1
|
Huang C, Yu X, Du Z, Zhu Z, Shi C, Li A, Wang F. Pyrroloquinoline Quinone Alleviates Intestinal Inflammation and Cell Apoptosis via the MKK3/6-P38 Pathway in a Piglet Model. Int J Mol Sci 2024; 25:9723. [PMID: 39273669 PMCID: PMC11395797 DOI: 10.3390/ijms25179723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
This study investigates the underlying mechanism through which dietary supplementation of pyrroloquinoline quinone disodium (PQQ) alleviates intestinal inflammation and cell apoptosis in piglets challenged with lipopolysaccharide (LPS). Seventy-two barrows were divided into three groups: control (CTRL), LPS challenged (LPS), and LPS challenged with PQQ supplementation (PQQ + LPS). On d 7, 11, and 14, piglets received intraperitoneal injections of LPS or 0.9% of NaCl (80 μg/kg). After a 4 h interval following the final LPS injection on d 14, blood samples were obtained, and all piglets were euthanized for harvesting jejunal samples. The results showed that dietary supplementation of PQQ improved the damage of intestinal morphology, increased the down-regulated tight junction proteins, and reduced the increase of serum diamine oxidase activity, the intestinal fatty acid binding protein, and TNF-α levels in piglets challenged with LPS (p < 0.05). The proteomics analysis revealed a total of 141 differentially expressed proteins (DEPs), consisting of 64 up-regulated DEPs and 77 down-regulated DEPs in the PQQ + LPS group compared to the LPS group. The KEGG pathway analysis indicated enrichment of the tight junction pathway and the apoptosis pathway (p < 0.05). Compared to the LPS group, the piglets in the PQQ + LPS group had increased levels of Bcl-2 protein, reduced positive apoptosis signals, and a decrease in the abundance of MKK 3/6 and p-p38 proteins (p < 0.05). In conclusion, dietary supplementation of PQQ could alleviate jejunal inflammatory damage and cell apoptosis in piglets challenged with LPS through the MKK3/6-p38 signaling pathway.
Collapse
Affiliation(s)
- Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Z.D.); (Z.Z.); (A.L.)
| | - Xuanci Yu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Z.D.); (Z.Z.); (A.L.)
| | - Ziyuan Du
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Z.D.); (Z.Z.); (A.L.)
| | - Zhihao Zhu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Z.D.); (Z.Z.); (A.L.)
| | - Chenyu Shi
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (C.S.); (F.W.)
| | - Ang Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Z.D.); (Z.Z.); (A.L.)
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (C.S.); (F.W.)
| |
Collapse
|
2
|
Ikemoto K, Mohamad Ishak NS, Akagawa M. The effects of pyrroloquinoline quinone disodium salt on brain function and physiological processes. THE JOURNAL OF MEDICAL INVESTIGATION 2024; 71:23-28. [PMID: 38735721 DOI: 10.2152/jmi.71.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Pyrroloquinoline quinone disodium salt (PQQ) is a red trihydrate crystal that was approved as a new food ingredient by FDA in 2008. Now, it is approved as a food in Japan and the EU. PQQ has redox properties and exerts antioxidant, neuroprotective, and mitochondrial biogenesis effects. The baseline intake level of PQQ is considered to be 20 mg/day. PQQ ingestion lowers blood lipid peroxide levels in humans, suggesting antioxidant activity. In the field of cognitive function, double-blind, placebo-controlled trials have been conducted. Various improvements have been reported regarding general memory, verbal memory, working memory, and attention. Furthermore, a stratified analysis of a population with a wide range of ages revealed unique effects in young people (20-40 years old) that were not observed in older adults (41-65 years old). Specifically, cognitive flexibility and executive speed improved more rapidly in young people at 8 weeks. Co-administration of PQQ and coenzyme Q10 further enhanced these effects. In an open-label trial, PQQ was shown to improve sleep and mood. Additionally, PQQ was found to suppress skin moisture loss and increase PGC-1α expression. Overall, PQQ is a food with various functions, including brain health benefits. J. Med. Invest. 71 : 23-28, February, 2024.
