1
|
Trepczyk K, Er S, Hlushchuk I, Airavaara M, Alwani A, Maziarz K, Chmielarz P, Słomska K, Wieczerzak E, Jankowska E. Peptidomimetics Activating the Proteasome: A New Perspective for Parkinson's Treatment. J Med Chem 2025; 68:8967-8979. [PMID: 40193596 DOI: 10.1021/acs.jmedchem.5c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The development of age-related neurodegenerative diseases is associated with the accumulation of damaged and misfolded proteins. Such proteins are eliminated from cells by proteolytic systems, mainly by 20S proteasomes, whose activity declines with age. Its stimulation has been recognized as a promising approach to delay the onset or ameliorate the symptoms of neurodegenerative disorders. Here we present peptidomimetics that are very effective in stimulating the proteasome in biochemical assays and in cell culture. They are stable in human plasma and capable of penetrating the cell membranes. The activators demonstrated the ability to enhance h20S degradation of α-synuclein and tau, whose aggregates are involved in the development of Parkinson's and Alzheimer's diseases, respectively. The peptidomimetics did not show cytotoxicity to HEK293T and primary hippocampal cells. Additionally, these compounds were highly effective in reducing the amount of phosphorylated α-synuclein aggregates in hippocampal neurons in a mouse embryonic cell model.
Collapse
Affiliation(s)
- Karolina Trepczyk
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Safak Er
- Pharmacology and Drug Development Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Irena Hlushchuk
- Pharmacology and Drug Development Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mikko Airavaara
- Pharmacology and Drug Development Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Anna Alwani
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Katarzyna Maziarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Kinga Słomska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Elżbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
2
|
Kumar P, Kinger S, Dubey AR, Jagtap YA, Choudhary A, Prasad A, Jha HC, Dhiman R, Gutti RK, Mishra A. Trehalose Promotes Clearance of Proteotoxic Aggregation of Neurodegenerative Disease-Associated Aberrant Proteins. Mol Neurobiol 2024; 61:4055-4073. [PMID: 38057642 DOI: 10.1007/s12035-023-03824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Accumulation of misfolded proteins compromises overall cellular health and fitness. The failure to remove misfolded proteins is a critical reason for their unwanted aggregation in dense cellular protein pools. The accumulation of various inclusions serves as a clinical feature for neurodegenerative diseases. Previous findings suggest that different cellular compartments can store these abnormal inclusions. Studies of transgenic mice and cellular models of neurodegenerative diseases indicate that depleted chaperone capacity contributes to the aggregation of damaged or aberrant proteins, which consequently disturb proteostasis and cell viability. However, improving these abnormal proteins' selective elimination is yet to be well understood. Still, molecular strategies that can promote the effective degradation of abnormal proteins without compromising cellular viability are unclear. Here, we reported that the trehalose treatment elevates endogenous proteasome levels and enhances the activities of the proteasome. Trehalose-mediated proteasomal activation elevates the removal of both bona fide misfolded and various neurodegenerative disease-associated proteins. Our current study suggests that trehalose may retain a proteasome activation potential, which seems helpful in the solubilization of different mutant misfolded proteins, improving cell viability. These results reveal a possible molecular approach to reduce the overload of intracellular misfolded proteins, and such cytoprotective functions may play a critical role against protein conformational diseases.
Collapse
Affiliation(s)
- Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
3
|
Cekała K, Trepczyk K, Witkowska J, Jankowska E, Wieczerzak E. Rpt5-Derived Analogs Stimulate Human Proteasome Activity in Cells and Degrade Proteins Forming Toxic Aggregates in Age-Related Diseases. Int J Mol Sci 2024; 25:4663. [PMID: 38731881 PMCID: PMC11082943 DOI: 10.3390/ijms25094663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Aging and age-related diseases are associated with a decline in the capacity of protein turnover. Intrinsically disordered proteins, as well as proteins misfolded and oxidatively damaged, prone to aggregation, are preferentially digested by the ubiquitin-independent proteasome system (UIPS), a major component of which is the 20S proteasome. Therefore, boosting 20S activity constitutes a promising strategy to counteract a decrease in total proteasome activity during aging. One way to enhance the proteolytic removal of unwanted proteins appears to be the use of peptide-based activators of the 20S. In this study, we synthesized a series of peptides and peptidomimetics based on the C-terminus of the Rpt5 subunit of the 19S regulatory particle. Some of them efficiently stimulated human 20S proteasome activity. The attachment of the cell-penetrating peptide TAT allowed them to penetrate the cell membrane and stimulate proteasome activity in HEK293T cells, which was demonstrated using a cell-permeable substrate of the proteasome, TAS3. Furthermore, the best activator enhanced the degradation of aggregation-prone α-synuclein and Tau-441. The obtained compounds may therefore have the potential to compensate for the unbalanced proteostasis found in aging and age-related diseases.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Jankowska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (K.C.)
| | - Ewa Wieczerzak
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (K.C.)
| |
Collapse
|
4
|
Yu Q, Wang Z, Tu Y, Cao Y, Zhu H, Shao J, Zhuang R, Zhou Y, Zhang J. Proteasome activation: A novel strategy for targeting undruggable intrinsically disordered proteins. Bioorg Chem 2024; 145:107217. [PMID: 38368657 DOI: 10.1016/j.bioorg.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Intrinsically disordered proteins (IDPs) are characterized by their inability to adopt well-defined tertiary structures under physiological conditions. Nonetheless, they often play pivotal roles in the progression of various diseases, including cancer, neurodegenerative disorders, and cardiovascular ailments. Owing to their inherent dynamism, conventional drug design approaches based on structural considerations encounter substantial challenges when applied to IDPs. Consequently, the pursuit of therapeutic interventions directed towards IDPs presents a complex endeavor. While there are indeed existing methodologies for targeting IDPs, they are encumbered by noteworthy constrains. Hence, there exists an imminent imperative to investigate more efficacious and universally applicable strategies for modulating IDPs. Here, we present an overview of the latest advancements in the research pertaining to IDPs, along with the indirect regulation approach involving the modulation of IDP degradation through proteasome. By comprehending these advancements in research, novel insights can be generated to facilitate the development of new drugs targeted at addressing the accumulation of IDPs in diverse pathological conditions.
