1
|
Restrepo-Acevedo A, Murillo MI, Orvain C, Thibaudeau C, Recberlik S, Verget L, Gómez Vidales V, Gaiddon C, Mellitzer G, Le Lagadec R. Protoporphyrin IX-Derived Ruthenium(II) Complexes for Photodynamic Therapy in Gastric Cancer Cells. Inorg Chem 2025. [PMID: 40315445 DOI: 10.1021/acs.inorgchem.5c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
In recent years, photodynamic therapy (PDT) has emerged as a promising alternative to classical chemotherapy for treating cancer. PDT is based on a nontoxic prodrug called photosensitizer (PS) activated by light at the desired location. Upon irradiation, the PS reacts with the oxygen present in the tumor, producing cytotoxic reactive oxygen species (ROS). Compounds with highly conjugated π-bond systems, such as porphyrins and chlorins, have proven to be excellent light scavengers, and introducing a metal atom in their structure improved the generation of ROS. In this work, a series of tetrapyrrole-ruthenium(II) complexes derived from protoporphyrin IX and the commercial drug verteporfin were designed as photosensitizers for PDT. The complexes were almost nontoxic on human gastric cancer cells under dark conditions, revealing remarkable cytotoxicity upon irradiation with light. The ruthenium atom in the central cavity of the chlorin ligand allowed combined mechanisms in photodynamic therapy, as both singlet oxygen and superoxide radicals were detected. Additionally, one complex produced large amounts of singlet oxygen under hypoxic conditions. Biological assays demonstrated that the ruthenium derivatives caused cell death through a caspase 3 mediated apoptotic pathway and via CHOP, an endoplasmic reticulum stress-inducible transcription factor involved in apoptosis and growth arrest.
Collapse
Affiliation(s)
- Andrés Restrepo-Acevedo
- Universidad Nacional Autonoma de México, Instituto de Química UNAM, Circuito Exterior s/n Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - María Isabel Murillo
- Universidad Nacional Autonoma de México, Instituto de Química UNAM, Circuito Exterior s/n Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Christophe Orvain
- Inserm UMR_S U1113; IRFAC, 3 Avenue Molière, 67200 Strasbourg, France
| | - Chloé Thibaudeau
- Inserm UMR_S U1113; IRFAC, 3 Avenue Molière, 67200 Strasbourg, France
| | - Sevda Recberlik
- Inserm UMR_S U1113; IRFAC, 3 Avenue Molière, 67200 Strasbourg, France
| | - Lucas Verget
- Universidad Nacional Autonoma de México, Instituto de Química UNAM, Circuito Exterior s/n Ciudad Universitaria, 04510 Ciudad de México, Mexico
- Faculté de Chimie, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Virginia Gómez Vidales
- Universidad Nacional Autonoma de México, Instituto de Química UNAM, Circuito Exterior s/n Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Christian Gaiddon
- Inserm UMR_S U1113; IRFAC, 3 Avenue Molière, 67200 Strasbourg, France
| | - Georg Mellitzer
- Inserm UMR_S U1113; IRFAC, 3 Avenue Molière, 67200 Strasbourg, France
| | - Ronan Le Lagadec
- Universidad Nacional Autonoma de México, Instituto de Química UNAM, Circuito Exterior s/n Ciudad Universitaria, 04510 Ciudad de México, Mexico
| |
Collapse
|
2
|