Collapse
Affiliation(s)
- Kazuto Ikemoto
- Niigata Research Laboratory, Mitsubishi Gas Chemical Co, Inc., Niigata, Japan
| | | | - Mitsugu Akagawa
- Department of Food and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
3
|
Dai X, Thompson EW, Ostrikov K(K. Receptor-Mediated Redox Imbalance: An Emerging Clinical Avenue against Aggressive Cancers. Biomolecules 2022; 12:biom12121880. [PMID: 36551308 PMCID: PMC9775490 DOI: 10.3390/biom12121880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer cells are more vulnerable to abnormal redox fluctuations due to their imbalanced antioxidant system, where cell surface receptors sense stress and trigger intracellular signal relay. As canonical targets of many targeted therapies, cell receptors sensitize the cells to specific drugs. On the other hand, cell target mutations are commonly associated with drug resistance. Thus, exploring effective therapeutics targeting diverse cell receptors may open new clinical avenues against aggressive cancers. This paper uses focused case studies to reveal the intrinsic relationship between the cell receptors of different categories and the primary cancer hallmarks that are associated with the responses to external or internal redox perturbations. Cold atmospheric plasma (CAP) is examined as a promising redox modulation medium and highly selective anti-cancer therapeutic modality featuring dynamically varying receptor targets and minimized drug resistance against aggressive cancers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Erik W. Thompson
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kostya (Ken) Ostrikov
- School of Chemistry, Physics and Center for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
4
|
Abstract
The widely distributed, essential redox factor pyrroloquinoline quinone (PQQ, methoxatin) (1) was discovered in the mid-1960s. The breadth and depth of its biological effects are steadily being revealed, and understanding its biosynthesis at the genomic level is a continuing process. In this review, aspects of the chemistry, biology, biosynthesis, and commercial production of 1 at the gene level, and some applications, are presented from discovery through to mid-2021.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., Evanston, Illinois 60202, United States.,Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | | |
Collapse
|
5
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
6
|
Gao S, Zhou Q, Jin H, Shi N, Wang X, Zhang L, Yan M. Effect of pyrroloquinoline quinone on lipopolysaccharide-induced autophagy in HAPI microglia cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1377. [PMID: 34733929 PMCID: PMC8506552 DOI: 10.21037/atm-21-730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 12/01/2022]
Abstract
Background Pyrroloquinoline quinone (PQQ) is involved in various physiological and biochemical processes, including antioxidant, cell proliferation, and mitochondrial formation. It plays a vital role in protecting neurons. However, the effect of PQQ on microglia, an inflammatory cell of the central nervous system (CNS), is still unclear. This study aimed to investigate the biological role and neuroprotective mechanism of PQQ in HAPI microglial cells exposed to lipopolysaccharide (LPS). Methods Western blot (WB) was used to detect apoptosis and autophagy-related molecules Bax, Bcl2, active-caspase-3, caspase-3, LC3, lysosomal associated membrane protein 2 (LAMP2), AKT, tumor necrosis factor receptor (TNFR) 1, and TNFR2 expression. The phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor LY294002 was used to block the Akt pathway. WB detected the effects of PI3K on autophagy and TNFR1 and TNFR2 expression. The localization of active-caspase-3, caspase-3, LC3, LAMP2, TNFR1, and TNFR2 in cells was observed by immunofluorescence staining. The effect of PQQ on the cell cycle was examined by flow cytometry. We used 5-Ethynyl-2’-deoxyuridine (EdU) assay to detect cell proliferation. The migration ability of cells under different conditions was detected by scratch test and Transwell assay. Results Our results showed that there were different effects on the apoptosis-related molecules Bcl2/Bax and active-caspase-3/caspase in HAPI microglial cells treated with PQQ at different times. PQQ had no significant effect on the LC3b/a ratio in the early stage, which was upregulated in the later stage. The expression of LAMP2 was significantly increased in both early and late stages after PQQ treatment. At the same time, we found that PQQ can reverse the translocation of LAMP2 from the cytoplasm to the nucleus in LPS-induced HAPI microglia. After PQQ treatment, TNFR1 was significantly decreased, but TNFR2 increased in LPS-induced HAPI microglia. It may be that PQQ works through the PI3K/Akt signaling pathway to up-regulate LC3, LAMP2, and TNFR1 and down-regulate TNFR2 in LPS-induced HAPI microglia. However, PQQ has little effect on LPS-induced proliferation, cell cycle, and migration of HAPI microglia. Conclusions In LPS-induced HAPI microglia, PQQ reduces the apoptosis level and increases that of autophagy. In addition, PQQ changes the distribution of LAMP2 in the cytoplasm and nucleus, which is regulated through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Shumei Gao
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Qiao Zhou
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Hui Jin
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Naiqi Shi
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
| | - Xiaoyu Wang
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Li Zhang
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Meijuan Yan
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
7
|
Shiojima Y, Takahashi M, Takahashi R, Moriyama H, Bagchi D, Bagchi M, Akanuma M. Effect of Dietary Pyrroloquinoline Quinone Disodium Salt on Cognitive Function in Healthy Volunteers: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study. J Am Coll Nutr 2021; 41:796-809. [PMID: 34415830 DOI: 10.1080/07315724.2021.1962770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cognitive dysfunctions are increasing alarmingly around the world, and researchers are exploring preventive measures for improving brain performance. Pyrroloquinoline quinone (PQQ), a naturally occurring coenzyme in foods, exhibits potent antioxidant activity, and improves diverse functions which include mitochondrial activation, growth, repair, protection of nerve cells by increased expression of nerve growth factor (NGF) and NGF receptors; and suppression of fibril formation and aggregation of amyloid β. OBJECTIVE This randomized, double-blind, placebo-controlled, parallel-group clinical investigation (RCT) evaluated the efficacy and safety of PQQ disodium salt powder (mnemoPQQ®) for improved cognitive function after 12 weeks of supplementation in healthy Japanese male and female (age 40 to <80 Y). METHODS 64 healthy subjects were randomly assigned to receive either mnemoPQQ® (PQQ disodium salt: 21.5 mg/day) or a placebo over a period of 12 weeks. The efficacy of mnemoPQQ® on cognitive performance (memory, attention, judgment, and cognitive flexibility) was examined using Cognitrax as the primary outcome (primary endpoint), and forgetfulness questionnaire (DECO: Deterioration Cognitive Observee) and Mini-Mental State Examination-Japanese (MMSE-J) as the secondary outcome (secondary endpoint). RESULTS A total of 58 subjects (placebo = 31; Age = 70.91 ± 3.06 Y; mnemoPQQ® group = 27; Age = 72.10 ± 3.77 Y) completed the study over a period of 12 weeks of supplementation. Significant improvements were observed on the Cognitrax's cognitive function domain score on "composite memory", "verbal memory", "reaction time", "complex attention", "cognitive flexibility", "executive function", and "motor speed" in the mnemoPQQ® group as compared to the placebo group. The DECO and the MMSE-J scores were also significantly improved in the mnemoPQQ® group. No adverse events were observed. CONCLUSIONS Study demonstrates that supplementation of PQQ disodium salt is useful in improving memory, attention, judgment, and cognitive function, in middle-aged to elderly population, who feel they have become more forgetful because of aging.
