1
|
Polidori MC. Embracing complexity of (brain) aging. FEBS Lett 2024; 598:2067-2073. [PMID: 38831254 DOI: 10.1002/1873-3468.14941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 06/05/2024]
Abstract
Aging is a multifactorial process occurring in a pathophysiological continuum which leads to organ and system functional loss. While aging is not a disease, its pathophysiological continuum predisposes to illness and multimorbidity clusters which share common biomolecular mechanisms-the pillars of aging. Brain aging and neurodegeneration share many hallmarks with other age-related diseases. The central nervous system is often the weakest link susceptible to the aging process and its deterioration, resulting in cognitive impairment and other symptoms; the aging process is associated with proteostasis collapse, stem cell exhaustion, repair mechanisms, altered brain nutrient sensing, endothelial changes, inflammation, oxidative distress, and energy unbalance, as well as other disturbances. These mechanisms are highly interwoven, and considerable research is aimed at their disentanglement and detection of their clinically relevant impact, particularly in order to identify pharmacological and non-pharmacological preventive and therapeutic strategies.
Collapse
Affiliation(s)
- M Cristina Polidori
- Aging Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress-Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University of Cologne, Germany
| |
Collapse
|
2
|
Sultana R, Butterfield DA. Protein Oxidation in Aging and Alzheimer's Disease Brain. Antioxidants (Basel) 2024; 13:574. [PMID: 38790679 PMCID: PMC11117785 DOI: 10.3390/antiox13050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Proteins are essential molecules that play crucial roles in maintaining cellular homeostasis and carrying out biological functions such as catalyzing biochemical reactions, structural proteins, immune response, etc. However, proteins also are highly susceptible to damage by reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this review, we summarize the role of protein oxidation in normal aging and Alzheimer's disease (AD). The major emphasis of this review article is on the carbonylation and nitration of proteins in AD and mild cognitive impairment (MCI). The oxidatively modified proteins showed a strong correlation with the reported changes in brain structure, carbohydrate metabolism, synaptic transmission, cellular energetics, etc., of both MCI and AD brains compared to the controls. Some proteins were found to be common targets of oxidation and were observed during the early stages of AD, suggesting that those changes might be critical in the onset of symptoms and/or formation of the pathological hallmarks of AD. Further studies are required to fully elucidate the role of protein oxidation and nitration in the progression and pathogenesis of AD.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080, USA;
| | - D. Allan Butterfield
- Department of Chemistry, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
3
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
5
|
Cai Y, Shi H, Zheng Y, Zhou Y, Guo W, Liao J, Wang S. Long-Term Phellodendri Cortex Supplementation in the Tiger Grouper ( Epinephelus fuscoguttatus): Dual Effects on Intestinal Health Revealed by Transcriptome Analysis. Life (Basel) 2023; 13:2336. [PMID: 38137937 PMCID: PMC10745030 DOI: 10.3390/life13122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The tiger grouper (Epinephelus fuscoguttatus), an important mariculture fish in Southeast Asia, faces increasing health issues in recent years. Phellodendri Cortex (PC) is a traditional Chinese herbal medicine that exhibits a variety of beneficial effects on tiger groupers. The effects of PC, however, varies with the period of dietary intervention. This study aims to investigate the long-term effects of 1% PC supplementation on tiger groupers, focusing on growth, immunity, disease resistance, and intestinal gene expression. The tiger groupers (with an initial mean weight of 27.5 ± 0.5 g) were fed with a diet of Phellodendri Cortex supplementation and a control diet for 8 weeks. Our results indicate that the long-term PC supplementation did not affect growth or Vibrio disease resistance in tiger groupers. However, the transcriptome analysis revealed potential damage to the structural and functional integrity of the groupers' intestines. On the other hand, anti-inflammatory and cathepsin inhibition effects were also observed, offering potential benefits to fish enteritis prevention and therapy. Therefore, long-term PC supplementation in grouper culture should be applied with caution.
Collapse
Affiliation(s)
- Yan Cai
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Huizhong Shi
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yu Zheng
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yongcan Zhou
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Weiliang Guo
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jingqiu Liao
- Guangxi Academy of Sciences, Nanning 530007, China
| | - Shifeng Wang
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Oxidative Stress in Brain in Amnestic Mild Cognitive Impairment. Antioxidants (Basel) 2023; 12:antiox12020462. [PMID: 36830020 PMCID: PMC9952700 DOI: 10.3390/antiox12020462] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
Amnestic mild cognitive impairment (MCI), arguably the earliest clinical stage of Alzheimer disease (AD), is characterized by normal activities of daily living but with memory issues but no dementia. Oxidative stress, with consequent damaged key proteins and lipids, are prominent even in this early state of AD. This review article outlines oxidative stress in MCI and how this can account for neuronal loss and potential therapeutic strategies to slow progression to AD.
Collapse
|
7
|
Alberio T, Brughera M, Lualdi M. Current Insights on Neurodegeneration by the Italian Proteomics Community. Biomedicines 2022; 10:biomedicines10092297. [PMID: 36140397 PMCID: PMC9496271 DOI: 10.3390/biomedicines10092297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
The growing number of patients affected by neurodegenerative disorders represents a huge problem for healthcare systems, human society, and economics. In this context, omics strategies are crucial for the identification of molecular factors involved in disease pathobiology, and for the discovery of biomarkers that allow early diagnosis, patients’ stratification, and treatment response prediction. The integration of different omics data is a required step towards the goal of personalized medicine. The Italian proteomics community is actively developing and applying proteomics approaches to the study of neurodegenerative disorders; moreover, it is leading the mitochondria-focused initiative of the Human Proteome Project, which is particularly important given the central role of mitochondrial impairment in neurodegeneration. Here, we describe how Italian research groups in proteomics have contributed to the knowledge of many neurodegenerative diseases, through the elucidation of the pathobiology of these disorders, and through the discovery of disease biomarkers. In particular, we focus on the central role of post-translational modifications analysis, the implementation of network-based approaches in functional proteomics, the integration of different omics in a systems biology view, and the development of novel platforms for biomarker discovery for the high-throughput quantification of thousands of proteins at a time.
Collapse
|
8
|
Nantachai G, Vasupanrajit A, Tunvirachaisakul C, Solmi M, Maes M. Oxidative stress and antioxidant defenses in mild cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev 2022; 79:101639. [PMID: 35537662 DOI: 10.1016/j.arr.2022.101639] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/02/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
Abstract
This study aims to systematically review and meta-analyze the nitro-oxidative stress (O&NS)/antioxidant (ANTIOX) ratio in the peripheral blood of people with mild cognitive impairment (MCI). We searched PubMed, Scopus, Google Scholar, and Web of Science for articles published from inception until July 31, 2021. Forty-six studies on 3.798 MCI individuals and 6.063 healthy controls were included. The O&NS/ANTIOX ratio was significantly higher in MCI than in controls with a Standardized Mean Difference (SMD)= 0.378 (95% CI: 0.250; 0.506). MCI individuals showed increased lipid peroxidation (SMD=0.774, 95%CI: 4.416; 1.132) and O&NS-associated toxicity (SMD=0.621, CI: 0.377; 0.865) and reduced glutathione (GSH) defenses (SMD=0.725, 95%CI: 0.269; 1.182) as compared with controls. MCI was also accompanied by significantly increased homocysteine (SMD=0.320, CI: 0.059; 0.581), but not protein oxidation, and lowered non-vitamin (SMD=0.347, CI: 0.168; 0.527) and vitamin (SMD=0.564, CI: 0.129; 0.999) antioxidant defenses. The results show that MCI is at least in part due to increased neuro-oxidative toxicity and suggest that treatments targeting lipid peroxidation and the GSH system may be used to treat or prevent MCI.
Collapse
Affiliation(s)
- Gallayaporn Nantachai
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Somdet Phra Sungharaj Nyanasumvara Geriatric Hospital, Department of Medical Services, Ministry of Public health, Chon Buri Province, Thailand.
| | - Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ontario, Canada; Department of Mental Health, The Ottawa Hospital, Ontario, Canada; Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ottawa, Ontario, Canada; Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychosis Studies, King's College London, London, United Kingdom; Centre for Innovation in Mental Health-Developmental Lab, School of Psychology, University of Southampton, and NHS Trust, Southampton, United Kingdom
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; IMPACT Strategic Research Center, Deakin University, Geelong, Australia; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
9
|
Yamamoto K, Kurioka T, Ohki M, Ohashi K, Harada Y, Asako Y, Sano H, Yamashita T. Immune-Nutritional Status as a Novel Prognostic Predictor of Bell's Palsy. Audiol Neurootol 2022; 27:418-426. [PMID: 35512660 DOI: 10.1159/000524355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/23/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The prognosis of Bell's palsy, idiopathic facial nerve palsy (FNP), is usually predicted by electroneuronography in subacute phase. However, it would be ideal to establish a reliable and objective examination applicable in acute phase to predict the prognosis of FNP. Immune-nutritional status (INS) calculated from peripheral blood examination is recently reported as the prognostic factor in various disease. However, the validity of INS as the prognostic factor in Bell's palsy is not well known. Thus, we conducted a retrospective study to investigate the usefulness of INS as prognostic predictors of Bell's palsy. METHODS We reviewed the medical records of 79 patients with Bell's palsy and divided into two groups as "complete recovery" and "incomplete recovery" groups. Clinical features such as severity of FNP and INS, including neutrophil-lymphocyte ratio (NLR), lymphocyte-monocyte ratio (LMR), prognostic nutritional index (PNI), and controlling nutrition status (CONUT) score, were assessed. RESULTS In univariate analysis, statistically significant differences were observed in clinical score of facial movement, NLR, LMR, PNI, and CONUT score at the initial examination between the two groups (p < 0.05). Furthermore, in multivariate analysis, statistically significant differences were also observed in facial movement score and PNI at the initial examination (p < 0.05). CONCLUSION Immune and nutritional condition play important roles in the pathogenesis of Bell's palsy, suggesting that INS would be one of the useful prognostic factors in Bell's palsy.
