-arginine, has recently been shown to have neuroprotective effects based on its antioxidant properties. However, the antioxidant effects of agmatine in peripheral tissues and cells, especially macrophages, remain unclear. In this study we explored the role of agmatine in mediating antioxidant effects in RAW 264.7 cells and studied its antioxidant mechanism. Our data demonstrate that agmatine is an activator of Nrf2 signaling that markedly enhances Nrf2 nuclear translocation, increases nuclear Nrf2 protein level, up-regulates the expression of the Nrf2 downstream effector HO-1, and attenuates ROS generation induced by Lipopolysaccharide (LPS). We further demonstrated that the agmatine-induced activation of Nrf2 is likely through the PI3K/Akt pathway. LY294002, a specific PI3K/Akt inhibitor, abolished agmatine-induced HO-1 up-regulation and ROS suppression significantly. Inhibiting HO-1 pathway significantly attenuated the antioxidant effect of agmatine which the products of HO-1 enzymatic activity contributed to. Furthermore, the common membrane receptors of agmatine were evaluated, revealing that α2-adrenoceptor, I1-imidazoline receptor or I2-imidazoline receptor are not required by the antioxidant properties of agmatine. Taken together, our findings revealed that agmatine has antioxidant activity against LPS-induced ROS accumulation in RAW 264.7 cells involving HO-1 expression induced by Nrf2 via PI3K/Akt pathway activation.
Collapse
|
21
|
Teng X, Wei N, Chen H, Zhai K. RETRACTED ARTICLE: TN-2 Exerts Anti-Inflammatory Effects on LPS-Induced Rat Dorsal Root Ganglion Neurons by Inhibiting TLR4-Mediated NF-κB and MAPK Pathways. J Mol Neurosci 2015. [DOI: 10.1007/s12031-015-0624-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Punicalagin Induces Nrf2/HO-1 Expression via Upregulation of PI3K/AKT Pathway and Inhibits LPS-Induced Oxidative Stress in RAW264.7 Macrophages. Mediators Inflamm 2015; 2015:380218. [PMID: 25969626 PMCID: PMC4417599 DOI: 10.1155/2015/380218] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/12/2014] [Accepted: 10/17/2014] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) and oxidative stress are thought to play a central role in potentiating macrophage activation, causing excessive inflammation, tissue damage, and sepsis. Recently, we have shown that punicalagin (PUN) exhibits anti-inflammatory activity in LPS-stimulated macrophages. However, the potential antioxidant effects of PUN in macrophages remain unclear. Revealing these effects will help understand the mechanism underlying its ability to inhibit excessive macrophage activation. Hemeoxygenase-1 (HO-1) exhibits antioxidant activity in macrophages. Therefore, we hypothesized that HO-1 is a potential target of PUN and tried to reveal its antioxidant mechanism. Here, PUN treatment increased HO-1 expression together with its upstream mediator nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). However, specific inhibition of Nrf2 by brusatol (a specific Nrf2 inhibitor) dramatically blocked PUN-induced HO-1 expression. Previous research has demonstrated that the PI3K/Akt pathway plays a critical role in modulating Nrf2/HO-1 protein expression as an upstream signaling molecule. Here, LY294002, a specific PI3K/Akt inhibitor, suppressed PUN-induced HO-1 expression and led to ROS accumulation in macrophages. Furthermore, PUN inhibited LPS-induced oxidative stress in macrophages by reducing ROS and NO generation and increasing superoxide dismutase (SOD) 1 mRNA expression. These findings provide new perspectives for novel therapeutic approaches using antioxidant medicines and compounds against oxidative stress and excessive inflammatory diseases including tissue damage, sepsis, and endotoxemic shock.
Collapse
|
23
|
Gomez-Mejiba SE, Zhai Z, Muñoz MD, Della Vedova MC, Ranguelova K, Ashby MT, Ramirez DC. Radicalization of Glyceraldehyde-3-Phosphate Dehydrogenase by HOCl in Living Cells. ENZYME ENGINEERING (LOS ANGELES, CALIF.) 2015; 4:134. [PMID: 39449960 PMCID: PMC11500056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
A number of post-translational oxidative modifications of the enzyme "cell-redox sensor" glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been reported. These modifications affect GAPDH structure, function, and cell fate; however no free-radical mechanisms have been reported in these processes. Herein we used the nitrone 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-based spin trapping techniques to examine a novel free radical mechanism that causes GAPDH inactivation and aggregation in RAW264.7 cells primed with lipopolysaccharide (LPS). In these primed cells, GAPDH is oxidized by myeloperoxidase (MPO)-derived hypochlorous acid (HOCl) resulting in loss of enzyme activity and aggregation, accumulation of lactate and cell death. Due to the close spatial and physical proximity between MPO and GAPDH, and the oxidizing potential of HOCl, it may be the main species that triggers radicalization of GAPDH that ultimately results in enzyme aggregation and inactivation in LPS-primed macrophages. Lysine residues are the primary radicalization sites formed upon reaction of HOCl with the enzyme. Our data highlight the important relationship between radicalization of GAPDH and fate of stressed cells, which might help teasing out the cell response to stress at sites of inflammation.