Collapse
Affiliation(s)
| | - Megumi Takahashi
- Ryusendo Co., Ltd., R&D, Toshima-ku, Tokyo, Japan.,Laboratory of Ultrasound Theranostics, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - Ryohei Takahashi
- Ryusendo Co., Ltd., R&D, Toshima-ku, Tokyo, Japan.,Laboratory of Ultrasound Theranostics, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | | | - Debasis Bagchi
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | | | | |
Collapse
|
8
|
Oshimo M, Nakashima F, Kai K, Matsui H, Shibata T, Akagawa M. Sodium sulfite causes gastric mucosal cell death by inducing oxidative stress. Free Radic Res 2021; 55:731-743. [PMID: 34074194 DOI: 10.1080/10715762.2021.1937620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Sulfites are commonly used as a preservative and antioxidant additives in the food industry. Sulfites are absorbed by the gastrointestinal tract and distributed essentially to all body tissues. Although sulfites have been believed to be safe food additives, some studies have shown that they exhibit adverse effects in various tissues. In this study, we examined the cytotoxic effect of sodium sulfite (Na2SO3) against rat gastric mucosal cells (RGM1) and further investigated its underlying molecular mechanism. We demonstrated that exposure to Na2SO3 exerts significant cytotoxicity in RGM1 cells through induction of oxidative stress. Exposure of RGM1 cells to Na2SO3 caused a significant formation of protein carbonyls and 8-hydroxy-2'-deoxyguanosine, major oxidative stress markers, with a concomitant accumulation of carbonylated protein-related aggregates. Furthermore, we found that incubation of lysozyme with Na2SO3 evokes protein carbonylation and aggregation via the metal ion-catalyzed free radical formation derived from Na2SO3. Our results suggest that Na2SO3 might lead to gastric tissue injury via induction of oxidative stress by the formation of Na2SO3-related free radicals.
Collapse
Affiliation(s)
- Moeri Oshimo
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Fumie Nakashima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kenji Kai
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Hirofumi Matsui
- Division of Gastroenterology, Graduate School for Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mitsugu Akagawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
9
|
Li S, Noroozifar M, Zhou J, Kerman K. Electrochemical flow injection analysis of the interaction between pyrroloquinoline quinone (PQQ) and α-synuclein peptides related to Parkinson's disease. Analyst 2021; 146:4545-4556. [PMID: 34251376 DOI: 10.1039/d1an00698c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
α-Synuclein (α-syn) is a hallmark protein of Parkinson's disease (PD). The aggregation process of α-syn has been heavily associated with the pathogenesis of PD. With the exponentially growing number of potential therapeutic compounds that can inhibit the aggregation of α-syn, there is now a significant demand for a high-throughput analysis system. Herein, a novel flow injection analysis system with an electrochemical biosensor as the detector was developed to study the interaction of a well-described antioxidant and amyloid inhibitor, pyrroloquinoline quinone (PQQ) with α-synuclein peptides. Screen-printed gold electrodes (SPEs) were modified using heptapeptides from α-syn wild-type (WT) and mutants such as lysine knock-out (ETEE) and E46K. Affinity binding events between these peptides and PQQ were analyzed by electrochemical impedance spectroscopy (EIS) and further confirmed by high-performance liquid chromatography (HPLC), liquid chromatography/mass spectrometry (LC/MS), and nuclear magnetic resonance (NMR) spectroscopy. HPLC and LC/MS results revealed that PQQ formed a stable complex with α-syn. NMR results confirmed that the α-syn-PQQ complex was formed via a Schiff base formation-like process. In addition, results showed that lysine residues influenced the binding event, in which the presence of an extra lysine stabilized the α-syn-PQQ complex, and the absence of a lysine significantly decreased the interaction of α-syn with PQQ. Therefore, we concluded that EIS is a promising technique for the evaluation of the interaction between PQQ-based amyloid inhibitors and α-syn. The electrochemical flow injection analysis assembly provided a rapid and low-cost drug discovery platform for the evaluation of small molecule-protein interactions.
Collapse
Affiliation(s)
- Shaopei Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Jiayun Zhou
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
10
|
Zhang H, Li J, Cao C, Zhang B, Yang W, Shi B, Shan A. Pyrroloquinoline quinone inhibits the production of inflammatory cytokines via the SIRT1/NF-κB signal pathway in weaned piglet jejunum. Food Funct 2020; 11:2137-2153. [PMID: 32073012 DOI: 10.1039/c9fo02609f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The small intestine is an important digestive organ and plays a vital role in the life of a pig. In this study, we explored the regulatory role and molecular mechanism of pyrroloquinoline quinone (PQQ) on intestinal health and to discussed the interaction between PQQ and vitamin C (VC). A total of 160 healthy piglets weaned at 21 d were randomly divided into four treatment groups according to 2 × 2 factoring. The results showed that dietary PQQ could significantly decrease the levels of plasma globulin, albumin/globulin (A/G), indirect bilirubin (IBIL), blood urea nitrogen (BUN), creatinine (CREA) (P < 0.05 for each), total bilirubin, (TBIL) (P < 0.01), diamine oxidase (DAO) (P < 0.01) and immunoglobulin G (IgG) (P < 0.0001) and increase the levels of immunoglobulin A (IgA) and immunoglobulin M (IgM) (P < 0.0001) in the plasma of weaned piglets. Similarly, dietary VC could significantly decrease the levels of plasma globulin, A/G, DAO (P < 0.05 for each) and IgG (P < 0.0001) and increase the levels of IgA and IgM (P < 0.0001) in the plasma of weaned piglets. In addition, dietary PQQ increased (P < 0.05) the mRNA levels of antioxidant genes (NQO1, UGT1A1, and EPHX1), thereby enhancing (oxidized) nicotinamide adenine dinucleotide (NAD+) concentration and sirtuin 1 (SIRT1) activity in tissues. However, the addition of 200 mg kg-1 VC to the diet containing PQQ reduced most of the effects of PQQ. We further show that PQQ reduced (P < 0.05) the expression of inflammation-related genes (IL-2, IL-6, TNF-α, and COX-2) via the SIRT1/NF-κB deacetylation signaling. In conclusion, our data reveals that PQQ exerts a certain protective effect on the intestines of piglets, but higher concentrations of VC react with PQQ, which inhibits the regulatory mechanism of PQQ.