Collapse
Affiliation(s)
- Kengo Yamamoto
- Department of Otorhinolaryngology, Kitasato University Medical Center, Kitamoto, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takaomi Kurioka
- Department of Otorhinolaryngology, National Defense Medical College, Tokorozawa, Japan
| | - Motofumi Ohki
- Department of Otorhinolaryngology, Kitasato University Medical Center, Kitamoto, Japan
| | - Kentaro Ohashi
- Department of Otorhinolaryngology, Kitasato University Medical Center, Kitamoto, Japan
| | - Yuki Harada
- Department of Otorhinolaryngology, Kitasato University Medical Center, Kitamoto, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yukiko Asako
- Department of Otorhinolaryngology, Kitasato University Medical Center, Kitamoto, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hajime Sano
- School of Allied Health Science, Kitasato University, Sagamihara, Japan
| | - Taku Yamashita
- Department of Otorhinolaryngology-Head and Neck Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
10
|
Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson Diseases. Molecules 2022; 27:molecules27030951. [PMID: 35164216 PMCID: PMC8839962 DOI: 10.3390/molecules27030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
Collapse
|
11
|
Hu A, Li F, Guo L, Zhao X, Xiang X. Mitochondrial Damage of Lymphocytes in Patients with Acute Relapse of Schizophrenia: A Correlational Study with Efficacy and Clinical Symptoms. Neuropsychiatr Dis Treat 2022; 18:2455-2466. [PMID: 36325435 PMCID: PMC9621005 DOI: 10.2147/ndt.s380353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Accumulating evidence has demonstrated that schizophrenia is associated with mitochondrial and immune abnormalities. In this pilot case-control study, we investigated the level of mitochondrial impairment in lymphocytes in patients with acute relapse of schizophrenia and explored the correlation between the level of mitochondrial damage and symptoms or treatment response. METHODS Lymphocytic mitochondrial damage was detected using mitochondrial fluorescence staining and flow cytometry in 37 patients (at admission and discharge) and 24 controls. Clinical symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) and Clinical Global Impression Scale (CGI-S). RESULTS The levels of mitochondrial damage in CD3+ T, CD4+ T, and CD8+ T lymphocytes of the patients with schizophrenia at admission were significantly higher than those of the controls (p<0.05) and did not return to normal at discharge (p>0.05). The mitochondrial damage of T cells significantly improved at discharge for responsive patients only, as compared with that at admission (P<0.05). However, no significant difference was found in mitochondrial damage in CD19+ B cells between patients and healthy controls, or between admission and discharge (p>0.05). Furthermore, the reduction in mitochondrial damage of CD3, CD4, and CD8 lymphocytes was positively correlated with the reduction of the score of the PANSS positive scale at discharge (p<0.05), while no significant correlation was found between the level of mitochondrial damage in lymphocytes and the scores of PANSS and CGI-S. CONCLUSION Acute relapse of schizophrenia might be associated with higher levels of mitochondrial damage in peripheral blood T lymphocytes. The degree of recovery of mitochondrial impairment in the T cells may be used as a predictor of treatment response in schizophrenia. As this is a pilot study, the conclusion still needs further verification in large-scale studies.
Collapse
Affiliation(s)
- Aqian Hu
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Faping Li
- Department of Psychiatry, The Second People's Hospital of Guizhou Province, Guiyang, 550004, People's Republic of China
| | - Lei Guo
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Xiaoxi Zhao
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Xiaojun Xiang
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| |
Collapse
|
12
|
Kara SP, Altunan B, Unal A. Investigation of the peripheral inflammation (neutrophil-lymphocyte ratio) in two neurodegenerative diseases of the central nervous system. Neurol Sci 2022; 43:1799-1807. [PMID: 34331157 PMCID: PMC8324446 DOI: 10.1007/s10072-021-05507-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD), and idiopathic Parkinson's disease (IPD) are the neurodegenerative diseases of the central nervous system (CNS). Cognitive impairment is on the forefront in AD. However, IPD is a movement disorder. Inflammation was suggested to have an effect in the pathophysiology of these two diseases. Neutrophil-lymphocyte ratio (NLR) was shown to be a possible marker showing the peripheral inflammation. We aimed to investigate the NLR of patiens with the diagnosis of AD, and IPD, and individuals with no neurodegenerative disease. MATERIALS AND METHODS A total of 100 patients with the diagnosis of IPD, and 94 with diagnosis of AD, and 61 healthy controls were included into the study. All the demographic, clinical, and laboratory data were retrospectively obtained from the hospital automated database system. RESULTS The NLR in the IPD group was found statistically significantly higher compared with the control group and the AD group (p < 0.001, p = 0.04, respectively). The age-adjusted values were statistically analyzed because of age difference. No statistically significant difference was detected between AD and control groups in terms of NLR (p = 0.6). The age-adjusted NLR value in the Parkinson's group was found significantly higher compared to the control group (p = 0.02) and Alzheimer's group (p = 0.03). DISCUSSION Chronic inflammation has an important role in the emergence and progression of the chronic neurodegenerative diseases of the CNS. Our results show that the inflammation in the peripheral blood in IPD was more significant compared with the inflammation in AD.
Collapse
Affiliation(s)
- Sonat Pınar Kara
- Faculty of Medicine, Department of Internal Medicine, Tekirdag Namık Kemal University, Tekirdag, Turkey
| | - Bengü Altunan
- Faculty of Medicine, Department of Neurology, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Aysun Unal
- Faculty of Medicine, Department of Neurology, Tekirdag Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
13
|
Tassone G, Kola A, Valensin D, Pozzi C. Dynamic Interplay between Copper Toxicity and Mitochondrial Dysfunction in Alzheimer's Disease. Life (Basel) 2021; 11:life11050386. [PMID: 33923275 PMCID: PMC8146034 DOI: 10.3390/life11050386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, affecting millions of people worldwide, a number expected to exponentially increase in the future since no effective treatments are available so far. AD is characterized by severe cognitive dysfunctions associated with neuronal loss and connection disruption, mainly occurring in specific brain areas such as the hippocampus, cerebral cortex, and amygdala, compromising memory, language, reasoning, and social behavior. Proteomics and redox proteomics are powerful techniques used to identify altered proteins and pathways in AD, providing relevant insights on cellular pathways altered in the disease and defining novel targets exploitable for drug development. Here, we review the main results achieved by both -omics techniques, focusing on the changes occurring in AD mitochondria under oxidative stress and upon copper exposure. Relevant information arises by the comparative analysis of these results, evidencing alterations of common mitochondrial proteins, metabolic cycles, and cascades. Our analysis leads to three shared mitochondrial proteins, playing key roles in metabolism, ATP generation, oxidative stress, and apoptosis. Their potential as targets for development of innovative AD treatments is thus suggested. Despite the relevant efforts, no effective drugs against AD have been reported so far; nonetheless, various compounds targeting mitochondria have been proposed and investigated, reporting promising results.