Collapse
Affiliation(s)
- Qian Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Zheng Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yutong Tu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Huajian Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China.
| | - Yubo Zhou
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
5
|
Monsalvo-Maraver LA, Ovalle-Noguez EA, Nava-Osorio J, Maya-López M, Rangel-López E, Túnez I, Tinkov AA, Tizabi Y, Aschner M, Santamaría A. Interactions Between the Ubiquitin-Proteasome System, Nrf2, and the Cannabinoidome as Protective Strategies to Combat Neurodegeneration: Review on Experimental Evidence. Neurotox Res 2024; 42:18. [PMID: 38393521 PMCID: PMC10891226 DOI: 10.1007/s12640-024-00694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/13/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Neurodegenerative disorders are chronic brain diseases that affect humans worldwide. Although many different factors are thought to be involved in the pathogenesis of these disorders, alterations in several key elements such as the ubiquitin-proteasome system (UPS), the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the endocannabinoid system (ECS or endocannabinoidome) have been implicated in their etiology. Impairment of these elements has been linked to the origin and progression of neurodegenerative disorders, while their potentiation is thought to promote neuronal survival and overall neuroprotection, as proved with several experimental models. These key neuroprotective pathways can interact and indirectly activate each other. In this review, we summarize the neuroprotective potential of the UPS, ECS, and Nrf2 signaling, both separately and combined, pinpointing their role as a potential therapeutic approach against several hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Luis Angel Monsalvo-Maraver
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico.
| | - Enid A Ovalle-Noguez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
| | - Jade Nava-Osorio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
| | - Marisol Maya-López
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
- Doctorado en Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Edgar Rangel-López
- Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Isaac Túnez
- Instituto de Investigaciones Biomédicas Maimonides de Córdoba (IMIBIC), Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Red Española de Excelencia en Estimulación Cerebral (REDESTIM), Córdoba, Spain
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abel Santamaría
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
6
|
Nelson S, Harris TJ, Muli CS, Maresch ME, Baker B, Smith C, Neumann C, Trader DJ, Parkinson EI. Discovery and Development of Cyclic Peptide Proteasome Stimulators. Chembiochem 2024; 25:e202300671. [PMID: 38055197 PMCID: PMC10993313 DOI: 10.1002/cbic.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/07/2023]
Abstract
The proteasome degrades proteins, which is essential for cellular homeostasis. Ubiquitin independent proteolysis degrades highly disordered and misfolded proteins. A decline of proteasomal activity has been associated with multiple neurodegenerative diseases due to the accumulation of misfolded proteins. In this work, cyclic peptide proteasome stimulators (CyPPSs) that enhance the clearance of misfolded proteins were discovered. In the initial screen of predicted natural products (pNPs), several cyclic peptides were found to stimulate the 20S core particle (20S CP). Development of a robust structural activity relationship led to the identification of potent, cell permeable CyPPSs. In vitro assays revealed that CyPPSs stimulate degradation of highly disordered and misfolded proteins without affecting ordered proteins. Furthermore, using a novel flow-based assay for proteasome activity, several CyPPSs were found to stimulate the 20S CP in cellulo. Overall, this work describes the development of CyPPSs as chemical tools capable of stimulating the proteasome and provides strong support for proteasome stimulation as a therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Samantha Nelson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
| | - Timothy J. Harris
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California, 92697, United States
| | - Christine S. Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
| | - Marianne E. Maresch
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
| | - Braden Baker
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Chloe Smith
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Chris Neumann
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Darci J. Trader
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California, 92697, United States
| | - Elizabeth I. Parkinson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
7
|
Upadhyay A, Joshi V. Proteasome Activators and Ageing: Restoring Proteostasis Using Small Molecules. Subcell Biochem 2024; 107:21-41. [PMID: 39693018 DOI: 10.1007/978-3-031-66768-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Ageing is an inevitable phenomenon that remains under control of a plethora of signalling pathways and regulatory mechanisms. Slowing of cellular homeostasis and repair pathways, declining genomic and proteomic integrity, and deficient stress regulatory machinery may cause accumulating damage triggering initiation of pathways leading to ageing-associated changes. Multiple genetic studies in small laboratory organisms focused on the manipulation of proteasomal activities have shown promising results in delaying the age-related decline and improving the lifespan. In addition, a number of studies indicate a prominent role of small molecule-based proteasome activators showing positive results in ameliorating the stress conditions, protecting degenerating neurons, restoring cognitive functions, and extending life span of organisms. In this chapter, we provide a brief overview of the multi-enzyme proteasome complex, its structure, subunit composition and variety of cellular functions. We also highlight the strategies applied in the past to modulate the protein degradation efficiency of proteasome and their impact on rebalancing the proteostasis defects. Finally, we provide a descriptive account of proteasome activation mechanisms and small molecule-based strategies to improve the overall organismal health and delay the development of age-associated pathologies.
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Chhattisgarh, India.
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
8
|
Zhu Y, Shigeyoshi K, Hayakawa Y, Fujiwara S, Kishida M, Ohki H, Horibe T, Shionyu M, Mizukami T, Hasegawa M. Acceleration of Protein Degradation by 20S Proteasome-Binding Peptides Generated by In Vitro Artificial Evolution. Int J Mol Sci 2023; 24:17486. [PMID: 38139315 PMCID: PMC10743564 DOI: 10.3390/ijms242417486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Although the 20S core particle (CP) of the proteasome is an important component of the 26S holoenzyme, the stand-alone 20S CP acts directly on intrinsically disordered and oxidized/damaged proteins to degrade them in a ubiquitin-independent manner. It has been postulated that some structural features of substrate proteins are recognized by the 20S CP to promote substrate uptake, but the mechanism of substrate recognition has not been fully elucidated. In this study, we screened peptides that bind to the 20S CP from a random eight-residue pool of amino acid sequences using complementary DNA display an in vitro molecular evolution technique. The identified 20S CP-binding amino acid sequence was chemically synthesized and its effects on the 20S CP were investigated. The 20S CP-binding peptide stimulated the proteolytic activity of the inactive form of 20S CP. The peptide bound directly to one of the α-subunits, opening a gate for substrate entry on the α-ring. Furthermore, the attachment of this peptide sequence to α-synuclein enhanced its degradation by the 20S CP in vitro. In addition to these results, docking simulations indicated that this peptide binds to the top surface of the α-ring. These peptides could function as a key to control the opening of the α-ring gate.