Collapse
Affiliation(s)
- Hongyun Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Jinze Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Chunyu Cao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Boru Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Wei Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
11
|
Lalitha N, Sadashivaiah B, Talahalli RR, Singh SA. Lectin rich horsegram protein and myricetin activates insulin signaling – A study targeting PTP1β. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
12
|
Kato C, Kawai E, Shimizu N, Mikekado T, Kimura F, Miyazawa T, Nakagawa K. Determination of pyrroloquinoline quinone by enzymatic and LC-MS/MS methods to clarify its levels in foods. PLoS One 2018; 13:e0209700. [PMID: 30576372 PMCID: PMC6303014 DOI: 10.1371/journal.pone.0209700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/09/2018] [Indexed: 11/19/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) is believed to be a new B vitamin-like compound, and PQQ supplementation has received attention as a possible treatment for diseases including dementia and diabetes. However, the distribution of PQQ in foods is unclear, due to the difficulty in analyzing the compound. Therefore, in this study, enzymatic and LC-MS/MS methods were optimized to enable an accurate analysis of PQQ in foods. The optimized methods were applied to the screening of foods, in which PQQ contents were identified in ng/g or ng/mL levels. Furthermore, we newly found that some foods related to acetic acid bacteria contain PQQ at 1.94~5.59 ng/mL higher than beer, which is known to contain relatively high amounts of PQQ. These results suggest that the optimized methods are effective for the screening of foods containing PQQ. Such foods with high PQQ content may be valuable as functional foods effective towards the treatment of certain diseases.
Collapse
Affiliation(s)
- Chikara Kato
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Emiko Kawai
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Naoki Shimizu
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tsuyoshi Mikekado
- Niigata Research Laboratory, Mitsubishi Gas Chemical Company, Inc., Niigata, Japan
| | - Fumiko Kimura
- Department of Human Health and Nutrition, Shokei Gakuin University, Natori, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Japan
- Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|
13
|
Yagi M, Nakatsuji Y, Maeda A, Ota H, Kamikubo R, Miyoshi N, Nakamura Y, Akagawa M. Phenethyl isothiocyanate activates leptin signaling and decreases food intake. PLoS One 2018; 13:e0206748. [PMID: 30383868 PMCID: PMC6211728 DOI: 10.1371/journal.pone.0206748] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/18/2018] [Indexed: 12/31/2022] Open
Abstract
Obesity, a principal risk factor for the development of diabetes mellitus, heart disease, and hypertension, is a growing and serious health problem all over the world. Leptin is a weight-reducing hormone produced by adipose tissue, which decreases food intake via hypothalamic leptin receptors (Ob-Rb) and the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway. Protein tyrosine phosphatase 1B (PTP1B) negatively regulates leptin signaling by dephosphorylating JAK2, and the increased activity of PTP1B is implicated in the pathogenesis of obesity. Hence, inhibition of PTP1B may help prevent and reduce obesity. In this study, we revealed that phenethyl isothiocyanate (PEITC), a naturally occurring isothiocyanate in certain cruciferous vegetables, potently inhibits recombinant PTP1B by binding to the reactive cysteinyl thiol. Moreover, we found that PEITC causes the ligand-independent phosphorylation of Ob-Rb, JAK2, and STAT3 by inhibiting cellular PTP1B in differentiated human SH-SY5Y neuronal cells. PEITC treatment also induced nuclear accumulation of phosphorylated STAT3, resulting in enhanced anorexigenic POMC expression and suppressed orexigenic NPY/AGRP expression. We demonstrated that oral administration of PEITC to mice significantly reduces food intake, and stimulates hypothalamic leptin signaling. Our results suggest that PEITC might help prevent and improve obesity.