Collapse
Affiliation(s)
| | | | - Daniela Valensin
- Correspondence: (D.V.); (C.P.); Tel.: +39-0577-232428 (D.V.); +39-0577-232132 (C.P.)
| | - Cecilia Pozzi
- Correspondence: (D.V.); (C.P.); Tel.: +39-0577-232428 (D.V.); +39-0577-232132 (C.P.)
| |
Collapse
|
14
|
Liskova A, Samec M, Koklesova L, Kudela E, Kubatka P, Golubnitschaja O. Mitochondriopathies as a Clue to Systemic Disorders-Analytical Tools and Mitigating Measures in Context of Predictive, Preventive, and Personalized (3P) Medicine. Int J Mol Sci 2021; 22:ijms22042007. [PMID: 33670490 PMCID: PMC7922866 DOI: 10.3390/ijms22042007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial respiratory chain is the main site of reactive oxygen species (ROS) production in the cell. Although mitochondria possess a powerful antioxidant system, an excess of ROS cannot be completely neutralized and cumulative oxidative damage may lead to decreasing mitochondrial efficiency in energy production, as well as an increasing ROS excess, which is known to cause a critical imbalance in antioxidant/oxidant mechanisms and a "vicious circle" in mitochondrial injury. Due to insufficient energy production, chronic exposure to ROS overproduction consequently leads to the oxidative damage of life-important biomolecules, including nucleic acids, proteins, lipids, and amino acids, among others. Different forms of mitochondrial dysfunction (mitochondriopathies) may affect the brain, heart, peripheral nervous and endocrine systems, eyes, ears, gut, and kidney, among other organs. Consequently, mitochondriopathies have been proposed as an attractive diagnostic target to be investigated in any patient with unexplained progressive multisystem disorder. This review article highlights the pathomechanisms of mitochondriopathies, details advanced analytical tools, and suggests predictive approaches, targeted prevention and personalization of medical services as instrumental for the overall management of mitochondriopathy-related cascading pathologies.
Collapse
Affiliation(s)
- Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
- Correspondence: (P.K.); (O.G.)
| | - Olga Golubnitschaja
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
- Correspondence: (P.K.); (O.G.)
| |
Collapse
|
15
|
Cognitive impairment is associated with mitochondrial dysfunction in peripheral blood mononuclear cells of elderly population. Sci Rep 2020; 10:21400. [PMID: 33293556 PMCID: PMC7723050 DOI: 10.1038/s41598-020-78551-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023] Open
Abstract
Cognitive impairment is commonly found in the elderly population. Evidence suggests that mitochondrial function in lymphocytes are potential biomarkers in the progression of neurodegeneration, as peripheral mitochondrial function is associated with mild cognitive impairment (MCI) in the elderly population. Therefore, we hypothesize that impaired mitochondrial ATP production and oxidative stress in peripheral blood mononuclear cells (PBMCs) are associated with cognitive impairment in the elderly population. Data were collected from 897 participants from the EGAT (The Electricity Generating Authority of Thailand) cohort. The participants were classified to be in the normal cognition group (n = 428) or mild cognitive impairment group (n = 469), according to their MoCA score. The association of mitochondrial function and cognitive status was analyzed by binary logistic regression analysis. MCI participants had higher age, systolic blood pressure, waist/hip ratio, and lower plasma high- and low-density lipoprotein cholesterol levels, when compared to the normal cognition group. In addition, estimated glomerular filtration rate were lower in the MCI group than those in the normal cognition group. Collectively, MCI is associated with mitochondrial dysfunction in PBMCs as indicated by decreasing mitochondrial ATP production, increasing proton leak, and oxidative stress, in the elderly population, independently of the possible confounding factors in this study.
Collapse
|
16
|
Butterfield DA. Brain lipid peroxidation and alzheimer disease: Synergy between the Butterfield and Mattson laboratories. Ageing Res Rev 2020; 64:101049. [PMID: 32205035 PMCID: PMC7502429 DOI: 10.1016/j.arr.2020.101049] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 02/05/2023]
Abstract
Brains from persons with Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI), exhibit high levels of oxidative damage, including that to phospholipids. One type of oxidative damage is lipid peroxidation, the most important index of which is protein-bound 4-hydroxy-2-trans-nonenal (HNE). This highly reactive alkenal changes the conformations and lowers the activities of brain proteins to which HNE is covalently bound. Evidence exists that suggests that lipid peroxidation is the first type of oxidative damage associated with amyloid β-peptide (Aβ), a 38-42 amino acid peptide that is highly neurotoxic and critical to the pathophysiology of AD. The Butterfield laboratory is one of, if not the, first research group to show that Aβ42 oligomers led to lipid peroxidation and to demonstrate this modification in brains of subjects with AD and MCI. The Mattson laboratory, particularly when Dr. Mattson was a faculty member at the University of Kentucky, also showed evidence for lipid peroxidation associated with Aβ peptides, mostly in in vitro systems. Consequently, there is synergy between our two laboratories. Since this special tribute issue of Aging Research Reviews is dedicated to the career of Dr. Mattson, a review of some aspects of this synergy of lipid peroxidation and its relevance to AD, as well as the role of lipid peroxidation in the progression of this dementing disorder seems germane. Accordingly, this review outlines some of the individual and/or complementary research on lipid peroxidation related to AD published from our two laboratories either separately or jointly.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University Of Kentucky, Lexington, KY, 40506, United States.
| |
Collapse
|
17
|
Runtsch MC, Ferrara G, Angiari S. Metabolic determinants of leukocyte pathogenicity in neurological diseases. J Neurochem 2020; 158:36-58. [PMID: 32880969 DOI: 10.1111/jnc.15169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Neuroinflammatory and neurodegenerative diseases are characterized by the recruitment of circulating blood-borne innate and adaptive immune cells into the central nervous system (CNS). These leukocytes sustain the detrimental response in the CNS by releasing pro-inflammatory mediators that induce activation of local glial cells, blood-brain barrier (BBB) dysfunction, and neural cell death. However, infiltrating peripheral immune cells could also dampen CNS inflammation and support tissue repair. Recent advances in the field of immunometabolism demonstrate the importance of metabolic reprogramming for the activation and functionality of such innate and adaptive immune cell populations. In particular, an increasing body of evidence suggests that the activity of metabolites and metabolic enzymes could influence the pathogenic potential of immune cells during neuroinflammatory and neurodegenerative disorders. In this review, we discuss the role of intracellular metabolic cues in regulating leukocyte-mediated CNS damage in Alzheimer's and Parkinson's disease, multiple sclerosis and stroke, highlighting the therapeutic potential of drugs targeting metabolic pathways for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Marah C Runtsch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | - Stefano Angiari
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Butterfield DA, Boyd-Kimball D. Mitochondrial Oxidative and Nitrosative Stress and Alzheimer Disease. Antioxidants (Basel) 2020; 9:E818. [PMID: 32887505 PMCID: PMC7554713 DOI: 10.3390/antiox9090818] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022] Open
Abstract
Oxidative and nitrosative stress are widely recognized as critical factors in the pathogenesis and progression of Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI). A major source of free radicals that lead to oxidative and nitrosative damage is mitochondria. This review paper discusses oxidative and nitrosative stress and markers thereof in the brain, along with redox proteomics, which are techniques that have been pioneered in the Butterfield laboratory. Selected biological alterations in-and oxidative and nitrosative modifications of-mitochondria in AD and MCI and systems of relevance thereof also are presented. The review article concludes with a section on the implications of mitochondrial oxidative and nitrosative stress in MCI and AD with respect to imaging studies in and targeted therapies toward these disorders. Taken together, this review provides support for the notion that brain mitochondrial alterations in AD and MCI are key components of oxidative and nitrosative stress observed in these two disorders, and as such, they provide potentially promising therapeutic targets to slow-and hopefully one day stop-the progression of AD, which is a devastating dementing disorder.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH 44601, USA;
| |
Collapse
|
19
|
Arslan J, Jamshed H, Qureshi H. Early Detection and Prevention of Alzheimer's Disease: Role of Oxidative Markers and Natural Antioxidants. Front Aging Neurosci 2020; 12:231. [PMID: 32848710 PMCID: PMC7397955 DOI: 10.3389/fnagi.2020.00231] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress (OS) contributes to Alzheimer’s disease (AD) pathology. OS can be a result of increased reactive oxygen/nitrogen species, reduced antioxidants, oxidatively damaged molecules, and/or a combination of these factors. Scientific literature is scarce for the markers of OS-specific for detecting AD at an early stage. The first aim of the current review is to provide an overview of the potential OS markers in the brain, cerebrospinal fluid (CSF), blood and/or urine that can be used for early diagnosis of human AD. The reason for exploring OS markers is that the proposed antioxidant therapies against AD appear to start too late to be effective. The second aim is to evaluate the evidence for natural antioxidants currently proposed to prevent or treat AD symptoms. To address these two aims, we critically evaluated the studies on humans in which various OS markers for detecting AD at an early stage were presented. Non-invasive OS markers that can detect mild cognitive impairment (MCI) and AD at an early stage in humans with greater specificity and sensitivity are primarily related to lipid peroxidation. However, a combination of OS markers, family history, and other biochemical tests are needed to detect the disease early on. We also report that the long-term use of vitamins (vitamin E as in almonds) and polyphenol-rich foods (curcumin/curcuminoids of turmeric, ginkgo biloba, epigallocatechin-3-gallate in green tea) seem justified for ameliorating AD symptoms. Future research on humans is warranted to justify the use of natural antioxidants.