Collapse
Affiliation(s)
- Yunhao Zhu
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Kaishin Shigeyoshi
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Yumiko Hayakawa
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Sae Fujiwara
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Masamichi Kishida
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hitoshi Ohki
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tomohisa Horibe
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Masafumi Shionyu
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Tamio Mizukami
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
- Frontier Pharma Inc., 1281-8 Tamura, Nagahama 526-0829, Japan
| | - Makoto Hasegawa
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| |
Collapse
|
9
|
Moyano P, Sola E, Naval MV, Guerra-Menéndez L, Fernández MDLC, del Pino J. Neurodegenerative Proteinopathies Induced by Environmental Pollutants: Heat Shock Proteins and Proteasome as Promising Therapeutic Tools. Pharmaceutics 2023; 15:2048. [PMID: 37631262 PMCID: PMC10458078 DOI: 10.3390/pharmaceutics15082048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Environmental pollutants' (EPs) amount and diversity have increased in recent years due to anthropogenic activity. Several neurodegenerative diseases (NDs) are theorized to be related to EPs, as their incidence has increased in a similar way to human EPs exposure and they reproduce the main ND hallmarks. EPs induce several neurotoxic effects, including accumulation and gradual deposition of misfolded toxic proteins, producing neuronal malfunction and cell death. Cells possess different mechanisms to eliminate these toxic proteins, including heat shock proteins (HSPs) and the proteasome system. The accumulation and deleterious effects of toxic proteins are induced through HSPs and disruption of proteasome proteins' homeostatic function by exposure to EPs. A therapeutic approach has been proposed to reduce accumulation of toxic proteins through treatment with recombinant HSPs/proteasome or the use of compounds that increase their expression or activity. Our aim is to review the current literature on NDs related to EP exposure and their relationship with the disruption of the proteasome system and HSPs, as well as to discuss the toxic effects of dysfunction of HSPs and proteasome and the contradictory effects described in the literature. Lastly, we cover the therapeutic use of developed drugs and recombinant proteasome/HSPs to eliminate toxic proteins and prevent/treat EP-induced neurodegeneration.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Emma Sola
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María Victoria Naval
- Department of Pharmacology, Pharmacognosy and Bothanic, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Department of Physiology, Medicine School, San Pablo CEU University, 28003 Madrid, Spain
| | - Maria De la Cabeza Fernández
- Department of Chemistry and Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Javier del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
10
|
Impact of Reactive Species on Amino Acids-Biological Relevance in Proteins and Induced Pathologies. Int J Mol Sci 2022; 23:ijms232214049. [PMID: 36430532 PMCID: PMC9692786 DOI: 10.3390/ijms232214049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
This review examines the impact of reactive species RS (of oxygen ROS, nitrogen RNS and halogens RHS) on various amino acids, analyzed from a reactive point of view of how during these reactions, the molecules are hydroxylated, nitrated, or halogenated such that they can lose their capacity to form part of the proteins or peptides, and can lose their function. The reactions of the RS with several amino acids are described, and an attempt was made to review and explain the chemical mechanisms of the formation of the hydroxylated, nitrated, and halogenated derivatives. One aim of this work is to provide a theoretical analysis of the amino acids and derivatives compounds in the possible positions. Tyrosine, methionine, cysteine, and tryptophan can react with the harmful peroxynitrite or •OH and •NO2 radicals and glycine, serine, alanine, valine, arginine, lysine, tyrosine, histidine, cysteine, methionine, cystine, tryptophan, glutamine and asparagine can react with hypochlorous acid HOCl. These theoretical results may help to explain the loss of function of proteins subjected to these three types of reactive stresses. We hope that this work can help to assess the potential damage that reactive species can cause to free amino acids or the corresponding residues when they are part of peptides and proteins.
Collapse
|
11
|
Hsiao JC, Neugroschl AR, Chui AJ, Taabazuing CY, Griswold AR, Wang Q, Huang HC, Orth-He EL, Ball DP, Hiotis G, Bachovchin DA. A ubiquitin-independent proteasome pathway controls activation of the CARD8 inflammasome. J Biol Chem 2022; 298:102032. [PMID: 35580636 PMCID: PMC9213247 DOI: 10.1016/j.jbc.2022.102032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
CARD8 is a pattern-recognition receptor that forms a caspase-1-activating inflammasome. CARD8 undergoes constitutive autoproteolysis, generating an N-terminal (NT) fragment with a disordered region and a ZU5 domain and a C-terminal (CT) fragment with UPA and CARD domains. Dipeptidyl peptidase 8 and dipeptidyl peptidase 9 inhibitors, including Val-boroPro, accelerate the degradation of the NT fragment via a poorly characterized proteasome-mediated pathway, thereby releasing the inflammatory CT fragment from autoinhibition. Here, we show that the core 20S proteasome, which degrades disordered and misfolded proteins independent of ubiquitin modification, controls activation of the CARD8 inflammasome. In unstressed cells, we discovered that the 20S proteasome degrades just the NT disordered region, leaving behind the folded ZU5, UPA, and CARD domains to act as an inhibitor of inflammasome assembly. However, in Val-boroPro-stressed cells, we show the 20S proteasome degrades the entire NT fragment, perhaps due to ZU5 domain unfolding, freeing the CT fragment from autoinhibition. Taken together, these results show that the susceptibility of the CARD8 NT domain to 20S proteasome-mediated degradation controls inflammasome activation.
Collapse
Affiliation(s)
- Jeffrey C Hsiao
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Atara R Neugroschl
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ashley J Chui
- Tri-Institutional PhD Program, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cornelius Y Taabazuing
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andrew R Griswold
- Tri-Institutional MD-PhD Program, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Qinghui Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elizabeth L Orth-He
- Tri-Institutional PhD Program, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Daniel P Ball
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Giorgos Hiotis
- Tri-Institutional PhD Program, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Daniel A Bachovchin
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Tri-Institutional PhD Program, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
12
|
Cekała K, Trepczyk K, Sowik D, Karpowicz P, Giełdoń A, Witkowska J, Giżyńska M, Jankowska E, Wieczerzak E. Peptidomimetics Based on C-Terminus of Blm10 Stimulate Human 20S Proteasome Activity and Promote Degradation of Proteins. Biomolecules 2022; 12:biom12060777. [PMID: 35740902 PMCID: PMC9221443 DOI: 10.3390/biom12060777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/15/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Degradation of misfolded, redundant and oxidatively damaged proteins constitutes one of the cellular processes which are influenced by the 20S proteasome. However, its activity is generally thought to decrease with age which leads to the gradual accumulation of abnormal proteins in cells and their subsequent aggregation. Therefore, increasing proteasomal degradation constitutes a promising strategy to delay the onset of various age-related diseases, including neurodegenerative disorders. In this study we designed and obtained a series of peptidomimetic stimulators of 20S comprising in their sequences the C-terminal fragment of Blm10 activator. Some of the compounds were capable of enhancing the degradation of natively unfolded and oxidatively damaged proteins, such as α-synuclein and enolase, whose applicability as proteasome substrates was evaluated by microscale thermophoresis (MST). Furthermore, they increased the ChT-L activity of the proteasome in HEK293T cell extracts. Our studies indicate that the 20S proteasome-mediated protein substrates hydrolysis may be selectively increased by peptide-based stimulators acting in an allosteric manner. These compounds, after further optimization, may have the potential to counteract proteasome impairment in patients suffering from age-related diseases.