Collapse
Affiliation(s)
- Miho Yagi
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Yukiko Nakatsuji
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Ayumi Maeda
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Hiroki Ota
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Ryosuke Kamikubo
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Mitsugu Akagawa
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- * E-mail:
| |
Collapse
|
14
|
Saihara K, Kamikubo R, Ikemoto K, Uchida K, Akagawa M. Pyrroloquinoline Quinone, a Redox-Active o-Quinone, Stimulates Mitochondrial Biogenesis by Activating the SIRT1/PGC-1α Signaling Pathway. Biochemistry 2017; 56:6615-6625. [DOI: 10.1021/acs.biochem.7b01185] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kazuhiro Saihara
- Department
of Biological Chemistry, Division of Applied Life Science, Graduate
School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Ryosuke Kamikubo
- Department
of Biological Chemistry, Division of Applied Life Science, Graduate
School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
- Department
of Applied Biological Chemistry, Graduate School of Agricultural and
Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuto Ikemoto
- Niigata
Research Laboratory, Mitsubishi Gas Chemical Company, Inc., Niigata 950-3112, Japan
| | - Koji Uchida
- Department
of Applied Biological Chemistry, Graduate School of Agricultural and
Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Mitsugu Akagawa
- Department
of Biological Chemistry, Division of Applied Life Science, Graduate
School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| |
Collapse
|
15
|
Garcia FJ, Carroll KS. An immunochemical approach to detect oxidized protein tyrosine phosphatases using a selective C-nucleophile tag. MOLECULAR BIOSYSTEMS 2017; 12:1790-8. [PMID: 26757830 DOI: 10.1039/c5mb00847f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein tyrosine phosphatases are crucial regulators of signal transduction and function as antagonists towards protein tyrosine kinases to control reversible tyrosine phosphorylation, thereby regulating fundamental physiological processes. Growing evidence has supported the notion that reversible oxidative inactivation of the catalytic cysteine residue in protein tyrosine phosphatases serves as an oxidative post-translational modification that regulates its activity to influence downstream signaling by promoting phosphorylation and induction of the signaling cascade. The oxidation of cysteine to the sulfenic acid is often transient and difficult to detect, thus making it problematic in understanding the role that this oxidative post-translational modification plays in redox-biology and pathogenesis. Several methods to detect cysteine oxidation in biological systems have been developed, though targeted approaches to directly detect oxidized phosphatases are still lacking. Herein we describe the development of a novel immunochemical approach to directly profile oxidized phosphatases. This immunochemical approach consists of an antibody designed to recognize the conserved sequence of the PTP active site (VHCDMDSAG) harboring the catalytic cysteine modified with dimedone (CDMD), a nucleophile that chemoselectively reacts with cysteine sulfenic acids to form a stable thioether adduct. Additionally, we provide biochemical and mass spectrometry workflows to be used in conjugation with this newly developed immunochemical approach to assist in the identification and quantification of basal and oxidized phosphatases.
Collapse
Affiliation(s)
- Francisco J Garcia
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Kate S Carroll
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
16
|
Ikemoto K, Mori S, Mukai K. Synthesis and crystal structure of pyrroloquinoline quinol (PQQH2) and pyrroloquinoline quinone (PQQ). ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2017; 73:489-497. [DOI: 10.1107/s2052520617002281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/10/2017] [Indexed: 11/10/2022]
Abstract
Pyrroloquinoline quinone (PQQ) is a water-soluble quinone compound first identified as a cofactor of alcohol- and glucose-dehydrogenases (ADH and GDH) in bacteria. For example, in the process of ADH reaction, alcohol is oxidized to the corresponding aldehyde, and inversely PQQ is reduced to pyrroloquinoline quinol (PQQH2). PQQ and PQQH2molecules play an important role as a cofactor in ADH and GDH reactions. However, crystal structure analysis has not been performed for PQQ and PQQH2. In the present study, the synthesis of PQQH2powder crystals was performed under air, by utilizing vitamin C as a reducing agent. By reacting a trihydrate of disodium salt of PQQ (PQQNa2·3H2O) with excess vitamin C in H2O at 293 and 343 K, yellowish brown and black powder crystals of PQQH2having different properties were obtained in high yield, respectively. The former was PQQH2trihydrate (PQQH2·3H2O) and the latter was PQQH2anhydrate (PQQH2). Furthermore, sodium-free red PQQ powder crystal (a monohydrate of PQQ, PQQ·H2O) was prepared by the reaction of PQQNa2·3H2O with HCl in H2O. Single crystals of PQQH2and PQQ were prepared from Me2SO/CH3CN mixed solvent, and we have succeeded in the crystal structure analyses of PQQH2and PQQ for the first time.
Collapse
|
17
|
Wan H, Xia Y, Li J, Kang Z, Zhou J. Identification of transporter proteins for PQQ-secretion pathways by transcriptomics and proteomics analysis in Gluconobacter oxydans WSH-003. Front Chem Sci Eng 2017. [DOI: 10.1007/s11705-016-1580-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Wang Y, Xu M, Ke ZJ, Luo J. Cellular and molecular mechanisms underlying alcohol-induced aggressiveness of breast cancer. Pharmacol Res 2016; 115:299-308. [PMID: 27939360 DOI: 10.1016/j.phrs.2016.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
Abstract
Breast cancer is a leading cause of morbidity and mortality in women. Both Epidemiological and experimental studies indicate a positive correlation between alcohol consumption and the risk of breast cancer. While alcohol exposure may promote the carcinogenesis or onset of breast cancer, it may as well enhance the progression and aggressiveness of existing mammary tumors. Recent progress in this line of research suggests that alcohol exposure is associated with invasive breast cancer and promotes the growth and metastasis of mammary tumors. There are multiple potential mechanisms involved in alcohol-stimulated progression and aggressiveness of breast cancer. Alcohol may increase the mobility of cancer cells by inducing cytoskeleton reorganization and enhancing the cancer cell invasion by causing degradation and reconstruction of the extracellular matrix (ECM). Moreover, alcohol may promote the epithelial-mesenchymal transition (EMT), a hallmark of malignancy, and impair endothelial integrity, thereby increasing the dissemination of breast cancer cells and facilitating metastasis. Furthermore, alcohol may stimulate tumor angiogenesis through the activation of cytokines and chemokines which promotes tumor growth. Additionally, alcohol may increase the cancer stem cell population which affects neoplastic cell behavior, aggressiveness, and the therapeutic response. Alcohol can be metabolized in the mammary tissues and breast cancer cells which produces reactive oxygen species (ROS), causing oxidative stress. Recent studies suggest that the epidermal growth factor receptor (EGFR) family, particularly ErbB2 (a member of this family), is involved in alcohol-mediated tumor promotion. Breast cancer cells or mammary epithelial cells over-expressing ErbB2 are more sensitive to alcohol's tumor promoting effects. There is considerable cross-talk between oxidative stress and EGFR/ErbB2 signaling. This review further discusses how the interaction between oxidative stress and EGFR/ErbB2 signaling contributes to the cellular and molecular events associated with breast cancer aggressiveness. We also discuss the potential therapeutic approaches for cancer patients who drink alcoholic beverages.
