1
|
Wu SF, Ga Y, Ma DY, Hou SL, Hui QY, Hao ZH. The role of ferroptosis in environmental pollution-induced male reproductive system toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125118. [PMID: 39414070 DOI: 10.1016/j.envpol.2024.125118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
This article provides a comprehensive review of the toxic effects of environmental pollution on the male reproductive system, with a particular emphasis on ferroptosis, a form of programmed cell death. Research has shown that environmental pollutants, such as heavy metals, pesticide residues, and plastic additives, can disrupt oxidative stress, increasing the production of reactive oxygen species (ROS) in germ cells. This disruption damages cellular lipids, proteins, and DNA, culminating in cell dysfunction or death. Ferroptosis, a cell death pathway closely linked to oxidative stress, is characterized by the accumulation of intracellular iron ions and elevated levels of lipid ROS. This review also explores the role of ferroptosis in male reproductive disorders, including its contributions to reduced sperm count, decreased motility, and abnormal morphology. Environmental pollutants, particularly heavy metals, can induce ferroptosis by interfering with intracellular antioxidant systems, notably the NRF2, GSH, and GPX4 pathways, accumulating toxic lipid peroxides. Furthermore, the article examines the potential interplay between ferroptosis and other forms of cell death, such as apoptosis, autophagy, pyroptosis, and necrosis, in the context of male reproductive health. The review underscores the critical need for further research into the link between environmental pollutants and male fertility, particularly focusing on ferroptosis. It advocates for targeted research efforts to mitigate the adverse effects of ferroptosis and protect reproductive health, emphasizing that a deeper understanding of these mechanisms could lead to innovative preventive strategies against environmental threats to fertility.
Collapse
Affiliation(s)
- Shao-Feng Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Yu Ga
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Dan-Yang Ma
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Si-Lu Hou
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Qiao-Yue Hui
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Zhi-Hui Hao
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China.
| |
Collapse
|
2
|
Malik NA, Nazir N, Manzoor M, Gull F. Fungicide-albumin interactions: unraveling the complex relationship-a comprehensive review. Biophys Rev 2024; 16:417-439. [PMID: 39309131 PMCID: PMC11415336 DOI: 10.1007/s12551-024-01190-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/03/2024] [Indexed: 09/25/2024] Open
Abstract
This review will give an insight into the interactions of serum albumins, which are proteins found in the blood, with fungicides. There are molecular interactions between several fungicides and two serum albumin proteins: human serum albumin (HSA) and bovine serum albumin (BSA). The main objective of this review is to through some light on the interactions of the fungicides with serum albumins and to highlight their toxicity level. The interactions of serum albumins with fungicides are complex and can be affected by the properties of the proteins themselves. This review provides valuable insight into the interactions between serum albumins and fungicides, which can help to know the efficacy and mechanism of fungicides and may help in designing new fungicides with low or no toxicity.
Collapse
Affiliation(s)
- Nisar Ahmad Malik
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, Jammu and Kashmir India
| | - Nighat Nazir
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, Jammu and Kashmir India
| | - Mehak Manzoor
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, Jammu and Kashmir India
| | - Faizan Gull
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, Jammu and Kashmir India
| |
Collapse
|
3
|
Yang J, Tang L, Li L, Wu X, Yan L. Recent Advances in Organic Small-Molecule Fluorescent Probes for the Detection of Zinc Ions (Zn 2+). J Fluoresc 2024:10.1007/s10895-024-03770-1. [PMID: 38869709 DOI: 10.1007/s10895-024-03770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Zinc(II) ions (Zn2g) play crucial roles in the growth, propagation, and metabolism of animals, plants, and humans. Abnormal concentrations of Zn2+ in the environment and living organisms pose potential risks to environmental protection and human health. Therefore, it is imperative to develop rapid, reliable and in-situ detection methods for Zn2+ in both environmental and biological contexts. Furthermore, effective analytical methods are required for diagnosing diseases and understanding physiological metabolic mechanisms associated with Zn2+ concentration levels. Organic small-molecule fluorescent probes offer advantages such as fast, reliable, convenient, non-destructive detection capabilities and have significant application potential in Zn2+ detection and bioimaging; thus garnering extensive attention. Over the past two years alone, various organic small-molecule probes for Zn2+ based on different detection mechanisms and fluorophores have been rapidly developed. However, these probes still exhibit several limitations that need further resolution. In light of this context, we provide a comprehensive summary of the detection mechanisms, performance characteristics, and application scope of Zn2+ fluorescence probes since year 2022 while highlighting their advantages. We also propose solutions to address existing issues with these probes and outline future directions for their advancement. This review aims to serve as a valuable reference source offering insights into the development of advanced organic small-molecule-based fluorescence probes specifically designed for detecting Zn2+.
Collapse
Affiliation(s)
- Junjie Yang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China
| | - Liting Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China
| | - Lin Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China
| | - Xiongzhi Wu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China
| | - Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China.
| |
Collapse
|
4
|
Chen Z, Gu H, Zhou R, Cheng S. The Correlation between Metal Mixed Exposure and Lung Function in Different Ages of the Population. Metabolites 2024; 14:139. [PMID: 38535299 PMCID: PMC10972184 DOI: 10.3390/metabo14030139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 01/03/2025] Open
Abstract
Herein, we explored the overall association between metal mixtures and lung functions in populations of varying ages and the relationship among the associated components. The 2007-2012 National Health and Nutrition Examination Survey data of 4382 American participants was analyzed, and generalized linear, elastic net, quantile g-computation, and Bayesian kernel machine regression models were used to evaluate the relationship between exposure to the metal mixture and lung function at various ages. The results of barium exposure at distinct stages revealed that children and adolescents exhibited greater lung function changes than those in adults and the elderly. Additionally, compared with children and adolescents, cadmium- and arsenic-containing metabolites contributed to nonconductive lung function changes in adults and the elderly exposed to metal mixtures. The results showed that the effects of exposure to metal mixtures on lung function in children and adolescents were predominantly caused by lead and barium. Altogether, children and adolescents were found to be more susceptible to metal-exposure-mediated lung function changes than adults and the elderly.
Collapse
Affiliation(s)
| | | | | | - Shuqun Cheng
- Department of Occupational and Environmental Health, College of Public Health, Chongqing Medical University, Chongqing 400016, China; (Z.C.); (H.G.); (R.Z.)
| |
Collapse
|
5
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Liu X, Sun W, Cao J, Ma Z. Acrolein increases the concentration of intracellular Zn 2⁺ by producing mitochondrial reactive oxygen species in A549 cells. Toxicol Ind Health 2023; 39:630-637. [PMID: 37644888 DOI: 10.1177/07482337231198350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Smoking or occupational exposure leads to low concentrations of acrolein on the surface of the airways. Acrolein is involved in the pathophysiological processes of various respiratory diseases. Reports showed that acrolein induced an increase in mitochondrial reactive oxygen species (mROS). Furthermore, exogenous H₂O₂ was found to increase intracellular Zn2⁺ concentration ([Zn2⁺]ᵢ). However, the specific impact of acrolein on changes in intracellular Zn2⁺ levels has not been fully investigated. Therefore, this study aimed to investigate the effects of acrolein on mROS and [Zn2⁺]ᵢ in A549 cells. We used Mito Tracker Red CM-H2Xros (MitoROS) and Fluozin-3 fluorescent probes to observe changes in mROS and intracellular Zn2⁺. The results revealed that acrolein increased [Zn2⁺]ᵢ in a time- and dose-dependent manner. Additionally, the production of mROS was observed in response to acrolein treatment. Subsequent experiments showed that the intracellular Zn2⁺ chelator TPEN could inhibit the acrolein-induced elevation of [Zn2⁺]ᵢ but did not affect the acrolein-induced mROS production. Conversely, the acrolein-induced elevation of mROS and [Zn2⁺]ᵢ were significantly decreased by the inhibitors of ROS formation (NaHSO₃, NAC). Furthermore, external oxygen free radicals increased both [Zn2⁺]ᵢ levels and mROS production. These results demonstrated that acrolein-induced elevation of [Zn2⁺]ᵢ in A549 cells was mediated by mROS generation, rather than through a pathway where [Zn2⁺]ᵢ elevation leads to mROS production.
Collapse
Affiliation(s)
- Xueqi Liu
- Department of Respiratory Medicine, Postgraduate Training Base of Jinzhou Medical University in The General Hospital of Northern Theater Command, Shenyang, China
| | - Wenwu Sun
- Department of Respiratory Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Jianping Cao
- Department of Respiratory Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhuang Ma
- Department of Respiratory Medicine, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
7
|
Kayaba S, Kajino M. Potential Impacts of Energy and Vehicle Transformation Through 2050 on Oxidative Stress-Inducing PM 2.5 Metals Concentration in Japan. GEOHEALTH 2023; 7:e2023GH000789. [PMID: 37842137 PMCID: PMC10574721 DOI: 10.1029/2023gh000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/18/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023]
Abstract
The impacts of renewable energy shifting, passenger car electrification, and lightweighting through 2050 on the atmospheric concentrations of PM2.5 total mass and oxidative stress-inducing metals (PM2.5-Fe, Cu, and Zn) in Japan were evaluated using a regional meteorology-chemistry model. The surface concentrations of PM2.5 total mass, Fe, Cu, and Zn in the urban area decreased by 8%, 13%, 18%, and 5%, respectively. Battery electric vehicles (BEVs) have been considered to have no advantage in terms of non-exhaust PM emissions by previous studies. This is because the disadvantages (heavier weight increases tire wear, road wear, and resuspention) offset the advantages (regenerative braking system (RBS) reduces brake wear). However, the future lightweighting of drive battery and body frame were estimated to reduce all non-exhaust PM. Passenger car electrification only reduced PM2.5 concentration by 2%. However, Fe and Cu concentrations were more reduced (-8% and -13%, respectively) because they have high brake wear-derived and significantly reflects the benefits of BEV's RBS. The water-soluble fraction concentration of metals (induces oxidative stress in the body) was estimated based on aerosol acidity. The reduction of SOx, NOx, and NH3 emissions from on-road and thermal power plants slightly changed the aerosol acidity (pH ± 0.2). However, it had a negligible effect on water-soluble metal concentrations (maximum +2% for Fe and +0.5% for Cu and Zn). Therefore, the metal emissions reduction was more important than gaseous pollutants in decreasing the water-soluble metals that induces respiratory oxidative stress and passenger car electrification and lightweighting were effective means of achieving this.
