1
|
Živančević K, Baralić K, Vukelić D, Marić Đ, Kotur-Stevuljević J, Ivanišević J, Savić M, Batinić B, Janković R, Djordjevic AB, Miljaković EA, Ćurčić M, Bulat Z, Antonijević B, Đukić-Ćosić D. Neurotoxic effects of low dose ranges of environmental metal mixture in a rat model: The benchmark approach. ENVIRONMENTAL RESEARCH 2024; 252:118680. [PMID: 38561120 DOI: 10.1016/j.envres.2024.118680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Metals exert detrimental effects on various systems within the body, including the nervous system. Nevertheless, the dose-response relationship concerning the administration of low doses of metal mixtures remains inadequately explored. The assessment of neurotoxic effects of lead, cadmium, mercury, and arsenic mixture (MIX) administered at low dose ranges, was conducted using an in vivo approach. A subacute study was conducted on a rat model consisting of a control and five treatment groups subjected to oral exposure with gradually increasing doses (from MIX 1 to MIX 5). The results indicated that behavioural patterns in an already developed nervous system displayed a reduced susceptibility to the metal mixture exposure with tendency of higher doses to alter short term memory. However, the vulnerability of the mature brain to even minimal amounts of the investigated metal mixture was evident, particularly in the context of oxidative stress. Moreover, the study highlights superoxide dismutase's sensitivity as an early-stage neurotoxicity marker, as indicated by dose-dependent induction of oxidative stress in the brain revealed through Benchmark analysis. The narrowest Benchmark Dose Interval (BMDI) for superoxide dismutase (SOD) activity (1e-06 - 3.18e-05 mg As/kg b.w./day) indicates that arsenic may dictate the alterations in SOD activity when co-exposed with the other examined metals. The predicted Benchmark doses for oxidative stress parameters were very low, supporting "no-threshold" concept. Histopathological alterations were most severe in the groups treated with higher doses of metal mixture. Similarly, the brain acetylcholinesterase (AChE) activity demonstrated a dose-dependent decrease significant in higher doses, while BMDI suggested Cd as the main contributor in the examined metal mixture. These findings imply varying susceptibility of neurotoxic endpoints to different doses of environmentally relevant metal mixtures, advocating for risk assessment and regulatory measures to address metal pollution and enhance remediation strategies.
Collapse
Affiliation(s)
- Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia; University of Belgrade - Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja", Department of General Physiology and Biophysics, Center for Laser Microscopy, Studentski trg 16, 11158, Belgrade, Serbia.
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragana Vukelić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Jelena Kotur-Stevuljević
- University of Belgrade, Faculty of Pharmacy, Department of Medical Biochemistry, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Jasmina Ivanišević
- University of Belgrade, Faculty of Pharmacy, Department of Medical Biochemistry, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Miroslav Savić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmacology, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Bojan Batinić
- University of Belgrade, Faculty of Pharmacy, Department of Physiology, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Radmila Janković
- University of Belgrade, Faculty of Medicine, Institute of Pathology, dr Subotića 1, 11000, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
2
|
Zeng X, Cai Y, Wu M, Chen H, Sun M, Yang H. An overview of current advances in perinatal alcohol exposure and pathogenesis of fetal alcohol spectrum disorders. J Neurodev Disord 2024; 16:20. [PMID: 38643092 PMCID: PMC11031898 DOI: 10.1186/s11689-024-09537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
The adverse use of alcohol is a serious global public health problem. Maternal alcohol consumption during pregnancy usually causes prenatal alcohol exposure (PAE) in the developing fetus, leading to a spectrum of disorders known as fetal alcohol spectrum disorders (FASD) and even fetal alcohol syndrome (FAS) throughout the lifelong sufferers. The prevalence of FASD is approximately 7.7 per 1,000 worldwide, and is even higher in developed regions. Generally, Ethanol in alcoholic beverages can impair embryonic neurological development through multiple pathways leading to FASD. Among them, the leading mechanism of FASDs is attributed to ethanol-induced neuroinflammatory damage to the central nervous system (CNS). Although the underlying molecular mechanisms remain unclear, the remaining multiple pathological mechanisms is likely due to the neurotoxic damage of ethanol and the resultant neuronal loss. Regardless of the molecular pathway, the ultimate outcome of the developing CNS exposed to ethanol is almost always the destruction and apoptosis of neurons, which leads to the reduction of neurons and further the development of FASD. In this review, we systematically summarize the current research progress on the pathogenesis of FASD, which hopefully provides new insights into differential early diagnosis, treatment and prevention for patents with FASD.