Collapse
Affiliation(s)
- Yongchao Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Zun-Ji Ke
- Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
19
|
Overexpression of pyrroloquinoline quinone biosynthetic genes affects l -sorbose production in Gluconobacter oxydans WSH-003. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Identification of lactate dehydrogenase as a mammalian pyrroloquinoline quinone (PQQ)-binding protein. Sci Rep 2016; 6:26723. [PMID: 27230956 PMCID: PMC4882622 DOI: 10.1038/srep26723] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/27/2016] [Indexed: 11/18/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ), a redox-active o-quinone, is an important nutrient involved in numerous physiological and biochemical processes in mammals. Despite such beneficial functions, the underlying molecular mechanisms remain to be established. In the present study, using PQQ-immobilized Sepharose beads as a probe, we examined the presence of protein(s) that are capable of binding PQQ in mouse NIH/3T3 fibroblasts and identified five cellular proteins, including l-lactate dehydrogenase (LDH) A chain, as potential mammalian PQQ-binding proteins. In vitro studies using a purified rabbit muscle LDH show that PQQ inhibits the formation of lactate from pyruvate in the presence of NADH (forward reaction), whereas it enhances the conversion of lactate to pyruvate in the presence of NAD+ (reverse reaction). The molecular mechanism underlying PQQ-mediated regulation of LDH activity is attributed to the oxidation of NADH to NAD+ by PQQ. Indeed, the PQQ-bound LDH oxidizes NADH, generating NAD+, and significantly catalyzes the conversion of lactate to pyruvate. Furthermore, PQQ attenuates cellular lactate release and increases intracellular ATP levels in the NIH/3T3 fibroblasts. Our results suggest that PQQ, modulating LDH activity to facilitate pyruvate formation through its redox-cycling activity, may be involved in the enhanced energy production via mitochondrial TCA cycle and oxidative phosphorylation.
Collapse
|
21
|
Tao R, Wang S, Xia X, Wang Y, Cao Y, Huang Y, Xu X, Liu Z, Liu P, Tang X, Liu C, Shen G, Zhang D. Pyrroloquinoline Quinone Slows Down the Progression of Osteoarthritis by Inhibiting Nitric Oxide Production and Metalloproteinase Synthesis. Inflammation 2016; 38:1546-55. [PMID: 25687637 DOI: 10.1007/s10753-015-0129-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Osteoarthritis (OA) is the most common arthritis and also one of the major causes of joint pain in elderly people. The aim of this study was to investigate the effects of pyrroloquinoline quinone (PQQ) on degenerated-related changes in osteoarthritis (OA). SW1353 cells were stimulated with IL-1β to establish the chondrocyte injury model in vitro. PQQ was administrated into SW1353 cultures 1 h before IL-1β treatment. Amounts of MMP-1, MMP-13, P65, IκBα, ERK, p-ERK, P38, and p-P38 were measured via western blot. The production of NO was determined by Griess reaction assay and reflected by the iNOS level. Meniscal-ligamentous injury (MLI) was performed on 8-week-old rats to establish the OA rat model. PQQ was injected intraperitoneally 3 days before MLI and consecutively until harvest, and the arthritis cartilage degeneration level was assessed. The expressions of MMP-1 and MMP-13 were significantly downregulated after PQQ treatment compared with that in IL-1β alone group. NO production and iNOS expression were decreased by PQQ treatment compared with control group. Amounts of nucleus P65 were upregulated in SW1353 after stimulated with IL-1β, while PQQ significantly inhibited the translocation. In rat OA model, treatment with PQQ markedly decelerated the degeneration of articular cartilage. These findings suggested that PQQ could inhibit OA-related catabolic proteins MMPs expression, NO production, and thus, slow down the articular cartilage degeneration and OA progression. Owing to its beneficial effects, PQQ is expected to be a novel pharmacological application in OA clinical prevention and treatment in the near future.
Collapse
Affiliation(s)
- Ran Tao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Akagawa M, Nakano M, Ikemoto K. Recent progress in studies on the health benefits of pyrroloquinoline quinone. Biosci Biotechnol Biochem 2016; 80:13-22. [DOI: 10.1080/09168451.2015.1062715] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Pyrroloquinoline quinone (PQQ), an aromatic tricyclic o-quinone, was identified initially as a redox cofactor for bacterial dehydrogenases. Although PQQ is not biosynthesized in mammals, trace amounts of PQQ have been found in human and rat tissues because of its wide distribution in dietary sources. Importantly, nutritional studies in rodents have revealed that PQQ deficiency exhibits diverse systemic responses, including growth impairment, immune dysfunction, and abnormal reproductive performance. Although PQQ is not currently classified as a vitamin, PQQ has been implicated as an important nutrient in mammals. In recent years, PQQ has been receiving much attention owing to its physiological importance and pharmacological effects. In this article, we review the potential health benefits of PQQ with a focus on its growth-promoting activity, anti-diabetic effect, anti-oxidative action, and neuroprotective function. Additionally, we provide an update of its basic pharmacokinetics and safety information in oral ingestion.
