1
|
Sun Y, Zhen L, Xu L, Li P, Zhang C, Zhang Y, Zhao Y, Shi B. Hollow nanosystem-boosting synergistic effects between photothermal therapy and chemodynamic therapy via self-supplied hydrogen peroxide and relieved hypoxia. Biomater Sci 2025; 13:1784-1800. [PMID: 39995393 DOI: 10.1039/d4bm01178c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Nanomedicine-based photothermal therapy (PTT) has been considered as an excellent alternative for treatment of tumor tissue due to its high therapeutic efficiency and controllable range. However, the overexpression of heat shock proteins (HSPs) during PTT and the hypoxic properties of the tumor microenvironment can lead to intracellular thermal resistance and reduce its effectiveness. Reactive oxygen species (ROS), followed by the application of chemodynamic therapy (CDT) and photodynamic therapy (PDT), can eliminate HSPs and overcome thermal resistance. High concentration H2O2 was used to catalyze oxygen production in the tumor microenvironment to improve the anaerobic state. Therefore, we present a multifunctional nanocarrier system driving chemodynamic-photodynamic-photothermal synergistic therapy via self-supplied hydrogen peroxide and relieved hypoxia for prostate tumor treatment.
Collapse
Affiliation(s)
- Yunji Sun
- Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, P.R. China
- Qilu Hospital, Shandong, University, 107 Wenhua West Road, Lixia District, Jinan, Shandong, 250012, P.R. China.
| | - Lixiao Zhen
- Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, P.R. China
| | - Lin Xu
- Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, P.R. China
| | - Peipei Li
- Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, P.R. China
| | - Chao Zhang
- Qilu Hospital, Shandong, University, 107 Wenhua West Road, Lixia District, Jinan, Shandong, 250012, P.R. China.
| | - Yang Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, P.R. China.
| | - Yisheng Zhao
- School of Pharmaceutical Sciences, Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, P.R. China.
| | - Benkang Shi
- Qilu Hospital, Shandong, University, 107 Wenhua West Road, Lixia District, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
2
|
Nazari A, Osati P, Seifollahy Fakhr S, Faghihkhorasani F, Ghanaatian M, Faghihkhorasani F, Rezaei-Tazangi F, Pazhouhesh Far N, Shourideh A, Ebrahimi N, Aref AR. New Emerging Therapeutic Strategies Based on Manipulation of the Redox Regulation Against Therapy Resistance in Cancer. Antioxid Redox Signal 2024. [PMID: 39506926 DOI: 10.1089/ars.2023.0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Background: Resistance to standard therapeutic methods, including chemotherapy, immunotherapy, and targeted therapy, remains a critical challenge in effective cancer treatment. Redox homeostasis modification has emerged as a promising approach to address medication resistance. Objective: This review aims to explore the mechanisms of redox alterations and signaling pathways contributing to treatment resistance in cancer. Methods: In this study, a comprehensive review of the molecular mechanisms underlying drug resistance governed by redox signaling was conducted. Emphasis was placed on understanding how tumor cells manage increased reactive oxygen species (ROS) levels through upregulated antioxidant systems, enabling resistance across multiple therapeutic pathways. Results: Key mechanisms identified include alterations in drug efflux, target modifications, metabolic changes, enhanced DNA damage repair, stemness preservation, and tumor microenvironment remodeling. These pathways collectively facilitate tumor cells' adaptive response and resistance to various cancer treatments. Conclusion: Developing a detailed understanding of the interrelationships between these redox-regulated mechanisms and therapeutic resistance holds potential to improve treatment effectiveness, offering valuable insights for both fundamental and clinical cancer research. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ahmad Nazari
- Tehran University of Medical Science, Tehran, Iran
| | - Parisa Osati
- Department of Chemical Engineering, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Norway
| | - Ferdos Faghihkhorasani
- Department of Cardiology, Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, 710061, China
| | - Masoud Ghanaatian
- Master 1 Bio-Santé-Parcours Toulouse Graduate School of Cancer, Ageing and Rejuvenation (CARe), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Fereshteh Faghihkhorasani
- General Physician in Medicine Program,General Doctorate Degree of Yazd Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Amir Shourideh
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA and Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Hunek G, Zembala J, Januszewski J, Bełżek A, Syty K, Jabiry-Zieniewicz Z, Ludwin A, Flieger J, Baj J. Micro- and Macronutrients in Endometrial Cancer-From Metallomic Analysis to Improvements in Treatment Strategies. Int J Mol Sci 2024; 25:9918. [PMID: 39337406 PMCID: PMC11432114 DOI: 10.3390/ijms25189918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Endometrial cancer is reported to be one of the most prevalent cancers of the female reproductive organs worldwide, with increasing incidence and mortality rates over the past decade. Early diagnosis is critical for effective treatment. Recently, there has been a growing focus on the role of nutrition and micronutrient and macronutrient status in patients with gynecologic cancers, including endometrial cancer. In the following paper, we have conducted an in-depth narrative literature review with the aim of evaluating the results of metallomic studies specifically concerning the micro- and macronutrient status of patients with endometrial cancer. The main objective of the paper was to analyze the results regarding the nutritional status of endometrial cancer patients and describe the role of chosen elements in the onset and progression of endometrial carcinogenesis. Further, we have focused on the evaluation of the usage of the described elements in the potential treatment of the abovementioned cancer, as well as the possible prevention of cancer considering proper supplementation of chosen elements in healthy individuals. Calcium supplementation has been proposed to reduce the risk of endometrial cancer, although some studies offer conflicting evidence. Deficiencies in phosphorus, selenium, and zinc have been inversely associated with endometrial cancer risk, suggesting they may play a protective role, whereas excessive levels of iron, copper, and cadmium have been positively correlated with increased risk. However, the molecular mechanisms by which these elements affect endometrial carcinogenesis are not fully understood, and current findings are often contradictory. Further research is needed to clarify these relationships and to evaluate the potential of nutritional interventions for the prevention and treatment of endometrial cancer.
Collapse
Affiliation(s)
- Gabriela Hunek
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Julita Zembala
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza 1/3, 02-015 Warsaw, Poland
| | - Jacek Januszewski
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Aleksandra Bełżek
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Kinga Syty
- Institute of Health Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1G, 20-708 Lublin, Poland
| | - Zoulikha Jabiry-Zieniewicz
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza 1/3, 02-015 Warsaw, Poland
| | - Artur Ludwin
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza 1/3, 02-015 Warsaw, Poland
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| |
Collapse
|
4
|
Bhattacharjee R, Dey T, Kumar L, Kar S, Sarkar R, Ghorai M, Malik S, Jha NK, Vellingiri B, Kesari KK, Pérez de la Lastra JM, Dey A. Cellular landscaping of cisplatin resistance in cervical cancer. Biomed Pharmacother 2022; 153:113345. [PMID: 35810692 DOI: 10.1016/j.biopha.2022.113345] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer (CC) caused by human papillomavirus (HPV) is one of the largest causes of malignancies in women worldwide. Cisplatin is one of the widely used drugs for the treatment of CC is rendered ineffective owing to drug resistance. This review highlights the cause of resistance and the mechanism of cisplatin resistance cells in CC to develop therapeutic ventures and strategies that could be utilized to overcome the aforementioned issue. These strategies would include the application of nanocarries, miRNA, CRIPSR/Cas system, and chemotherapeutics in synergy with cisplatin to not only overcome the issues of drug resistance but also enhance its anti-cancer efficiency. Moreover, we have also discussed the signaling network of cisplatin resistance cells in CC that would provide insights to develop therapeutic target sites and inhibitors. Furthermore, we have discussed the role of CC metabolism on cisplatin resistance cells and the physical and biological factors affecting the tumor microenvironments.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tanima Dey
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Sulagna Kar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Ritayan Sarkar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India.