Sahoo SR, Dinda TK, Saha S, Mal P, Goswami N. Maneuvering the Electronic State and Active Site of Assembled-Gold Nanoclusters through Polyoxometalate Implantation for Heterogeneous Green-Light Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19669-19681. [PMID: 40129310 DOI: 10.1021/acsami.4c23033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Gold nanoclusters (AuNCs) exhibit unique molecule-like optical and electronic properties, making them promising candidates for photocatalysis. However, their application as primary photocatalysts in heterogeneous systems is limited by rapid electron recombination, small size, and high solubility. To overcome these limitations, we developed an approach combining AuNCs assemblies with electron trap centers to enhance charge separation and electron transfer. Using a depletion-driven assembly method, Keggin-type polyoxometalates (POMs), Na10SiW9O34 (SiW9), were uniformly embedded within spherical assemblies of glutathione-protected AuNCs, forming gold superclusters (AuSCs). The resulting AuSCs@SiW9 exhibited complete photoluminescence quenching, enhanced metallicity, and stabilized photogenerated electrons via SiW9, enabling their use as primary photocatalysts. The AuSCs@SiW9 efficiently catalyzed the functionalization of terminal aryl alkyne with N-bromosuccinimide (NBS), achieving a tribromoketones yield of 94%, significantly outperforming AuSCs with lower or higher metallicity (38 and 65%, respectively). Mechanistic studies revealed that the improved gold metallicity in AuSCs@SiW9 promotes charge transfer complex formation with NBS, while SiW9 stabilizes photogenerated electrons, enhancing electron density under light irradiation. The AuSCs@SiW9 exhibited strong visible-light absorption, photostability, and solvent dispersibility, enabling recyclability for up to five cycles and scalability for broader applications. This strategy positions gold as a viable primary photocatalyst, expanding its potential in heterogeneous photocatalysis toward synthesizing small molecules.
Collapse
Affiliation(s)
- Satya Ranjan Sahoo
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Tarun Kumar Dinda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
3
|
Lim J, Park S, Ryu S, Park S, Kim MS. Different Inactivation Mechanisms of Staphylococcus aureus and Escherichia coli in Water by Reactive Oxygen and Nitrogen Species Generated from an Argon Plasma Jet. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3276-3285. [PMID: 39907054 DOI: 10.1021/acs.est.4c10363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The atmospheric pressure plasma jet (APPJ) is a promising technology for inactivating waterborne pathogens by generating diverse reactive species under ambient conditions. However, uncertainties regarding the bacterial inactivation mechanisms persist due to varying findings in prior research. This study aimed to clarify the inactivation mechanisms of two representative bacteria, Staphylococcus aureus (S. aureus, Gram-positive) and Escherichia coli (E. coli, Gram-negative), using an argon-based APPJ (Ar-APPJ) system in a controlled medium, primarily deionized water. We identified several reactive oxygen and nitrogen species (RONS), including hydrogen peroxide, peroxynitrous acid/peroxynitrite (ONOOH/ONOO-), hydroxyl radical (•OH), and hydroperoxyl radical/superoxide radical, and evaluated their roles in bacterial inactivation. Inactivation experiments and quantification of suspected RONS revealed that ONOOH was the primary lethal agent for S. aureus, while •OH predominantly inactivated E. coli. Assessment of cell membrane integrity and intracellular RONS levels showed that E. coli, with its thinner cell wall, was more vulnerable to surface damage caused by •OH. In contrast, for S. aureus, with its thicker cell wall, intracellular attack by penetrated ONOOH, being significantly more diffusive than •OH, was more effective, as •OH alone could not induce sufficient surface damage. These findings advance our understanding of bacterial inactivation by the Ar-APPJ and provide valuable insights for designing effective water disinfection strategies utilizing this technology.