Collapse
Affiliation(s)
- Xingdong Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Yongle Cai
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Mengyan Wu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Haonan Chen
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
3
|
Drake DM, Afsharian K, Or B, Shapiro AM, Lai ML, Miller L, Wells PG. BRCA1 protein dose-dependent risk for embryonic oxidative DNA damage, embryopathies and neurodevelopmental disorders with and without ethanol exposure. Redox Biol 2024; 70:103070. [PMID: 38359745 PMCID: PMC10877410 DOI: 10.1016/j.redox.2024.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Although widely known as a tumor suppressor, the breast cancer 1 susceptibility protein (BRCA1) is also important in development, where it regulates fetal DNA repair pathways that protect against DNA damage caused by physiological and drug-enhanced levels of reactive oxygen species (ROS). We previously showed that conditional heterozygous (+/-) knockout (cKO) mouse embryos with a minor 28% BRCA1 deficiency developed normally in culture, but when exposed to the ROS-initiating drug, alcohol (ethanol, EtOH), exhibited embryopathies not evident in wild-type (+/+) littermates. Herein, we characterized a directBrca1 +/- knockout (KO) model with a 2-fold greater (58%) reduction in BRCA1 protein vs. the cKO model. We also characterized and compared learning & memory deficits in both the cKO and KO models. Even saline-exposed Brca1 +/- vs. +/+ KO progeny exhibited enhanced oxidative DNA damage and embryopathies in embryo culture and learning & memory deficits in females in vivo, which were not observed in the cKO model, revealing the potential pathogenicity of physiological ROS levels. The embryopathic EtOH concentration for cultured direct KO embryos was half that for cKO embryos, and EtOH affected Brca1 +/+ embryos only in the direct KO model. The spectrum and severity of EtOH embryopathies in culture were greater in both Brca1 +/- vs. +/+ embryos, and direct KO vs. cKO +/- embryos. Motor coordination deficits were evident in both male and female Brca1 +/- KO progeny exposed in utero to EtOH. The results in our direct KO model with a greater BRCA1 deficiency vs. cKO mice provide the first evidence for BRCA1 protein dose-dependent susceptibility to developmental disorders caused by physiological and drug-enhanced oxidative stress.
Collapse
Affiliation(s)
- Danielle M Drake
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Kian Afsharian
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Or
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aaron M Shapiro
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Michelle L Lai
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lutfiya Miller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Wells
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Terracina S, Ferraguti G, Tarani L, Messina MP, Lucarelli M, Vitali M, De Persis S, Greco A, Minni A, Polimeni A, Ceccanti M, Petrella C, Fiore M. Transgenerational Abnormalities Induced by Paternal Preconceptual Alcohol Drinking: Findings from Humans and Animal Models. Curr Neuropharmacol 2022; 20:1158-1173. [PMID: 34720083 PMCID: PMC9886817 DOI: 10.2174/1570159x19666211101111430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Alcohol consumption during pregnancy and lactation is a widespread preventable cause of neurodevelopmental impairment in newborns. While the harmful effects of gestational alcohol use have been well documented, only recently, the role of paternal preconceptual alcohol consumption (PPAC) prior to copulating has drawn specific epigenetic considerations. Data from human and animal models have demonstrated that PPAC may affect sperm function, eliciting oxidative stress. In newborns, PPAC may induce changes in behavior, cognitive functions, and emotional responses. Furthermore, PPAC may elicit neurobiological disruptions, visuospatial impairments, hyperactivity disorders, motor skill disruptions, hearing loss, endocrine, and immune alterations, reduced physical growth, placental disruptions, and metabolic alterations. Neurobiological studies on PPAC have also disclosed changes in brain function and structure by disrupting the growth factors pathways. In particular, as shown in animal model studies, PPAC alters brain nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) synthesis and release. This review shows that the crucial topic of lifelong disabilities induced by PPAC and/or gestational alcohol drinking is quite challenging at the individual, societal, and familial levels. Since a nontoxic drinking behavior before pregnancy (for both men and women), during pregnancy, and lactation cannot be established, the only suggestion for couples planning pregnancies is to completely avoid the consumption of alcoholic beverages.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Luigi Tarani
- Department of Pediatrics, Medical Faculty, “Sapienza” University of Rome, Rome, Italy
| | | | - Marco Lucarelli
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | | | | | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy,Address correspondence to this author at the Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy; E-mail:
| |
Collapse
|
5
|