Collapse
|
13
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
14
|
A CRISPR Interference Screen of Essential Genes Reveals that Proteasome Regulation Dictates Acetic Acid Tolerance in Saccharomyces cerevisiae. mSystems 2021; 6:e0041821. [PMID: 34313457 PMCID: PMC8407339 DOI: 10.1128/msystems.00418-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CRISPR interference (CRISPRi) is a powerful tool to study cellular physiology under different growth conditions, and this technology provides a means for screening changed expression of essential genes. In this study, a Saccharomyces cerevisiae CRISPRi library was screened for growth in medium supplemented with acetic acid. Acetic acid is a growth inhibitor challenging the use of yeast for the industrial conversion of lignocellulosic biomasses. Tolerance to acetic acid that is released during biomass hydrolysis is crucial for cell factories to be used in biorefineries. The CRISPRi library screened consists of >9,000 strains, where >98% of all essential and respiratory growth-essential genes were targeted with multiple guide RNAs (gRNAs). The screen was performed using the high-throughput, high-resolution Scan-o-matic platform, where each strain is analyzed separately. Our study identified that CRISPRi targeting of genes involved in vesicle formation or organelle transport processes led to severe growth inhibition during acetic acid stress, emphasizing the importance of these intracellular membrane structures in maintaining cell vitality. In contrast, strains in which genes encoding subunits of the 19S regulatory particle of the 26S proteasome were downregulated had increased tolerance to acetic acid, which we hypothesize is due to ATP salvage through an increased abundance of the 20S core particle that performs ATP-independent protein degradation. This is the first study where high-resolution CRISPRi library screening paves the way to understanding and bioengineering the robustness of yeast against acetic acid stress. IMPORTANCE Acetic acid is inhibitory to the growth of the yeast Saccharomyces cerevisiae, causing ATP starvation and oxidative stress, which leads to the suboptimal production of fuels and chemicals from lignocellulosic biomass. In this study, where each strain of a CRISPRi library was characterized individually, many essential and respiratory growth-essential genes that regulate tolerance to acetic acid were identified, providing a new understanding of the stress response of yeast and new targets for the bioengineering of industrial yeast. Our findings on the fine-tuning of the expression of proteasomal genes leading to increased tolerance to acetic acid suggest that this could be a novel strategy for increasing stress tolerance, leading to improved strains for the production of biobased chemicals.
Collapse
|
15
|
García-Viñuales S, Sciacca MFM, Lanza V, Santoro AM, Grasso G, Tundo GR, Sbardella D, Coletta M, Grasso G, La Rosa C, Milardi D. The interplay between lipid and Aβ amyloid homeostasis in Alzheimer's Disease: risk factors and therapeutic opportunities. Chem Phys Lipids 2021; 236:105072. [PMID: 33675779 DOI: 10.1016/j.chemphyslip.2021.105072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's Diseases (AD) is characterized by the accumulation of amyloid deposits of Aβ peptide in the brain. Besides genetic background, the presence of other diseases and an unhealthy lifestyle are known risk factors for AD development. Albeit accumulating clinical evidence suggests that an impaired lipid metabolism is related to Aβ deposition, mechanistic insights on the link between amyloid fibril formation/clearance and aberrant lipid interactions are still unavailable. Recently, many studies have described the key role played by membrane bound Aβ assemblies in neurotoxicity. Moreover, it has been suggested that a derangement of the ubiquitin proteasome pathway and autophagy is significantly correlated with toxic Aβ aggregation and dysregulation of lipid levels. Thus, studies focusing on the role played by lipids in Aβ aggregation and proteostasis could represent a promising area of investigation for the design of valuable treatments. In this review we examine current knowledge concerning the effects of lipids in Aβ aggregation and degradation processes, focusing on the therapeutic opportunities that a comprehensive understanding of all biophysical, biochemical, and biological processes involved may disclose.
Collapse
Affiliation(s)
| | - Michele F M Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Valeria Lanza
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Anna Maria Santoro
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Massimiliano Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Grasso
- Department of Chemistry, University of Catania, Catania, Italy
| | - Carmelo La Rosa
- Department of Chemistry, University of Catania, Catania, Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy.
| |
Collapse
|
16
|
Onyango IG, Bennett JP, Stokin GB. Regulation of neuronal bioenergetics as a therapeutic strategy in neurodegenerative diseases. Neural Regen Res 2021; 16:1467-1482. [PMID: 33433460 PMCID: PMC8323696 DOI: 10.4103/1673-5374.303007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a heterogeneous group of debilitating disorders with multifactorial etiologies and pathogeneses that manifest distinct molecular mechanisms and clinical manifestations with abnormal protein dynamics and impaired bioenergetics. Mitochondrial dysfunction is emerging as an important feature in the etiopathogenesis of these age-related neurodegenerative diseases. The prevalence and incidence of these diseases is on the rise with the increasing global population and average lifespan. Although many therapeutic approaches have been tested, there are currently no effective treatment routes for the prevention or cure of these diseases. We present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in these diseases and highlight recent advances in novel therapeutic strategies targeting neuronal bioenergetics as potential approach for treating these diseases.