Collapse
Affiliation(s)
- Junghyun Lim
- Department of Environmental & Energy, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan-si, Jeonbuk State 54004, Republic of Korea
| | - Seungil Park
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan-si, Jeonbuk State 54004, Republic of Korea
| | - Seungmin Ryu
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan-si, Jeonbuk State 54004, Republic of Korea
| | - Sanghoo Park
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon-si 34141, Republic of Korea
| | - Min Sik Kim
- Department of Environmental & Energy, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea
| |
Collapse
|
4
|
Volostnykh MV, Kirakosyan GA, Sinelshchikova AA, Ermakova EV, Gorbunova YG, Tsivadze AY, Borisov SM, Meyer M, Khrouz L, Monnereau C, Parola S, Bessmertnykh-Lemeune A. Water-soluble platinum and palladium porphyrins with peripheral ethyl phosphonic acid substituents: synthesis, aggregation in solution, and photocatalytic properties. Dalton Trans 2025; 54:2340-2356. [PMID: 39775379 DOI: 10.1039/d4dt03068k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Water-soluble porphyrins have garnered significant attention due to their broad range of applications in biomedicine, catalysis, and material chemistry. In this work, water-soluble platinum(II) and palladium(II) complexes with porphyrins bearing ethyl phosphonate substituents, namely, Pt/Pd 10-(ethoxyhydroxyphosphoryl)-5,15-di(p-carboxyphenyl)porphyrins (M3m, M = Pt(II), Pd(II)) and Pt/Pd 5,10-bis(ethoxyhydroxyphosphoryl)-10,20-diarylporphyrins (M1d-M3d; aryl = p-tolyl (1), mesityl (2), p-carboxyphenyl (3)), were synthesized by alkaline hydrolysis of the corresponding diethyl phosphonates M6m and M4d-M6d. NMR, UV-vis, and fluorescence spectroscopy revealed that the mono-phosphonates M3m tend to form aggregates in aqueous media, while the bis-phosphonates M3d exist predominantly as monomeric species across a wide range of concentrations (10-6-10-3 M), ionic strengths (0-0.81 M), and pH values (4-12). Single-crystal X-ray diffraction studies of the diethyl phosphonates Pt6d and Pd6d revealed that π-π stacking of the aromatic macrocycles is sterically hindered in the crystals, providing a rationale for the low degree of solution aggregation observed for ethyl phosphonate M3d. Photophysical studies of M3m and M1d-M3d demonstrated that these compounds are phosphorescent and generate singlet oxygen in aqueous solutions. Pd(II) complex Pd3d is an excellent photocatalyst for the oxidation of sulfides using di-oxygen in a solvent mixture (MeCN/H2O, 4 : 1 v/v). Under these conditions, various alkyl and aryl sulfides were quantitatively converted into the desired sulfoxides. For the oxygenation of mixed alkyl-aryl sulfides, Pd3d outperforms Pd(II) meso-tetrakis(p-carboxyphenyl)porphyrin (PdTCPP). This photocatalyst can be recycled and reused to afford sulfoxides with no loss of product yield.
Collapse
Affiliation(s)
- Marina V Volostnykh
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
| | - Gayane A Kirakosyan
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991, Russia
| | - Anna A Sinelshchikova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Elizaveta V Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991, Russia
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Michel Meyer
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
| | | | | | - Stephane Parola
- UCBL, ENS de Lyon, CNRS, LCH, UMR 5182, 69342 Lyon Cedex 07, France
| | - Alla Bessmertnykh-Lemeune
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
- CNRS, ENS de Lyon, LCH, UMR 5182, 69342 Lyon Cedex 07, France
| |
Collapse
|
5
|
Liu Y, Ma Y, Deng Z, Li P, Cui S, Zeng C, Mu R, Zhou Y, Qi X, Zhang Z. MoS 2 coupled with ball milling co-modified sludge biochar to efficiently activate peroxymonosulfate for neonicotinoids degradation: Dominant roles of SO 4•-, 1O 2 and surface-bound radicals. ENVIRONMENTAL RESEARCH 2024; 263:119983. [PMID: 39270958 DOI: 10.1016/j.envres.2024.119983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