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641-046, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland; Department of Bio-products and Bio-systems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - José M Pérez de la Lastra
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna (Santa Cruz de Tenerife), Spain.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
5
|
Xiong Y, Xu S, Fu B, Tang W, Zaky MY, Tian R, Yao R, Zhang S, Zhao Q, Nian W, Lin X, Wu H. Vitamin C-induced competitive binding of HIF-1α and p53 to ubiquitin E3 ligase CBL contributes to anti-breast cancer progression through p53 deacetylation. Food Chem Toxicol 2022; 168:113321. [PMID: 35931247 DOI: 10.1016/j.fct.2022.113321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 10/16/2022]
Abstract
Vitamin C (VC), in regard to its effectiveness against tumors, has had a controversial history in cancer treatment. However, the anticancer mechanisms of VC are not fully understood. Here, we reported that VC exerted an anticancer effect on cancer cell and xenograft models via inhibiting HIF-1α-dependent cell proliferation and promoting p53-dependent cell apoptosis. To be specific, VC modulated the competitive binding of HIF-1α and p53 to their common E3 ubiquitin ligase CBL, thereby inhibiting tumorigenesis. Moreover, VC treatment activated SIRT1, resulting in p53 deacetylation and CBL-p53 complex dissociation, which in turn facilitated CBL recruitment of HIF-1α for ubiquitination in a proteasome-dependent manner. Altogether, our results provided a mechanistic rationale for exploring the therapeutic use of VC in cancer therapy.
Collapse
Affiliation(s)
- Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shiyao Xu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Wanyan Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rong Tian
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing, 401331, China
| | - Rui Yao
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing, 401331, China
| | - Shanfu Zhang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Qingting Zhao
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Weiqi Nian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
6
|
High-Dose Vitamin C for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15060711. [PMID: 35745630 PMCID: PMC9231292 DOI: 10.3390/ph15060711] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the idea that Vitamin C (Vit-C) could be utilized as a form of anti-cancer therapy has generated many contradictory arguments. Recent insights into the physiological characteristics of Vit-C, its pharmacokinetics, and results from preclinical reports, however, suggest that high-dose Vit-C could be effectively utilized in the management of various tumor types. Studies have shown that the pharmacological action of Vit-C can attack various processes that cancerous cells use for their growth and development. Here, we discuss the anti-cancer functions of Vit-C, but also the potential for the use of Vit-C as an epigenetic regulator and immunotherapy enhancer. We also provide a short overview of the current state of systems for scavenging reactive oxygen species (ROS), especially in the context of their influencing high-dose Vit-C toxicity for the inhibition of cancer growth. Even though the mechanisms of Vit-C action are promising, they need to be supported with robust randomized and controlled clinical trials. Moreover, upcoming studies should focus on how to define the most suitable cancer patient populations for high-dose Vit-C treatments and develop effective strategies that combine Vit-C with various concurrent cancer treatment regimens.
Collapse
|
7
|
Bedhiafi T, Inchakalody VP, Fernandes Q, Mestiri S, Billa N, Uddin S, Merhi M, Dermime S. The potential role of vitamin C in empowering cancer immunotherapy. Biomed Pharmacother 2021; 146:112553. [PMID: 34923342 DOI: 10.1016/j.biopha.2021.112553] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin C also known as L-ascorbic acid is a nutrient naturally occurring in many fruits and vegetables and widely known for its potent antioxidant activity. Several studies have highlighted the importance of using high dose vitamin C as an adjuvant anti-cancer therapy. Interestingly, it has been shown that vitamin C is able to modulate the anti-cancer immune response and to help to overcome the resistance to immune checkpoints blockade (ICB) drugs such as cytotoxic T-lymphocyte antigen 4 (CLTA-4) and programmed cell death ligand 1 (PD-L1/PD-1) inhibitors. Indeed, it was reported that vitamin C regulates several mechanisms developed by cancer cells to escape T cells immune response and resist ICB. Understanding the role of vitamin C in the anti-tumor immune response will pave the way to the development of novel combination therapies that would enhance the response of cancer patients to ICB immunotherapy. In this review, we discuss the effect of vitamin C on the immune system and its potential role in empowering cancer immunotherapy through its pro-oxidant potential, its ability to modulate epigenetic factors and its capacity to regulate the expression of different cytokines involved in the immune response.
Collapse
Affiliation(s)
- Takwa Bedhiafi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Shahab Uddin
- Translational Research Institute and dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
8
|
Abstract
Significance: Vitamin C (ascorbate), in regard to its effectiveness against malignancies, has had a controversial history in cancer treatment. It has been shown that in vitro and in vivo anticancer efficacy of ascorbate relies on its pro-oxidant effect mainly from an increased generation of reactive oxygen species (ROS). A growing understanding of its anticancer activities and pharmacokinetic properties has prompted scientists to re-evaluate the significance of ascorbate in cancer treatment. Recent Advances: A recent resurge in ascorbate research emerged after discovering that, at high doses, ascorbate preferentially kills Kirsten-Ras (K-ras)- and B-raf oncogene (BRAF)-mutant cancer cells. In addition, some of the main hallmarks of cancer cells, such as redox homeostasis and oxygen-sensing regulation (through inhibition of hypoxia-inducible factor-1 alpha [HIF-1α] activity), are affected by vitamin C. Critical Issues: Currently, there is no clear consensus from the literature in regard to the beneficial effects of antioxidants. Results from both human and animal studies provide no clear evidence about the benefit of antioxidant treatment in preventing or suppressing cancer development. Since pro-oxidants may affect both normal and tumor cells, the extremely low toxicity of ascorbate represents a main advantage. This guarantees the safe inclusion of ascorbate in clinical protocols to treat cancer patients. Future Directions: Current research could focus on elucidating the wide array of reactions between ascorbate and reactive species, namely ROS, reactive nitrogen species as well as reactive sulfide species, and their intracellular molecular targets. Unraveling these mechanisms could allow researchers to assess what could be the optimal combination of ascorbate with standard treatments.
Collapse
Affiliation(s)
- Christophe Glorieux
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile.,Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
9
|
Ren C, Wu C, Yang C, Lian C. Vitamin C affects G0/G1 cell cycle and autophagy by downregulating of cyclin D1 in gastric carcinoma cells. Biosci Biotechnol Biochem 2021; 85:553-561. [PMID: 33624781 DOI: 10.1093/bbb/zbaa040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/16/2020] [Indexed: 01/07/2023]
Abstract
Vitamin C has re-emerged as a promising anticancer agent. This study attempts to analyze the differential gene expression of profiles GSE11919 to look for some clues, and the most significant cell cycle pathway caused by vitamin C was identified by integrated bioinformatics analysis. Inspired by this, we investigated the effect of vitamin C treatment on gastric carcinoma cells by detection of cell cycle, apoptosis, and autophagy. Vitamin C significantly elevated the percentage of cells at G0/G1 phase, whereas the percentage of S phase cells was decreased. Meanwhile, vitamin C treatment resulted in downregulation of cell cycle-related protein Cyclin D1. We deduced that the downregulation of Cyclin D1 by vitamin C accompanied by significantly increased 5'AMP-activated protein kinase and induced autophagy in MKN45 cells. These results suggest that vitamin C has the antiproliferation effect on gastric carcinoma cells via the regulation of cell cycle and autophagy by Cyclin D1.