Ferraguti G, Terracina S, Petrella C, Greco A, Minni A, Lucarelli M, Agostinelli E, Ralli M, de Vincentiis M, Raponi G, Polimeni A, Ceccanti M, Caronti B, Di Certo MG, Barbato C, Mattia A, Tarani L, Fiore M. Alcohol and Head and Neck Cancer: Updates on the Role of Oxidative Stress, Genetic, Epigenetics, Oral Microbiota, Antioxidants, and Alkylating Agents. Antioxidants (Basel) 2022; 11:145. [PMID: 35052649 PMCID: PMC8773066 DOI: 10.3390/antiox11010145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancer (HNC) concerns more than 890,000 patients worldwide annually and is associated with the advanced stage at presentation and heavy outcomes. Alcohol drinking, together with tobacco smoking, and human papillomavirus infection are the main recognized risk factors. The tumorigenesis of HNC represents an intricate sequential process that implicates a gradual acquisition of genetic and epigenetics alterations targeting crucial pathways regulating cell growth, motility, and stromal interactions. Tumor microenvironment and growth factors also play a major role in HNC. Alcohol toxicity is caused both directly by ethanol and indirectly by its metabolic products, with the involvement of the oral microbiota and oxidative stress; alcohol might enhance the exposure of epithelial cells to carcinogens, causing epigenetic modifications, DNA damage, and inaccurate DNA repair with the formation of DNA adducts. Long-term markers of alcohol consumption, especially those detected in the hair, may provide crucial information on the real alcohol drinking of HNC patients. Strategies for prevention could include food supplements as polyphenols, and alkylating drugs as therapy that play a key role in HNC management. Indeed, polyphenols throughout their antioxidant and anti-inflammatory actions may counteract or limit the toxic effect of alcohol whereas alkylating agents inhibiting cancer cells' growth could reduce the carcinogenic damage induced by alcohol. Despite the established association between alcohol and HNC, a concerning pattern of alcohol consumption in survivors of HNC has been shown. It is of primary importance to increase the awareness of cancer risks associated with alcohol consumption, both in oncologic patients and the general population, to provide advice for reducing HNC prevalence and complications.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Enzo Agostinelli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo, 00184 Rome, Italy;
- SIFASD, Società Italiana Sindrome Feto-Alcolica, 00184 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maria Grazia Di Certo
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Alessandro Mattia
- Ministero dell’Interno, Dipartimento della Pubblica Sicurezza, Direzione Centrale di Sanità, Centro di Ricerche e Laboratorio di Tossicologia Forense, 00185 Rome, Italy;
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, 00185 Rome, Italy;
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| |
Collapse
|
6
|
Drake DM, Wells PG. Novel mechanisms in alcohol neurodevelopmental disorders via BRCA1 depletion and BRCA1-dependent NADPH oxidase regulation. Redox Biol 2021; 48:102148. [PMID: 34736119 PMCID: PMC8577473 DOI: 10.1016/j.redox.2021.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/27/2022] Open
Abstract
The breast cancer 1 protein (BRCA1) facilitates DNA repair, preventing embryolethality and protecting the fetus from reactive oxygen species (ROS)-induced developmental disorders mediated by oxidatively damaged DNA. Alcohol (ethanol, EtOH) exposure during pregnancy causes fetal alcohol spectrum disorders (FASD), characterized by aberrant behaviour and enhanced ROS formation and proteasomal protein degradation. Herein, ROS-producing NADPH oxidase (NOX) activity was higher in Brca1 +/- vs. +/+ fetal and adult brains, and further enhanced by a single EtOH exposure. EtOH also enhanced catalase and proteasomal activities, while conversely reducing BRCA1 protein levels without affecting Brca1 gene expression. EtOH-initiated adaptive postnatal freezing behaviour was lost in Brca1 +/- progeny. Pretreatment with the free radical spin trap and ROS inhibitor phenylbutylnitrone blocked all EtOH effects, suggesting ROS-dependent mechanisms. This is the first in vivo evidence of NOX regulation by BRCA1, and of EtOH-induced, ROS-mediated depletion of BRCA1, revealing novel mechanisms of BRCA1 protection in FASD.
Collapse
Affiliation(s)
- Danielle M Drake
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Wells
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
8
|
Sobočan N, Katušić Bojanac A, Sinčić N, Himelreich-Perić M, Krasić J, Majić Ž, Jurić-Lekić G, Šerman L, Vlahović M, Ježek D, Bulić-Jakuš F. A Free Radical Scavenger Ameliorates Teratogenic Activity of a DNA Hypomethylating Hematological Therapeutic. Stem Cells Dev 2019; 28:717-733. [PMID: 30672391 PMCID: PMC6585171 DOI: 10.1089/scd.2018.0194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/21/2019] [Indexed: 01/05/2023] Open
Abstract
The spin-trap free radical scavenger N-tert-butyl-α-phenylnitron (PBN) ameliorated effects of several teratogens involving reactive oxygen species (ROS). We investigated for the first time whether PBN could ameliorate teratogenesis induced by a DNA hypomethylating hematological therapeutic 5-azacytidine (5azaC). At days 12 and 13 of gestation, Fisher rat dams were pretreated by an i.v. injection of PBN (40 mg/kg) and 1 h later by an i.p. injection of 5azaC (5mg/kg). Development was analyzed at gestation day 15 in embryos and day 20 in fetuses. PBN alone did not significantly affect development. PBN pretreatment restored survival of 5azaC-treated dams' embryos to the control level, restored weight of embryos and partially of fetuses, and partially restored crown-rump lengths. PBN pretreatment converted limb adactyly to less severe oligodactyly. PBN pretreatment restored global DNA methylation level in the limb buds to the control level. Cell proliferation in limb buds of all 5azaC-treated dams remained significantly lower than in controls. In the embryonic liver, PBN pretreatment normalized proliferation diminished significantly by 5azaC; whereas in embryonic vertebral cartilage, proliferation of all 5azaC-treated dams was significantly higher than in PBN-treated dams or controls. Apoptotic indices significantly enhanced by 5azaC in liver and cartilage were not influenced by PBN pretreatment. However, PBN significantly diminished ROS or reactive nitrogen species markers nitrotyrosine and 8-hydroxy-2'deoxyguanosine elevated by 5azaC in embryonic tissues, and, therefore, activity of this DNA hypomethylating agent was associated to the activation of free radicals. That pretreatment with PBN enhanced proliferation in the liver and not in immature tissue is interesting for the treatment of 5azaC-induced hepatotoxicity and liver regeneration.