Collapse
Affiliation(s)
- Satoko Kayaba
- Graduate School of Science and TechnologyUniversity of TsukubaTsukubaJapan
- Meteorological Research InstituteJapan Meteorological AgencyTsukubaJapan
| | - Mizuo Kajino
- Meteorological Research InstituteJapan Meteorological AgencyTsukubaJapan
- Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
| |
Collapse
|
8
|
Li Q, Yang Q, Guo P, Feng Y, Wang S, Guo J, Tang Z, Yu W, Liao J. Mitophagy contributes to zinc-induced ferroptosis in porcine testis cells. Food Chem Toxicol 2023; 179:113950. [PMID: 37481227 DOI: 10.1016/j.fct.2023.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Zinc (Zn) is a critical microelement for physiological process, but excess exposure can cause testicular dysfunction. However, the underlying mechanism of Zn-induced ferroptosis via regulating mitophagy is unknown. In this study, a total of 60 male weaned pigs were randomly divided into three groups and the content of Zn were 75 mg/kg (control), 750 mg/kg (Zn-I), 1500 mg/kg (Zn-II). Meanwhile, testicular cells were treated with ZnSO4 (0, 50 and 100 μM), and in combination of ZnSO4 (100 μM) and ferrostation-1, ML-210, or 3-methyladenine for 24 h. Our results verified that Zn could cause ferroptosis and lipid peroxidation, which were characterized by down-regulating level of SLC7A11, GPX4, and ferritin, and up-regulating levels of MDA, CD71, TF, and HMGB1 by Western blot, immunohistochemistry, immunofluorescence, peroxidase assay, et.ac. The opposite effect was shown after treatment with ferrostation-1 or ML-210. Meanwhile, the mitophagy-related proteins (PINK, Parkin, ATG5, LC3-II/LC3-I) were significantly upregulated in vivo and in vitro. Most importantly, 3-methyladenine observably relieved ferroptosis under Zn treatment through inhibiting mitophagy. Collectively, we demonstrated that mitophagy contributes to Zn-induced ferroptosis in porcine testis cells, providing a new insight into Zn toxicology.
Collapse
Affiliation(s)
- Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qingwen Yang
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Pan Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yuanhong Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Shaofeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
9
|
Xu G, Zhao Y, Tao Y, Xiong C, Lv M, Gao Q, Zhang F, An Z, Wu W. Lias overexpression alleviates pulmonary injury induced by fine particulate matter in mice. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6585-6603. [PMID: 37341891 DOI: 10.1007/s10653-023-01651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Oxidative stress and inflammation are mechanisms underlying toxicity induced by fine particulate matter (PM2.5). The antioxidant baseline of the human body modulates the intensity of oxidative stress in vivo. This present study aimed to evaluate the role of endogenous antioxidants in alleviating PM2.5-induced pulmonary injury using a novel mouse model (LiasH/H) with an endogenous antioxidant capacity of approximately 150% of its wild-type counterpart (Lias+/+). LiasH/H and wild-type (Lias+/+) mice were randomly divided into control and PM2.5 exposure groups (n = 10), respectively. Mice in the PM2.5 group and the control group were intratracheally instilled with PM2.5 suspension and saline, respectively, once a day for 7 consecutive days. The metal content, major pathological changes in the lung, and levels of oxidative stress and inflammation biomarkers were examined. The results showed that PM2.5 exposure induced oxidative stress in mice. Overexpression of the Lias gene significantly increased the antioxidant levels and decreased inflammatory responses induced by PM2.5. Further study found that LiasH/H mice exerted their antioxidant function by activating the ROS-p38MAPK-Nrf2 pathway. Therefore, the novel mouse model is useful for the elucidation of the mechanisms of pulmonary injury induced by PM2.5.
Collapse
Affiliation(s)
- Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Yingjun Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Cheng Xiong
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Mengdi Lv
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Qiyu Gao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Fengquan Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China.
| |
Collapse
|
10
|
de Cubas L, Mallor J, Herrera-Fernández V, Ayté J, Vicente R, Hidalgo E. Expression of the H2O2 Biosensor roGFP-Tpx1.C160S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H2O2 Levels, Transmembrane Gradients, and Response to Metals. Antioxidants (Basel) 2023; 12:antiox12030706. [PMID: 36978953 PMCID: PMC10045392 DOI: 10.3390/antiox12030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Intracellular hydrogen peroxide (H2O2) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H2O2 have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H2O2 biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H2O2 is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H2O2 gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H2O2 fluxes are very similar in different model organisms.
Collapse
Affiliation(s)
- Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Jorge Mallor
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Rubén Vicente
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0848; Fax: +34-93-316-0901
| |
Collapse
|
11
|
Karatza AA, Gkentzi D, Varvarigou A. Nutrition of Infants with Bronchopulmonary Dysplasia before and after Discharge from the Neonatal Intensive Care Unit. Nutrients 2022; 14:3311. [PMID: 36014815 PMCID: PMC9414083 DOI: 10.3390/nu14163311] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) represents a severe sequela in neonates born very prematurely. The provision of adequate nutritional support in this high-risk population is challenging. The development of the lungs and physical growth are closely linked together in infants with BPD. Growth deficiency has been associated with pulmonary dysfunction, whereas improvement in respiratory status results in growth acceleration. Currently, there is not enough data regarding optimal nutritional strategies in this population. Nutrition in these infants should provide sufficient calories and nutrients to establish growth, avoid growth retardation and assist alveolarization of the lungs. Meticulous follow-up is mandatory during and after discharge from the Neonatal Intensive care Unit (NICU) to minimize growth retardation and improve lung function. Despite the significant literature supporting the contribution of growth and nutrition in the avoidance of BPD, there is limited research regarding interventions and management of infants with established BPD. Our aim was to review clinical strategies applied in everyday clinical practice and identify debates on the nutritional approach of newborns with BPD. Well-organized interventions and clinical trials regarding the somatic development and nutrition of infants with BPD are warranted.
Collapse
Affiliation(s)
| | | | - Anastasia Varvarigou
- Department of Paediatrics, Neonatal Intensive Care Unit, University of Patras Medical School, 26504 Patras, Greece
| |
Collapse
|
12
|
The use of black mass in spent primary battery as an oxidative catalyst for removal of volatile organic compounds. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Fussell JC, Franklin M, Green DC, Gustafsson M, Harrison RM, Hicks W, Kelly FJ, Kishta F, Miller MR, Mudway IS, Oroumiyeh F, Selley L, Wang M, Zhu Y. A Review of Road Traffic-Derived Non-Exhaust Particles: Emissions, Physicochemical Characteristics, Health Risks, and Mitigation Measures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6813-6835. [PMID: 35612468 PMCID: PMC9178796 DOI: 10.1021/acs.est.2c01072] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 05/22/2023]
Abstract
Implementation of regulatory standards has reduced exhaust emissions of particulate matter from road traffic substantially in the developed world. However, nonexhaust particle emissions arising from the wear of brakes, tires, and the road surface, together with the resuspension of road dust, are unregulated and exceed exhaust emissions in many jurisdictions. While knowledge of the sources of nonexhaust particles is fairly good, source-specific measurements of airborne concentrations are few, and studies of the toxicology and epidemiology do not give a clear picture of the health risk posed. This paper reviews the current state of knowledge, with a strong focus on health-related research, highlighting areas where further research is an essential prerequisite for developing focused policy responses to nonexhaust particles.
Collapse
Affiliation(s)
- Julia C. Fussell
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Meredith Franklin
- Department
of Statistical Sciences, University of Toronto, Toronto, Ontario M5G 1Z5, Canada
| | - David C. Green
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Mats Gustafsson
- Swedish
National Road and Transport Research Institute (VTI), SE-581 95, Linköping, Sweden
| | - Roy M. Harrison
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, U.K.