Collapse
Affiliation(s)
- Chenxia Ren
- Central Laboratory, Changzhi Medical College, Changzhi, China
| | - Cuiling Wu
- Faculty of Basic Medicine, Changzhi Medical College, Changzhi, China
| | - Changqing Yang
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Changhong Lian
- Department of General Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
10
|
Ghanem A, Melzer AM, Zaal E, Neises L, Baltissen D, Matar O, Glennemeier-Marke H, Almouhanna F, Theobald J, Abu El Maaty MA, Berkers C, Wölfl S. Ascorbate kills breast cancer cells by rewiring metabolism via redox imbalance and energy crisis. Free Radic Biol Med 2021; 163:196-209. [PMID: 33359260 DOI: 10.1016/j.freeradbiomed.2020.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/15/2020] [Accepted: 12/14/2020] [Indexed: 01/10/2023]
Abstract
The idea to use megadoses of ascorbate (vitamin C) for cancer treatment has recently been revived. Despite clear efficacy in animal experimentation, our understanding of the cellular and molecular mechanisms of this treatment is still limited and suggests a combined oxidative and metabolic mechanism behind the selective cytotoxicity of ascorbate towards cancerous cells. To gain more insight into the cellular effects of high doses of ascorbate, we performed a detailed analysis of metabolic changes and cell survival of both luminal and basal-like breast cancer cells treated with ascorbate and revealed a distinctive metabolic shift virtually reversing the Warburg effect and triggering a severe disruption of redox homeostasis. High doses of ascorbate were cytotoxic against MCF7 and MDA-MB231 cells representing luminal and basal-like breast cancer phenotypes. Cell death was dependent on ascorbate-induced oxidative stress and accumulation of ROS, DNA damage, and depletion of essential intracellular co-factors including NAD+/NADH, associated with a multifaceted metabolic rewiring. This included a sharp disruption of glycolysis at the triose phosphate level, a rapid drop in ATP levels, and redirection of metabolites toward lipid droplet accumulation and increased metabolites and enzymatic activity in the pentose phosphate pathway (PPP). High doses of ascorbate also inhibited the TCA cycle and increased oxygen consumption. Together the severe disruptions of the intracellular metabolic homeostasis on multiple levels "redox crisis and energetic catastrophe" consequently trigger a rapid irreversible cell death.
Collapse
Affiliation(s)
- Ali Ghanem
- Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Germany
| | - Anna Maria Melzer
- Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Germany
| | - Esther Zaal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands
| | - Laura Neises
- Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Germany
| | - Danny Baltissen
- Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Germany
| | - Omar Matar
- Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Germany
| | | | - Fadi Almouhanna
- Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Germany
| | - Jannick Theobald
- Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Germany
| | | | - Celia Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands; Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Germany.
| |
Collapse
|
11
|
Codini M. Why Vitamin C Could Be an Excellent Complementary Remedy to Conventional Therapies for Breast Cancer. Int J Mol Sci 2020; 21:ijms21218397. [PMID: 33182353 PMCID: PMC7664876 DOI: 10.3390/ijms21218397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The most frequent cancer in women is breast cancer, which is a major cause of death. Currently, there are many pharmacological therapies that have made possible the cure and resolution of this tumor. However, these therapies are accompanied by numerous collateral effects that influence the quality of life (QoL) of the patients to varying degrees. For this reason, attention is turning to the use of complementary medicine to improve QoL. In particular, there are increased trials of intravenous injection of vitamin C at high doses to enhance the antitumor activity of drugs and/or decrease their side effects. This review intends to underline the anticancer mechanisms of vitamin C that could explain its efficacy for treating breast cancer, and why the use of vitamin C at high doses could help patients with breast cancer to enhance the efficacy of pharmacological therapies and/or decrease their side effects.
Collapse
Affiliation(s)
- Michela Codini
- Department of Pharmaceutical Science, University of Perugia, 06100 Perugia, Italy
| |
Collapse
|
12
|
Abiri B, Vafa M. Vitamin C and Cancer: The Role of Vitamin C in Disease Progression and Quality of Life in Cancer Patients. Nutr Cancer 2020; 73:1282-1292. [PMID: 32691657 DOI: 10.1080/01635581.2020.1795692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Much attention has been put on antioxidants as potential preventive and therapeutic agents against cancer. Vitamin C, an important antioxidant with anti-inflammatory and immune system enhancement features, could provide protection against cancer. However, experimental and epidemiologic evidence on vitamin C and cancer risk are still indefinite. Substantial literature reports that cancer patients experience vitamin C deficiency associated with decreased oral intake, infection, inflammation, disease processes, and treatments such as radiation, chemotherapy, and surgery. Studies demonstrate associations between IVC and inflammation biomarkers and propose some amelioration in symptoms, with a possible advantage in quality of life (QoL) when intravenous vitamin C (IVC) alone or in combination with oral vitamin C is administered in oncologic care. While, the anticancer impact of high doses of IVC remains debatable in spite of growing evidence that high dose vitamin C shows anti-tumorigenic activity by elevating the amount of reactive oxygen species (ROS) in cancer cells without meaningful toxicities. Hence, there is an urgent requirement for rigorous and well-controlled assessments of IVC as an adjuvant therapy for cancer before clear conclusions can be drawn. Thus, more clinical trials are required to determine the additive impact of high dose vitamin C in cancer patients.
Collapse
Affiliation(s)
- Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Kaźmierczak-Barańska J, Boguszewska K, Adamus-Grabicka A, Karwowski BT. Two Faces of Vitamin C-Antioxidative and Pro-Oxidative Agent. Nutrients 2020; 12:nu12051501. [PMID: 32455696 PMCID: PMC7285147 DOI: 10.3390/nu12051501] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin C has been known for decades. It is common in everyday use as an element of the diet, supplementation, and a preservative. For years, research has been conducted to precisely determine the mechanism of action of ascorbate in the cell. Available results indicate its multi-directional cellular effects. Vitamin C, which belongs to antioxidants scavenging free radicals, also has a ‘second face’—as a pro-oxidative factor. However, whether is the latter nature a defect harmful to the cell, or whether a virtue that is a source of benefit? In this review, we discuss the effects of vitamin C treatment in cancer prevention and the role of ascorbate in maintaining redox balance in the central nervous system (CNS). Finally, we discuss the effect of vitamin C supplementation on biomarkers of oxidative DNA damage and review the evidence that vitamin C has radioprotective properties.
Collapse
|
14
|
An Overview of the Antioxidant Effects of Ascorbic Acid and Alpha Lipoic Acid (in Liposomal Forms) as Adjuvant in Cancer Treatment. Antioxidants (Basel) 2020; 9:antiox9050359. [PMID: 32344912 PMCID: PMC7278686 DOI: 10.3390/antiox9050359] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
Antioxidants are known to minimize oxidative stress by interacting with free radicals produced as a result of cell aerobic reactions. Oxidative stress has long been linked to many diseases, especially tumours. Therefore, antioxidants play a crucial role in the prevention or management of free radical-related diseases. However, most of these antioxidants have anticancer effects only if taken in large doses. Others show inadequate bioavailability due to their instability in the blood or having a hydrophilic nature that limits their permeation through the cell membrane. Therefore, entrapping antioxidants in liposomes may overcome these drawbacks as liposomes have the capability to accommodate both hydrophilic and hydrophobic compounds with a considerable stability. Additionally, liposomes have the capability to accumulate at the cancer tissue passively, due to their small sizes, with enhanced drug delivery. Additionally, liposomes can be engineered with targeting moieties to increase the delivery of chemotherapeutic agents to specific tumour cells with decreased accumulation in healthy tissues. Therefore, combined use of liposomes and antioxidants, with or without chemotherapeutic agents, is an attractive strategy to combat varies tumours. This mini review focuses on the liposomal delivery of selected antioxidants, namely ascorbic acid (AA) and alpha-lipoic acid (ALA). The contribution of these nanocarriers in enhancing the antioxidant effect of AA and ALA and consequently their anticancer potentials will be demonstrated.