Collapse
Affiliation(s)
- Jamshed Arslan
- Department of Basic Medical Sciences, Faculty of Pharmacy, Barrett Hodgson University, Karachi, Pakistan
| | - Humaira Jamshed
- Department of Integrated Sciences and Mathematics, Dhanani School of Science and Engineering, Habib University, Karachi, Pakistan
| | - Humaira Qureshi
- Department of Integrated Sciences and Mathematics, Dhanani School of Science and Engineering, Habib University, Karachi, Pakistan
| |
Collapse
|
20
|
Abstract
Alzheimer disease (AD) is a major cause of age-related dementia. We do not fully understand AD aetiology and pathogenesis, but oxidative damage is a key component. The brain mostly uses glucose for energy, but in AD and amnestic mild cognitive impairment glucose metabolism is dramatically decreased, probably owing, at least in part, to oxidative damage to enzymes involved in glycolysis, the tricarboxylic acid cycle and ATP biosynthesis. Consequently, ATP-requiring processes for cognitive function are impaired, and synaptic dysfunction and neuronal death result, with ensuing thinning of key brain areas. We summarize current research on the interplay and sequence of these processes and suggest potential pharmacological interventions to retard AD progression.
Collapse
|
21
|
Butterfield DA, Boyd-Kimball D. Redox proteomics and amyloid β-peptide: insights into Alzheimer disease. J Neurochem 2019; 151:459-487. [PMID: 30216447 PMCID: PMC6417976 DOI: 10.1111/jnc.14589] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder associated with aging and characterized pathologically by the presence of senile plaques, neurofibrillary tangles, and neurite and synapse loss. Amyloid beta-peptide (1-42) [Aβ(1-42)], a major component of senile plaques, is neurotoxic and induces oxidative stress in vitro and in vivo. Redox proteomics has been used to identify proteins oxidatively modified by Aβ(1-42) in vitro and in vivo. In this review, we discuss these proteins in the context of those identified to be oxidatively modified in animal models of AD, and human studies including familial AD, pre-clinical AD (PCAD), mild cognitive impairment (MCI), early AD, late AD, Down syndrome (DS), and DS with AD (DS/AD). These redox proteomics studies indicate that Aβ(1-42)-mediated oxidative stress occurs early in AD pathogenesis and results in altered antioxidant and cellular detoxification defenses, decreased energy yielding metabolism and mitochondrial dysfunction, excitotoxicity, loss of synaptic plasticity and cell structure, neuroinflammation, impaired protein folding and degradation, and altered signal transduction. Improved access to biomarker imaging and the identification of lifestyle interventions or treatments to reduce Aβ production could be beneficial in preventing or delaying the progression of AD. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH 44601
| |
Collapse
|
22
|
Massaccesi L, Galliera E, Galimberti D, Fenoglio C, Arcaro M, Goi G, Barassi A, Corsi Romanelli MM. Lag-time in Alzheimer's disease patients: a potential plasmatic oxidative stress marker associated with ApoE4 isoform. IMMUNITY & AGEING 2019; 16:7. [PMID: 30984280 PMCID: PMC6444862 DOI: 10.1186/s12979-019-0147-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/14/2019] [Indexed: 12/16/2022]
Abstract
In the brain, Oxidative Stress (OS) contribute to structural and functional changes associated with vascular aging, such as endothelial dysfunction, extracellular matrix degradation, resulting in age-related reduced vasodilatation in response to agonists. For this reason, OS is considered a key factor in Alzheimer’s Disease (AD) development and recent evidence correlated oxidative stress with vascular lesion in the pathogenesis of AD, but the mechanism still need to be fully clarified. The etiology of AD is still not completely understood and is influenced by several factors including Apolipoprotein E (ApoE) genotype. In particular, the Apo ε4 isoform is considered a risk factor for AD development. This study was aimed to evaluate the possible relationship between three plasmatic OS marker and Apo ε4 carrier status. Plasmatic soluble receptor for advanced glycation end products (sRAGE) levels, plasma antioxidant total defenses (by lag-time method) and plasmatic Reactive Oxygen species (ROS) levels were evaluated in 25 AD patients and in 30 matched controls. ROS were significantly higher while plasma antioxidant total defenses and sRAGE levels were significantly lower in AD patients compared to controls. In AD patients lag-time values show a significant positive linear correlation with sRAGE levels and a (even not significant) negative correlation with ROS levels. Lag-time is significantly lower in ε4 carrier (N = 13) than in ε4 non-carrier (N = 12). Our result confirms the substantial OS in AD. Lag-time levels showed a significant positive correlation with sRAGE levels and a significant association with ε4 carrier status suggesting that plasmatic lag-time evaluation can be considered as a potential useful OS risk marker in AD.
Collapse
Affiliation(s)
- Luca Massaccesi
- 1Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Emanuela Galliera
- 1Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,2IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Daniela Galimberti
- 3Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Centro "Dino Ferrari", Milan, Italy.,4U.O.S.D. Neurologia-Malattie Neurodegenerative, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- 3Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Centro "Dino Ferrari", Milan, Italy.,4U.O.S.D. Neurologia-Malattie Neurodegenerative, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marina Arcaro
- 4U.O.S.D. Neurologia-Malattie Neurodegenerative, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giancarlo Goi
- 5Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Barassi
- 6Department of Health's Science, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Marco Corsi Romanelli
- 1Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,7U.O.C SMEL-1 Patologia Clinica IRCCS Policlinico San Donato, San Donato, Milan, Italy
| |
Collapse
|
23
|
Peña-Bautista C, Baquero M, Vento M, Cháfer-Pericás C. Free radicals in Alzheimer's disease: Lipid peroxidation biomarkers. Clin Chim Acta 2019; 491:85-90. [DOI: 10.1016/j.cca.2019.01.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023]
|
24
|
Peña-Bautista C, Baquero M, Vento M, Cháfer-Pericás C. Omics-based Biomarkers for the Early Alzheimer Disease Diagnosis and Reliable Therapeutic Targets Development. Curr Neuropharmacol 2019; 17:630-647. [PMID: 30255758 PMCID: PMC6712290 DOI: 10.2174/1570159x16666180926123722] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/31/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most common cause of dementia in adulthood, has great medical, social, and economic impact worldwide. Available treatments result in symptomatic relief, and most of them are indicated from the early stages of the disease. Therefore, there is an increasing body of research developing accurate and early diagnoses, as well as diseasemodifying therapies. OBJECTIVE Advancing the knowledge of AD physiopathological mechanisms, improving early diagnosis and developing effective treatments from omics-based biomarkers. METHODS Studies using omics technologies to detect early AD, were reviewed with a particular focus on the metabolites/lipids, micro-RNAs and proteins, which are identified as potential biomarkers in non-invasive samples. RESULTS This review summarizes recent research on metabolomics/lipidomics, epigenomics and proteomics, applied to early AD detection. Main research lines are the study of metabolites from pathways, such as lipid, amino acid and neurotransmitter metabolisms, cholesterol biosynthesis, and Krebs and urea cycles. In addition, some microRNAs and proteins (microglobulins, interleukins), related to a common network with amyloid precursor protein and tau, have been also identified as potential biomarkers. Nevertheless, the reproducibility of results among studies is not good enough and a standard methodological approach is needed in order to obtain accurate information. CONCLUSION The assessment of metabolomic/lipidomic, epigenomic and proteomic changes associated with AD to identify early biomarkers in non-invasive samples from well-defined participants groups will potentially allow the advancement in the early diagnosis and improvement of therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Consuelo Cháfer-Pericás
- Address correspondence to this author at the Health Research Institute La Fe, Avda de Fernando Abril Martorell, 106; 46026 Valencia, Spain;Tel: +34 96 124 66 61; Fax: + 34 96 124 57 46; E-mail:
| |
Collapse
|
25
|
Tramutola A, Abate G, Lanzillotta C, Triani F, Barone E, Iavarone F, Vincenzoni F, Castagnola M, Marziano M, Memo M, Garrafa E, Butterfield DA, Perluigi M, Di Domenico F, Uberti D. Protein nitration profile of CD3 + lymphocytes from Alzheimer disease patients: Novel hints on immunosenescence and biomarker detection. Free Radic Biol Med 2018; 129:430-439. [PMID: 30321702 DOI: 10.1016/j.freeradbiomed.2018.10.414] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive form of dementia characterized by increased production of amyloid-β plaques and hyperphosphorylated tau protein, mitochondrial dysfunction, elevated oxidative stress, reduced protein clearance, among other. Several studies showed systemic modifications of immune and inflammatory systems due, in part, to decreased levels of CD3+ lymphocytes in peripheral blood in AD. Considering that oxidative stress, both in the brain and in the periphery, can influence the activation and differentiation of T-cells, we investigated the 3-nitrotyrosine (3-NT) proteome of blood T-cells derived from AD patients compared to non-demented (ND) subjects by using a proteomic approach. 3-NT is a formal protein oxidation and index of nitrosative stress. We identified ten proteins showing increasing levels of 3-NT in CD3+ T-cells from AD patients compared with ND subjects. These proteins are involved in energy metabolism, cytoskeletal structure, intracellular signaling, protein folding and turnover, and antioxidant response and provide new insights into the molecular mechanism that impact reduced T-cell differentiation in AD. Our results highlight the role of peripheral oxidative stress in T-cells related to immune-senescence during AD pathology focusing on the specific targets of protein nitration that conceivably can be suitable to further therapies. Further, our data demonstrate common targets of protein nitration between the brain and the periphery, supporting their significance as disease biomarkers.