Collapse
Affiliation(s)
- Nikola Sobočan
- Department of Gastroenterology, School of Medicine, University Hospital Merkur, University of Zagreb, Zagreb, Croatia
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
| | - Ana Katušić Bojanac
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nino Sinčić
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marta Himelreich-Perić
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jure Krasić
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Željka Majić
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Gordana Jurić-Lekić
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ljiljana Šerman
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Maja Vlahović
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Davor Ježek
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Floriana Bulić-Jakuš
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
9
|
Bhatia S, Drake DM, Miller L, Wells PG. Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth Defects Res 2019; 111:714-748. [PMID: 31033255 DOI: 10.1002/bdr2.1509] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
Abstract
This review covers molecular mechanisms involving oxidative stress and DNA damage that may contribute to morphological and functional developmental disorders in animal models resulting from exposure to alcohol (ethanol, EtOH) in utero or in embryo culture. Components covered include: (a) a brief overview of EtOH metabolism and embryopathic mechanisms other than oxidative stress; (b) mechanisms within the embryo and fetal brain by which EtOH increases the formation of reactive oxygen species (ROS); (c) critical embryonic/fetal antioxidative enzymes and substrates that detoxify ROS; (d) mechanisms by which ROS can alter development, including ROS-mediated signal transduction and oxidative DNA damage, the latter of which leads to pathogenic genetic (mutations) and epigenetic changes; (e) pathways of DNA repair that mitigate the pathogenic effects of DNA damage; (f) related indirect mechanisms by which EtOH enhances risk, for example by enhancing the degradation of some DNA repair proteins; and, (g) embryonic/fetal pathways like NRF2 that regulate the levels of many of the above components. Particular attention is paid to studies in which chemical and/or genetic manipulation of the above mechanisms has been shown to alter the ability of EtOH to adversely affect development. Alterations in the above components are also discussed in terms of: (a) individual embryonic and fetal determinants of risk and (b) potential risk biomarkers and mitigating strategies. FASD risk is likely increased in progeny which/who are biochemically predisposed via genetic and/or environmental mechanisms, including enhanced pathways for ROS formation and/or deficient pathways for ROS detoxification or DNA repair.
Collapse
Affiliation(s)
- Shama Bhatia
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Danielle M Drake
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada
| | | | - Peter G Wells
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
González-Reimers E, Romero-Acevedo L, Espelosín-Ortega E, Martín-González MC, Quintero-Platt G, Abreu-González P, José de-la-Vega-Prieto M, Martínez-Martínez D, Santolaria-Fernández F. Soluble Klotho and Brain Atrophy in Alcoholism. Alcohol Alcohol 2018; 53:503-510. [PMID: 29846497 DOI: 10.1093/alcalc/agy037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 12/20/2022] Open
Abstract
Aim Fibroblast growth factor (FGF-23) and α-Klotho (Klotho) levels may be altered in inflammatory conditions, possibly as compensatory mechanisms. Klotho exerts a protective effect on neurodegeneration and improves learning and cognition. No data exist about the association of Klotho and FGF-23 levels with brain atrophy observed in alcoholics. The aim of this study is to explore these relationships. Short summary FGF-23 and Klotho levels are altered in inflammation, possibly as compensatory mechanisms. Klotho enhances learning, but its role in ethanol-mediated brain atrophy is unknown. We found higher FGF-23 and lower Klotho levels in 131 alcoholics compared with 41 controls. Among cirrhotics, Klotho was higher and inversely related to brain atrophy. Methods The study was performed on 131 alcoholic patients (54 cirrhotics) and 41 age- and sex-matched controls, in whom a brain computed tomography (CT) was performed and several indices were calculated. Results Marked brain atrophy was observed among patients when compared with controls. Patients also showed higher FGF-23 and lower Klotho values. However, among cirrhotics, Klotho values were higher. Klotho was inversely related to brain atrophy (for instance, ventricular index (ρ = -0.23, P = 0.008)), especially in cirrhotics. Klotho was also directly related to tumor necrosis factor (TNF) alpha (ρ = 0.22; P = 0.026) and inversely to transforming growth factor (TGF)-β (ρ = -0.34; P = 0.002), but not to C-reactive protein (CRP) or malondialdehyde levels. FGF-23 was also higher among cirrhotics but showed no association with CT indices. Conclusions Klotho showed higher values among cirrhotics, and was inversely related to brain atrophy. FGF-23, although high among patients, especially cirrhotics, did not show any association with brain atrophy. Some inflammatory markers or cytokines, such as CRP or TGF-β were related to brain atrophy.