Collapse
|
15
|
Macan AM, Harej A, Cazin I, Klobučar M, Stepanić V, Pavelić K, Pavelić SK, Schols D, Snoeck R, Andrei G, Raić-Malić S. Antitumor and antiviral activities of 4-substituted 1,2,3-triazolyl-2,3-dibenzyl-L-ascorbic acid derivatives. Eur J Med Chem 2019; 184:111739. [PMID: 31586832 PMCID: PMC7115614 DOI: 10.1016/j.ejmech.2019.111739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 11/30/2022]
Abstract
Two series of 6-(1,2,3-triazolyl)-2,3-dibenzyl-l-ascorbic acid derivatives with the hydroxyethylene (8a−8u) and ethylidene linkers (10c−10p) were synthesized and evaluated for their antiproliferative activity against seven malignant tumor cell lines and antiviral activity against a broad range of viruses. Conformationally unrestricted spacer between the lactone and 1,2,3-triazole units in 8a−8u series had a profound effect on antitumor activity. Besides, the introduction of a long side chain at C-4 of 1,2,3-triazole that led to the synthesis of decyl-substituted 2,3-dibenzyl-l-ascorbic acid 8m accounted for a selective and potent antiproliferative activity on breast cancer MCF-7 cells cells in the nM range. Further analysis showed that compound 8m strongly enhanced expression of hypoxia inducible transcription factor 1 α (HIF-1α) and to some extent decreased expression of nitric oxide synthase 2 (NOS2) suggesting its role in regulating HIF-1α signalling pathway. The p-methoxyphenyl-substituted derivative 10g displayed specific anti-cytomegalovirus (CMV) potential, whereas aliphatic-substituted derivatives 8l and 8m had the most potent, yet relatively non-specific, anti-varicella-zoster (VZV) activity. Two series of 1,2,3-triazolyl 2,3-dibenzyl-l-ascorbic acid conjugates were synthesized. Conformationally unrestricted spacer had a major effect on antitumor activities. Decyl-substituted l-ascorbic acid 8m caused inhibition of breast cancer MCF-7 cells in the nM range. 8m increased the expression of hypoxia inducible transcription factor HIF-1α. p-Methoxyphenyl-substituted derivative 10g had specific anti-CMV activity.
Collapse
Affiliation(s)
- Andrijana Meščić Macan
- University of Zagreb, Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, Marulićev Trg 20, HR-10000, Zagreb, Croatia
| | - Anja Harej
- University of Rijeka, Department of Biotechnology, Centre for High-throughput Technologies Radmile Matejčić 2, HR-51000, Rijeka, Croatia
| | - Ines Cazin
- University of Zagreb, Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, Marulićev Trg 20, HR-10000, Zagreb, Croatia
| | - Marko Klobučar
- University of Rijeka, Department of Biotechnology, Centre for High-throughput Technologies Radmile Matejčić 2, HR-51000, Rijeka, Croatia
| | - Višnja Stepanić
- Ruđer Bošković Institute, Division of Molecular Medicine, Bijenička Cesta 54, 10 000, Zagreb, Croatia
| | - Krešimir Pavelić
- Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Sandra Kraljević Pavelić
- University of Rijeka, Department of Biotechnology, Centre for High-throughput Technologies Radmile Matejčić 2, HR-51000, Rijeka, Croatia
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Laboratory of Virology and Chemotherapy, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Laboratory of Virology and Chemotherapy, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Laboratory of Virology and Chemotherapy, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Silvana Raić-Malić
- University of Zagreb, Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, Marulićev Trg 20, HR-10000, Zagreb, Croatia.
| |
Collapse
|
16
|
Takaki A, Kawano S, Uchida D, Takahara M, Hiraoka S, Okada H. Paradoxical Roles of Oxidative Stress Response in the Digestive System before and after Carcinogenesis. Cancers (Basel) 2019; 11:cancers11020213. [PMID: 30781816 PMCID: PMC6406746 DOI: 10.3390/cancers11020213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/03/2019] [Accepted: 02/11/2019] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress is recognized as a cancer-initiating stress response in the digestive system. It is produced through mitochondrial respiration and induces DNA damage, resulting in cancer cell transformation. However, recent findings indicate that oxidative stress is also a necessary anticancer response for destroying cancer cells. The oxidative stress response has also been reported to be an important step in increasing the anticancer response of newly developed molecular targeted agents. Oxidative stress might therefore be a cancer-initiating response that should be downregulated in the precancerous stage in patients at risk of cancer but an anticancer cell response that should not be downregulated in the postcancerous stage when cancer cells are still present. Many commercial antioxidant agents are marketed as “cancer-eliminating agents” or as products to improve one’s health, so cancer patients often take these antioxidant agents. However, care should be taken to avoid harming the anticancerous oxidative stress response. In this review, we will highlight the paradoxical effects of oxidative stress and antioxidant agents in the digestive system before and after carcinogenesis.
Collapse
Affiliation(s)
- Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Seiji Kawano
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Masahiro Takahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Sakiko Hiraoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| |
Collapse
|
17
|
de Carvalho Melo-Cavalcante AA, da Rocha Sousa L, Alencar MVOB, de Oliveira Santos JV, da Mata AMO, Paz MFCJ, de Carvalho RM, Nunes NMF, Islam MT, Mendes AN, Gonçalves JCR, da Silva FCC, Ferreira PMP, de Castro E Sousaa JM. Retinol palmitate and ascorbic acid: Role in oncological prevention and therapy. Biomed Pharmacother 2018; 109:1394-1405. [PMID: 30551390 DOI: 10.1016/j.biopha.2018.10.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer development has been directly related to oxidative stress. During chemotherapy, some cancer patients use dietary antioxidants to avoid nutritional deficiencies due to cancer treatment. Among the antioxidants consumed, there are vitamins, including retinyl palmitate (PR) and ascorbic acid (AA), which have the capacity to reduce free radicals formation, protect cellular structures and maintain the cellular homeostasis. This systematic review evaluated the antioxidant and antitumor mechanisms of retinol palmitate (a derivative of vitamin A) and/or ascorbic acid (vitamin C) in cancer-related studies. Ninety-seven (97) indexed articles in the databases PubMed and Science Direct, published between 2013 and 2017, including 23 clinical studies (5 for every single compound while 13 in interaction) and 74 non-clinical studies (37 for retinol palmitate, 36 for ascorbic acid and 1 in interaction) were considered. Antioxidant and antitumor effects, with controversies over dosage and route of administration, were observed for the test compounds in their isolated form or associated in clinical studies. Prevention of cancer risks against oxidative damage was seen in lower doses of retinol palmitate and/or vitamin C. However, at high doses, they can generate reactive oxygen species, cytotoxicity and apoptosis in test systems. Non-clinical studies using cell lines have allowed understanding the mechanisms related to antioxidants and antitumor effects of the isolated compounds, however, studies on vitamin interactions, acting as antioxidants and/or antitumor are still rare and controversial. More studies, mainly related to modulation of antineoplastic drugs are needed for understanding the risks and benefits of their use during treatment in order to achieve effectiveness in cancer therapy and patient's quality of life.