Collapse
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giulia Abate
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Triani
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, and/or Dip. di Diagnostica di Laboratorio e Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Federica Vincenzoni
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, and/or Dip. di Diagnostica di Laboratorio e Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Massimo Castagnola
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, and/or Dip. di Diagnostica di Laboratorio e Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Mariagrazia Marziano
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - Emirena Garrafa
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| |
Collapse
|
26
|
Peripheral Blood Mononuclear Cells Antioxidant Adaptations to Regular Physical Activity in Elderly People. Nutrients 2018; 10:nu10101555. [PMID: 30347790 PMCID: PMC6213342 DOI: 10.3390/nu10101555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/18/2022] Open
Abstract
Regular physical activity prescription is a key point for healthy aging and chronic disease management and prevention. Our aim was to evaluate the antioxidant defense system and the mitochondrial status in peripheral blood mononuclear cells (PBMCs) and the level of oxidative damage in plasma in active, intermediate and inactive elderly. In total, 127 healthy men and women >55 years old participated in the study and were classified according on their level of declared physical activity. A more active lifestyle was accompanied by lower weight, fat mass and body mass index when compared to a more sedentary life-style. Active participants exhibited lower circulating PBMCs than inactive peers. Participants who reported higher levels of exercise had increased antioxidant protein levels when compared to more sedentary partakers. Carbonylated protein levels exhibited similar behavior, accompanied by a significant raise in expression of cytochrome c oxidase subunit IV in PBMCs. No significant changes were found in the activities of antioxidant enzymes and in the expression of structural (MitND5) and mitochondrial dynamic-related (PGC1α and Mitofusins1/2.) proteins. Active lifestyle and daily activities exert beneficial effects on body composition and it enhances the antioxidant defenses and oxidative metabolism capabilities in PBMCs from healthy elderly.
Collapse
|
27
|
Butterfield DA. Perspectives on Oxidative Stress in Alzheimer’s Disease and Predictions of Future Research Emphases. J Alzheimers Dis 2018; 64:S469-S479. [DOI: 10.3233/jad-179912] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
28
|
Vergallo A, Giampietri L, Baldacci F, Volpi L, Chico L, Pagni C, Giorgi FS, Ceravolo R, Tognoni G, Siciliano G, Bonuccelli U. Oxidative Stress Assessment in Alzheimer's Disease: A Clinic Setting Study. Am J Alzheimers Dis Other Demen 2018; 33:35-41. [PMID: 28931301 PMCID: PMC10852477 DOI: 10.1177/1533317517728352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Oxidative stress (OS) is a physiological age-related brain process, dramatically overexpressed in neurodegenerative disorders like Alzheimer's disease (AD). Nevertheless, the pathophysiological role of OS in AD pathology has not been clarified yet. OS as a biomarker for AD is a controversial issue. A comparison of previous data is difficult due to a remarkable methodological variability. Most of the previous studies have shown higher levels of OS markers and lower antioxidant power in patients with dementia when compared to mild cognitive impairment (MCI) and healthy controls. METHODS We followed a strict protocol in order to limit intrasite variability of OS assessment. In addition, we have taken into account possible confounding factors. RESULTS In agreement with previous reports, we found both lower plasmatic OS and higher plasmatic antioxidant defenses when comparing patients with AD having dementia that is stably treated to patients with MCI-AD. DISCUSSION A speculative hypothesis based on correlative data is provided.
Collapse
Affiliation(s)
- Andrea Vergallo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Linda Giampietri
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Baldacci
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leda Volpi
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucia Chico
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Pagni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gloria Tognoni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
29
|
Oxidant/Antioxidant Imbalance in Alzheimer's Disease: Therapeutic and Diagnostic Prospects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6435861. [PMID: 29636850 PMCID: PMC5831771 DOI: 10.1155/2018/6435861] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and a great socioeconomic burden in the aging society. Compelling evidence demonstrates that molecular change characteristics for AD, such as oxidative stress and amyloid β (Aβ) oligomerization, precede by decades the onset of clinical dementia and that the disease represents a biological and clinical continuum of stages, from asymptomatic to severely impaired. Nevertheless, the sequence of the early molecular alterations and the interplay between them are incompletely understood. This review presents current knowledge about the oxidative stress-induced impairments and compromised oxidative stress defense mechanisms in AD brain and the cross-talk between various pathophysiological insults, with the focus on excessive reactive oxygen species (ROS) generation and Aβ overproduction at the early stages of the disease. Prospects for AD therapies targeting oxidant/antioxidant imbalance are being discussed, as well as for the development of novel oxidative stress-related, blood-based biomarkers for early, noninvasive AD diagnostics.
Collapse
|
30
|
Mecocci P, Boccardi V, Cecchetti R, Bastiani P, Scamosci M, Ruggiero C, Baroni M. A Long Journey into Aging, Brain Aging, and Alzheimer's Disease Following the Oxidative Stress Tracks. J Alzheimers Dis 2018; 62:1319-1335. [PMID: 29562533 PMCID: PMC5870006 DOI: 10.3233/jad-170732] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
The Editors of the Journal of Alzheimer's Disease invited Professor Patrizia Mecocci to contribute a review article focused on the importance and implications of her research on aging, brain aging, and senile dementias over the last years. This invitation was based on an assessment that she was one of the journal's top authors and a strong supporter of the concept that oxidative stress is a major contributor to several alterations observed in age-related conditions (sarcopenia, osteoporosis) and, more significantly, in brain aging suggesting a pivotal role in the pathogenesis and progression of one of the most dramatic age-related diseases, Alzheimer's disease (AD). Her first pioneering research was on the discovery of high level of 8-hydroxy-2'-deoxyguanosine (OH8dG), a marker of oxidation in nucleic acids, in mitochondrial DNA isolated from cerebral cortex. This molecule increases progressively with aging and more in AD brain, supporting the hypothesis that oxidative stress, a condition of unbalance between the production of reactive oxygen species and antioxidants, gives a strong contribution to the high incidence of AD in old age subjects. OH8dG also increases in peripheral lymphocyte from AD subjects, suggesting that AD is not only a cerebral but also a systemic disease. The role of antioxidants, particularly vitamin E and zinc, were also studied in longevity and in cognitive decline and dementia. This review shows the main findings from Mecocci's laboratory related to oxidative stress in aging, brain aging, and AD and discusses the importance and implications of some of the major achievements in this field of research.
Collapse
Affiliation(s)
- Patrizia Mecocci
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Virginia Boccardi
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Roberta Cecchetti
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Patrizia Bastiani
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Michela Scamosci
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Carmelinda Ruggiero
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Marta Baroni
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| |
Collapse
|
31
|
Butterfield DA, Boyd-Kimball D. Oxidative Stress, Amyloid-β Peptide, and Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer's Disease. J Alzheimers Dis 2018; 62:1345-1367. [PMID: 29562527 PMCID: PMC5870019 DOI: 10.3233/jad-170543] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 12/12/2022]
Abstract
Oxidative stress is implicated in the pathogenesis and progression of Alzheimer's disease (AD) and its earlier stage, amnestic mild cognitive impairment (aMCI). One source of oxidative stress in AD and aMCI brains is that associated with amyloid-β peptide, Aβ1-42 oligomers. Our laboratory first showed in AD elevated oxidative stress occurred in brain regions rich in Aβ1-42, but not in Aβ1-42-poor regions, and was among the first to demonstrate Aβ peptides led to lipid peroxidation (indexed by HNE) in AD and aMCI brains. Oxidatively modified proteins have decreased function and contribute to damaged key biochemical and metabolic pathways in which these proteins normally play a role. Identification of oxidatively modified brain proteins by the methods of redox proteomics was pioneered in the Butterfield laboratory. Four recurring altered pathways secondary to oxidative damage in brain from persons with AD, aMCI, or Down syndrome with AD are interrelated and contribute to neuronal death. This "Quadrilateral of Neuronal Death" includes altered: glucose metabolism, mTOR activation, proteostasis network, and protein phosphorylation. Some of these pathways are altered even in brains of persons with preclinical AD. We opine that targeting these pathways pharmacologically and with lifestyle changes potentially may provide strategies to slow or perhaps one day, prevent, progression or development of this devastating dementing disorder. This invited review outlines both in vitro and in vivo studies from the Butterfield laboratory related to Aβ1-42 and AD and discusses the importance and implications of some of the major achievements of the Butterfield laboratory in AD research.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH, USA
| |
Collapse
|
32
|
Li H, Hong G, Lin M, Shi Y, Wang L, Jiang F, Zhang F, Wang Y, Guo Z. Identification of molecular alterations in leukocytes from gene expression profiles of peripheral whole blood of Alzheimer's disease. Sci Rep 2017; 7:14027. [PMID: 29070791 PMCID: PMC5656592 DOI: 10.1038/s41598-017-13700-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/27/2017] [Indexed: 11/08/2022] Open
Abstract
Blood-based test has been considered as a promising way to diagnose and study Alzheimer's disease (AD). However, the changed proportions of the leukocytes under disease states could confound the aberrant expression signals observed in mixed-cell blood samples. We have previously proposed a method, Ref-REO, to detect the leukocyte specific expression alterations from mixed-cell blood samples. In this study, by applying Ref-REO, we detect 42 and 45 differentially expressed genes (DEGs) between AD and normal peripheral whole blood (PWB) samples in two datasets, respectively. These DEGs are mainly associated with AD-associated functions such as Wnt signaling pathways and mitochondrion dysfunctions. They are also reproducible in AD brain tissue, and tend to interact with the reported AD-associated biomarkers and overlap with targets of AD-associated PWB miRNAs. Moreover, they are closely associated with aging and have severer expression alterations in the younger adults with AD. Finally, diagnostic signatures are constructed from these leukocyte specific alterations, whose area under the curve (AUC) for predicting AD is higher than 0.73 in the two AD PWB datasets. In conclusion, gene expression alterations in leukocytes could be extracted from AD PWB samples, which are closely associated with AD progression, and used as a diagnostic signature of AD.