Collapse
Affiliation(s)
| | - Lucía Romero-Acevedo
- Servicio de Medicina Interna, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | | | | | | | - Pedro Abreu-González
- Departamento de Fisiología, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | | | | | | |
Collapse
|
11
|
Sousa Coelho IDDD, Lapa Neto CJC, Souza TGDS, Silva MAD, Chagas CA, Santos KRPD, Wanderley Teixeira V, Teixeira ÁAC. Protective effect of exogenous melatonin in rats and their offspring on the genotoxic response induced by the chronic consumption of alcohol during pregnancy. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 832-833:52-60. [PMID: 30057021 DOI: 10.1016/j.mrgentox.2018.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023]
Abstract
Maternal alcoholism can induce serious injuries in embryonic and fetal development. The metabolism of alcohol increases the production of free radicals and acetaldehyde, molecules capable of reacting with DNA, impairing organogenesis. Melatonin is a powerful antioxidant that can act as a protective agent against DNA damage caused by genotoxic agents, such as ethanol. This study evaluated the protective effect of exogenous melatonin in rats and their offspring on the genotoxic response induced by chronic alcohol consumption during pregnancy. Twenty-five pregnant rats were divided into the following groups: NC - Negative control; ET - Rats receiving ethanol (3 g/kg/day); ET+10 M - Rats receiving ethanol (3 g/kg/day) and melatonin (10 mg/kg/day); ET+15 M - Rats receiving ethanol (3 g/kg/day) and melatonin (15 mg/kg/day); PC - Positive control (40 mg/kg cyclophosphamide). The dams and 10 pups (five males and five females) from each group were anesthetized to collect blood and liver from the dams and blood, liver and brain of neonates to evaluate the frequency of DNA damage by the comet assay. Blood was also used for the micronucleus test. The results demonstrated a significant increase in DNA damage in the blood and liver cells of dams receiving ethanol and their offspring as well as in the brain of these neonates. Treatments with melatonin (10 and 15 mg/kg/day) significantly reduced the genotoxicity caused by ethanol in the blood of dams and neonates (males and females), liver of dams and male offsprings, and in the brain of female offsprings. It was shown that only the female offspring exposed to maternal alcohol consumption showed a higher frequency of micronuclei in polychromatic erythrocytes. Consequently, exogenous melatonin may be a promising therapeutic agent against genotoxic damage induced by alcohol; however, further studies are needed to confirm these benefits.
Collapse
Affiliation(s)
- Ilka Dayane Duarte de Sousa Coelho
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.
| | - Clovis José Cavalcanti Lapa Neto
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil
| | - Talita Giselly Dos Santos Souza
- Laboratório de Biotecnologia e Fármacos, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Rua Alto do Reservatório, s/n, Bela Vista, 55608-680, Vitória de Santo Antão, PE, Brazil
| | - Meykson Alexandre da Silva
- Laboratório de Biotecnologia e Fármacos, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Rua Alto do Reservatório, s/n, Bela Vista, 55608-680, Vitória de Santo Antão, PE, Brazil
| | - Cristiano Aparecido Chagas
- Laboratório de Biotecnologia e Fármacos, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Rua Alto do Reservatório, s/n, Bela Vista, 55608-680, Vitória de Santo Antão, PE, Brazil
| | - Katharine Raquel Pereira Dos Santos
- Laboratório de Biotecnologia e Fármacos, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Rua Alto do Reservatório, s/n, Bela Vista, 55608-680, Vitória de Santo Antão, PE, Brazil
| | - Valéria Wanderley Teixeira
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil
| | - Álvaro Aguiar Coelho Teixeira
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil
| |
Collapse
|
12
|
Wells PG, Bhatia S, Drake DM, Miller-Pinsler L. Fetal oxidative stress mechanisms of neurodevelopmental deficits and exacerbation by ethanol and methamphetamine. ACTA ACUST UNITED AC 2017; 108:108-30. [PMID: 27345013 DOI: 10.1002/bdrc.21134] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/09/2016] [Indexed: 11/06/2022]
Abstract
In utero exposure of mouse progeny to alcohol (ethanol, EtOH) and methamphetamine (METH) causes substantial postnatal neurodevelopmental deficits. One emerging pathogenic mechanism underlying these deficits involves fetal brain production of reactive oxygen species (ROS) that alter signal transduction, and/or oxidatively damage cellular macromolecules like lipids, proteins, and DNA, the latter leading to altered gene expression, likely via non-mutagenic mechanisms. Even physiological levels of fetal ROS production can be pathogenic in biochemically predisposed progeny, and ROS formation can be enhanced by drugs like EtOH and METH, via activation/induction of ROS-producing NADPH oxidases (NOX), drug bioactivation to free radical intermediates by prostaglandin H synthases (PHS), and other mechanisms. Antioxidative enzymes, like catalase in