Collapse
Affiliation(s)
- Ana Amélia de Carvalho Melo-Cavalcante
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Leonardo da Rocha Sousa
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Marcus Vinícius Oliveira Barros Alencar
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - José Victor de Oliveira Santos
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Ana Maria Oliveira da Mata
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Márcia Fernanda Correia Jardim Paz
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Ricardo Melo de Carvalho
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Nárcia Mariana Fonseca Nunes
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Anderson Nogueira Mendes
- Department of Biophysics and Physiology of Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Juan Carlos Ramos Gonçalves
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Felipe Cavalcanti Carneiro da Silva
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam; Department of Biological Sciences, Federal University of Piauí, Picos, Piauí, 64.067-670, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Department of Biophysics and Physiology of Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - João Marcelo de Castro E Sousaa
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam; Department of Biological Sciences, Federal University of Piauí, Picos, Piauí, 64.067-670, Brazil.
| |
Collapse
|
18
|
Tan BL, Norhaizan ME, Liew WPP, Sulaiman Rahman H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front Pharmacol 2018; 9:1162. [PMID: 30405405 PMCID: PMC6204759 DOI: 10.3389/fphar.2018.01162] [Citation(s) in RCA: 585] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Aging is the progressive loss of organ and tissue function over time. Growing older is positively linked to cognitive and biological degeneration such as physical frailty, psychological impairment, and cognitive decline. Oxidative stress is considered as an imbalance between pro- and antioxidant species, which results in molecular and cellular damage. Oxidative stress plays a crucial role in the development of age-related diseases. Emerging research evidence has suggested that antioxidant can control the autoxidation by interrupting the propagation of free radicals or by inhibiting the formation of free radicals and subsequently reduce oxidative stress, improve immune function, and increase healthy longevity. Indeed, oxidation damage is highly dependent on the inherited or acquired defects in enzymes involved in the redox-mediated signaling pathways. Therefore, the role of molecules with antioxidant activity that promote healthy aging and counteract oxidative stress is worth to discuss further. Of particular interest in this article, we highlighted the molecular mechanisms of antioxidants involved in the prevention of age-related diseases. Taken together, a better understanding of the role of antioxidants involved in redox modulation of inflammation would provide a useful approach for potential interventions, and subsequently promoting healthy longevity.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Winnie-Pui-Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | |
Collapse
|
19
|
Álvarez ÁH, Martínez Velázquez M, Prado Montes de Oca E. Human β-defensin 1 update: Potential clinical applications of the restless warrior. Int J Biochem Cell Biol 2018; 104:133-137. [PMID: 30236992 DOI: 10.1016/j.biocel.2018.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/15/2018] [Accepted: 09/15/2018] [Indexed: 01/06/2023]
Abstract
Human β-defensin 1 (hBD-1) is a multifaceted antimicrobial peptide being a tumour suppressor and, depending on call of duty, capable of inducing self-nets and neutrophil extracellular traps (NETs) to capture and/or kill bacteria, participates in inflammatory responses in chronic diseases including hBD-3 upregulation and also capable of up/downregulation in the presence of certain species of Lactobacillus sp. Thus, is regulated by host microbiota. Alleles, genotypes and/or altered gene expression of its coding gene, DEFB1, have been associated with several human diseases/conditions ranging from metabolic/chronic (e.g. cancer), infectious (e.g. tuberculosis, HIV/AIDS), inflammatory (gastrointestinal diseases), male infertility and more recently, neurologic (e.g. depression and Alzheimer) and autoimmune diseases (e.g. vitiligo and systemic lupus erythematosus). The present update focuses on novel DEFB1/hBD-1 properties and biomarker features, its biological function and the pharmaceutical potential uses of antimicrobial peptide elicitors (APEs) or the engineered peptide in the treatment of hBD-1-related human diseases.
Collapse
Affiliation(s)
- Ángel H Álvarez
- Personalized Medicine National Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology Unit, Research Center of Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Mexico
| | - Moisés Martínez Velázquez
- Personalized Medicine National Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology Unit, Research Center of Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Mexico
| | - Ernesto Prado Montes de Oca
- Personalized Medicine National Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology Unit, Research Center of Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Mexico.
| |
Collapse
|
20
|
Polireddy K, Dong R, Reed G, Yu J, Chen P, Williamson S, Violet PC, Pessetto Z, Godwin AK, Fan F, Levine M, Drisko JA, Chen Q. High Dose Parenteral Ascorbate Inhibited Pancreatic Cancer Growth and Metastasis: Mechanisms and a Phase I/IIa study. Sci Rep 2017; 7:17188. [PMID: 29215048 PMCID: PMC5719364 DOI: 10.1038/s41598-017-17568-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer is among the most lethal cancers with poorly tolerated treatments. There is increasing interest in using high-dose intravenous ascorbate (IVC) in treating this disease partially because of its low toxicity. IVC bypasses bioavailability barriers of oral ingestion, provides pharmacological concentrations in tissues, and exhibits selective cytotoxic effects in cancer cells through peroxide formation. Here, we further revealed its anti-pancreatic cancer mechanisms and conducted a phase I/IIa study to investigate pharmacokinetic interaction between IVC and gemcitabine. Pharmacological ascorbate induced cell death in pancreatic cancer cells with diverse mutational backgrounds. Pharmacological ascorbate depleted cellular NAD+ preferentially in cancer cells versus normal cells, leading to depletion of ATP and robustly increased α-tubulin acetylation in cancer cells. While ATP depletion led to cell death, over-acetylated tubulin led to inhibition of motility and mitosis. Collagen was increased, and cancer cell epithelial-mesenchymal transition (EMT) was inhibited, accompanied with inhibition in metastasis. IVC was safe in patients and showed the possibility to prolong patient survival. There was no interference to gemcitabine pharmacokinetics by IVC administration. Taken together, these data revealed a multi-targeting mechanism of pharmacological ascorbate's anti-cancer action, with minimal toxicity, and provided guidance to design larger definitive trials testing efficacy of IVC in treating advanced pancreatic cancer.
Collapse
Affiliation(s)
- Kishore Polireddy
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ruochen Dong
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Gregory Reed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jun Yu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ping Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Stephen Williamson
- Department of Internal Medicine, Hematology and Oncology Division, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Pierre-Christian Violet
- National Institute of Diabetes, Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ziyan Pessetto
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Fang Fan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mark Levine
- National Institute of Diabetes, Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeanne A Drisko
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
21
|
SVCT-2 determines the sensitivity to ascorbate-induced cell death in cholangiocarcinoma cell lines and patient derived xenografts. Cancer Lett 2017; 398:1-11. [PMID: 28385602 DOI: 10.1016/j.canlet.2017.03.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/21/2022]
Abstract
Cholangiocarcinoma (CC) is a devastating malignancy with late diagnosis and poor response to conventional chemotherapy. Recent studies have revealed anti-cancer effect of vitamin C (l-ascorbic acid, ascorbate) in several types of cancer. However, the effect of l-ascorbic acid (AA) in CC remains elusive. Herein, we demonstrated that AA induced cytotoxicity in CC cells by generating intracellular reactive oxygen species (ROS), and subsequently DNA damage, ATP depletion, mTOR pathway inhibition. Moreover, AA worked synergistically with chemotherapeutic agent cisplatin to impair CC cells growth both in vitro and in vivo. Intriguingly, sodium-dependent vitamin C transporter 2 (SVCT-2) expression was inversely correlated with IC50 values of AA. Knockdown of SVCT-2 dramatically alleviated DNA damage, ATP depletion, and inhibition of mTOR pathway induced by AA. Furthermore, SVCT-2 knockdown endowed CC cells with the resistance to AA treatment. Finally, the inhibitory effects of AA were further confirmed in patient-derived CC xenograft models. Thus, our results unravel therapeutic potential of AA alone or in combination with cisplatin for CC. SVCT2 expression level may serve as a positive outcome predictor for AA treatment in CC.