Collapse
Affiliation(s)
- Hongdong Li
- Department of bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Guini Hong
- Department of bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
| | - Mengna Lin
- Department of bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yidan Shi
- Department of bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Lili Wang
- Department of bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Fengle Jiang
- Department of bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Fan Zhang
- Department of bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yuhang Wang
- Department of bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Zheng Guo
- Department of bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
33
|
Lunnon K, Keohane A, Pidsley R, Newhouse S, Riddoch-Contreras J, Thubron EB, Devall M, Soininen H, Kłoszewska I, Mecocci P, Tsolaki M, Vellas B, Schalkwyk L, Dobson R, Malik AN, Powell J, Lovestone S, Hodges A. Mitochondrial genes are altered in blood early in Alzheimer's disease. Neurobiol Aging 2017; 53:36-47. [PMID: 28208064 DOI: 10.1016/j.neurobiolaging.2016.12.029] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 01/09/2023]
Abstract
Although mitochondrial dysfunction is a consistent feature of Alzheimer's disease in the brain and blood, the molecular mechanisms behind these phenomena are unknown. Here we have replicated our previous findings demonstrating reduced expression of nuclear-encoded oxidative phosphorylation (OXPHOS) subunits and subunits required for the translation of mitochondrial-encoded OXPHOS genes in blood from people with Alzheimer's disease and mild cognitive impairment. Interestingly this was accompanied by increased expression of some mitochondrial-encoded OXPHOS genes, namely those residing closest to the transcription start site of the polycistronic heavy chain mitochondrial transcript (MT-ND1, MT-ND2, MT-ATP6, MT-CO1, MT-CO2, MT-C03) and MT-ND6 transcribed from the light chain. Further we show that mitochondrial DNA copy number was unchanged suggesting no change in steady-state numbers of mitochondria. We suggest that an imbalance in nuclear and mitochondrial genome-encoded OXPHOS transcripts may drive a negative feedback loop reducing mitochondrial translation and compromising OXPHOS efficiency, which is likely to generate damaging reactive oxygen species.
Collapse
Affiliation(s)
- Katie Lunnon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; University of Exeter Medical School, University of Exeter, Devon, UK
| | - Aoife Keohane
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ruth Pidsley
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Stephen Newhouse
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Elisabeth B Thubron
- Diabetes Research Group, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Matthew Devall
- University of Exeter Medical School, University of Exeter, Devon, UK
| | - Hikka Soininen
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Magda Tsolaki
- 3rd Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Bruno Vellas
- INSERM U 558, University of Toulouse, Toulouse, France
| | - Leonard Schalkwyk
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Richard Dobson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Afshan N Malik
- Diabetes Research Group, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - John Powell
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Simon Lovestone
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Angela Hodges
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
34
|
Di Domenico F, Barone E, Perluigi M, Butterfield DA. The Triangle of Death in Alzheimer's Disease Brain: The Aberrant Cross-Talk Among Energy Metabolism, Mammalian Target of Rapamycin Signaling, and Protein Homeostasis Revealed by Redox Proteomics. Antioxid Redox Signal 2017; 26:364-387. [PMID: 27626216 DOI: 10.1089/ars.2016.6759] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder and represents one of the most disabling conditions. AD shares many features in common with systemic insulin resistance diseases, suggesting that it can be considered as a metabolic disease, characterized by reduced insulin-stimulated growth and survival signaling, increased oxidative stress (OS), proinflammatory cytokine activation, mitochondrial dysfunction, impaired energy metabolism, and altered protein homeostasis. Recent Advances: Reduced glucose utilization and energy metabolism in AD have been associated with the buildup of amyloid-β peptide and hyperphosphorylated tau, increased OS, and the accumulation of unfolded/misfolded proteins. Mammalian target of rapamycin (mTOR), which is aberrantly activated in AD since early stages, plays a key role during AD neurodegeneration by, on one side, inhibiting insulin signaling as a negative feedback mechanism and, on the other side, regulating protein homeostasis (synthesis/clearance). CRITICAL ISSUES It is likely that the concomitant and mutual alterations of energy metabolism-mTOR signaling-protein homeostasis might represent a self-sustaining triangle of harmful events that trigger the degeneration and death of neurons and the development and progression of AD. Intriguingly, the altered cross-talk between the components of such a triangle of death, beyond altering the redox homeostasis of the neuron, is further exacerbated by increased levels of OS that target and impair key components of the pathways involved. Redox proteomic studies in human samples and animal models of AD-like dementia led to identification of oxidatively modified components of the pathways composing the triangle of death, therefore revealing the crucial role of OS in fueling this aberrant vicious cycle. FUTURE DIRECTIONS The identification of compounds able to restore the function of the pathways targeted by oxidative damage might represent a valuable therapeutic approach to slow or delay AD. Antioxid. Redox Signal. 26, 364-387.
Collapse
Affiliation(s)
- Fabio Di Domenico
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Rome, Italy
| | - Eugenio Barone
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Rome, Italy .,2 Facultad de Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile , Santiago, Chile
| | - Marzia Perluigi
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Rome, Italy
| | - D Allan Butterfield
- 3 Department of Chemistry, Sanders-Brown Center of Aging, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
35
|
Potential oxidative stress biomarkers of mild cognitive impairment due to Alzheimer disease. J Neurol Sci 2017; 373:295-302. [DOI: 10.1016/j.jns.2017.01.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/14/2016] [Accepted: 01/06/2017] [Indexed: 11/23/2022]
|
36
|
Butterfield DA, Palmieri EM, Castegna A. Clinical implications from proteomic studies in neurodegenerative diseases: lessons from mitochondrial proteins. Expert Rev Proteomics 2016; 13:259-74. [PMID: 26837425 DOI: 10.1586/14789450.2016.1149470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria play a key role in eukaryotic cells, being mediators of energy, biosynthetic and regulatory requirements of these cells. Emerging proteomics techniques have allowed scientists to obtain the differentially expressed proteome or the proteomic redox status in mitochondria. This has unmasked the diversity of proteins with respect to subcellular location, expression and interactions. Mitochondria have become a research 'hot spot' in subcellular proteomics, leading to identification of candidate clinical targets in neurodegenerative diseases in which mitochondria are known to play pathological roles. The extensive efforts to rapidly obtain differentially expressed proteomes and unravel the redox proteomic status in mitochondria have yielded clinical insights into the neuropathological mechanisms of disease, identification of disease early stage and evaluation of disease progression. Although current technical limitations hamper full exploitation of the mitochondrial proteome in neurosciences, future advances are predicted to provide identification of specific therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- D Allan Butterfield
- a Department of Chemistry, and Sanders-Brown Center on Aging , University of Kentucky , Lexington , KY , USA
| | - Erika M Palmieri
- b Department of Biosciences, Biotechnologies and Biopharmaceutics , University of Bari 'Aldo Moro' , Bari , Italy
| | - Alessandra Castegna
- b Department of Biosciences, Biotechnologies and Biopharmaceutics , University of Bari 'Aldo Moro' , Bari , Italy
| |
Collapse
|
37
|
Tramutola A, Lanzillotta C, Perluigi M, Butterfield DA. Oxidative stress, protein modification and Alzheimer disease. Brain Res Bull 2016; 133:88-96. [PMID: 27316747 DOI: 10.1016/j.brainresbull.2016.06.005] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/11/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disease that affects the elderly population with complex etiology. Many hypotheses have been proposed to explain different causes of AD, but the exact mechanisms remain unclear. In this review, we focus attention on the oxidative-stress hypothesis of neurodegeneration and we discuss redox proteomics approaches to analyze post-mortem human brain from AD brain. Collectively, these studies have provided valuable insights into the molecular mechanisms involved both in the pathogenesis and progression of AD, demonstrating the impairment of numerous cellular processes such as energy production, cellular structure, signal transduction, synaptic function, mitochondrial function, cell cycle progression, and degradative systems. Each of these cellular functions normally contributes to maintain healthy neuronal homeostasis, so the deregulation of one or more of these functions could contribute to the pathology and clinical presentation of AD. In particular, we discuss the evidence demonstrating the oxidation/dysfunction of a number of enzymes specifically involved in energy metabolism that support the view that reduced glucose metabolism and loss of ATP are crucial events triggering neurodegeneration and progression of AD.