the fetal brain, while low, provide critical protection. Oxidatively damaged DNA is normally rapidly repaired, and fetal deficiencies in several DNA repair proteins, including oxoguanine glycosylase 1 (OGG1) and breast cancer protein 1 (BRCA1), enhance the risk of drug-initiated postnatal neurodevelopmental deficits, and in some cases deficits in untreated progeny, the latter of which may be relevant to conditions like autism spectrum disorders (ASD). Risk is further regulated by fetal nuclear factor erythroid 2-related factor 2 (Nrf2), a ROS-sensing protein that upregulates an array of proteins, including antioxidative enzymes and DNA repair proteins. Imbalances between conceptal pathways for ROS formation, versus those for ROS detoxification and DNA repair, are important determinants of risk. Birth Defects Research (Part C) 108:108-130, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter G Wells
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Shama Bhatia
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Danielle M Drake
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Lutfiya Miller-Pinsler
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Shapiro AM, Miller-Pinsler L, Wells PG. Breast cancer 1 (BRCA1)-deficient embryos develop normally but are more susceptible to ethanol-initiated DNA damage and embryopathies. Redox Biol 2015; 7:30-38. [PMID: 26629949 PMCID: PMC4683388 DOI: 10.1016/j.redox.2015.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023] Open
Abstract
The breast cancer 1 (brca1) gene is associated with breast and ovarian cancers, and heterozygous (+/−) brca1 knockout progeny develop normally, suggesting a negligible developmental impact. However, our results show BRCA1 plays a broader biological role in protecting the embryo from oxidative stress. Sox2-promoted Cre-expressing hemizygous males were mated with floxed brca1 females, and gestational day 8 +/− brca1 conditional knockout embryos with a 28% reduction in protein expression were exposed in culture to the reactive oxygen species (ROS)-initiating drug ethanol (EtOH). Untreated +/− brca1-deficient embryos developed normally, but when exposed to EtOH exhibited increased levels of oxidatively damaged DNA, measured as 8-oxo-2'-deoxyguanosine, γH2AX, which is a marker of DNA double strand breaks that can result from 8-oxo-2'-deoxyguanosine, formation, and embryopathies at EtOH concentrations that did not affect their brca1-normal littermates. These results reveal that even modest BRCA1 deficiencies render the embryo more susceptible to drug-enhanced ROS formation, and corroborate a role for DNA oxidation in the mechanism of EtOH teratogenesis. Heterozygous (+/−) brca1 conditional knockout (cKO) embryos develop normally. +/− brca1 cKO embryos have 28% less BRCA1 protein than wild-type (WT) littermates. Ethanol-exposed BRCA1-deficient mice have more oxidatively damaged DNA than WTs. Ethanol-exposed BRCA1 cKO embryos exhibit more embryopathies than WT littermates. BRCA1 protects the embryo from ethanol-enhanced oxidative stress—a novel role.
Collapse
Affiliation(s)
- Aaron M Shapiro
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Lutfiya Miller-Pinsler
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Wells
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Miller-Pinsler L, Wells PG. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture. Toxicol Appl Pharmacol 2015; 287:232-9. [DOI: 10.1016/j.taap.2015.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/02/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022]
|
15
|
Cobbina SJ, Chen Y, Zhou Z, Wu X, Zhao T, Zhang Z, Feng W, Wang W, Li Q, Wu X, Yang L. Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2015; 294:109-120. [PMID: 25863025 DOI: 10.1016/j.jhazmat.2015.03.057] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 03/02/2015] [Accepted: 03/26/2015] [Indexed: 06/04/2023]
Abstract
Humans are exposed to a cocktail of heavy metal toxicants in the environment. Though heavy metals are deleterious, there is a paucity of information on toxicity of low dose mixtures. In this study, lead (Pb) (0.01mg/L), mercury (Hg) (0.001mg/L), cadmium (Cd) (0.005mg/L) and arsenic (As) (0.01mg/L) were administered individually and as mixtures to 10 groups of 40 three-week old mice (20 males and 20 females), for 120 days. The study established that low dose exposures induced toxicity to the brain, liver, and kidney of mice. Metal mixtures showed higher toxicities compared to individual metals, as exposure to low dose Pb+Hg+Cd reduced brain weight and induced structural lesions, such as neuronal degeneration in 30-days. Pb+Hg+Cd and Pb+Hg+As+Cd exposure induced hepatocellular injury to mice evidenced by decreased antioxidant activities with marginal increases in MDA. These were accentuated by increases in ALT, AST and ALP. Interactions in metal mixtures were basically synergistic in nature and exposure to Pb+Hg+As+Cd induced renal tubular necrosis in kidneys of mice. This study underlines the importance of elucidating the toxicity of low dose metal mixtures so as to protect public health.