- Department
of Environmental Sciences / Centre of Excellence in Environmental
Studies, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - William Hicks
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Frank J. Kelly
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Franceska Kishta
- Centre
for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.
| | - Mark R. Miller
- Centre
for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.
| | - Ian S. Mudway
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Farzan Oroumiyeh
- Department
of Environmental Health Sciences, Jonathan and Karin Fielding School
of Public Health, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Liza Selley
- MRC
Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge,CB2 1QR, U.K.
| | - Meng Wang
- University
at Buffalo, School of Public
Health and Health Professions, Buffalo, New York 14214, United States
| | - Yifang Zhu
- Department
of Environmental Health Sciences, Jonathan and Karin Fielding School
of Public Health, University of California,
Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
14
|
Sobel M, Navas-Acien A, Powers M, Grau-Perez M, Goessler W, Best LG, Umans J, Oelsner EC, Podolanczuk A, Sanchez TR. Environmental-level exposure to metals and metal-mixtures associated with spirometry-defined lung disease in American Indian adults: Evidence from the Strong Heart Study. ENVIRONMENTAL RESEARCH 2022; 207:112194. [PMID: 34653410 PMCID: PMC8810711 DOI: 10.1016/j.envres.2021.112194] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND American Indians have a higher burden of chronic lung disease compared to the US average. Several metals are known to induce chronic lung disease at high exposure levels; however, less is known about the role of environmental-level metal exposure. We investigated respiratory effects of exposure to single metals and metal-mixtures in American Indians who participated in the Strong Heart Study. METHODS We included 2077 participants with data on 6 metals (As, Cd, Mo, Se, W, Zn) measured from baseline urine samples (1989-1991) and who underwent spirometry testing at follow-up (1993-1995). We used generalized linear regression to assess associations of single metals with spirometry-defined measures of airflow limitation and restrictive ventilatory pattern, and continuous spirometry. We used Bayesian Kernel Machine Regression to investigate the joint effects of the metal-mixture. Sensitivity analyses included stratifying by smoking status and diabetes. RESULTS Participants were 40% male, with median age 55 years. 21% had spirometry-defined airflow limitation, and 14% had a restrictive ventilatory pattern. In individual metal analyses, Cd was associated with higher odds of airflow limitation and lower FEV1 and FEV1/FVC. Mo was associated with higher odds of restrictive ventilatory pattern and lower FVC. Metal-mixtures analyses confirmed these models. In smoking stratified analyses, the overall metal-mixture was linearly and positively associated with airflow limitation among non-smokers; Cd was the strongest contributor. For restrictive ventilatory pattern, the association with the overall metal-mixture was strong and linear among participants with diabetes and markedly attenuated among participants without diabetes. Among those with diabetes, Mo and Zn were the major contributors. CONCLUSIONS Environmental-level exposure to several metals was associated with higher odds of spirometry-defined lung disease in an American Indian population. Exposure to multiple metals, including Cd and Mo, may have an under-recognized adverse role on the respiratory system.
Collapse
Affiliation(s)
- Marisa Sobel
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 West 168th St. NY, NY, 10032, USA.
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 West 168th St. NY, NY, 10032, USA.
| | - Martha Powers
- Department of Sociology and Anthropology, Northeastern University, 1135 Tremont Street, 900 Renaissance Park, Boston, MA, 02115, USA.
| | - Maria Grau-Perez
- Biomedical Research Institute of Valencia (INCLIVA), C. de Menéndez y Pelayo, 4, 46010, Valencia, Spain.
| | - Walter Goessler
- Institute of Chemistry, Universität Graz, Universitätsplatz 3, 8010, Graz, Austria.
| | - Lyle G Best
- Missouri Breaks Industries Research, 118 South Willow St, Eagle Butte, SD, 57625, USA.
| | - Jason Umans
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University Medical Center, 3800 Reservoir Road, N.W, Washington, D.C, USA.
| | - Elizabeth C Oelsner
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, 622 W 168th St, New York, NY, 10032, USA.
| | - Anna Podolanczuk
- Pulmonary Critical Care Medicine, Weill Cornell Medicine, 425 E 61st St, New York, NY, 10065, USA.
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 West 168th St. NY, NY, 10032, USA.
| |
Collapse
|
15
|
Li W, Yu L, Fu B, Chu J, Chen C, Li X, Ma J, Tang W. Protective effects of Polygonatum kingianum polysaccharides and aqueous extract on uranium-induced toxicity in human kidney (HK-2) cells. Int J Biol Macromol 2022; 202:68-79. [PMID: 35033528 DOI: 10.1016/j.ijbiomac.2022.01.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/18/2022]
Abstract
The current detoxification options of uranium, a toxic radioactive heavy metal, have obvious side effects. Polygonatum kingianum (PK), a natural product with the function of antioxidant, may be effective in detoxification and prevention of uranium-induced nephrotoxicity. Here, we studied the protective effects of PK polysaccharides (PKP) and aqueous extract (PKAE) on uranium-induced toxicity in human kidney (HK-2) cells. First, the physicochemical properties of PKP and PKAE were characterized. Assays on cultured cells demonstrated that pretreatment with PKP and PKAE significantly increased metabolic activity, relieved morphological impairments, and alleviated apoptosis. The impairments caused by uranium exposure were ameliorated (mitochondrial membrane potential and ATP level increased while reactive oxygen species decreased). Molecular mechanistic studies revealed that PKP and PKAE alleviated uranium-induced cytotoxicity by regulating mitochondria-mediated apoptosis and the GSK-3β/Fyn/Nrf2 pathway. Collectively, our data support the preventive and therapeutic applications of PKP and PKAE for uranium poisoning.
Collapse
Affiliation(s)
- Wenjing Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Bo Fu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jian Chu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Chun Chen
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Xijian Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Jiahua Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wei Tang
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China.
| |
Collapse
|
16
|
Lee YL, Shih YS, Chen ZY, Cheng FY, Lu JY, Wu YH, Wang YJ. Toxic Effects and Mechanisms of Silver and Zinc Oxide Nanoparticles on Zebrafish Embryos in Aquatic Ecosystems. NANOMATERIALS 2022; 12:nano12040717. [PMID: 35215043 PMCID: PMC8880218 DOI: 10.3390/nano12040717] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023]
Abstract
The global application of engineered nanomaterials and nanoparticles (ENPs) in commercial products, industry, and medical fields has raised some concerns about their safety. These nanoparticles may gain access into rivers and marine environments through industrial or household wastewater discharge and thereby affect the ecosystem. In this study, we investigated the effects of silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) on zebrafish embryos in aquatic environments. We aimed to characterize the AgNP and ZnONP aggregates in natural waters, such as lakes, reservoirs, and rivers, and to determine whether they are toxic to developing zebrafish embryos. Different toxic effects and mechanisms were investigated by measuring the survival rate, hatching rate, body length, reactive oxidative stress (ROS) level, apoptosis, and autophagy. Spiking AgNPs or ZnONPs into natural water samples led to significant acute toxicity to zebrafish embryos, whereas the level of acute toxicity was relatively low when compared to Milli-Q (MQ) water, indicating the interaction and transformation of AgNPs or ZnONPs with complex components in a water environment that led to reduced toxicity. ZnONPs, but not AgNPs, triggered a significant delay of embryo hatching. Zebrafish embryos exposed to filtered natural water spiked with AgNPs or ZnONPs exhibited increased ROS levels, apoptosis, and lysosomal activity, an indicator of autophagy. Since autophagy is considered as an early indicator of ENP interactions with cells and has been recognized as an important mechanism of ENP-induced toxicity, developing a transgenic zebrafish system to detect ENP-induced autophagy may be an ideal strategy for predicting possible ecotoxicity that can be applied in the future for the risk assessment of ENPs.
Collapse
Affiliation(s)
- Yen-Ling Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
- Department of Oncology, Tainan Hospital, Ministry of Health and Welfare, Tainan 70101, Taiwan
| | - Yung-Sheng Shih
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
| | - Zi-Yu Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
| | - Fong-Yu Cheng
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Jing-Yu Lu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
| | - Yuan-Hua Wu
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
- Correspondence: (Y.-H.W.); (Y.-J.W.); Tel.: +886-6-235-3535 (ext. 5804) (Y.-J.W.)
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence: (Y.-H.W.); (Y.-J.W.); Tel.: +886-6-235-3535 (ext. 5804) (Y.-J.W.)
| |
Collapse
|
17
|
Qin F, Cui S, Dong Y, Xu M, Wang Z, Qu C, Zhao J. Aerobic exercise ameliorates particulate matter-induced lung injury in aging rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116889. [PMID: 33774542 DOI: 10.1016/j.envpol.2021.116889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Particulate matter 2.5 (PM2.5) is an inflammatory-inducing factor that is considered to be related to many adverse respiratory problems, especially in the elderly. This study aimed to examine whether pre-exercise training could prevent pulmonary injury induced by urban PM2.5 in aging rats and investigate its relationship with inflammatory pathways. Male Wistar rats (aged 16 months) were randomly divided into four groups: sedentary, exercise, sedentary + PM2.5 exposure, and exercise + PM2.5 exposure. All rats in exercise-related groups were treadmill-trained for 8 weeks (65%-75% VO2max for 30 min every other day). Sedentary groups' rats lived freely in cages without exercise intervention. Rats in the PM-related groups were exposed to ambient PM2.5 (4 h day-1) for 2 weeks after an 8-week exercise intervention or sedentary treatment. Finally, all rats' pulmonary function, lung morphology, degree of inflammation, and relevant protein and mRNA transcript expression levels were examined. The results indicated that PM2.5 exposure induced lung injury in the sedentary + PM2.5 exposure group, as evidenced by the deterioration of pulmonary function, histopathological characteristics, and inflammatory changes. Aerobic exercise alleviated PM2.5-induced airway obstruction, deterioration of pulmonary function, bronchial mucosal exfoliation, and inflammatory responses in aging rats. These effects in exercise groups were associated with the increased expression of intracellular 70 kDa heat shock protein (iHSP70) and the suppression of nuclear transcription factor-κB (NF-κB) activation, as confirmed by increased expression of inhibitor of NF-κB (IκBα) and a reduction in phospho-IKBα (p-IκBα), which is regulated by inhibiting kappa B kinase beta (IKKβ). Taken together, aerobic pre-exercise had protective effects on lung injury and reduced vulnerability to inflammation induced by PM2.5 exposure, possibly through the toll-like receptor 4 (TLR4)/NF-κB signaling pathways mediated by the extracellular-to-intracellular HSP70 ratio. Pre-exercise training may be an effective way to protect against PM2.5-induced lung toxicity in aging individuals.