Collapse
Affiliation(s)
- Isaac G Onyango
- Center for Translational Medicine, International Clinical Research Centre (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - James P Bennett
- Neurodegeneration Therapeutics, 3050A Berkmar Drive, Charlottesville, VA, USA
| | - Gorazd B Stokin
- Center for Translational Medicine, International Clinical Research Centre (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
17
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
18
|
Njomen E, Tepe JJ. Regulation of Autophagic Flux by the 20S Proteasome. Cell Chem Biol 2019; 26:1283-1294.e5. [PMID: 31327703 PMCID: PMC6754308 DOI: 10.1016/j.chembiol.2019.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/24/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022]
Abstract
The proteolytic arm of the protein homeostasis network is maintained by both the ubiquitin-proteasome system (UPS) and autophagy. A well-balanced crosstalk between the two catabolic pathways ensures energy-efficient maintenance of cellular function. Our current understanding of the crosstalk between the UPS and autophagy is centered around substrate ubiquitination. Herein we report an additional method of crosstalk involving ubiquitin-independent 20S proteasome regulation of autophagosome-lysosome fusion. We found that enhancement of 20S proteasome activity increased the degradation of the disordered soluble N-ethylmaleimide-sensitive factor activating protein receptor proteins, synaptosomal-associated protein 29 (SNAP29), and syntaxin 17 (STX17), but not vesicle-associated membrane protein 8. This resulted in a reduction of autophagosome-lysosome fusion, which was ameliorated upon overexpression of both SNAP29 and STX17. In all, we herein present a mechanism of crosstalk between the proteasome and autophagy pathway that is regulated by ubiquitin-independent 20S proteasome-mediated degradation of SNAP29 and STX17.
Collapse
Affiliation(s)
- Evert Njomen
- Department of Chemistry and Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Jetze J Tepe
- Department of Chemistry and Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
19
|
Proteasome Activation to Combat Proteotoxicity. Molecules 2019; 24:molecules24152841. [PMID: 31387243 PMCID: PMC6696185 DOI: 10.3390/molecules24152841] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Loss of proteome fidelity leads to the accumulation of non-native protein aggregates and oxidatively damaged species: hallmarks of an aged cell. These misfolded and aggregated species are often found, and suggested to be the culpable party, in numerous neurodegenerative diseases including Huntington's, Parkinson's, Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Diseases (AD). Many strategies for therapeutic intervention in proteotoxic pathologies have been put forth; one of the most promising is bolstering the efficacy of the proteasome to restore normal proteostasis. This strategy is ideal as monomeric precursors and oxidatively damaged proteins, so called "intrinsically disordered proteins" (IDPs), are targeted by the proteasome. This review will provide an overview of disorders in proteins, both intrinsic and acquired, with a focus on susceptibility to proteasomal degradation. We will then examine the proteasome with emphasis on newly published structural data and summarize current known small molecule proteasome activators.
Collapse
|
20
|
Gonos ES, Kapetanou M, Sereikaite J, Bartosz G, Naparło K, Grzesik M, Sadowska-Bartosz I. Origin and pathophysiology of protein carbonylation, nitration and chlorination in age-related brain diseases and aging. Aging (Albany NY) 2019; 10:868-901. [PMID: 29779015 PMCID: PMC5990388 DOI: 10.18632/aging.101450] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
Non-enzymatic protein modifications occur inevitably in all living systems. Products of such modifications accumulate during aging of cells and organisms and may contribute to their age-related functional deterioration. This review presents the formation of irreversible protein modifications such as carbonylation, nitration and chlorination, modifications by 4-hydroxynonenal, removal of modified proteins and accumulation of these protein modifications during aging of humans and model organisms, and their enhanced accumulation in age-related brain diseases.
Collapse
Affiliation(s)
- Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens 11635, Greece
| | - Marianna Kapetanou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens 11635, Greece.,Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Athens 15701, Greece
| | - Jolanta Sereikaite
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Vilnius 2040, Lithuania
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Katarzyna Naparło
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow 35-601, Poland
| | - Michalina Grzesik
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow 35-601, Poland
| | - Izabela Sadowska-Bartosz
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow 35-601, Poland
| |
Collapse
|
21
|
Abstract
Proteasomes are multienzyme complexes that maintain protein homeostasis (proteostasis) and important cellular functions through the degradation of misfolded, redundant, and damaged proteins. It is well established that aging is associated with the accumulation of damaged and misfolded proteins. This phenomenon is paralleled by declined proteasome activity. When the accumulation of redundant proteins exceed degradation, undesirable signaling and/or aggregation occurs and are the hallmarks of neurodegenerative diseases and many cancers. Thus, increasing proteasome activity has been recognized as a new approach to delay the onset or ameliorate the symptoms of neurodegenerative and other proteotoxic disorders. Enhancement of proteasome activity has many therapeutic potentials but is still a relatively unexplored field. In this perspective, we review current approaches, genetic manipulation, posttranslational modification, and small molecule proteasome agonists used to increase proteasome activity, challenges facing the field, and applications beyond aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Evert Njomen
- Department of Chemistry, and Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jetze J. Tepe
- Department of Chemistry, and Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
22
|
Coleman RA, Trader DJ. Methods to Discover and Evaluate Proteasome Small Molecule Stimulators. Molecules 2019; 24:molecules24122341. [PMID: 31242677 PMCID: PMC6630500 DOI: 10.3390/molecules24122341] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 11/25/2022] Open
Abstract
Protein accumulation has been identified as a characteristic of many degenerative conditions, such as neurodegenerative diseases and aging. In most cases, these conditions also present with diminished protein degradation. The ubiquitin-proteasome system (UPS) is responsible for the degradation of the majority of proteins in cells; however, the activity of the proteasome is reduced in these disease states, contributing to the accumulation of toxic protein. It has been hypothesized that proteasome activity, both ubiquitin-dependent and -independent, can be chemically stimulated to reduce the load of protein in diseased cells. Several methods exist to identify and characterize stimulators of proteasome activity. In this review, we detail the ways in which protease activity can be enhanced and analyze the biochemical and cellular methods of identifying stimulators of both the ubiquitin-dependent and -independent proteasome activities.
Collapse
Affiliation(s)
- Rachel A Coleman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA.