Collapse
Affiliation(s)
- Sandra E Gomez-Mejiba
- Laboratory of Experimental Therapeutics-IMIBIO-SL-CONICET and School of Health Sciences, National University of San Luis, San Luis, San Luis 5700, Argentina
| | - Zili Zhai
- Laboratory of Experimental Therapeutics-IMIBIO-SL-CONICET and School of Health Sciences, National University of San Luis, San Luis, San Luis 5700, Argentina
- Department of Dermatology, University of Colorado Denver, Aurora, 80045 CO, USA
| | - Marcos D Muñoz
- Laboratory of Experimental Therapeutics-IMIBIO-SL-CONICET and School of Health Sciences, National University of San Luis, San Luis, San Luis 5700, Argentina
- Laboratory of Experimental and Translational Medicine-IMIBIO-SL-CONICET and School of Chemistry, Biochemistry and Pharmacy, National University of San Luis, 5700 San Luis, San Luis, Argentina
| | - Maria C. Della Vedova
- Laboratory of Experimental Therapeutics-IMIBIO-SL-CONICET and School of Health Sciences, National University of San Luis, San Luis, San Luis 5700, Argentina
- Laboratory of Experimental and Translational Medicine-IMIBIO-SL-CONICET and School of Chemistry, Biochemistry and Pharmacy, National University of San Luis, 5700 San Luis, San Luis, Argentina
| | | | - Michael T Ashby
- Department of Chemistry and Biochemistry, University of Oklahoma at Norman, OK 73019, USA
| | - Dario C Ramirez
- Laboratory of Experimental and Translational Medicine-IMIBIO-SL-CONICET and School of Chemistry, Biochemistry and Pharmacy, National University of San Luis, 5700 San Luis, San Luis, Argentina
| |
Collapse
|
24
|
Horinouchi Y, Summers FA, Ehrenshaft M, Mason RP. Free radical generation from an aniline derivative in HepG2 cells: a possible captodative effect. Free Radic Biol Med 2015; 78:111-7. [PMID: 25450331 DOI: 10.1016/j.freeradbiomed.2014.10.577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 10/17/2014] [Accepted: 10/27/2014] [Indexed: 11/23/2022]
Abstract
Xenobiotic metabolism can induce the generation of protein radicals, which are believed to play an important role in the toxicity of chemicals and drugs. It is therefore important to identify chemical structures capable of inducing macromolecular free radical formation in living cells. In this study, we evaluated the ability of four structurally related environmental chemicals, aniline, nitrosobenzene, N,N-dimethylaniline, and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase assays, and morphological changes were observed using phase contrast microscopy. Protein free radicals were detected by immuno-spin trapping using in-cell western experiments and confocal microscopy to determine the subcellular locale of free radical generation. DMNA induced free radical generation, lactate dehydrogenase release, and morphological changes in HepG2 cells, whereas aniline, nitrosobenzene, N,N-dimethylaniline did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation on subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide had no effect. These results suggest that DMNA is metabolized to reactive free radicals capable of generating protein radicals which may play a critical role in DMNA toxicity. We propose that the captodative effect, the combined action of the electron-releasing dimethylamine substituent, and the electron-withdrawing nitroso substituent, leads to a thermodynamically stabilized radical, facilitating enhanced protein radical formation by DMNA.