Collapse
Affiliation(s)
- Fei Qin
- China Institute of Sport Science, Beijing, China; School of Physical Education, Jinan University, Guangzhou, China
| | - Shuqiang Cui
- Beijing Research Institute of Sports Science, Beijing, China
| | - Yanan Dong
- Beijing Research Institute of Sports Science, Beijing, China
| | - Minxiao Xu
- China Institute of Sport Science, Beijing, China; Shanghai University of Sport, Shanghai, China
| | - Zhongwei Wang
- China Institute of Sport Science, Beijing, China; Changzhou Research Institute of Science and Medical Treatment, Changzhou, China
| | - Chaoyi Qu
- China Institute of Sport Science, Beijing, China
| | - Jiexiu Zhao
- China Institute of Sport Science, Beijing, China.
| |
Collapse
|
18
|
Forte G, Bocca B, Pisano A, Collu C, Farace C, Sabalic A, Senofonte M, Fois AG, Mazzarello VL, Pirina P, Madeddu R. The levels of trace elements in sputum as biomarkers for idiopathic pulmonary fibrosis. CHEMOSPHERE 2021; 271:129514. [PMID: 33434828 DOI: 10.1016/j.chemosphere.2020.129514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare lung disease that quickly leads to death. This paper addressed the issue of whether the levels of trace elements in sputum samples are suitable biomarkers for IPF disease. The sputum Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn concentrations were measured by sector field inductively coupled plasma mass spectrometry in populations sampled in Sardinia Island (Italy) including 31 patients with IPF, 31 patients with other lung-related diseases and 30 age- and gender-matched healthy controls. Risk factors in the disease as gender, age, severity and duration of the disease were assessed. Results showed that IPF patients had significantly increased sputum levels of Cd, Cr, Cu and Pb respect to controls. In males, but not in females, sputum levels of Cd, Cr and Cu were significantly higher in IPF cases respect to controls. In addition, Cr and Pb were increased in male patients with IPF compared to male patients with other lung diseases. Regarding Zn, it was found higher with the more serious stage of disease. Moreover, the ratios Cu/Zn, Fe/Mn and Cu/Mn were significantly increased in IPF patients and in non-IPF patients than in control subjects. These data showed clear increases in the concentration of some trace elements in sputum from patients with IPF and patients with other lung-related diseases that may contribute to the injury. The non-invasiveness of the sputum analysis is beneficial for its use as biomarker of trace element status in diseased patients for both the researcher and the clinic.
Collapse
Affiliation(s)
- Giovanni Forte
- Department of Environment and Health, Italian National Institute for Health, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Italian National Institute for Health, Rome, Italy.
| | - Andrea Pisano
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Claudia Collu
- Department of Clinical, Surgical & Experimental Sciences, University of Sassari, Sassari, Italy
| | - Cristiano Farace
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Angela Sabalic
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marta Senofonte
- Department of Environment and Health, Italian National Institute for Health, Rome, Italy
| | | | | | - Pietro Pirina
- Department of Clinical, Surgical & Experimental Sciences, University of Sassari, Sassari, Italy
| | - Roberto Madeddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
19
|
Milici A, Talavera K. TRP Channels as Cellular Targets of Particulate Matter. Int J Mol Sci 2021; 22:2783. [PMID: 33803491 PMCID: PMC7967245 DOI: 10.3390/ijms22052783] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Particulate matter (PM) is constituted by particles with sizes in the nanometer to micrometer scales. PM can be generated from natural sources such as sandstorms and wildfires, and from human activities, including combustion of fuels, manufacturing and construction or specially engineered for applications in biotechnology, food industry, cosmetics, electronics, etc. Due to their small size PM can penetrate biological tissues, interact with cellular components and induce noxious effects such as disruptions of the cytoskeleton and membranes and the generation of reactive oxygen species. Here, we provide an overview on the actions of PM on transient receptor potential (TRP) proteins, a superfamily of cation-permeable channels with crucial roles in cell signaling. Their expression in epithelial cells and sensory innervation and their high sensitivity to chemical, thermal and mechanical stimuli makes TRP channels prime targets in the major entry routes of noxious PM, which may result in respiratory, metabolic and cardiovascular disorders. On the other hand, the interactions between TRP channel and engineered nanoparticles may be used for targeted drug delivery. We emphasize in that much further research is required to fully characterize the mechanisms underlying PM-TRP channel interactions and their relevance for PM toxicology and biomedical applications.
Collapse
Affiliation(s)
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium;
| |
Collapse
|
20
|
Yu HT, Zhen J, Leng JY, Cai L, Ji HL, Keller BB. Zinc as a countermeasure for cadmium toxicity. Acta Pharmacol Sin 2021; 42:340-346. [PMID: 32284539 PMCID: PMC8027184 DOI: 10.1038/s41401-020-0396-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/15/2020] [Indexed: 12/11/2022]
Abstract
Cadmium (Cd) is an important environmental pollutant and long-term Cd exposure is closely related to autoimmune diseases, cancer, cardiovascular diseases (CVD), and hepatic dysfunction. Zinc (Zn) is an essential metal that plays key roles in protein structure, catalysis, and regulation of their function. Numerous studies have shown that Zn can reduce Cd toxicity; however, the underlying mechanisms have not been extensively explored. Preclinical studies have revealed direct competition for sarcolemmal uptake between these two metals. Multiple sarcolemmal transporters participate in Cd uptake, including Zn transporters, calcium channels, and DMT1 (divalent metal transporter 1). Zn also induces several protective mechanisms, including MT (metallothionein) induction and favorable redox homeostasis. This review summarizes current knowledge related to the role of Zn and metal transporters in reducing Cd toxicity and discusses potential future directions of related research.
Collapse
Affiliation(s)
- Hai-Tao Yu
- The First Hospital of Jilin University, Changchun, 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Juan Zhen
- The First Hospital of Jilin University, Changchun, 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Ji-Yan Leng
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Hong-Lei Ji
- The First Hospital of Jilin University, Changchun, 130021, China.
| | - Bradley B Keller
- Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
- Cincinnati Children's Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, KY, 40202, USA.
| |
Collapse
|
21
|
Hwang JH, Jeong H, Jung YO, Nam KT, Lim KM. Skin irritation and inhalation toxicity of biocides evaluated with reconstructed human epidermis and airway models. Food Chem Toxicol 2021; 150:112064. [PMID: 33596452 DOI: 10.1016/j.fct.2021.112064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Biocides are widely used in household products. Humans are exposed to biocides through dermal, inhalational, and oral routes. However, information on the dermal and inhalational toxicity of biocides is limited. We evaluated the effects of biocides on the skin and airways using the reconstructed human epidermis model KeraSkin™ and the airway model SoluAirway™. We determined the irritancy of 11 commonly used biocides (1,2-benzisothiazol-3(2H)-one [BIT], 2-phenoxyethanol [PE], zinc pyrithione, 2-bromo-2-nitropropane-1,3-diol, 3-iodoprop-2-ynyl N-butylcarbamate [IPBC], 2-octyl-1,2-thiazol-3-one, 2,2-dibromo-2-cyanoacetamide, 4-chloro-3-methylphenol [CC], 2-phenylphenol, deltamethrin, and 4,5-dichloro-2-octyl-1,2-thiazol-3-one) in the KeraSkin™ and SoluAirway™ by viability and histological examinations. BIT and CC were found to cause skin irritation at the approved concentrations or at the concentration close to approved limit while the others were non-irritants within the approved concentration. These results were confirmed via histology, wherein skin irritants induced erosion, vacuolation, and necrosis of the tissue. In the SoluAirway™, most of the biocides decreased cell viability even within the approved limits, except for PE, IPBC, and deltamethrin, suggesting that the airway may be more vulnerable to biocides than the skin. Taken together, our result indicates that some biocides can induce toxicity in skin and airway. Further studies on the dermal and inhalational toxicity of biocides are warranted.
Collapse
Affiliation(s)
- Jee-Hyun Hwang
- College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Ye-On Jung
- College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seodaemungu, Seoul, 03722, Republic of Korea.
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
22
|
Park YK, Song H, Kim MK, Jung SC, Jung HY, Kim SC. Recycling of a spent alkaline battery as a catalyst for the total oxidation of hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123929. [PMID: 33264979 DOI: 10.1016/j.jhazmat.2020.123929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
A spent alkaline battery-based (SB) catalyst was prepared from the black mass of a spent alkaline battery to determine the potential of recycling spent alkaline batteries as catalysts for the total oxidation of hydrocarbons. Five different acids (H2SO4, HNO3, C2H2O4, HCl, and H3PO4) were used to examine the effect of acid treatment on catalytic activity during catalyst preparation. Hexane, benzene, toluene, and o-xylene (HBTX) were adopted as the VOCs for experiments. The properties of the prepared catalysts were studied using ICP/OES, BET, XRD, ATR/FTIR, TGA, SEM, and H2-TPR analyses. The results showed that acid treatment significantly influenced the activity of the SB (400) catalyst, with the type of acid also found to greatly influence the activity of the catalyst. The order of activity according to the type of acid was H2SO4 > HNO3 > C2H2O4 > HCl > H3PO4 > none. Good performance of an acid-treated SB catalyst was associated with high concentrations of manganese and iron and a large BET surface area. In addition, the sequence in which the TPR peaks appeared at low temperatures according to each acid treatment was consistent with that of catalyst activity.