Collapse
|
22
|
Ooko E, Kadioglu O, Greten HJ, Efferth T. Pharmacogenomic Characterization and Isobologram Analysis of the Combination of Ascorbic Acid and Curcumin-Two Main Metabolites of Curcuma longa-in Cancer Cells. Front Pharmacol 2017; 8:38. [PMID: 28210221 PMCID: PMC5288649 DOI: 10.3389/fphar.2017.00038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/18/2017] [Indexed: 12/11/2022] Open
Abstract
Curcuma longa has long been used in China and India as anti-inflammatory agent to treat a wide variety of conditions and also as a spice for varied curry preparations. The chemoprofile of the Curcuma species exhibits the presence of varied phytochemicals with curcumin being present in all three species but AA only being shown in C. longa. This study explored the effect of a curcumin/AA combination on human cancer cell lines. The curcumin/AA combination was assessed by isobologram analysis using the Loewe additivity drug interaction model. The drug combination showed additive cytotoxicity toward CCRF-CEM and CEM/ADR5000 leukemia cell lines and HCT116p53+/+ and HCT116p53−/− colon cancer cell line, while the glioblastoma cell lines U87MG and U87MG.ΔEGFR showed additive to supra-additive cytotoxicity. Gene expression profiles predicting sensitivity and resistance of tumor cells to induction by curcumin and AA were determined by microarray-based mRNA expressions, COMPARE, and hierarchical cluster analyses. Numerous genes involved in transcription (TFAM, TCERG1, RGS13, C11orf31), apoptosis-regulation (CRADD, CDK7, CDK19, CD81, TOM1) signal transduction (NR1D2, HMGN1, ABCA1, DE4ND4B, TRIM27) DNA repair (TOPBP1, RPA2), mRNA metabolism (RBBP4, HNRNPR, SRSF4, NR2F2, PDK1, TGM2), and transporter genes (ABCA1) correlated with cellular responsiveness to curcumin and ascorbic acid. In conclusion, this study shows the effect of the curcumin/AA combination and identifies several candidate genes that may regulate the response of varied cancer cells to curcumin and AA.
Collapse
Affiliation(s)
- Edna Ooko
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Henry J Greten
- Heidelberg School of Chinese MedicineHeidelberg, Germany; Abel Salazar Biomedical Sciences Institute, University of PortoPorto, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
23
|
Leekha A, Gurjar BS, Tyagi A, Rizvi MA, Verma AK. Vitamin C in synergism with cisplatin induces cell death in cervical cancer cells through altered redox cycling and p53 upregulation. J Cancer Res Clin Oncol 2016; 142:2503-2514. [PMID: 27613187 DOI: 10.1007/s00432-016-2235-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/30/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE Cervical cancer is the second most prevalent cancer in women worldwide. Survival of patients has been improved by cisplatin-based chemotherapy, but its effectiveness is limited due to its adverse effects on many tissues, especially nephrotoxicity. To optimize the efficacy of CDDP, we propose a combination therapy using natural products with minimal side effects. Vitamin C being a natural antioxidant is capable of selectively targeting cancer cells at pharmacological concentrations. Vitamin C synergistically enhances the activity of chemotherapeutic agents without increasing toxicity to normal cells. Therefore, we exploited co-therapy with cisplatin and vitamin C to kill cervical cancer cells. METHODS We elucidated the role of CDDP and VC on cervical cancer cell line (SiHa) by using cell growth assays, DNA fragmentation analysis, comet assay, in vitro morphological assessment of apoptosis (AO/EB and DAPI staining), ROS analysis by DCFDA, flow cytometry, biochemical assays (GST, GSH, NO, catalase, TPA) and Western blotting. RESULTS Our results clearly demonstrated that CDDP and VC treatment exhibited ameliorative effect on induction of cell death by p53 overexpression and generation of hydrogen peroxide in SiHa cells, thereby reducing the dosage of CDDP required to induce cell death in cancer cells. CONCLUSIONS These studies provide novel approaches to combat cisplatin resistance in cervical cancer.
Collapse
Affiliation(s)
- Ankita Leekha
- NanoBiotech Laboratory, Department of Zoology, Kirori Mal College, University of Delhi , Delhi, 110007, India
- Genome Biology Laboratory, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Bahadur S Gurjar
- NanoBiotech Laboratory, Department of Zoology, Kirori Mal College, University of Delhi , Delhi, 110007, India
| | - Aakriti Tyagi
- NanoBiotech Laboratory, Department of Zoology, Kirori Mal College, University of Delhi , Delhi, 110007, India
| | - Moshahid A Rizvi
- Genome Biology Laboratory, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anita K Verma
- NanoBiotech Laboratory, Department of Zoology, Kirori Mal College, University of Delhi , Delhi, 110007, India.
| |
Collapse
|
24
|
Ascorbic acid and colon cancer: an oxidative stimulus to cell death depending on cell profile. Eur J Cell Biol 2016; 95:208-18. [DOI: 10.1016/j.ejcb.2016.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/13/2016] [Accepted: 04/05/2016] [Indexed: 12/25/2022] Open
|
25
|
Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, Roper J, Chio IIC, Giannopoulou EG, Rago C, Muley A, Asara JM, Paik J, Elemento O, Chen Z, Pappin DJ, Dow LE, Papadopoulos N, Gross SS, Cantley LC. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 2015; 350:1391-6. [PMID: 26541605 DOI: 10.1126/science.aaa5004] [Citation(s) in RCA: 670] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 10/16/2015] [Indexed: 12/16/2022]
Abstract
More than half of human colorectal cancers (CRCs) carry either KRAS or BRAF mutations and are often refractory to approved targeted therapies. We found that cultured human CRC cells harboring KRAS or BRAF mutations are selectively killed when exposed to high levels of vitamin C. This effect is due to increased uptake of the oxidized form of vitamin C, dehydroascorbate (DHA), via the GLUT1 glucose transporter. Increased DHA uptake causes oxidative stress as intracellular DHA is reduced to vitamin C, depleting glutathione. Thus, reactive oxygen species accumulate and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Inhibition of GAPDH in highly glycolytic KRAS or BRAF mutant cells leads to an energetic crisis and cell death not seen in KRAS and BRAF wild-type cells. High-dose vitamin C impairs tumor growth in Apc/Kras(G12D) mutant mice. These results provide a mechanistic rationale for exploring the therapeutic use of vitamin C for CRCs with KRAS or BRAF mutations.
Collapse
Affiliation(s)
- Jihye Yun
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Edouard Mullarky
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA. Biological and Biomedical Sciences Graduate Program, Harvard Medical School, Boston, MA 02115, USA
| | - Changyuan Lu
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kaitlyn N Bosch
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Adam Kavalier
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jatin Roper
- Molecular Oncology Research Institute and Division of Gastroenterology, Tufts Medical Center, Boston, MA 02111, USA
| | | | - Eugenia G Giannopoulou
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Carlo Rago
- Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA
| | - Ashlesha Muley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zhengming Chen
- Department of Biostatistics and Epidemiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lukas E Dow
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
26
|
Uetaki M, Tabata S, Nakasuka F, Soga T, Tomita M. Metabolomic alterations in human cancer cells by vitamin C-induced oxidative stress. Sci Rep 2015; 5:13896. [PMID: 26350063 PMCID: PMC4563566 DOI: 10.1038/srep13896] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023] Open
Abstract
Intravenous administration of high-dose vitamin C has recently attracted attention as a cancer therapy. High-dose vitamin C induces pro-oxidant effects and selectively kills cancer cells. However, the anticancer mechanisms of vitamin C are not fully understood. Here, we analyzed metabolic changes induced by vitamin C in MCF7 human breast adenocarcinoma and HT29 human colon cancer cells using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). The metabolomic profiles of both cell lines were dramatically altered after exposure to cytotoxic concentrations of vitamin C. Levels of upstream metabolites in the glycolysis pathway and tricarboxylic acid (TCA) cycle were increased in both cell lines following treatment with vitamin C, while adenosine triphosphate (ATP) levels and adenylate energy charges were decreased concentration-dependently. Treatment with N-acetyl cysteine (NAC) and reduced glutathione (GSH) significantly inhibited vitamin C-induced cytotoxicity in MCF7 cells. NAC also suppressed vitamin C-dependent metabolic changes, and NAD treatment prevented vitamin C-induced cell death. Collectively, our data suggests that vitamin C inhibited energy metabolism through NAD depletion, thereby inducing cancer cell death.