Collapse
Affiliation(s)
- Mitsugu Akagawa
- Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka-ku, Sakai, Japan
| | - Masahiko Nakano
- Niigata Research Laboratory, Mitsubishi Gas Chemical Co., Inc., Niigata, Japan
| | - Kazuto Ikemoto
- Niigata Research Laboratory, Mitsubishi Gas Chemical Co., Inc., Niigata, Japan
| |
Collapse
|
23
|
Mukai K, Ouchi A, Nagaoka SI, Nakano M, Ikemoto K. Pyrroloquinoline quinone (PQQ) is reduced to pyrroloquinoline quinol (PQQH2) by vitamin C, and PQQH2 produced is recycled to PQQ by air oxidation in buffer solution at pH 7.4. Biosci Biotechnol Biochem 2016; 80:178-87. [DOI: 10.1080/09168451.2015.1072462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Measurements of the reaction of sodium salt of pyrroloquinoline quinone (PQQNa2) with vitamin C (Vit C) were performed in phosphate-buffered solution (pH 7.4) at 25 °C under nitrogen atmosphere, using UV–vis spectrophotometry. The absorption spectrum of PQQNa2 decreased in intensity due to the reaction with Vit C and was changed to that of pyrroloquinoline quinol (PQQH2, a reduced form of PQQ). One molecule of PQQ was reduced by two molecules of Vit C producing a molecule of PQQH2 in the buffer solution. PQQH2, thus produced, was recycled to PQQ due to air oxidation. PQQ and Vit C coexist in many biological systems, such as vegetables, fruits, as well as in human tissues. The results obtained suggest that PQQ is reduced by Vit C and functions as an antioxidant in biological systems, because it has been reported that PQQH2 shows very high free-radical scavenging and singlet-oxygen quenching activities in buffer solutions.
Collapse
Affiliation(s)
- Kazuo Mukai
- Faculty of Science, Department of Chemistry, Ehime University, Matsuyama, Japan
| | - Aya Ouchi
- Faculty of Science, Department of Chemistry, Ehime University, Matsuyama, Japan
| | - Shin-ichi Nagaoka
- Faculty of Science, Department of Chemistry, Ehime University, Matsuyama, Japan
| | - Masahiko Nakano
- Niigata Research Laboratory, Mitsubishi Gas Chemical Company, Inc., Niigata, Japan
| | - Kazuto Ikemoto
- Niigata Research Laboratory, Mitsubishi Gas Chemical Company, Inc., Niigata, Japan
| |
Collapse
|
24
|
Wu JS, Lin SY, Liao FY, Hsiao WC, Lee LC, Peng YH, Hsieh CL, Wu MH, Song JS, Yueh A, Chen CH, Yeh SH, Liu CY, Lin SY, Yeh TK, Hsu JTA, Shih C, Ueng SH, Hung MS, Wu SY. Identification of Substituted Naphthotriazolediones as Novel Tryptophan 2,3-Dioxygenase (TDO) Inhibitors through Structure-Based Virtual Screening. J Med Chem 2015; 58:7807-19. [PMID: 26348881 DOI: 10.1021/acs.jmedchem.5b00921] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A structure-based virtual screening strategy, comprising homology modeling, ligand-support binding site optimization, virtual screening, and structure clustering analysis, was developed and used to identify novel tryptophan 2,3-dioxygenase (TDO) inhibitors. Compound 1 (IC50 = 711 nM), selected by virtual screening, showed inhibitory activity toward TDO and was subjected to structural modifications and molecular docking studies. This resulted in the identification of a potent TDO selective inhibitor (11e, IC50 = 30 nM), making it a potential compound for further investigation as a cancer therapeutic and other TDO-related targeted therapy.
Collapse
Affiliation(s)
- Jian-Sung Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Shu-Yu Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Fang-Yu Liao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Wen-Chi Hsiao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Lung-Chun Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Yi-Hui Peng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chia-Ling Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Mine-Hsine Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chun-Hwa Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chia-Yeh Liu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - John T-A Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Shau-Hua Ueng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Ming-Shiu Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Su-Ying Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| |
Collapse
|
25
|
ZHANG CHUNLI, WEN CHUANJUN, LIN JINDE, SHEN GAN. Protective effect of pyrroloquinoline quinine on ultraviolet A irradiation-induced human dermal fibroblast senescence in vitro proceeds via the anti-apoptotic sirtuin 1/nuclear factor-derived erythroid 2-related factor 2/heme oxygenase 1 pathway. Mol Med Rep 2015; 12:4382-4388. [DOI: 10.3892/mmr.2015.3990] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 02/13/2015] [Indexed: 11/06/2022] Open
|
26
|
Pyrroloquinoline quinone against glutamate‐induced neurotoxicity in cultured neural stem and progenitor cells. Int J Dev Neurosci 2015; 42:37-45. [DOI: 10.1016/j.ijdevneu.2015.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/26/2015] [Accepted: 02/17/2015] [Indexed: 12/23/2022] Open
|
27
|
Min Z, Wang L, Jin J, Wang X, Zhu B, Chen H, Cheng Y. Pyrroloquinoline Quinone Induces Cancer Cell Apoptosis via Mitochondrial-Dependent Pathway and Down-Regulating Cellular Bcl-2 Protein Expression. J Cancer 2014; 5:609-24. [PMID: 25161699 PMCID: PMC4143536 DOI: 10.7150/jca.9002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/16/2014] [Indexed: 02/04/2023] Open
Abstract
Pyrroloquinoline quinone (PQQ) has been reported as a promising agent that might contribute to tumor cell apoptosis and death, yet little is known on its mechanisms. In current study, the effect of PQQ on cell proliferation and mitochondrial-dependent apoptosis were examined in 3 solid tumor cell lines (A549, Neuro-2A and HCC-LM3). PQQ treatment at low to medium dosage exhibited potent anti-tumor activity on A549 and Neuro-2A cells, while had comparably minimal impact on the viabilities of 2 human normal cell lines (HRPTEpiC and HUVEC). The apoptosis of the 3 tumor cell lines induced by PQQ were increased in a concentration-dependent manner, which might be attributed to the accumulation of intracellular reactive oxygen species (ROS), decline in ATP levels and dissipation of mitochondrial membrane potential (MMP), in conjunction with down-regulation of Bcl-2 protein expression, up-regulation of activated caspase-3, and disturbed phosphorylated MAPK protein levels. PQQ induced tumor cells apoptosis was significantly alleviated by pan-caspase inhibitor Z-VAD-FMK. The present work highlights the potential capability of PQQ as an anti-tumor agent with low toxicity towards normal cells through activating mitochondrial-dependent apoptosis pathways, and warrants its development for cancer therapy.