Collapse
Affiliation(s)
- A Tramutola
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - C Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - M Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
38
|
Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 2015; 90:1-37. [DOI: 10.1007/s00204-015-1579-5] [Citation(s) in RCA: 535] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
|
39
|
Ritter A, Cummings J. Fluid Biomarkers in Clinical Trials of Alzheimer's Disease Therapeutics. Front Neurol 2015; 6:186. [PMID: 26379620 PMCID: PMC4553391 DOI: 10.3389/fneur.2015.00186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/10/2015] [Indexed: 02/02/2023] Open
Abstract
With the demographic shift of the global population toward longer life expectancy, the number of people living with Alzheimer’s disease (AD) has rapidly expanded and is projected to triple by the year 2050. Current treatments provide symptomatic relief but do not affect the underlying pathology of the disease. Therapies that prevent or slow the progression of the disease are urgently needed to avoid this growing public health emergency. Insights gained from decades of research have begun to unlock the pathophysiology of this complex disease and have provided targets for disease-modifying therapies. In the last decade, few therapeutic agents designed to modify the underlying disease process have progressed to clinical trials and none have been brought to market. With the focus on disease modification, biomarkers promise to play an increasingly important role in clinical trials. Six biomarkers have now been included in diagnostic criteria for AD and are regularly incorporated into clinical trials. Three biomarkers are neuroimaging measures – hippocampal atrophy measured by magnetic resonance imaging (MRI), amyloid uptake as measured by Pittsburg compound B positron emission tomography (PiB-PET), and decreased fluorodeoxyglucose (18F) uptake as measured by PET (FDG-PET) – and three are sampled from fluid sources – cerebrospinal fluid levels of amyloid β42 (Aβ42), total tau, and phosphorylated tau. Fluid biomarkers are important because they can provide information regarding the underlying biochemical processes that are occurring in the brain. The purpose of this paper is to review the literature regarding the existing and emerging fluid biomarkers and to examine how fluid biomarkers have been incorporated into clinical trials.
Collapse
Affiliation(s)
- Aaron Ritter
- Cleveland Clinic Lou Ruvo Center for Brain Health , Las Vegas, NV , USA
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health , Las Vegas, NV , USA
| |
Collapse
|
40
|
Wojsiat J, Prandelli C, Laskowska-Kaszub K, Martín-Requero A, Wojda U. Oxidative Stress and Aberrant Cell Cycle in Alzheimer’s Disease Lymphocytes: Diagnostic Prospects. J Alzheimers Dis 2015; 46:329-50. [DOI: 10.3233/jad-141977] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joanna Wojsiat
- Laboratory of Preclinical Studies of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Chiara Prandelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Katarzyna Laskowska-Kaszub
- Laboratory of Preclinical Studies of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Angeles Martín-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Urszula Wojda
- Laboratory of Preclinical Studies of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
41
|
Guzmán R, Campos C, Yuguero R, Masegù C, Gil P, Moragón ÁC. Protective effect of sulfurous water in peripheral blood mononuclear cells of Alzheimer's disease patients. Life Sci 2015; 132:61-7. [PMID: 25939976 DOI: 10.1016/j.lfs.2015.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/30/2015] [Accepted: 04/18/2015] [Indexed: 02/07/2023]
Abstract
AIMS One of the main features of sulfurous water (SW) is the presence of hydrogen sulfide (H2S), which confers its antioxidant activity. Since oxidative stress plays an important role in Alzheimer's disease (AD) we hypothesize that SW could have a protective effect in these patients. MATERIAL AND METHODS A therapeutic in vitro approach of SW was performed in peripheral blood mononuclear cells (PBMCs) of AD patients and in age-matched healthy non-demented controls using one modification of the comet assay (to measure oxidative DNA damage) and the MTT assay (as an indicator of cell viability). Hydrogen peroxide and homocysteine were used to induce oxidative DNA damage, and vitamin C, Trolox and N-acetyl-cysteine were selected as antioxidants of reference to compare SW treatment results. KEY FINDINGS SW did not increase per se the oxidative DNA damage of PBMC. Furthermore, SW protected them against enhanced oxidative stress in AD and control populations after pro-oxidant stimuli, with similar results to those observed when using the antioxidants of reference. Nevertheless, SW was the only treatment that could avoid the loss of viability of PBMC for all pro-oxidant stimuli in both populations, suggesting that H2S could confer to SW a more antioxidant capacity than other known antioxidants. SIGNIFICANCE The protective effect of SW was proved for the first time not only in DNA stability but also in cell viability preservation in AD, indicating that further research in other in vitro and in vivo models could lead to include SW as a possible therapy for AD.
Collapse
Affiliation(s)
- R Guzmán
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - C Campos
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - R Yuguero
- Unidad de Memoria Servicio de Geriatría, Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain
| | - C Masegù
- Unidad de Memoria Servicio de Geriatría, Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain
| | - P Gil
- Unidad de Memoria Servicio de Geriatría, Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain
| | - Ángela Casado Moragón
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| |
Collapse
|
42
|
Jimenez-Del-Rio M, Velez-Pardo C. Alzheimer’s Disease, Drosophila melanogaster and Polyphenols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:21-53. [DOI: 10.1007/978-3-319-18365-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Di Domenico F, Barone E, Perluigi M, Butterfield DA. Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants. Expert Rev Neurother 2014; 15:19-40. [DOI: 10.1586/14737175.2015.955853] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Butterfield DA. The 2013 SFRBM discovery award: selected discoveries from the butterfield laboratory of oxidative stress and its sequela in brain in cognitive disorders exemplified by Alzheimer disease and chemotherapy induced cognitive impairment. Free Radic Biol Med 2014; 74:157-74. [PMID: 24996204 PMCID: PMC4146642 DOI: 10.1016/j.freeradbiomed.2014.06.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 12/21/2022]
Abstract
This retrospective review on discoveries of the roles of oxidative stress in brain of subjects with Alzheimer disease (AD) and animal models thereof as well as brain from animal models of chemotherapy-induced cognitive impairment (CICI) results from the author receiving the 2013 Discovery Award from the Society for Free Radical Biology and Medicine. The paper reviews our laboratory's discovery of protein oxidation and lipid peroxidation in AD brain regions rich in amyloid β-peptide (Aβ) but not in Aβ-poor cerebellum; redox proteomics as a means to identify oxidatively modified brain proteins in AD and its earlier forms that are consistent with the pathology, biochemistry, and clinical presentation of these disorders; how Aβ in in vivo, ex vivo, and in vitro studies can lead to oxidative modification of key proteins that also are oxidatively modified in AD brain; the role of the single methionine residue of Aβ(1-42) in these processes; and some of the potential mechanisms in the pathogenesis and progression of AD. CICI affects a significant fraction of the 14 million American cancer survivors, and due to diminished cognitive function, reduced quality of life of the persons with CICI (called "chemobrain" by patients) often results. A proposed mechanism for CICI employed the prototypical ROS-generating and non-blood brain barrier (BBB)-penetrating chemotherapeutic agent doxorubicin (Dox, also called adriamycin, ADR). Because of the quinone moiety within the structure of Dox, this agent undergoes redox cycling to produce superoxide free radical peripherally. This, in turn, leads to oxidative modification of the key plasma protein, apolipoprotein A1 (ApoA1). Oxidized ApoA1 leads to elevated peripheral TNFα, a proinflammatory cytokine that crosses the BBB to induce oxidative stress in brain parenchyma that affects negatively brain mitochondria. This subsequently leads to apoptotic cell death resulting in CICI. This review outlines aspects of CICI consistent with the clinical presentation, biochemistry, and pathology of this disorder. To the author's knowledge this is the only plausible and self-consistent mechanism to explain CICI. These two different disorders of the CNS affect millions of persons worldwide. Both AD and CICI share free radical-mediated oxidative stress in brain, but the source of oxidative stress is not the same. Continued research is necessary to better understand both AD and CICI. The discoveries about these disorders from the Butterfield Laboratory that led to the 2013 Discovery Award from the Society of Free Radical and Medicine provide a significant foundation from which this future research can be launched.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Free Radical Biology in Cancer, Shared Resource Facility of the Markey Cancer Center, Spinal Cord and Brain Injury Research Center, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
45
|
Swomley AM, Förster S, Keeney JT, Triplett J, Zhang Z, Sultana R, Butterfield DA. Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:1248-57. [PMID: 24120836 PMCID: PMC3981962 DOI: 10.1016/j.bbadis.2013.09.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 01/01/2023]
Abstract