Collapse
Affiliation(s)
- Yuya Horinouchi
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Fiona A Summers
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Marilyn Ehrenshaft
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Ronald P Mason
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
25
|
Kumar A, Chen SH, Kadiiska MB, Hong JS, Zielonka J, Kalyanaraman B, Mason RP. Inducible nitric oxide synthase is key to peroxynitrite-mediated, LPS-induced protein radical formation in murine microglial BV2 cells. Free Radic Biol Med 2014; 73:51-9. [PMID: 24746617 PMCID: PMC4111989 DOI: 10.1016/j.freeradbiomed.2014.04.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 11/24/2022]
Abstract
Microglia are the resident immune cells in the brain. Microglial activation is characteristic of several inflammatory and neurodegenerative diseases including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Though lipopolysaccharide (LPS)-induced microglial activation in models of Parkinson's disease is well documented, the free radical-mediated protein radical formation and its underlying mechanism during LPS-induced microglial activation are not known. Here we have used immuno-spin trapping and RNA interference to investigate the role of inducible nitric oxide synthase (iNOS) in peroxynitrite-mediated protein radical formation in murine microglial BV2 cells treated with LPS. Treatment of BV2 cells with LPS resulted in morphological changes, induction of iNOS, and increased protein radical formation. Pretreatments with FeTPPS (a peroxynitrite decomposition catalyst), L-NAME (total NOS inhibitor), 1400W (iNOS inhibitor), and apocynin significantly attenuated LPS-induced protein radical formation and tyrosine nitration. Results obtained with coumarin-7-boronic acid, a highly specific probe for peroxynitrite detection, correlated with LPS-induced tyrosine nitration, which demonstrated involvement of peroxynitrite in protein radical formation. A similar degree of protection conferred by 1400W and L-NAME led us to conclude that only iNOS, and no other forms of NOS, is involved in LPS-induced peroxynitrite formation. Subsequently, siRNA for iNOS, the iNOS-specific inhibitor 1400W, the NF-κB inhibitor PDTC, and the p38 MAPK inhibitor SB202190 was used to inhibit iNOS directly or indirectly. Inhibition of iNOS precisely correlated with decreased protein radical formation in LPS-treated BV2 cells. The time course of protein radical formation also matched the time course of iNOS expression. Taken together, these results prove the role of iNOS in peroxynitrite-mediated protein radical formation in LPS-treated microglial BV2 cells.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Free Radical Metabolism Group, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Shih-Heng Chen
- Neuropharmacology Group, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Maria B Kadiiska
- Free Radical Metabolism Group, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jau-Shyong Hong
- Neuropharmacology Group, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ronald P Mason
- Free Radical Metabolism Group, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
26
|
Chang R, Wang Y, Chang J, Wen L, Jiang Z, Yang T, Yu K. LPS preconditioning ameliorates intestinal injury in a rat model of hemorrhagic shock. Inflamm Res 2014; 63:675-82. [DOI: 10.1007/s00011-014-0740-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/18/2022] Open
|
27
|
Pu HL, Chiang WL, Maiti B, Liao ZX, Ho YC, Shim MS, Chuang EY, Xia Y, Sung HW. Nanoparticles with dual responses to oxidative stress and reduced ph for drug release and anti-inflammatory applications. ACS NANO 2014; 8:1213-21. [PMID: 24386907 DOI: 10.1021/nn4058787] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Oxidative stress and reduced pH are involved in many inflammatory diseases. This study describes a nanoparticle-based system that is responsive to both oxidative stress and reduced pH in an inflammatory environment to effectively release its encapsulated curcumin, an immune-modulatory agent with potent anti-inflammatory and antioxidant capabilities. Because of the presence of Förster resonance energy transfer between curcumin and the carrier, this system also allowed us to monitor the intracellular release behavior. The curcumin released upon triggering could efficiently reduce the excess oxidants produced by the lipopolysaccharide (LPS)-stimulated macrophages. The feasibility of using the curcumin-loaded nanoparticles for anti-inflammatory applications was further validated in a mouse model with ankle inflammation induced by LPS. The results of these studies demonstrate that the proposed nanoparticle system is promising for treating oxidative stress-related diseases.
Collapse
Affiliation(s)
- Hsiao-Lan Pu
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan (ROC)
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Towner RA, Garteiser P, Bozza F, Smith N, Saunders D, d'Avila JCP, Magno F, Oliveira MF, Ehrenshaft M, Lupu F, Silasi-Mansat R, Ramirez DC, Gomez-Mejiba SE, Mason RP, Castro Faria-Neto HC. In vivo detection of free radicals in mouse septic encephalopathy using molecular MRI and immuno-spin trapping. Free Radic Biol Med 2013; 65:828-837. [PMID: 23978375 DOI: 10.1016/j.freeradbiomed.2013.08.172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 11/20/2022]
Abstract
Free radicals are known to play a major role in sepsis. Combined immuno-spin trapping and molecular magnetic resonance imaging (MRI) was used to detect in vivo and in situ levels of free radicals in murine septic encephalopathy after cecal ligation and puncture (CLP). DMPO (5,5-dimethyl pyrroline N-oxide) was injected over 6h after CLP, before administration of an anti-DMPO probe (anti-DMPO antibody bound to albumin-gadolinium-diethylene triamine pentaacetic acid-biotin MRI targeting contrast agent). In vitro assessment of the anti-DMPO probe in oxidatively stressed mouse astrocytes significantly decreased T1 relaxation (p < 0.0001) compared to controls. MRI detected the presence of anti-DMPO adducts via a substantial decrease in %T1 change within the hippocampus, striatum, occipital, and medial cortex brain regions (p < 0.01 for all) in septic animals compared to shams, which was sustained for over 60 min (p < 0.05 for all). Fluorescently labeled streptavidin was used to target the anti-DMPO probe biotin, which was elevated in septic brain, liver, and lungs compared to sham. Ex vivo DMPO adducts (qualitative) and oxidative products, including 4-hydroxynonenal and 3-nitrotyrosine (quantitative, p < 0.05 for both), were elevated in septic brains compared to shams. This is the first study that has reported on the detection of in vivo and in situ levels of free radicals in murine septic encephalopathy.