Collapse
Affiliation(s)
- Samuel J Cobbina
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Zhaoxiang Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Xueshan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Zhen Zhang
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Weiwei Feng
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Wei Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Qian Li
- School of Pharmacy, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| |
Collapse
|
16
|
Jilek JL, Sant KE, Cho KH, Reed MS, Pohl J, Hansen JM, Harris C. Ethanol Attenuates Histiotrophic Nutrition Pathways and Alters the Intracellular Redox Environment and Thiol Proteome during Rat Organogenesis. Toxicol Sci 2015; 147:475-89. [PMID: 26185205 DOI: 10.1093/toxsci/kfv145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ethanol (EtOH) is a reactive oxygen-generating teratogen involved in the etiology of structural and functional developmental defects. Embryonic nutrition, redox environment, and changes in the thiol proteome following EtOH exposures (1.56.0 mg/ml) were studied in rat whole embryo culture. Glutathione (GSH) and cysteine (Cys) concentrations with their respective intracellular redox potentials (Eh) were determined using high-performance liquid chromatography. EtOH reduced GSH and Cys concentrations in embryo (EMB) and visceral yolk sac (VYS) tissues, and also in yolk sac and amniotic fluids. These changes produced greater oxidation as indicated by increasingly positive Eh values. EtOH reduced histiotrophic nutrition pathway activities as measured by the clearance of fluorescin isothiocyanate (FITC)-albumin from culture media. A significant decrease in total FITC clearance was observed at all concentrations, reaching approximately 50% at the highest dose. EtOH-induced changes to the thiol proteome were measured in EMBs and VYSs using isotope-coded affinity tags. Decreased concentrations for specific proteins from cytoskeletal dynamics and endocytosis pathways (α-actinin, α-tubulin, cubilin, and actin-related protein 2); nuclear translocation (Ran and RanBP1); and maintenance of receptor-mediated endocytosis (cubilin) were observed. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis also identified a decrease in ribosomal proteins in both EMB and VYS. Results show that EtOH interferes with nutrient uptake to reduce availability of amino acids and micronutrients required by the conceptus. Intracellular antioxidants such as GSH and Cys are depleted following EtOH and Eh values increase. Thiol proteome analysis in the EMB and VYS show selectively altered actin/cytoskeleton, endocytosis, ribosome biogenesis and function, nuclear transport, and stress-related responses.
Collapse
Affiliation(s)
- Joseph L Jilek
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Karilyn E Sant
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Katherine H Cho
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Matthew S Reed
- Biotechnology Core Facility Branch, Centers for Disease Control, Atlanta, Georgia 30333; and
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control, Atlanta, Georgia 30333; and
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah 84602
| | - Craig Harris
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
17
|
Enhanced NADPH oxidases and reactive oxygen species in the mechanism of methanol-initiated protein oxidation and embryopathies in vivo and in embryo culture. Arch Toxicol 2015; 90:717-30. [DOI: 10.1007/s00204-015-1482-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/12/2015] [Indexed: 01/01/2023]
|
18
|
Miller-Pinsler L, Pinto DJ, Wells PG. Oxidative DNA damage in the in utero initiation of postnatal neurodevelopmental deficits by normal fetal and ethanol-enhanced oxidative stress in oxoguanine glycosylase 1 knockout mice. Free Radic Biol Med 2015; 78:23-9. [PMID: 25311828 DOI: 10.1016/j.freeradbiomed.2014.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 09/15/2014] [Accepted: 09/24/2014] [Indexed: 01/18/2023]
Abstract
Studies in mice with deficient antioxidative enzymes have shown that physiological levels of reactive oxygen species (ROS) can adversely affect the developing embryo and fetus. Herein, DNA repair-deficient progeny of oxoguanine glycosylase 1 (ogg1)-knockout mice lacking repair of the oxidative DNA lesion 8-oxo-2'-deoxyguanosine (8-oxodGuo) exhibited enhanced postnatal neurodevelopmental deficits, revealing the pathogenic potential of 8-oxodGuo initiated by physiological ROS production in fetal brain and providing the first evidence of a pathological phenotype for ogg1-knockout mice. Moreover, when exposed in utero to ethanol (EtOH), ogg1-knockout progeny exhibited higher levels of 8-oxodGuo in fetal brain and more severe postnatal neurodevelopmental deficits than wild-type littermates, both of which were blocked by pretreatment with the free radical trapping agent phenylbutylnitrone. These results suggest that ROS-initiated DNA oxidation, as distinct from altered signal transduction, contributes to neurodevelopmental deficits caused by in utero EtOH exposure, and fetal DNA repair is a determinant of risk.
Collapse
Affiliation(s)
| | - Daniel J Pinto
- Department of Pharmacology and Toxicology, Faculty of Medicine
| | - Peter G Wells
- Department of Pharmacology and Toxicology, Faculty of Medicine; Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
19
|
Miller-Pinsler L, Wells PG. Deficient DNA repair exacerbates ethanol-initiated DNA oxidation and embryopathies in ogg1 knockout mice: gender risk and protection by a free radical spin trapping agent. Arch Toxicol 2014; 90:415-25. [DOI: 10.1007/s00204-014-1397-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/16/2014] [Indexed: 01/16/2023]
|
20
|
Joya X, Garcia-Algar O, Salat-Batlle J, Pujades C, Vall O. Advances in the development of novel antioxidant therapies as an approach for fetal alcohol syndrome prevention. ACTA ACUST UNITED AC 2014; 103:163-77. [PMID: 25131946 DOI: 10.1002/bdra.23290] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/08/2014] [Accepted: 07/08/2014] [Indexed: 01/14/2023]
Abstract
Ethanol is the most common human teratogen, and its consumption during pregnancy can produce a wide range of abnormalities in infants known as fetal alcohol spectrum disorder (FASD). The major characteristics of FASD can be divided into: (i) growth retardation, (ii) craniofacial abnormalities, and (iii) central nervous system (CNS) dysfunction. FASD is the most common cause of nongenetic mental retardation in Western countries. Although the underlying molecular mechanisms of ethanol neurotoxicity are not completely determined, the induction of oxidative stress is believed to be one central process linked to the development of the disease. Currently, there is no known effective strategy for prevention (other than alcohol avoidance) or treatment. In the present review we will provide the state of art in the evidence for the use of antioxidants as a potential therapeutic strategy for the treatment using whole-embryo and culture cells models of FASD. We conclude that the imbalance of the intracellular redox state contributes to the pathogenesis observed in FASD models, and we suggest that antioxidant therapy can be considered a new efficient strategy to mitigate the effects of prenatal ethanol exposure.