Collapse
Affiliation(s)
- Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Min Ki Kim
- Department of Environmental Education, Mokpo National University, Muan, 58554, Republic of Korea
| | - Sang-Chul Jung
- Department of Environmental Engineering, Sunchon National University, Sunchon 57975, Republic of Korea
| | - Ho Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang Chai Kim
- Department of Environmental Education, Mokpo National University, Muan, 58554, Republic of Korea.
| |
Collapse
|
23
|
Wang G, Zhang G, Gao X, Zhang Y, Fan W, Jiang J, An Z, Li J, Song J, Wu W. Oxidative stress-mediated epidermal growth factor receptor activation regulates PM2.5-induced over-secretion of pro-inflammatory mediators from human bronchial epithelial cells. Biochim Biophys Acta Gen Subj 2020; 1864:129672. [DOI: 10.1016/j.bbagen.2020.129672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022]
|
24
|
Pan Z, Zhang X, Hui Y, Xiang H, Wang Q, Xu S, Li L. Sex Difference Between Trace Elements and Pulmonary Functions in Children. Biol Trace Elem Res 2020; 197:405-410. [PMID: 32060730 DOI: 10.1007/s12011-019-02019-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
It has been defined that deficiency of trace elements plays an important role in the progression of asthma. However, the relationship between blood zinc (Zn), selenium (Se), and magnesium (Mg) and pulmonary functions in children remains to be clarified. A cross-sectional study was conducted in Wuxi, China, and a total of 202 healthy children were recruited. The forced vital capacity volume (FVC) and forced expiratory volume in the 1 s (FEV1) were measured. Blood samples were collected, and the levels of blood zinc, selenium, and magnesium were measured by inductively coupled plasma mass spectrometry (ICP-MS). Meanwhile, the concentrations of serum total IgE was also determined. The associations between trace elements and pulmonary functions were analyzed by multiple linear regression models. After stratified by sex, there was a positive association between blood Zn and pulmonary functions in boys. In addition, blood Zn was also negatively associated with serum total IgE concentrations in boys, but not in girls after adjusting for potential confounders. Our findings indicated that zinc deficiency was significantly related to children's pulmonary functions and that screening of trace elements may be a potential solution to decrease the risks of asthma in children.
Collapse
Affiliation(s)
- Zhenzhen Pan
- Department of Pediatric Respiratory, Wuxi Children's Hospital, Wuxi, 214023, Jiangsu Province, People's Republic of China
| | - Xiaojuan Zhang
- Department of Pediatric Respiratory, Wuxi Children's Hospital, Wuxi, 214023, Jiangsu Province, People's Republic of China
| | - Yu Hui
- Department of Pediatric Respiratory, Wuxi Children's Hospital, Wuxi, 214023, Jiangsu Province, People's Republic of China
| | - Hongxia Xiang
- Department of Pediatric Respiratory, Wuxi Children's Hospital, Wuxi, 214023, Jiangsu Province, People's Republic of China
| | - Qian Wang
- Department of Pediatric Respiratory, Wuxi Children's Hospital, Wuxi, 214023, Jiangsu Province, People's Republic of China
| | - Shiyao Xu
- Department of Pediatric Respiratory, Wuxi Children's Hospital, Wuxi, 214023, Jiangsu Province, People's Republic of China
| | - Ling Li
- Department of pediatric respiratory, Wuxi children's hospital, No. 299-1 at Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, People's Republic of China.
| |
Collapse
|
25
|
Jackson AC, Liu J, Vallanat B, Jones C, Nelms MD, Patlewicz G, Corton JC. Identification of novel activators of the metal responsive transcription factor (MTF-1) using a gene expression biomarker in a microarray compendium. Metallomics 2020; 12:1400-1415. [PMID: 32661532 PMCID: PMC10776036 DOI: 10.1039/d0mt00071j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Environmental exposure to metals is known to cause a number of human toxicities including cancer. Metal-responsive transcription factor 1 (MTF-1) is an important component of metal regulation systems in mammalian cells. Here, we describe a novel method to identify chemicals that activate MTF-1 based on microarray profiling data. MTF-1 biomarker genes were identified that exhibited consistent, robust expression across 10 microarray comparisons examining the effects of metals (zinc, nickel, lead, arsenic, mercury, and silver) on gene expression in human cells. A subset of the resulting 81 biomarker genes was shown to be altered by knockdown of the MTF1 gene including metallothionein family members and a zinc transporter. The ability to correctly identify treatment conditions that activate MTF-1 was determined by comparing the biomarker to microarray comparisons from cells exposed to reference metal activators of MTF-1 using the rank-based Running Fisher algorithm. The balanced accuracy for prediction was 93%. The biomarker was then used to identify organic chemicals that activate MTF-1 from a compendium of 11 725 human gene expression comparisons representing 2582 chemicals. There were 700 chemicals identified that included those known to interact with cellular metals, such as clioquinol and disulfiram, as well as a set of novel chemicals. All nine of the novel chemicals selected for validation were confirmed to activate MTF-1 biomarker genes in MCF-7 cells and to lesser extents in MTF1-null cells by qPCR and targeted RNA-Seq. Overall, our work demonstrates that the biomarker for MTF-1 coupled with the Running Fisher test is a reliable strategy to identify novel chemical modulators of metal homeostasis using gene expression profiling.
Collapse
Affiliation(s)
- Abigail C Jackson
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 T.W. Alexander Dr. MD-B105-3, Research Triangle Park, NC 27711, USA. and Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Jie Liu
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 T.W. Alexander Dr. MD-B105-3, Research Triangle Park, NC 27711, USA.
| | - Beena Vallanat
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 T.W. Alexander Dr. MD-B105-3, Research Triangle Park, NC 27711, USA.
| | - Carlton Jones
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 T.W. Alexander Dr. MD-B105-3, Research Triangle Park, NC 27711, USA.
| | - Mark D Nelms
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 T.W. Alexander Dr. MD-B105-3, Research Triangle Park, NC 27711, USA. and Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 T.W. Alexander Dr. MD-B105-3, Research Triangle Park, NC 27711, USA.
| | - J Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 T.W. Alexander Dr. MD-B105-3, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
26
|
Palmer LD, Jordan AT, Maloney KN, Farrow MA, Gutierrez DB, Gant-Branum R, Burns WJ, Romer CE, Tsui T, Allen JL, Beavers WN, Nei YW, Sherrod SD, Lacy DB, Norris JL, McLean JA, Caprioli RM, Skaar EP. Zinc intoxication induces ferroptosis in A549 human lung cells. Metallomics 2020; 11:982-993. [PMID: 30968088 DOI: 10.1039/c8mt00360b] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Zinc (Zn) is an essential trace metal required for all forms of life, but is toxic at high concentrations. While the toxic effects of high levels of Zn are well documented, the mechanism of cell death appears to vary based on the study and concentration of Zn. Zn has been proposed as an anti-cancer treatment against non-small cell lung cancer (NSCLC). The goal of this analysis was to determine the effects of Zn on metabolism and cell death in A549 cells. Here, high throughput multi-omics analysis identified the molecular effects of Zn intoxication on the proteome, metabolome, and transcriptome of A549 human NSCLC cells after 5 min to 24 h of Zn exposure. Multi-omics analysis combined with additional experimental evidence suggests Zn intoxication induces ferroptosis, an iron and lipid peroxidation-dependent programmed cell death, demonstrating the utility of multi-omics analysis to identify cellular response to intoxicants.
Collapse
Affiliation(s)
- Lauren D Palmer
- Vanderbilt Institute for Infection, Immunology and Inflammation and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fernblock® Upregulates NRF2 Antioxidant Pathway and Protects Keratinocytes from PM 2.5-Induced Xenotoxic Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2908108. [PMID: 32377294 PMCID: PMC7181013 DOI: 10.1155/2020/2908108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
Humans in modern industrial and postindustrial societies face sustained challenges from environmental pollutants, which can trigger tissue damage from xenotoxic stress through different mechanisms. Thus, the identification and characterization of compounds capable of conferring antioxidant effects and protection against these xenotoxins are warranted. Here, we report that the natural extract of Polypodium leucotomos named Fernblock®, known to reduce aging and oxidative stress induced by solar radiations, upregulates the NRF2 transcription factor and its downstream antioxidant targets, and this correlates with its ability to reduce inflammation, melanogenesis, and general cell damage in cultured keratinocytes upon exposure to an experimental model of fine pollutant particles (PM2.5). Our results provide evidence for a specific molecular mechanism underpinning the protective activity of Fernblock® against environmental pollutants and potentially other sources of oxidative stress and damage-induced aging.