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA.
| |
Collapse
|
23
|
Leme JMM, Ohara E, Santiago VF, Barros MH, Netto LES, Pimenta DC, Mariano DOC, Oliveira CLP, Bicev RN, Barreto-Chaves MLM, Lino CA, Demasi M. Mutations of Cys and Ser residues in the α5-subunit of the 20S proteasome from Saccharomyces cerevisiae affects gating and chronological lifespan. Arch Biochem Biophys 2019; 666:63-72. [PMID: 30940569 DOI: 10.1016/j.abb.2019.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/21/2019] [Accepted: 03/25/2019] [Indexed: 01/29/2023]
Abstract
In addition to autophagy, proteasomes are critical for regulating intracellular protein levels and removing misfolded proteins. The 20S proteasome (20SPT), the central catalytic unit, is sometimes flanked by regulatory units at one or both ends. Additionally, proteosomal activation has been associated with increased lifespan in many organisms. Our group previously reported that the gating (open/closed) of the free 20S proteasome is redox controlled, and that S-glutathionylation of two Cys residues (Cys76 and Cys221) in the α5 subunit promotes gate opening. The present study constructed site-directed mutants of these Cys residues, and evaluated the effects these mutations have on proteosome gate opening and yeast cell survival. Notably, the double mutation of both Cys residues (Cys76 and Cys221) rendered the cells nonviable, whereas the lifespan of the yeast carrying the single mutations (α5-C76S or α5-C221S) was attenuated when compared to the wild type counterpart. Furthermore, it was found that α5-C76S or α5-C221S 20SPT were more likely to be found with the gate in a closed conformation. In contrast, a random α5-subunit double mutation (S35P/C221S) promoted gate opening, increased chronological lifespan and provided resistance to oxidative stress. The 20SPT core particle purified from the long-lived strain degraded model proteins (e.g., α-synuclein) more efficiently than preparations obtained from the wild-type counterpart, and also displayed an increased chymotrypsin-like activity. Mass spectrometric analyses of the C76S, C221S, S35P/C221S, S35P and S35P/C76S mutants provided evidence that the highly conserved Cys76 residue of the α5-subunit is the key determinant for gate opening and cellular survival. The present study reveals a sophisticated regulatory mechanism that controls gate opening, which appears to be based on the interactions among multiple residues within the α5-subunit, and consequently impacts the lifespan of yeast.
Collapse
Affiliation(s)
- Janaína M M Leme
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil; Department of Genetics and Evolutive Biology, IB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Erina Ohara
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil; Program of Morfofunctional Sciences, Department of Anatomy, ICB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Verônica F Santiago
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil; Program of Morfofunctional Sciences, Department of Anatomy, ICB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Mario H Barros
- Department of Microbiology, ICB-Universidade de São Paulo, São Paulo-SP, Brazil
| | - Luis E S Netto
- Department of Genetics and Evolutive Biology, IB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Daniel C Pimenta
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil
| | - Douglas O C Mariano
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil
| | | | - Renata N Bicev
- Department of Experimental Physics, IF- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Maria L M Barreto-Chaves
- Program of Morfofunctional Sciences, Department of Anatomy, ICB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Caroline A Lino
- Program of Morfofunctional Sciences, Department of Anatomy, ICB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Marilene Demasi
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil.
| |
Collapse
|
24
|
Parajuli N. A Cycle of Altered Proteasome and Reactive Oxygen Species Production in Renal Proximal Tubular Cells. ACTA ACUST UNITED AC 2019; 4:13-17. [PMID: 32149269 PMCID: PMC7059910 DOI: 10.17140/tfmoj-4-128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aims An intricate relationship exists between the mitochondrial function and proteasome activity. Our recent report showed in a rat model of renal transplantation that mitochondrial dysfunction precedes compromised proteasome function and this results in a vicious cycle of mitochondrial injury and proteasome dysfunction. In this study, we studied whether reactive oxygen species (ROS) has a role in proteasome alteration in renal cells and vice versa. Methods We used the genomic and pharmacologic approach on rat normal kidney proximal tubular (NRK) cell lines. First, we knocked down β5 or Rpt6 subunit of the proteasome using small interfering RNA (siRNA) in NRK cells. We also treated NRK cells with Bortezomib, a proteasome inhibitor, and peroxynitrite (a potent ROS). Results Studies with RNA interference showed increased mitochondrial ROS following knockdown of β5 or Rpt6 subunit in NRK cells. Similarly, pharmacological inhibition of the proteasome in NRK cells using Bortezomib also showed an increase of mitochondrial ROS in a dose-dependent manner. Next, exposing NRK cells to different concentrations of peroxynitrite provided evidence that the higher levels of peroxynitrite exposure decreased the key subunits (β5 and α3) of the proteasome in NRK cells. Conclusion Our results suggest that proteasome inhibition/downregulation increases ROS, which then impairs proteasome subunits in renal proximal tubular cells.
Collapse
Affiliation(s)
- Nirmala Parajuli
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
25
|
Giżyńska M, Witkowska J, Karpowicz P, Rostankowski R, Chocron ES, Pickering AM, Osmulski P, Gaczynska M, Jankowska E. Proline- and Arginine-Rich Peptides as Flexible Allosteric Modulators of Human Proteasome Activity. J Med Chem 2018; 62:359-370. [PMID: 30452262 PMCID: PMC6796967 DOI: 10.1021/acs.jmedchem.8b01025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Proline-
and arginine-rich peptide PR11 is an allosteric inhibitor
of 20S proteasome. We modified its sequence inter alia by introducing
HbYX, RYX, or RHbX C-terminal extensions (Hb, hydrophobic moiety;
R, arginine; Y, tyrosine; X, any residue). Consequently, we were able
to improve inhibitory potency or to convert inhibitors into strong
activators: the former with an aromatic penultimate Hb residue and
the latter with the HbYX motif. The PR peptide activator stimulated
20S proteasome in vitro to efficiently degrade protein substrates,
such as α-synuclein and enolase, but also activated proteasome
in cultured fibroblasts. The positive and negative PR modulators differently
influenced the proteasome conformational dynamics and affected opening
of the substrate entry pore. The resolved crystal structure showed
PR inhibitor bound far from the active sites, at the proteasome outer
face, in the pocket used by natural activators. Our studies indicate
the opportunity to tune proteasome activity by allosteric regulators
based on PR peptide scaffold.