Collapse
Affiliation(s)
- Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Philippe Garteiser
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Fernando Bozza
- Instituto de Pesquisa Clinica Evandro Chagas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Joana C P d'Avila
- Instituto de Pesquisa Clinica Evandro Chagas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Flora Magno
- Instituto de Pesquisa Clinica Evandro Chagas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Marcus F Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Marilyn Ehrenshaft
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Florea Lupu
- Cardiovascular Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Robert Silasi-Mansat
- Cardiovascular Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Dario C Ramirez
- Laboratory of Experimental Medicine & Therapeutics, Instituto Multidisciplinario de Investigaciones Biologicas-San Luis, CONICET, National University of San Luis, San Luis 5700, Argentina
| | - Sandra E Gomez-Mejiba
- Laboratory of Experimental Medicine & Therapeutics, Instituto Multidisciplinario de Investigaciones Biologicas-San Luis, CONICET, National University of San Luis, San Luis 5700, Argentina
| | - Ronald P Mason
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
29
|
Zhai Z, Gomez-Mejiba SE, Ramirez DC. The nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide affects stress response and fate of lipopolysaccharide-primed RAW 264.7 macrophage cells. Inflammation 2013; 36:346-54. [PMID: 23053730 DOI: 10.1007/s10753-012-9552-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) is commonly used to study free radicals. Due to its free radical trapping properties, DMPO is thought to reduce free radial-mediated oxidative damage and other related cellular responses. The purpose of this study was to assess the effect of DMPO on lipopolysaccharide (LPS)-induced inflammation, endoplasmic reticulum (ER) stress, and apoptosis in RAW 264.7 cells. The results showed that DMPO at 50 mM inhibited inducible nitric oxide synthase expression when added shortly after LPS treatment (≤3 h). Interestingly, DMPO increased anti-inflammatory heme oxygenase-1 (HO-1) expression and reversed LPS-induced decrease in HO-1 expression. LPS could increase cellular ER stress as indicated by C/EBP homologous protein (CHOP) induction; DMPO reduced LPS effect on CHOP expression. Unexpectedly, DMPO had a synergistic effect with LPS on increased caspase-3 activity. Overall, DMPO harbors multiple modulating effects but may induce apoptosis in LPS-stressed cells when given at 50 mM, an effective dose for its anti-inflammatory activity in vitro. Our data provide clues for further understanding of the nitrone spin trap with therapeutic potential.
Collapse
Affiliation(s)
- Zili Zhai
- Department of Medicine, Section of Gastroenterology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
30
|
Gomez-Mejiba SE, Zhai Z, Della-Vedova MC, Muñoz MD, Chatterjee S, Towner RA, Hensley K, Floyd RA, Mason RP, Ramirez DC. Immuno-spin trapping from biochemistry to medicine: advances, challenges, and pitfalls. Focus on protein-centered radicals. Biochim Biophys Acta Gen Subj 2013; 1840:722-9. [PMID: 23644035 DOI: 10.1016/j.bbagen.2013.04.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Immuno-spin trapping (IST) is based on the reaction of a spin trap with a free radical to form a stable nitrone adduct, followed by the use of antibodies, rather than traditional electron paramagnetic resonance spectroscopy, to detect the nitrone adduct. IST has been successfully applied to mechanistic in vitro studies, and recently, macromolecule-centered radicals have been detected in models of drug-induced agranulocytosis, hepatotoxicity, cardiotoxicity, and ischemia/reperfusion, as well as in models of neurological, metabolic and immunological diseases. SCOPE OF THE REVIEW To critically evaluate advances, challenges, and pitfalls as well as the scientific opportunities of IST as applied to the study of protein-centered free radicals generated in stressed organelles, cells, tissues and animal models of disease and exposure. MAJOR CONCLUSIONS Because the spin trap has to be present at high enough concentrations in the microenvironment where the radical is formed, the possible effects of the spin trap on gene expression, metabolism and cell physiology have to be considered in the use of IST and in the interpretation of results. These factors have not yet been thoroughly dealt with in the literature. GENERAL SIGNIFICANCE The identification of radicalized proteins during cell/tissue response to stressors will help define their role in the complex cellular response to stressors and pathogenesis; however, the fidelity of spin trapping/immuno-detection and the effects of the spin trap on the biological system should be considered. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Sandra E Gomez-Mejiba
- Laboratory of Experimental Medicine and Therapeutics, Institute Multidisciplinary of Biological Investigations-San Luis (IMIBIO-SL), National Bureau of Science and Technology (CONICET) and National University of San Luis, San Luis, 5700 San Luis, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|