Collapse
|
28
|
Elfarargy M, Abu-Risha SS. Detection of serum zinc levels in neonates with bronchopulmonary dysplasia. J Clin Neonatol 2020. [DOI: 10.4103/jcn.jcn_124_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
29
|
Lemaire J, Mireault M, Jumarie C. Zinc interference with Cd‐induced hormetic effect in differentiated Caco‐2 cells: Evidence for inhibition downstream ERK activation. J Biochem Mol Toxicol 2019; 34:e22437. [DOI: 10.1002/jbt.22437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/07/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Joannie Lemaire
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| | - Myriam Mireault
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| | - Catherine Jumarie
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| |
Collapse
|
30
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
31
|
Cui X, Zhou T, Shen Y, Rong Y, Zhang Z, Liu Y, Xiao L, Zhou Y, Li W, Chen W. Different biological effects of PM 2.5 from coal combustion, gasoline exhaust and urban ambient air relate to the PAH/metal compositions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 69:120-128. [PMID: 31026736 DOI: 10.1016/j.etap.2019.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/08/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Few studies have compared the biological effects of PM2.5 from coal combustion, gasoline exhaust and urban ambient air, and the roles of polycyclic aromatic hydrocarbons (PAHs) and metals playing in the process remain unclear. In this study, PM2.5 samples from coal combustion, gasoline exhaust and urban ambient air were analyzed for 16 PAHs and 23 metals. Cytotoxic and inflammatory effects of different PM2.5 were evaluated on differentiated THP-1 and A549 cells, respectively. We found that the coal combustion PM2.5 samples induced stronger cytotoxic and inflammatory effects (p < 0.05). Pearson's correlation and principal component analysis showed that the PAHs containing four or more benzenoid rings and specific metals of cadmium, thallium, zinc and lead were positively related to the biological effects. Our results suggested that coal combustion PM2.5 might be a more serious health hazard. Specific PAHs and metals might be account for the PM2.5 induced biological effects.
Collapse
Affiliation(s)
- Xiuqing Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Institute of Health Surveillance, Analysis and Protection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Ting Zhou
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, China
| | - Yan Shen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yi Rong
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhihong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuewei Liu
- Institute of Health Surveillance, Analysis and Protection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Lili Xiao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
32
|
Abstract
Zinc(II) ions are redox-inert in biology. Yet, their interaction with sulfur of cysteine in cellular proteins can confer ligand-centered redox activity on zinc coordination sites, control protein functions, and generate signalling zinc ions as potent effectors of many cellular processes. The specificity and relative high affinity of binding sites for zinc allow regulation in redox biology, free radical biology, and the biology of reactive species. Understanding the role of zinc in these areas of biology requires an understanding of how cellular Zn2+ is homeostatically controlled and can serve as a regulatory ion in addition to Ca2+, albeit at much lower concentrations. A rather complex system of dozens of transporters and metallothioneins buffer the relatively high (hundreds of micromolar) total cellular zinc concentrations in such a way that the available zinc ion concentrations are only picomolar but can fluctuate in signalling. The proteins targeted by Zn2+ transients include enzymes controlling phosphorylation and redox signalling pathways. Networks of regulatory functions of zinc integrate gene expression and metabolic and signalling pathways at several hierarchical levels. They affect enzymatic catalysis, protein structure and protein-protein/biomolecular interactions and add to the already impressive number of catalytic and structural functions of zinc in an estimated three thousand human zinc proteins. The effects of zinc on redox biology have adduced evidence that zinc is an antioxidant. Without further qualifications, this notion is misleading and prevents a true understanding of the roles of zinc in biology. Its antioxidant-like effects are indirect and expressed only in certain conditions because a lack of zinc and too much zinc have pro-oxidant effects. Teasing apart these functions based on quantitative considerations of homeostatic control of cellular zinc is critical because opposite consequences are observed depending on the concentrations of zinc: pro- or anti-apoptotic, pro- or anti-inflammatory and cytoprotective or cytotoxic. The article provides a biochemical basis for the links between redox and zinc biology and discusses why zinc has pleiotropic functions. Perturbation of zinc metabolism is a consequence of conditions of redox stress. Zinc deficiency, either nutritional or conditioned, and cellular zinc overload cause oxidative stress. Thus, there is causation in the relationship between zinc metabolism and the many diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Wolfgang Maret
- Metal Metabolism Group, Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
33
|
Turan B. A Brief Overview from the Physiological and Detrimental Roles of Zinc Homeostasis via Zinc Transporters in the Heart. Biol Trace Elem Res 2019; 188:160-176. [PMID: 30091070 DOI: 10.1007/s12011-018-1464-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022]
Abstract
Zinc (mostly as free/labile Zn2+) is an essential structural constituent of many proteins, including enzymes in cellular signaling pathways via functioning as an important signaling molecule in mammalian cells. In cardiomyocytes at resting condition, intracellular labile Zn2+ concentration ([Zn2+]i) is in the nanomolar range, whereas it can increase dramatically under pathological conditions, including hyperglycemia, but the mechanisms that affect its subcellular redistribution is not clear. Therefore, overall, very little is known about the precise mechanisms controlling the intracellular distribution of labile Zn2+, particularly via Zn2+ transporters during cardiac function under both physiological and pathophysiological conditions. Literature data demonstrated that [Zn2+]i homeostasis in mammalian cells is primarily coordinated by Zn2+ transporters classified as ZnTs (SLC30A) and ZIPs (SLC39A). To identify the molecular mechanisms of diverse functions of labile Zn2+ in the heart, the recent studies focused on the discovery of subcellular localization of these Zn2+ transporters in parallel to the discovery of novel physiological functions of [Zn2+]i in cardiomyocytes. The present review summarizes the current understanding of the role of [Zn2+]i changes in cardiomyocytes under pathological conditions, and under high [Zn2+]i and how Zn2+ transporters are important for its subcellular redistribution. The emerging importance and the promise of some Zn2+ transporters for targeted cardiac therapy against pathological stimuli are also provided. Taken together, the review clearly outlines cellular control of cytosolic Zn2+ signaling by Zn2+ transporters, the role of Zn2+ transporters in heart function under hyperglycemia, the role of Zn2+ under increased oxidative stress and ER stress, and their roles in cancer are discussed.
Collapse
Affiliation(s)
- Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
34
|
Gutierrez DB, Gant-Branum RL, Romer CE, Farrow MA, Allen JL, Dahal N, Nei YW, Codreanu SG, Jordan AT, Palmer LD, Sherrod SD, McLean JA, Skaar EP, Norris JL, Caprioli RM. An Integrated, High-Throughput Strategy for Multiomic Systems Level Analysis. J Proteome Res 2018; 17:3396-3408. [PMID: 30114907 DOI: 10.1021/acs.jproteome.8b00302] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteomics, metabolomics, and transcriptomics generate comprehensive data sets, and current biocomputational capabilities allow their efficient integration for systems biology analysis. Published multiomics studies cover methodological advances as well as applications to biological questions. However, few studies have focused on the development of a high-throughput, unified sample preparation approach to complement high-throughput omic analytics. This report details the automation, benchmarking, and application of a strategy for transcriptomic, proteomic, and metabolomic analyses from a common sample. The approach, sample preparation for multi-omics technologies (SPOT), provides equivalent performance to typical individual omic preparation methods but greatly enhances throughput and minimizes the resources required for multiomic experiments. SPOT was applied to a multiomics time course experiment for zinc-treated HL-60 cells. The data reveal Zn effects on NRF2 antioxidant and NFkappaB signaling. High-throughput approaches such as these are critical for the acquisition of temporally resolved, multicondition, large multiomic data sets such as those necessary to assess complex clinical and biological concerns. Ultimately, this type of approach will provide an expanded understanding of challenging scientific questions across many fields.
Collapse
|
35
|
Matsuda S, Nakagawa Y, Tsuji A, Kitagishi Y, Nakanishi A, Murai T. Implications of PI3K/AKT/PTEN Signaling on Superoxide Dismutases Expression and in the Pathogenesis of Alzheimer's Disease. Diseases 2018; 6:E28. [PMID: 29677102 PMCID: PMC6023281 DOI: 10.3390/diseases6020028] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease is a neurodegenerative sickness, where the speed of personal disease progression differs prominently due to genetic and environmental factors such as life style. Alzheimer’s disease is described by the construction of neuronal plaques and neurofibrillary tangles composed of phosphorylated tau protein. Mitochondrial dysfunction may be a noticeable feature of Alzheimer’s disease and increased production of reactive oxygen species has long been described. Superoxide dismutases (SODs) protect from excess reactive oxygen species to form less reactive hydrogen peroxide. It is suggested that SODs can play a protective role in neurodegeneration. In addition, PI3K/AKT pathway has been shown to play a critical role on the neuroprotection and inhibiting apoptosis via the enhancing expression of the SODs. This pathway appears to be crucial in Alzheimer’s disease because it is related to the tau protein hyper-phosphorylation. Dietary supplementation of several ordinary compounds may provide a novel therapeutic approach to brain disorders by modulating the function of the PI3K/AKT pathway. Understanding these systems may offer a better efficacy of new therapeutic approaches. In this review, we summarize recent progresses on the involvement of the SODs and PI3K/AKT pathway in neuroprotective signaling against Alzheimer’s disease.
Collapse
Affiliation(s)
- Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yukie Nakagawa
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Atsuko Nakanishi
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara 631-8501, Japan.
| | - Toshiyuki Murai
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
36
|
Abstract
AbstractThe infectious diseases caused by various bacteria pose serious threat to human health. To solve this problem, antibacterial agents have been widely used in people’s daily life to deactivate or kill these bacteria. Among the antibacterial agents, ZnO is one of the most promising metal oxide antibacterial agents due to its non-toxic nature and safe properties. To expand its application, many composites of ZnO have been widely studied. Cellulose, as one of the most abundant biopolymers, has many merits like biodegradability, biocompatibility and low cost. Thus, many studies focus on synthesized cellulose/ZnO. The synthetic strategy includes both chemical and physical methods. Many of them have been shown that cellulose/ZnO composites have excellent antibacterial activity and are environment-friendly and have many applications for example food packing, antibacterial fibers and so on. This review mainly discusses the preparation methods of cellulose/ZnO and their effect on the morphology and properties.