Collapse
Affiliation(s)
- Małgorzata Giżyńska
- Department of Biomedical Chemistry, Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Julia Witkowska
- Department of Biomedical Chemistry, Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Przemysław Karpowicz
- Department of Biomedical Chemistry, Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Rafał Rostankowski
- Department of Biomedical Chemistry, Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Estrella S Chocron
- Department of Molecular Medicine, The Barshop Institute for Longevity and Aging Studies , University of Texas Health Science Center , 15355 Lambda Drive , San Antonio , Texas 78245 , United States
| | - Andrew M Pickering
- Department of Molecular Medicine, The Barshop Institute for Longevity and Aging Studies , University of Texas Health Science Center , 15355 Lambda Drive , San Antonio , Texas 78245 , United States
| | - Pawel Osmulski
- Department of Molecular Medicine, Institute of Biotechnology , University of Texas Health Science Center , 15355 Lambda Drive , San Antonio , Texas 78245 , United States
| | - Maria Gaczynska
- Department of Molecular Medicine, Institute of Biotechnology , University of Texas Health Science Center , 15355 Lambda Drive , San Antonio , Texas 78245 , United States
| | - Elżbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| |
Collapse
|
26
|
Demasi M, da Cunha FM. The physiological role of the free 20S proteasome in protein degradation: A critical review. Biochim Biophys Acta Gen Subj 2018; 1862:2948-2954. [PMID: 30297324 DOI: 10.1016/j.bbagen.2018.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/27/2018] [Accepted: 09/12/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND It has been almost three decades since the removal of oxidized proteins by the free 20S catalytic unit of the proteasome (20SPT) was proposed. Since then, experimental evidence suggesting a physiological role of proteolysis mediated by the free 20SPT has being gathered. SCOPE OF REVIEW Experimental data that favors the hypothesis of free 20SPT as playing a role in proteolysis are critically reviewed. MAJOR CONCLUSIONS Protein degradation by the proteasome may proceed through multiple proteasome complexes with different requirements though the unequivocal role of the free 20SPT in cellular proteolysis towards native or oxidized proteins remains to be demonstrated. GENERAL SIGNIFICANCE The biological significance of proteolysis mediated by the free 20SPT has been elusive since its discovery. The present review critically analyzes the available experimental data supporting the proteolytic role of the free or single capped 20SPT.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP, Brazil.
| | - Fernanda Marques da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
27
|
Eleutherio E, Brasil ADA, França MB, de Almeida DSG, Rona GB, Magalhães RSS. Oxidative stress and aging: Learning from yeast lessons. Fungal Biol 2018; 122:514-525. [DOI: 10.1016/j.funbio.2017.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
|
28
|
Coleman RA, Trader DJ. Development and Application of a Sensitive Peptide Reporter to Discover 20S Proteasome Stimulators. ACS COMBINATORIAL SCIENCE 2018; 20:269-276. [PMID: 29553711 DOI: 10.1021/acscombsci.7b00193] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To attenuate an overabundance of cellular protein, it has been hypothesized that the 20S core particle (20S CP) of the proteasome can be chemically stimulated to degrade proteins into nontoxic peptides more quickly. Screening for small molecule 20S CP stimulators is typically performed with a reporter peptide composed of four amino acids and a coumarin group that is released upon proteasome-mediated hydrolysis to generate a fluorescent signal. Screening with this small reporter can lead to false negatives because the reporter peptide is rapidly turned-over without stimulation. To improve the screening for 20S CP stimulators, we have developed a peptide FRET reporter nearly four times more sensitive to stimulation but still amenable for high throughput screening. Through application of our FRET reporter, we have discovered two 20S CP gate-opening stimulators and also a molecule that elicits its mechanism of action through an interaction with a 20S CP active site.
Collapse
Affiliation(s)
- Rachel A. Coleman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
29
|
Mishra R, Upadhyay A, Prajapati VK, Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med Res Rev 2018; 38:1916-1973. [DOI: 10.1002/med.21502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Vijay Kumar Prajapati
- Department of Biochemistry; School of Life Sciences; Central University of Rajasthan; Rajasthan India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| |
Collapse
|
30
|
Wang X, Yi K, Zhao Y. Fucoidan inhibits amyloid-β-induced toxicity in transgenic Caenorhabditis elegans by reducing the accumulation of amyloid-β and decreasing the production of reactive oxygen species. Food Funct 2018; 9:552-560. [DOI: 10.1039/c7fo00662d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fucoidan treatment effectively alleviates the paralyzed phenotype induced by the accumulation of Abeta in a transgenic Caenorhabditis elegans (C. elegans) Alzheimer's disease (AD) model.
Collapse
Affiliation(s)
- Xuelian Wang
- Department of Bioengineering
- Harbin Institute of Technology
- Weihai
- P. R. China
| | - Kaixuan Yi
- Department of Bioengineering
- Harbin Institute of Technology
- Weihai
- P. R. China
| | - Yan Zhao
- Department of Bioengineering
- Harbin Institute of Technology
- Weihai
- P. R. China
| |
Collapse
|
31
|
FABP4/aP2 Regulates Macrophage Redox Signaling and Inflammasome Activation via Control of UCP2. Mol Cell Biol 2017; 37:MCB.00282-16. [PMID: 27795298 DOI: 10.1128/mcb.00282-16] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
Obesity-linked metabolic disease is mechanistically associated with the accumulation of proinflammatory macrophages in adipose tissue, leading to increased reactive oxygen species (ROS) production and chronic low-grade inflammation. Previous work has demonstrated that deletion of the adipocyte fatty acid-binding protein (FABP4/aP2) uncouples obesity from inflammation via upregulation of the uncoupling protein 2 (UCP2). Here, we demonstrate that ablation of FABP4/aP2 regulates systemic redox capacity and reduces cellular protein sulfhydryl oxidation and, in particular, oxidation of mitochondrial protein cysteine residues. Coincident with the loss of FABP4/aP2 is the upregulation of the antioxidants superoxide dismutase (SOD2), catalase, methionine sulfoxide reductase A, and the 20S proteasome subunits PSMB5 and αβ. Reduced mitochondrial protein oxidation in FABP4/aP2-/- macrophages attenuates the mitochondrial unfolded-protein response (mtUPR) as measured by expression of heat shock protein 60, Clp protease, and Lon peptidase 1. Consistent with a diminished mtUPR, FABP4/aP2-/- macrophages exhibit reduced expression of cleaved caspase-1 and NLRP3. Secretion of interleukin 1β (IL-1β), in response to inflammasome activation, is ablated in FABP4/aP2-/- macrophages, as well as in FABP4/aP2 inhibitor-treated cells, but partially rescued in FABP4/aP2-null macrophages when UCP2 is silenced. Collectively, these data offer a novel pathway whereby FABP4/aP2 regulates macrophage redox signaling and inflammasome activation via control of UCP2 expression.