Collapse
Affiliation(s)
- Megumi Uetaki
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Sho Tabata
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Fumie Nakasuka
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.,Environment and Information Studies, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan.,Environment and Information Studies, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan.,Environment and Information Studies, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| |
Collapse
|
27
|
Roberts BM, Fullerton DR, Elliott SL. High concentrations of L-ascorbic acid (Vitamin C) induces apoptosis in a human cervical cancer cell line (HeLa) through the intrinsic and extrinsic pathways. ACTA ACUST UNITED AC 2015. [DOI: 10.1893/bios-d-14-00019.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Ascorbic acid, ultraviolet C rays, and glucose but not hyperthermia are elicitors of human β-defensin 1 mRNA in normal keratinocytes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:714580. [PMID: 25815330 PMCID: PMC4359827 DOI: 10.1155/2015/714580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/02/2014] [Accepted: 10/24/2014] [Indexed: 01/18/2023]
Abstract
Hosts' innate defense systems are upregulated by antimicrobial peptide elicitors (APEs). Our aim was to investigate the effects of hyperthermia, ultraviolet A rays (UVA), and ultraviolet C rays (UVC) as well as glucose and ascorbic acid (AA) on the regulation of human β-defensin 1 (DEFB1), cathelicidin (CAMP), and interferon-γ (IFNG) genes in normal human keratinocytes (NHK). The indirect in vitro antimicrobial activity against Staphylococcus aureus and Listeria monocytogenes of these potential APEs was tested. We found that AA is a more potent APE for DEFB1 than glucose in NHK. Glucose but not AA is an APE for CAMP. Mild hypo- (35°C) and hyperthermia (39°C) are not APEs in NHK. AA-dependent DEFB1 upregulation below 20 mM predicts in vitro antimicrobial activity as well as glucose- and AA-dependent CAMP and IFNG upregulation. UVC upregulates CAMP and DEFB1 genes but UVA only upregulates the DEFB1 gene. UVC is a previously unrecognized APE in human cells. Our results suggest that glucose upregulates CAMP in an IFN-γ-independent manner. AA is an elicitor of innate immunity that will challenge the current concept of late activation of adaptive immunity of this vitamin. These results could be useful in designing new potential drugs and devices to combat skin infections.
Collapse
|
29
|
Lee S, Kim J, Jung S, Li C, Yang Y, Kim KI, Lim JS, Kim Y, Cheon CI, Lee MS. SIAH1-induced p34SEI-1 polyubiquitination/degradation mediates p53 preferential vitamin C cytotoxicity. Int J Oncol 2015; 46:1377-84. [PMID: 25586269 DOI: 10.3892/ijo.2015.2840] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/26/2014] [Indexed: 11/06/2022] Open
Abstract
Vitamin C is considered as an important anticancer therapeutic agent although this view is debatable. In this study, we introduce a physiological mechanism demonstrating how vitamin C exerts anticancer activity that induces cell cycle arrest and apoptosis. Our previous and current data reveal that p53 tumor suppressor is the prerequisite factor for stronger anticancer effects of vitamin C. In addition, vitamin C-mediated cancer cell cytotoxicity appears to be achieved at least partly through the downregulation of the p34SEI-1 oncoprotein. Our previous study showed that p34SEI-1 increases the survival of various types of cancer cells by inhibiting their apoptosis. Present data suggest that vitamin C treatment decreases the p34SEI-1 expression at the protein level and therefore alleviates its anti-apoptotic activity. Of note, SIAH1, E3 ubiquitin ligase, appears to be responsible for the p34SEI-1 polyubiquitination and its subsequent degradation, which is dependent on p53. In summary, vitamin C increases cancer cell death by inducing SIAH1-mediated polyubiquitination/degradation of the p34SEI-1 oncoprotein in a p53-dependent manner.
Collapse
Affiliation(s)
- Soonduck Lee
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Jinsun Kim
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Samil Jung
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Chengping Li
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Young Yang
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Keun Il Kim
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Jong-Seok Lim
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Yonghwan Kim
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Choong-Il Cheon
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Myeong-Sok Lee
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| |
Collapse
|
30
|
Vitamin C effect on mitoxantrone-induced cytotoxicity in human breast cancer cell lines. PLoS One 2014; 9:e115287. [PMID: 25531443 PMCID: PMC4274052 DOI: 10.1371/journal.pone.0115287] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/20/2014] [Indexed: 12/02/2022] Open
Abstract
In recent years the use of natural dietary antioxidants to minimize the cytotoxicity and the damage induced in normal tissues by antitumor agents is gaining consideration. In literature, it is reported that vitamin C exhibits some degree of antineoplastic activity whereas Mitoxantrone (MTZ) is a synthetic anti-cancer drug with significant clinical effectiveness in the treatment of human malignancies but with severe side effects. Therefore, we have investigated the effect of vitamin C alone or combined with MTZ on MDA-MB231 and MCF7 human breast cancer cell lines to analyze their dose-effect on the tumor cellular growth, cellular death, cell cycle and cell signaling. Our results have evidenced that there is a dose-dependence on the inhibition of the breast carcinoma cell lines, MCF7 and MDA-MB231, treated with vitamin C and MTZ. Moreover, their combination induces: i) a cytotoxic effect by apoptotic death, ii) a mild G2/M elongation and iii) H2AX and mild PI3K activation. Hence, the formulation of vitamin C with MTZ induces a higher cytotoxicity level on tumor cells compared to a disjointed treatment. We have also found that the vitamin C enhances the MTZ effect allowing the utilization of lower chemotherapic concentrations in comparison to the single treatments.
Collapse
|
31
|
Kuiper C, Vissers MCM. Ascorbate as a co-factor for fe- and 2-oxoglutarate dependent dioxygenases: physiological activity in tumor growth and progression. Front Oncol 2014; 4:359. [PMID: 25540771 PMCID: PMC4261134 DOI: 10.3389/fonc.2014.00359] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/27/2014] [Indexed: 01/07/2023] Open
Abstract
Ascorbate is a specific co-factor for a large family of enzymes known as the Fe- and 2-oxoglutarate-dependent dioxygenases. These enzymes are found throughout biology and catalyze the addition of a hydroxyl group to various substrates. The proline hydroxylase that is involved in collagen maturation is well known, but in recent times many new enzymes and functions have been uncovered, including those involved in epigenetic control and hypoxia-inducible factor (HIF) regulation. These discoveries have provided crucial mechanistic insights into how ascorbate may affect tumor biology. In particular, there is growing evidence that HIF-1-dependent tumor progression may be inhibited by increasing tumor ascorbate levels. However, rigorous clinical intervention studies are lacking. This review will explore the physiological role of ascorbate as an enzyme co-factor and how this mechanism relates to cancer biology and treatment. The use of ascorbate in cancer should be informed by clinical studies based on such mechanistic hypotheses.