Collapse
|
37
|
|
38
|
Ghatge M, Nair J, Sharma A, Vangala RK. Integrative gene ontology and network analysis of coronary artery disease associated genes suggests potential role of ErbB pathway gene EGFR. Mol Med Rep 2018; 17:4253-4264. [PMID: 29328373 PMCID: PMC5802197 DOI: 10.3892/mmr.2018.8393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022] Open
Abstract
Coronary artery disease (CAD) is a major cause of mortality in India, more importantly the young Indians. Combinatorial and integrative approaches to evaluate pathways and genes to gain an improved understanding and potential biomarkers for risk assessment are required. Therefore, 608 genes from the CADgene database version 2.0, classified into 12 functional classes representing the atherosclerotic disease process, were analyzed. Homology analysis of the unique list of gene ontologies (GO) from each functional class gave 8 GO terms represented in 11 and 10 functional classes. Using disease ontology analysis 80 genes belonging to 8 GO terms, using FunDO suggested that 29 of them were identified to be associated with CAD. Extended network analysis of these genes using STRING version 9.1 gave 328 nodes and 4,525 interactions of which the top 5% had a node degree of ≥75 associated with pathways including the ErbB signaling pathway with epidermal growth factor receptor (EGFR) gene as the central hub. Evaluation of EFGR protein levels in age and gender-matched 342 CAD patients vs. 342 control subjects demonstrated significant differences [controls=149.76±2.47 pg/ml and CAD patients stratified into stable angina (SA)=161.65±3.40 pg/ml and myocardial infarction (MI)=171.51±4.26 pg/ml]. Logistic regression analysis suggested that increased EGFR levels exhibit 3-fold higher risk of CAD [odds ratio (OR) 3.51, 95% confidence interval [CI] 1.96–6.28, P≤0.001], upon adjustment for hypertension, diabetes and smoking. A unit increase in EGFR levels increased the risk by 2-fold for SA (OR 2.58, 95% CI 1.25–5.33, P=0.01) and 3.8-fold for MI (OR 3.82, 95% CI 1.94–7.52, P≤0.001) following adjustment. Thus, the use of ontology mapping and network analysis in an integrative manner aids in the prioritization of biomarkers of complex disease.
Collapse
Affiliation(s)
- Madankumar Ghatge
- Tata Proteomics and Coagulation Unit, Thrombosis Research Institute, Narayana Hrudayalaya Hospital, Bengaluru, Karnataka 560099, India
| | - Jiny Nair
- Mary and Garry Weston Functional Genomics Unit, Thrombosis Research Institute, Bengaluru, Karnataka 560099, India
| | - Ankit Sharma
- Manipal University, Manipal, Karnataka 576104, India
| | - Rajani Kanth Vangala
- Tata Proteomics and Coagulation Unit, Thrombosis Research Institute, Narayana Hrudayalaya Hospital, Bengaluru, Karnataka 560099, India
| |
Collapse
|
39
|
Huang YH, Jin XY, Zhao YY, Cong H, Tao Z. A fluorescence-enhanced chemosensor based on multifarene[2,2] and its recognition of metal cations. Org Biomol Chem 2018; 16:5343-5349. [DOI: 10.1039/c8ob01315b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A selective and sensitive fluorescent chemosensor based on an anthracene-functionalized triazole-linked multifarene[2,2] was successfully synthesized and investigated with regard to the recognition of metal ions.
Collapse
Affiliation(s)
- Yin-Hui Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Xian-Yi Jin
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
- School of Materials and Metallurgical Engineering
| | - Yong-Yi Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| |
Collapse
|
40
|
Turan B, Tuncay E. Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology. Int J Mol Sci 2017; 18:ijms18112395. [PMID: 29137144 PMCID: PMC5713363 DOI: 10.3390/ijms18112395] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 12/15/2022] Open
Abstract
Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn2+. Although Zn2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn2+-diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn2+ in parallel to the discovery of subcellular localization of Zn2+-transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca2+ dynamics. Cellular labile Zn2+ is tightly regulated against its adverse effects through either Zn2+-transporters, Zn2+-binding molecules or Zn2+-sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn2+ distribution in cardiomyocytes and how a remodeling of cellular Zn2+-homeostasis can be important in proper cell function with Zn2+-transporters under hyperglycemia. We also emphasize the recent investigations on Zn2+-transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes.
Collapse
Affiliation(s)
- Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey.
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey.
| |
Collapse
|
41
|
Microscopy-based high-throughput assays enable multi-parametric analysis to assess adverse effects of nanomaterials in various cell lines. Arch Toxicol 2017; 92:633-649. [DOI: 10.1007/s00204-017-2106-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022]
|
42
|
Uski O, Torvela T, Sippula O, Karhunen T, Koponen H, Peräniemi S, Jalava P, Happo M, Jokiniemi J, Hirvonen MR, Lähde A. In vitro toxicological effects of zinc containing nanoparticles with different physico-chemical properties. Toxicol In Vitro 2017; 42:105-113. [DOI: 10.1016/j.tiv.2017.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/02/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
|
43
|
Kanemoto-Kataoka Y, Oyama TM, Ishibashi H, Oyama Y. Zinc is a determinant of the cytotoxicity of Ziram, a dithiocarbamate fungicide, in rat thymic lymphocytes: possible environmental risks. Toxicol Res (Camb) 2017; 6:499-504. [PMID: 30090518 PMCID: PMC6062119 DOI: 10.1039/c7tx00052a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/18/2017] [Indexed: 11/21/2022] Open
Abstract
Ziram, one of the dithiocarbamate fungicides, is widely applied to agriculture because this agent protects various crops from fungal infections. Risks of dithiocarbamate biocide use are of concern. It was previously reported that Ziram increased the intracellular concentration of Zn2+. Therefore, we cytometrically studied the mechanism of Zn2+-dependent lethal actions of Ziram on rat lymphocytes at environmentally relevant Zn2+ levels. Membrane and cellular parameters of rat lymphocytes were estimated by flow-cytometric techniques with appropriate fluorescent probes. The Ziram-induced increase in cell lethality was completely attenuated by Zn2+ chelators. A significant increase of cell lethality was found on the simultaneous application of Ziram at a sublethal concentration and ZnCl2. The combination of Ziram and ZnCl2 increased the cellular superoxide anion content and decreased the cellular GSH content, which possibly caused the increase in cell lethality. The zinc concentrations under the present experimental conditions were comparable to the environmentally relevant concentrations found in rivers. Therefore, the environmental level of zinc may be critical in estimating the toxicity of Ziram to wild animals.
Collapse
Affiliation(s)
- Yumiko Kanemoto-Kataoka
- Faculty of Bioscience and Bioindustry , Tokushima University , Tokushima 770-8513 , Japan . ; Tel: +81-88-656-7256
| | - Tomohiro M Oyama
- Faculty of Bioscience and Bioindustry , Tokushima University , Tokushima 770-8513 , Japan . ; Tel: +81-88-656-7256
| | - Hitoshi Ishibashi
- Faculty of Bioscience and Bioindustry , Tokushima University , Tokushima 770-8513 , Japan . ; Tel: +81-88-656-7256
| | - Yasuo Oyama
- Faculty of Bioscience and Bioindustry , Tokushima University , Tokushima 770-8513 , Japan . ; Tel: +81-88-656-7256
| |
Collapse
|
44
|
Qin X, Zhang J, Wang B, Xu G, Zou Z. LAMP-2 mediates oxidative stress-dependent cell death in Zn 2+ -treated lung epithelium cells. Biochem Biophys Res Commun 2017; 488:177-181. [DOI: 10.1016/j.bbrc.2017.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/05/2017] [Indexed: 01/21/2023]
|
45
|
Mitani T, Elmarhomy AIE, Dulamjav L, Anu E, Saitoh S, Ishida S, Oyama Y. Zinc-related actions of sublethal levels of benzalkonium chloride: Potentiation of benzalkonium cytotoxicity by zinc. Chem Biol Interact 2017; 268:31-36. [PMID: 28257953 DOI: 10.1016/j.cbi.2017.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/19/2017] [Accepted: 02/26/2017] [Indexed: 11/17/2022]
Abstract
Benzalkonium chloride (BZK) is a common preservative used in pharmaceutical and personal care products. ZnCl2 was recently reported to significantly potentiate the cytotoxicity of some biocidal compounds. In the present study, therefore, we compared the cytotoxic potency of BZK and then further studied the Zn2+-related actions of the most cytotoxic agent among BZK, using flow cytometric techniques with appropriate fluorescent probes in rat thymocytes. Cytotoxicity of benzylcetyldimethylammonium (BZK-C16) was more potent that those of benzyldodecyldimethylammonium and benzyldimethyltetradecylammonium. ZnCl2 (1-10 μM) significantly potentiated the cytotoxicity of BZK-C16 at a sublethal concentration (1 μM). The co-treatment of cells with 3 μM ZnCl2 and 1 μM BZK-C16 increased the population of both living cells with phosphatidylserine exposed on membrane surfaces and dead cells. BZK-C16 at 0.3-1.0 μM elevated intracellular Zn2+ levels by increasing Zn2+ influx, and augmented the cytotoxicity of 100 μM H2O2. Zn2+ is concluded to facilitate the toxicity of BZK. We suggest that the toxicity of BZK is determined after taking extracellular (plasma) and/or environmental Zn2+ levels into account.