Collapse
|
32
|
Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C, Istrate A, Ahmed S, Lahkar M, Muresanu DF, Balea M. The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease. J Cell Mol Med 2016; 20:1392-407. [PMID: 27028664 PMCID: PMC4929298 DOI: 10.1111/jcmm.12817] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/17/2016] [Indexed: 01/06/2023] Open
Abstract
The cellular quality control system degrades abnormal or misfolded proteins and consists of three different mechanisms: the ubiquitin proteasomal system (UPS), autophagy and molecular chaperones. Any disturbance in this system causes proteins to accumulate, resulting in neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and prion or polyglutamine diseases. Alzheimer's disease is currently one of the most common age-related neurodegenerative diseases. However, its exact cause and pathogenesis are unknown. Currently approved medications for AD provide symptomatic relief; however, they fail to influence disease progression. Moreover, the components of the cellular quality control system represent an important focus for the development of targeted and potent therapies for managing AD. This review aims to evaluate whether existing evidence supports the hypothesis that UPS impairment causes the early pathogenesis of neurodegenerative disorders. The first part presents basic information about the UPS and its molecular components. The next part explains how the UPS is involved in neurodegenerative disorders. Finally, we emphasize how the UPS influences the management of AD. This review may help in the design of future UPS-related therapies for AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Nityanand Bolshette
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Ashutosh Ahire
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Rohit Pardeshi
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Krishan Thakur
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Cristiana Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alexandru Istrate
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Sahabuddin Ahmed
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Mangala Lahkar
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Dafin F Muresanu
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Maria Balea
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
33
|
Papaevgeniou N, Chondrogianni N. UPS Activation in the Battle Against Aging and Aggregation-Related Diseases: An Extended Review. Methods Mol Biol 2016; 1449:1-70. [PMID: 27613027 DOI: 10.1007/978-1-4939-3756-1_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aging is a biological process accompanied by gradual increase of damage in all cellular macromolecules, i.e., nucleic acids, lipids, and proteins. When the proteostasis network (chaperones and proteolytic systems) cannot reverse the damage load due to its excess as compared to cellular repair/regeneration capacity, failure of homeostasis is established. This failure is a major hallmark of aging and/or aggregation-related diseases. Dysfunction of the major cellular proteolytic machineries, namely the proteasome and the lysosome, has been reported during the progression of aging and aggregation-prone diseases. Therefore, activation of these pathways is considered as a possible preventive or therapeutic approach against the progression of these processes. This chapter focuses on UPS activation studies in cellular and organismal models and the effects of such activation on aging, longevity and disease prevention or reversal.
Collapse
Affiliation(s)
- Nikoletta Papaevgeniou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| |
Collapse
|
34
|
Li R, Fu N, Wu Z, Wang Y, Wang Y. Protein aggregation in foam fractionation of bovine serum albumin: Effect of protein concentration. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Chondrogianni N, Voutetakis K, Kapetanou M, Delitsikou V, Papaevgeniou N, Sakellari M, Lefaki M, Filippopoulou K, Gonos ES. Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res Rev 2015; 23:37-55. [PMID: 25540941 DOI: 10.1016/j.arr.2014.12.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022]
Abstract
Aging is a natural process accompanied by a progressive accumulation of damage in all constituent macromolecules (nucleic acids, lipids and proteins). Accumulation of damage in proteins leads to failure of proteostasis (or vice versa) due to increased levels of unfolded, misfolded or aggregated proteins and, in turn, to aging and/or age-related diseases. The major cellular proteolytic machineries, namely the proteasome and the lysosome, have been shown to dysfunction during aging and age-related diseases. Regarding the proteasome, it is well established that it can be activated either through genetic manipulation or through treatment with natural or chemical compounds that eventually result to extension of lifespan or deceleration of the progression of age-related diseases. This review article focuses on proteasome activation studies in several species and cellular models and their effects on aging and longevity. Moreover, it summarizes findings regarding proteasome activation in the major age-related diseases as well as in progeroid syndromes.
Collapse
Affiliation(s)
- Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Konstantinos Voutetakis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marianna Kapetanou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Vasiliki Delitsikou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marianthi Sakellari
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece; Örebro University, Medical School, Örebro, Sweden
| | - Maria Lefaki
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Konstantina Filippopoulou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece; Örebro University, Medical School, Örebro, Sweden.
| |
Collapse
|
36
|
Witkowska J, Karpowicz P, Gaczynska M, Osmulski PA, Jankowska E. Dissecting a role of a charge and conformation of Tat2 peptide in allosteric regulation of 20S proteasome. J Pept Sci 2014; 20:649-56. [PMID: 24819612 DOI: 10.1002/psc.2642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 12/11/2022]
Abstract
Proteasome is a 'proteolytic factory' that constitutes an essential part of the ubiquitin-proteasome pathway. The involvement of proteasome in regulation of all major aspects of cellular physiology makes it an attractive drug target. So far, only inhibitors of the proteasome entered the clinic as anti-cancer drugs. However, proteasome regulators may also be useful for treatment of inflammatory and neurodegenerative diseases. We established in our previous studies that the peptide Tat2, comprising the basic domain of HIV-1 Tat protein: R(49) KKRRQRR(56) , supplemented with Q(66) DPI(69) fragment, inhibits the 20S proteasome in a noncompetitive manner. Mechanism of Tat2 likely involves allosteric regulation because it competes with the proteasome natural 11S activator for binding to the enzyme noncatalytic subunits. In this study, we performed alanine walking coupled with biological activity measurements and FTIR and CD spectroscopy to dissect contribution of a charge and conformation of Tat2 to its capability to influence peptidase activity of the proteasome. In solution, Tat2 and most of its analogs with a single Ala substitution preferentially adopted a conformation containing PPII/turn structural motifs. Replacing either Asp10 or two or more adjacent Arg/Lys residues induced a random coil conformation, probably by disrupting ionic interactions responsible for stabilization of the peptides ordered structure. The random coil Tat2 analogs lost their capability to activate the latent 20S proteasome. In contrast, inhibitory properties of the peptides more significantly depended on their positive charge. The data provide valuable clues for the future optimization of the Tat2-based proteasome regulators.
Collapse
Affiliation(s)
- Julia Witkowska
- Department of Medicinal Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | | | | | | | | |
Collapse
|