Collapse
Affiliation(s)
- Caroline Kuiper
- Department of Pathology, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| | - Margreet C. M. Vissers
- Department of Pathology, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| |
Collapse
|
32
|
Nielsen TK, Højgaard M, Andersen JT, Poulsen HE, Lykkesfeldt J, Mikines KJ. Elimination of ascorbic acid after high-dose infusion in prostate cancer patients: a pharmacokinetic evaluation. Basic Clin Pharmacol Toxicol 2014; 116:343-8. [PMID: 25220574 DOI: 10.1111/bcpt.12323] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/02/2014] [Indexed: 01/14/2023]
Abstract
Treatment with high-dose intravenous (IV) ascorbic acid (AA) is used in complementary and alternative medicine for various conditions including cancer. Cytotoxicity to cancer cell lines has been observed with millimolar concentrations of AA. Little is known about the pharmacokinetics of high-dose IV AA. The purpose of this study was to assess the basic kinetic variables in human beings over a relevant AA dosing interval for proper design of future clinical trials. Ten patients with metastatic prostate cancer were treated for 4 weeks with fixed AA doses of 5, 30 and 60 g. AA was measured consecutively in plasma and indicated first-order elimination kinetics throughout the dosing range with supra-physiological concentrations. The target dose of 60 g AA IV produced a peak plasma AA concentration of 20.3 mM. Elimination half-life was 1.87 hr (mean, S.D. ± 0.40), volume of distribution 0.19 L/kg (S.D. ±0.05) and clearance rate 6.02 L/hr (100 mL/min). No differences in pharmacokinetic parameters were observed between weeks/doses. A relatively fast first-order elimination with half-life of about 2 hr makes it impossible to maintain AA concentrations in the potential cytotoxic range after infusion stop in prostate cancer patients with normal kidney function. We propose a regimen with a bolus loading followed by a maintenance infusion based on the calculated clearance.
Collapse
Affiliation(s)
- Torben K Nielsen
- Department of Urology, Copenhagen University Hospital Herlev, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
33
|
Fritz H, Flower G, Weeks L, Cooley K, Callachan M, McGowan J, Skidmore B, Kirchner L, Seely D. Intravenous Vitamin C and Cancer: A Systematic Review. Integr Cancer Ther 2014; 13:280-300. [PMID: 24867961 DOI: 10.1177/1534735414534463] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intravenous vitamin C (IVC) is a contentious adjunctive cancer therapy, widely used in naturopathic and integrative oncology settings. We conducted a systematic review of human interventional and observational studies assessing IVC for use in cancer patients. METHODS We searched MEDLINE, EMBASE, The Cochrane Library, CINAHL, and AMED from inception to April 2013 for human studies examining the safety, effectiveness, or pharmacokinetics of IVC use in cancer patients. RESULTS Of 897 records, a total of 39 reports of 37 studies were included: 2 randomized controlled trials (RCTs), 15 uncontrolled trials, 6 observational studies, and 14 case reports. IVC dosing ranged from 1 g to more than 200 g ascorbic acid per infusion, typically administered 2 to 3 times weekly. IVC does not appear to increase toxicity or interfere with antitumor effects of gemcitabine/erlotinib therapy or paclitaxel and carboplatin. Based on 1 RCT and data from uncontrolled human trials, IVC may improve time to relapse and possibly enhance reductions in tumor mass and improve survival in combination with chemotherapy. IVC may improve quality of life, physical function, and toxicities associated with chemotherapy, including fatigue, nausea, insomnia, constipation, and depression. Case reports document several instances of tumor regression and long-term disease-free survival associated with use of IVC. CONCLUSION There is limited high-quality clinical evidence on the safety and effectiveness of IVC. The existing evidence is preliminary and cannot be considered conclusive but is suggestive of a good safety profile and potentially important antitumor activity; however, more rigorous evidence is needed to conclusively demonstrate these effects. IVC may improve the quality of life and symptom severity of patients with cancer, and several cases of cancer remission have been reported. Well-designed, controlled studies of IVC therapy are needed.
Collapse
Affiliation(s)
- Heidi Fritz
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Gillian Flower
- Ottawa Integrative Cancer Centre, Ottawa, Ontario, Canada
| | - Laura Weeks
- Ottawa Integrative Cancer Centre, Ottawa, Ontario, Canada
| | - Kieran Cooley
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada University of Toronto, Toronto, Ontario, Canada
| | | | - Jessie McGowan
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Becky Skidmore
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | | | - Dugald Seely
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada Ottawa Integrative Cancer Centre, Ottawa, Ontario, Canada Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
34
|
Tian W, Wang Y, Xu Y, Guo X, Wang B, Sun L, Liu L, Cui F, Zhuang Q, Bao X, Schley G, Chung TL, Laslett AL, Willam C, Qin B, Maxwell PH, Esteban MA. The hypoxia-inducible factor renders cancer cells more sensitive to vitamin C-induced toxicity. J Biol Chem 2013; 289:3339-51. [PMID: 24371136 DOI: 10.1074/jbc.m113.538157] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Megadose vitamin C (Vc) is one of the most enduring alternative treatments for diverse human diseases and is deeply engrafted in popular culture. Preliminary studies in the 1970s described potent effects of Vc on prolonging the survival of patients with terminal cancer, but these claims were later criticized. An improved knowledge of the pharmacokinetics of Vc and recent reports using cancer cell lines have renewed the interest in this subject. Despite these findings, using Vc as an adjuvant for anticancer therapy remains questionable, among other things because there is no proper mechanistic understanding. Here, we show that a Warburg effect triggered by activation of the hypoxia-inducible factor (HIF) pathway greatly enhances Vc-induced toxicity in multiple cancer cell lines, including von Hippel-Lindau (VHL)-defective renal cancer cells. HIF increases the intracellular uptake of oxidized Vc through its transcriptional target glucose transporter 1 (GLUT1), synergizing with the uptake of its reduced form through sodium-dependent Vc transporters. The resulting high levels of intracellular Vc induce oxidative stress and massive DNA damage, which then causes metabolic exhaustion by depleting cellular ATP reserves. HIF-positive cells are particularly sensitive to Vc-induced ATP reduction because they mostly rely on the rather inefficient glycolytic pathway for energy production. Thus, our experiments link Vc-induced toxicity and cancer metabolism, providing a new explanation for the preferential effect of Vc on cancer cells.
Collapse
Affiliation(s)
- Weihua Tian
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Parrow NL, Leshin JA, Levine M. Parenteral ascorbate as a cancer therapeutic: a reassessment based on pharmacokinetics. Antioxid Redox Signal 2013; 19:2141-56. [PMID: 23621620 PMCID: PMC3869468 DOI: 10.1089/ars.2013.5372] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Ewan Cameron reported that ascorbate, given orally and intravenously at doses of up to 10 g/day, was effective in the treatment of cancer. Double-blind placebo-controlled clinical trials showed no survival advantage when the same doses of ascorbate were given orally, leading the medical and scientific communities to dismiss the use of ascorbate as a potential cancer treatment. However, the route of administration results in major differences in ascorbate bioavailability. Tissue and plasma concentrations are tightly controlled in response to oral administration, but this can be bypassed by intravenous administration. These data provide a plausible scientific rationale for the absence of a response to orally administered ascorbate in the Mayo clinic trials and indicate the need to reassess ascorbate as a cancer therapeutic. RECENT ADVANCES High dose ascorbate is selectively cytotoxic to cancer cell lines through the generation of extracellular hydrogen peroxide (H2O2). Murine xenograft models confirm a growth inhibitory effect of pharmacological concentrations. The safety of intravenous ascorbate has been verified in encouraging pilot clinical studies. CRITICAL ISSUES Neither the selective toxicity of pharmacologic ascorbate against cancer cells nor the mechanism of H2O2-mediated cytotoxicity is fully understood. Despite promising preclinical data, the question of clinical efficacy remains. FUTURE DIRECTIONS A full delineation of mechanism is of interest because it may indicate susceptible cancer types. Effects of pharmacologic ascorbate used in combination with standard treatments need to be defined. Most importantly, the clinical efficacy of ascorbate needs to be reassessed using proper dosing, route of administration, and controls.
Collapse
Affiliation(s)
- Nermi L Parrow
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | | | | |
Collapse
|