Collapse
Affiliation(s)
- Xavier Joya
- Unitat de Recerca Infància i Entorn (URIE), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Red de Salud Materno-Infantil y del Desarrollo (SAMID), Programa RETICS, Instituto Carlos III, Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Flores-Bellver M, Bonet-Ponce L, Barcia JM, Garcia-Verdugo JM, Martinez-Gil N, Saez-Atienzar S, Sancho-Pelluz J, Jordan J, Galindo MF, Romero FJ. Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal. Cell Death Dis 2014; 5:e1328. [PMID: 25032851 PMCID: PMC4123082 DOI: 10.1038/cddis.2014.288] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 12/24/2022]
Abstract
Retinal pigment epithelium has a crucial role in the physiology and pathophysiology of the retina due to its location and metabolism. Oxidative damage has been demonstrated as a pathogenic mechanism in several retinal diseases, and reactive oxygen species are certainly important by-products of ethanol (EtOH) metabolism. Autophagy has been shown to exert a protective effect in different cellular and animal models. Thus, in our model, EtOH treatment increases autophagy flux, in a concentration-dependent manner. Mitochondrial morphology seems to be clearly altered under EtOH exposure, leading to an apparent increase in mitochondrial fission. An increase in 2',7'-dichlorofluorescein fluorescence and accumulation of lipid peroxidation products, such as 4-hydroxy-nonenal (4-HNE), among others were confirmed. The characterization of these structures confirmed their nature as aggresomes. Hence, autophagy seems to have a cytoprotective role in ARPE-19 cells under EtOH damage, by degrading fragmented mitochondria and 4-HNE aggresomes. Herein, we describe the central implication of autophagy in human retinal pigment epithelial cells upon oxidative stress induced by EtOH, with possible implications for other conditions and diseases.
Collapse
Affiliation(s)
- M Flores-Bellver
- Department of Physiology, School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| | - L Bonet-Ponce
- Department of Physiology, School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| | - J M Barcia
- Department of Physiology, School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| | - J M Garcia-Verdugo
- Department of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutive Biology, University of Valencia, Valencia, Spain
| | - N Martinez-Gil
- Department of Physiology, School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| | - S Saez-Atienzar
- Department of Physiology, School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| | - J Sancho-Pelluz
- Department of Physiology, School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| | - J Jordan
- Neuropharmacology Group, Department of Medical Sciences, School of Medicine, University of Castilla la Mancha, IDINE, Albacete, Spain
| | - M F Galindo
- Unit of Translational Neuropsychopharmacology, University of Castilla la Mancha and Albacete Hospital, Albacete, Spain
| | - F J Romero
- Department of Physiology, School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| |
Collapse
|
22
|
Wells PG, Miller-Pinsler L, Shapiro AM. Impact of Oxidative Stress on Development. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2014. [DOI: 10.1007/978-1-4939-1405-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Siu MT, Shapiro AM, Wiley MJ, Wells PG. A role for glutathione, independent of oxidative stress, in the developmental toxicity of methanol. Toxicol Appl Pharmacol 2013; 273:508-15. [PMID: 24095963 DOI: 10.1016/j.taap.2013.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/06/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Oxidative stress and reactive oxygen species (ROS) have been implicated in the teratogenicity of methanol (MeOH) in rodents, both in vivo and in embryo culture. We explored the ROS hypothesis further in vivo in pregnant C57BL/6J mice. Following maternal treatment with a teratogenic dose of MeOH, 4 g/kg via intraperitoneal (ip) injection on gestational day (GD) 12, there was no increase 6h later in embryonic ROS formation, measured by 2',7'-dichlorodihydrofluorescin diacetate (DCFH-DA) fluorescence, despite an increase observed with the positive control ethanol (EtOH), nor was there an increase in embryonic oxidatively damaged DNA, quantified as 8-oxo-2'-deoxyguanosine (8-oxodG) formation. MeOH teratogenicity (primarily ophthalmic anomalies, cleft palate) also was not altered by pre- and post-treatment with varying doses of the free radical spin trapping agent alpha-phenyl-N-tert-butylnitrone (PBN). In contrast, pretreatment with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, depleted maternal hepatic and embryonic GSH, and enhanced some new anomalies (micrognathia, agnathia, short snout, fused digits, cleft lip, low set ears), but not the most common teratogenic effects of MeOH (ophthalmic anomalies, cleft palate) in this strain. These results suggest that ROS did not contribute to the teratogenic effects of MeOH in this in vivo mouse model, in contrast to results in embryo culture from our laboratory, and that the protective effect of GSH in this model may arise from its role as a cofactor for formaldehyde dehydrogenase in the detoxification of formaldehyde.
Collapse
Affiliation(s)
- Michelle T Siu
- Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|