The initiation and progression of Alzheimer disease (AD) is a complex process not yet fully understood. While many hypotheses have been provided as to the cause of the disease, the exact mechanisms remain elusive and difficult to verify. Proteomic applications in disease models of AD have provided valuable insights into the molecular basis of this disorder, demonstrating that on a protein level, disease progression impacts numerous cellular processes such as energy production, cellular structure, signal transduction, synaptic function, mitochondrial function, cell cycle progression, and proteasome function. Each of these cellular functions contributes to the overall health of the cell, and the dysregulation of one or more could contribute to the pathology and clinical presentation in AD. In this review, foci reside primarily on the amyloid β-peptide (Aβ) induced oxidative stress hypothesis and the proteomic studies that have been conducted by our laboratory and others that contribute to the overall understanding of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Aaron M Swomley
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Sarah Förster
- Department of Biochemistry, Institute of Animal Sciences, University of Bonn, Bonn, Germany
| | - Jierel T Keeney
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Judy Triplett
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Zhaoshu Zhang
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
46
|
Mocali A, Della Malva N, Abete C, Mitidieri Costanza VA, Bavazzano A, Boddi V, Sanchez L, Dessì S, Pani A, Paoletti F. Altered proteolysis in fibroblasts of Alzheimer patients with predictive implications for subjects at risk of disease. Int J Alzheimers Dis 2014; 2014:520152. [PMID: 24949214 PMCID: PMC4052202 DOI: 10.1155/2014/520152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/09/2014] [Accepted: 05/04/2014] [Indexed: 02/04/2023] Open
Abstract
There is great interest in developing reliable biomarkers to support antemortem diagnosis of late-onset Alzheimer's disease (AD). Early prediction and diagnosis of AD might be improved by the detection of a proteolytic dysfunction in extracts from cultured AD fibroblasts, producing altered isoelectrophoretic forms of the enzyme transketolase (TK-alkaline bands). The TK profile and apolipoprotein E (APOE) genotype were examined in fibroblasts from 36 clinically diagnosed probable late-onset sporadic AD patients and 38 of their asymptomatic relatives, 29 elderly healthy individuals, 12 neurological non-AD patients, and 5 early-onset AD patients. TK alterations occurred in (i) several probable AD patients regardless of age-of-onset and severity of disease; (ii) all early-onset AD patients and APOE ε 4/4 carriers; and (iii) nearly half of asymptomatic AD relatives. Normal subjects and non-AD patients were all negative. Notably, culture conditions promoting TK alterations were also effective in increasing active BACE1 levels. Overall, the TK assay might represent a low-cost laboratory tool useful for supporting AD differential diagnosis and identifying asymptomatic subjects who are at greater risk of AD and who should enter a follow-up study. Moreover, the cultured fibroblasts were confirmed as a useful in vitro model for further studies on the pathogenetic process of AD.
Collapse
Affiliation(s)
- Alessandra Mocali
- Section of Experimental Pathology and Oncology, Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50134 Florence, Italy
| | - Nunzia Della Malva
- Section of Experimental Pathology and Oncology, Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50134 Florence, Italy
| | - Claudia Abete
- Department of Internal Medicine, University of Cagliari, 09042 Monserrato, Italy
| | | | | | - Vieri Boddi
- Department of Public Health, University of Florence, 50134 Florence, Italy
| | - Luis Sanchez
- 1st Unit of General Surgery and Transplantation, Careggi Hospital, 50134 Florence, Italy
| | - Sandra Dessì
- Department of Internal Medicine, University of Cagliari, 09042 Monserrato, Italy
| | - Alessandra Pani
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Francesco Paoletti
- Section of Experimental Pathology and Oncology, Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50134 Florence, Italy
| |
Collapse
|
47
|
Demartini DR, Schilling LP, da Costa JC, Carlini CR. Alzheimer's and Parkinson's diseases: an environmental proteomic point of view. J Proteomics 2014; 104:24-36. [PMID: 24751585 DOI: 10.1016/j.jprot.2014.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 11/25/2022]
Abstract
Alzheimer's and Parkinson's diseases are severe neurodegenerative conditions triggered by complex biochemical routes. Many groups are currently pursuing the search for valuable biomarkers to either perform early diagnostic or to follow the disease's progress. Several studies have reported relevant findings regarding environmental issues and the progression of such diseases. Here the etiology and mechanisms of these diseases are briefly reviewed. Approaches that might reveal candidate biomarkers and environmental stressors associated to the diseases were analyzed under a proteomic perspective. This article is part of a Special Issue entitled: Environmental and structural proteomics.
Collapse
Affiliation(s)
- Diogo Ribeiro Demartini
- Center of Biotechnology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43431, Sala 214, 91501-970 Porto Alegre, RS, Brazil.
| | - Lucas Porcello Schilling
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, 90610-000 Porto Alegre, RS, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, 90610-000 Porto Alegre, RS, Brazil.
| | - Célia Regina Carlini
- Center of Biotechnology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43431, Sala 214, 91501-970 Porto Alegre, RS, Brazil; Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, 90610-000 Porto Alegre, RS, Brazil
| |
Collapse
|
48
|
Bonda DJ, Wang X, Lee HG, Smith MA, Perry G, Zhu X. Neuronal failure in Alzheimer's disease: a view through the oxidative stress looking-glass. Neurosci Bull 2014; 30:243-52. [PMID: 24733654 DOI: 10.1007/s12264-013-1424-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/17/2014] [Indexed: 11/24/2022] Open
Abstract
Considerable debate and controversy surround the cause(s) of Alzheimer's disease (AD). To date, several theories have gained notoriety, however none is universally accepted. In this review, we provide evidence for the oxidative stress-induced AD cascade that posits aged mitochondria as the critical origin of neurodegeneration in AD.
Collapse
Affiliation(s)
- David J Bonda
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | |
Collapse
|
49
|
Macchi B, Marino-Merlo F, Frezza C, Cuzzocrea S, Mastino A. Inflammation and programmed cell death in Alzheimer's disease: comparison of the central nervous system and peripheral blood. Mol Neurobiol 2014; 50:463-72. [PMID: 24445952 DOI: 10.1007/s12035-014-8641-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/03/2014] [Indexed: 12/25/2022]
Abstract
Although the central nervous system (CNS) has been defined as a privileged site in Alzheimer's disease (AD), periphery can be more than simply witness of events leading to neurodegeneration. The CNS and peripheral blood can mutually communicate through cells and factors trafficking from the circulation into the brain and vice versa. A number of articles have reviewed inflammatory profiles and programmed cell death (PCD) in AD, separately in the CNS and at the peripheral level. This review does not provide an exhaustive account of what has been published on inflammation and PCD in AD. Rather, the aim of this review is to focus on possible linkages between the central and the peripheral compartments during AD progression, by critically analyzing, in a comparative manner, phenomena occurring in the CNS as well as the peripheral blood. In fact, growing evidence suggests that CNS and peripheral inflammation might present common features in the disease. Microarrays and metabolomics revealed that dysfunction of the glycolytic and oxidative pathways is similar in the brain and in the periphery. Moreover, dysregulated autophagosome/lysosomal molecular machinery, both at the CNS and the peripheral level, in AD-related cell damage, has been observed. Possible implications of these observations have been discussed.
Collapse
Affiliation(s)
- Beatrice Macchi
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy,
| | | | | | | | | |
Collapse
|
50
|
Byun HM, Baccarelli AA. Environmental exposure and mitochondrial epigenetics: study design and analytical challenges. Hum Genet 2014; 133:247-57. [PMID: 24402053 DOI: 10.1007/s00439-013-1417-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/16/2013] [Indexed: 01/07/2023]
Abstract
The environment can influence human health and disease in many harmful ways. Many epidemiological studies have been conducted with the aim of elucidating the association between environmental exposure and human disease at the molecular and pathological levels, and such associations can often be through induced epigenetic changes. One such mechanism for this is through environmental factors increasing oxidative stress in the cell, and this stress can subsequently lead to alterations in DNA molecules. The two cellular organelles that contain DNA are the nucleus and mitochondria, and the latter are particularly sensitive to oxidative stress, with mitochondrial functions often disrupted by increased stress. There has been a substantial increase over the past decade in the number of epigenetic studies investigating the impact of environmental exposures upon genomic DNA, but to date there has been insufficient attention paid to the impact upon mitochondrial epigenetics in studying human disease with exposure to environment. Here, in this review, we will discuss mitochondrial epigenetics with regard to epidemiological studies, with particular consideration given to study design and analytical challenges. Furthermore, we suggest future directions and perspectives in the field of mitochondrial epigenetic epidemiological studies.
Collapse
Affiliation(s)
- Hyang-Min Byun
- Exposure Epidemiology and Risk Program, Laboratory of Environmental Epigenetics, Harvard School of Public Health, Boston, MA, 02115, USA,
| | | |
Collapse
|