Collapse
Affiliation(s)
- Zhihui Min
- 1. Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; ; 2. Biomedical Research Center, Zhongshan Hospital Qingpu Branch, Shanghai, 201700 China; ; 3. Shanghai key laboratory of organ transplantation, Shanghai, 200032, China
| | - Lingyan Wang
- 1. Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianjun Jin
- 1. Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; ; 2. Biomedical Research Center, Zhongshan Hospital Qingpu Branch, Shanghai, 201700 China
| | - Xiangdong Wang
- 1. Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; ; 2. Biomedical Research Center, Zhongshan Hospital Qingpu Branch, Shanghai, 201700 China; ; 3. Shanghai key laboratory of organ transplantation, Shanghai, 200032, China
| | - Bijun Zhu
- 1. Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Chen
- 4. Department of Cardiothoracic Surgery, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Yunfeng Cheng
- 1. Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; ; 3. Shanghai key laboratory of organ transplantation, Shanghai, 200032, China; ; 5. Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; ; 6. Department of Hematology, Zhongshan Hospital Qingpu Branch, Shanghai, 201700 China
| |
Collapse
|
28
|
Frijhoff J, Dagnell M, Godfrey R, Ostman A. Regulation of protein tyrosine phosphatase oxidation in cell adhesion and migration. Antioxid Redox Signal 2014; 20:1994-2010. [PMID: 24111825 DOI: 10.1089/ars.2013.5643] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Redox-regulated control of protein tyrosine phosphatases (PTPs) through inhibitory reversible oxidation of their active site is emerging as a novel and general mechanism for control of cell surface receptor-activated signaling. This mechanism allows for a previously unrecognized crosstalk between redox regulators and signaling pathways, governed by, for example, receptor tyrosine kinases and integrins, which control cell proliferation and migration. RECENT ADVANCES A large number of different molecules, in addition to hydrogen peroxide, have been found to induce PTP inactivation, including lipid peroxides, reactive nitrogen species, and hydrogen sulfide. Characterization of oxidized PTPs has identified different types of oxidative modifications that are likely to display differential sensitivity to various reducing systems. Accumulating evidence demonstrates that PTP oxidation occurs in a temporally and spatially restricted manner. Studies in cell and animal models indicate altered PTP oxidation in models of common diseases, such as cancer and metabolic/cardiovascular disease. Novel methods have appeared that allow characterization of global PTP oxidation. CRITICAL ISSUES As the understanding of the molecular and cellular biology of PTP oxidation is developing, it will be important to establish experimental procedures that allow analyses of PTP oxidation, and its regulation, in physiological and pathophysiological settings. Future studies should also aim to establish specific connections between various oxidants, specific PTPs, and defined signaling contexts. FUTURE DIRECTIONS Modulation of PTP activity still appears as a valid strategy for correction or inhibition of dys-regulated cell signaling. Continued studies on PTP oxidation might present yet unrecognized means to exploit this regulatory mechanism for pharmacological purposes.
Collapse
Affiliation(s)
- Jeroen Frijhoff
- 1 Department of Oncology-Pathology, Karolinska Institutet , Stockholm, Sweden
| | | | | | | |
Collapse
|
29
|
Maeda A, Kai K, Ishii M, Ishii T, Akagawa M. Safranal, a novel protein tyrosine phosphatase 1B inhibitor, activates insulin signaling in C2C12 myotubes and improves glucose tolerance in diabetic KK-Aymice. Mol Nutr Food Res 2014; 58:1177-89. [DOI: 10.1002/mnfr.201300675] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Ayumi Maeda
- Department of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Japan
| | - Kenji Kai
- Department of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Japan
| | - Megumi Ishii
- Department of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Japan
| | - Takeshi Ishii
- Department of Food and Nutritional Sciences, and Global COE Program; University of Shizuoka; Shizuoka Japan
| | - Mitsugu Akagawa
- Department of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Japan
| |
Collapse
|
30
|
Harris CB, Chowanadisai W, Mishchuk DO, Satre MA, Slupsky CM, Rucker RB. Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects. J Nutr Biochem 2013; 24:2076-84. [DOI: 10.1016/j.jnutbio.2013.07.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/16/2013] [Accepted: 07/26/2013] [Indexed: 12/21/2022]
|
31
|
Li D, Li W, Higai K, Koike K. Protein tyrosine phosphatase 1B inhibitory activities of ursane- and lupane-type triterpenes from Sorbus pohuashanensis. J Nat Med 2013; 68:427-31. [DOI: 10.1007/s11418-013-0804-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/20/2013] [Indexed: 01/21/2023]
|
32
|
Takada M, Sumi M, Maeda A, Watanabe F, Kamiya T, Ishii T, Nakano M, Akagawa M. Pyrroloquinoline quinone, a novel protein tyrosine phosphatase 1B inhibitor, activates insulin signaling in C2C12 myotubes and improves impaired glucose tolerance in diabetic KK-Ay mice. Biochem Biophys Res Commun 2012; 428:315-20. [DOI: 10.1016/j.bbrc.2012.10.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/12/2012] [Indexed: 01/22/2023]
|