Collapse
Affiliation(s)
- Tsuyoshi Mitani
- Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Japan
| | | | - Luvsandorj Dulamjav
- Graduate School of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Enkhtumur Anu
- Graduate School of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Shohei Saitoh
- Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Shiro Ishida
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8512, Japan
| | - Yasuo Oyama
- Graduate School of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.
| |
Collapse
|
46
|
Ninsontia C, Phiboonchaiyanan PP, Kiratipaiboon C, Chanvorachote P. Zinc suppresses stem cell properties of lung cancer cells through protein kinase C-mediated β-catenin degradation. Am J Physiol Cell Physiol 2017; 312:C487-C499. [DOI: 10.1152/ajpcell.00173.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/23/2022]
Abstract
Highly tumorigenic cancer stem cells (CSCs) residing in most cancers are responsible for cancer progression and treatment failure. Zinc is an element regulator of several cell functions; however, its role in regulation of stem cell program in lung cancer has not been demonstrated. The present study reveals for the first time that zinc can suppress stem cell properties of lung cancer cells. Such findings were proved in different lung cancer cell lines (H460, H23, and H292) and it was found that CSC markers (CD133 and ALDH1A1), stem cell-associated transcription factors (Oct4, Nanog, and Sox-2), and the ability to form tumor spheroid were dramatically suppressed by zinc treatments. Zinc was found to activate protein kinase C-α (PKCα) that further phosphorylated and mediated β-catenin degradation through the ubiquitin-proteasomal pathway. Zinc was found to increase the β-catenin-ubiquitin complex, which can be inhibited by a specific PKC inhibitor, bisindolylmaleimide I. Using specific reactive oxygen species detection and antioxidants, we have demonstrated that superoxide anions generated by zinc are a key upstream mechanism for PKCα activation leading to the subsequent suppression of stem cell features of lung cancer. Zinc increased cellular superoxide anions and the addition of superoxide anion scavenger prevented the activation of PKCα and β-catenin degradation. These findings indicate a novel role for zinc regulation in the PKCα/β-catenin pathway and explain an important mechanism for controlling of stem cell program in lung cancer cells.
Collapse
Affiliation(s)
- Chuanpit Ninsontia
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; and
- Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Preeyaporn Plaimee Phiboonchaiyanan
- Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chayanin Kiratipaiboon
- Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; and
- Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
47
|
Park EJ, Jeong U, Yoon C, Kim Y. Comparison of distribution and toxicity of different types of zinc-based nanoparticles. ENVIRONMENTAL TOXICOLOGY 2017; 32:1363-1374. [PMID: 27510841 DOI: 10.1002/tox.22330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/14/2016] [Accepted: 07/17/2016] [Indexed: 06/06/2023]
Abstract
Zinc-based nanoparticles (Zn-NPs), mainly zinc oxide (ZnO) NPs, have promising application in a wide area, but their potential harmful effects on environment and human health have been continuously raised together with their high dissolution rate. In this study, we coated the surface of ZnO NPs with phosphate (ZnP NPs) and sulfide (ZnS NPs) which have very low solubility in water, administered orally (0.5 and 1 mg/kg) to mice for 28 days, and then compared their biodistribution and toxicity. As expected, ZnO NPs were rapidly ionized in an artificial gastric fluid. On the other hand, ZnO NPs were more particlized in an artificial intestinal fluid than ZnP and ZnS NPs. After repeated dosing, all three types of Zn-NPs the most distributed in the spleen and thymus and altered the level of redox reaction-related metal ions in the tissues. We also found that three types of Zn-NPs clearly disturb tissue ion homeostasis and influence immune regulation function. However, there were no remarkable difference in distribution and toxicity following repeated exposure of three types of Zn-NPs, although Na+ and K+ level in the spleen and thymus were notably higher in mice exposed to ZnO NPs compared to ZnP and ZnS NPs. Taken together, we suggest that all three types of Zn-NPs may influence human health by disrupting homeostasis of trace elements and ions in the tissues. In addition, the surface transformation of ZnO NPs with phosphate and sulfide may not attenuate toxicity due to the higher particlization rate of ZnO NPs in the intestine, at least in part. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1363-1374, 2017.
Collapse
Affiliation(s)
- Eun-Jung Park
- Myunggok Eye Research Institute, Konyang University, Daejeon, 302-718, Korea
| | - Uiseok Jeong
- Department of Chemical Engineering, Kwangwoon University, Seoul, 139-701, Korea
| | - Cheolho Yoon
- Seoul Center, Korea Basic Science Institute, Seoul, 126-16, Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul, 139-701, Korea
| |
Collapse
|
48
|
Feng F, Jin Y, Duan L, Yan Z, Wang S, Li F, Liu Y, Samet JM, Wu W. Regulation of ozone-induced lung inflammation by the epidermal growth factor receptor in mice. ENVIRONMENTAL TOXICOLOGY 2016; 31:2016-2027. [PMID: 26464147 DOI: 10.1002/tox.22202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
Human exposure to the highly reactive oxidant gas Ozone (O3 ) is associated with inflammatory responses in the airway epithelium. The mechanisms responsible have not been fully elucidated. Epidermal growth factor receptor (EGFR) has previously been shown to play a critical role in the pathogenesis of lung inflammation. To define the role of EGFR in O3 -induced lung inflammation in mice. 40 BALB/c mice were exposed to filtered air (FA) or (0.25, 0.5, 1.00 ppm) O3 for 3 h per day for 7 consecutive days. Levels of reactive oxygen species (ROS), EGF, and transforming growth factor α (TGF-α) in the bronchoalveolar lavage fluid (BALF) of mice were measured using ELISA. BALB/c mice were intratracheally instilled with the EGFR kinase inhibitor PD153035 2 h prior to O3 exposure and every other day thereafter. Phosphorylation of EGFR (Y1068) in lung sections was determined using immunohistochemical staining and western blot 24 h after exposure. Inhalation of O3 induced pronounced lung inflammation in a dose-dependent manner. Levels of ROS, TGF-α, and total proteins and cells in the BALF of mice exposed to 0.5 ppm or 1.0 ppm of O3 were markedly elevated relative to those in the BALF of the mice exposed to FA. In addition, exposure to O3 induced EGFR(Y1068) phosphorylation in the airway epithelium. Administration of PD153035 resulted in a significantly reduced lung inflammation as well as EGFR phosphorylation induced by O3 exposure. Inhalation of O3 leads to inflammatory responses that are dependent on the activation the EGFR in the airway epithelium. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 2016-2027, 2016.
Collapse
Affiliation(s)
- Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Liju Duan
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhen Yan
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shouying Wang
- School of Public Health, Xinxiang Medical University, China
| | - Fangfang Li
- School of Public Health, Xinxiang Medical University, China
| | - Yingying Liu
- School of Public Health, Xinxiang Medical University, China
| | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Chapel Hill, North Carolina
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, China
| |
Collapse
|
49
|
Låg M, Øvrevik J, Totlandsdal AI, Lilleaas EM, Thormodsæter A, Holme JA, Schwarze PE, Refsnes M. Air pollution-related metals induce differential cytokine responses in bronchial epithelial cells. Toxicol In Vitro 2016; 36:53-65. [PMID: 27427241 DOI: 10.1016/j.tiv.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/21/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Abstract
Different transition metals have been shown to induce inflammatory responses in lung. We have compared eight different metal ions with regard to cytokine responses, cytotoxicity and signalling mechanisms in a human lung epithelial cell model (BEAS-2B). Among the metal ions tested, there were large differences with respect to pro-inflammatory potential. Exposure to Cd(2+), Zn(2+) and As(3+) induced CXCL8 and IL-6 release at concentrations below 100μM, and Mn(2+) and Ni(2+) at concentrations above 200μM. In contrast, VO4(3-), Cu(2+) and Fe(2+) did not induce any significant increase of these cytokines. An expression array of 20 inflammatory relevant genes also showed a marked up-regulation of CXCL10, IL-10, IL-13 and CSF2 by one or more of the metal ions. The most potent metals, Cd(2+), Zn(2+) and As(3+) induced highest levels of oxidative activity, and ROS appeared to be central in their CXCL8 and IL-6 responses. Activation of the MAPK p38 seemed to be a critical mediator. However, the NF-κB pathway appeared predominately to be involved only in Zn(2+)- and As(3+)-induced CXCL8 and IL-6 responses. Thus, the most potent metals Cd(2+), Zn(2+) and As(3+) seemed to induce a similar pattern for the cytokine responses, and with some exceptions, via similar signalling mechanisms.
Collapse
Affiliation(s)
- M Låg
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway.
| | - J Øvrevik
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - A I Totlandsdal
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - E M Lilleaas
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - A Thormodsæter
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - J A Holme
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - P E Schwarze
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - M Refsnes
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| |
Collapse
|
50
|
Garusinghe GSP, Bessey SM, Bruce AE, Bruce MRM. The influence of gold(i) on the mechanism of thiolate, disulfide exchange. Dalton Trans 2016; 45:11261-6. [PMID: 27353236 DOI: 10.1039/c6dt01400c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mechanism of gold(i)-thiolate, disulfide exchange was investigated by using initial-rate kinetic studies, 2D ((1)H-(1)H) ROESY NMR spectroscopy, and electrochemical/chemical techniques. The rate law for exchange is overall second order, first order in gold(i)-thiolate and disulfide. 2D NMR experiments show evidence of association between gold(i)-thiolate and disulfide. Electrochemical/chemical investigations do not show evidence of free thiolate and are consistent with a mechanism involving formation of a [Au-S, S-S], four-centered metallacycle intermediate during gold(i)-thiolate, disulfide exchange.
Collapse
|