An efficient catalyst of molybdenum disulfide (MoS2) coupled with ball milling modified sludge biochar (BMSBC) was prepared to efficiently activate peroxymonosulfate (PMS) for neonicotinoids elimination. As expected, 95.1% of imidacloprid (IMI) was degraded by PMS/BMSBC system within 60 min and it was accompanied by the outstanding mineralization rate of 71.9%. The superior pore structures, rich defects, oxygen-containing functional groups and grafted MoS2 on BMSBC offered excellent activation performance for PMS. The influencing factor experiments demonstrated that PMS/BMSBC system performed high anti-interference to wide pH range and background constituents (e.g., inorganic ions and humic acid). Quenching experiments and electron paramagnetic resonance analysis revealed that SO4•-, 1O2, and surface-bound radicals played critical roles in IMI degradation. Electron donors on biochar activated PMS, producing surface radicals. The lone pair electrons within the Lewis basic site of C=O on BMSBC enhanced PMS decomposition by facilitating the cleavage of the -O-O- bond in PMS to release 1O2. The activation process of PMS by MoS2 accelerated the oxidation of Mo (IV) to Mo (VI) to generate SO4•-. Based on the transformed products (TPs), four degradation pathways of IMI in PMS/BMSBC system were suggested, and all TPs toxicity levels were lower than that of IMI by ECOSAR analysis. Additionally, BMSBC exhibited outstanding sustainable catalytic activity towards PMS activation with the well accepted degradation rate of 71.3% for IMI even after five reuse cycles. PMS/BMSBC system also exhibited satisfactory degradation rates (>71.8%) for IMI in various real waters (e.g., sewage effluent and livestock wastewater). Furthermore, PMS/BMSBC system also offered a favorable broad-spectrum elimination performance for other typical neonicotinoids (e.g., thiamethoxam, clothianidin, thiacloprid) with the degradation rates over 98%. This study has developed a desirable neonicotinoids purification technology in view of its high degradation/mineralization rate, outstanding detoxification performance, satisfied anti-interference to ambient conditions and sustainable sludge management.
Collapse
Affiliation(s)
- Yifan Liu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China.
| | - Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Ping Li
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Chenyu Zeng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Rui Mu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Yusheng Zhou
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Xuebin Qi
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
6
|
Wu JH, Yu HQ. Confronting the Mysteries of Oxidative Reactive Species in Advanced Oxidation Processes: An Elephant in the Room. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18496-18507. [PMID: 39382033 DOI: 10.1021/acs.est.4c06725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Advanced oxidation processes (AOPs) are rapidly evolving but still lack well-established protocols for reliably identifying oxidative reactive species (ORSs). This Perspective presents both the radical and nonradical ORSs that have been identified or proposed, along with the extensive controversies surrounding oxidative mechanisms. Conventional identification tools, such as quenchers, probes, and spin trappers, might be inadequate for the analytical demands of systems in which multiple ORSs coexist, often yielding misleading results. Therefore, the challenges of identifying these complex, short-lived, and transient ORSs must be fully acknowledged. Refining analytical methods for ORSs is necessary, supported by rigorous experiments and innovative paradigms, particularly through kinetic analysis based on in situ spectroscopic techniques and multiple-probe strategies. To demystify these complex ORSs, future efforts should be made to develop advanced tools and strategies to enhance the mechanism understanding. In addition, integrating real-world conditions into experimental designs will establish a reliable framework in fundamental studies, providing more accurate insights and effectively guiding the design of AOPs.
Collapse
Affiliation(s)
- Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Lei J, Ding L, Li Y, Li X, Pan S, Wu D, Jiang K. Picolinic acid promotes organic pollutants removal in Fe(III)/periodate process: Mechanism and relationship between removal efficiency and pollutant structure. WATER RESEARCH 2024; 268:122631. [PMID: 39437573 DOI: 10.1016/j.watres.2024.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
The application of Fe-catalyzed periodate (PI) processes is often limited by both the narrow applicable pH range and weak reaction between Fe(III) and oxidant. Here, the biodegradable picolinic acid (PICA) was used as one kind of chelating ligands (CLs) to enhance the removal of organic pollutants (OPs) at initial pH 3.0-8.0, which displayed superior properties than the other CLs in Fe(III)/PI process. The dominant reactive species produced in the Fe(III)-PICA/PI process turned out to be high-valent iron-oxo (FeIV=O) species and hydroxyl radical (•OH) by quenching, sulfoxide probe transformation, and 18O isotope-labeling tests. The relative contribution of FeIV=O and •OH was dependent on OPs ionization potential (IP) and energy gap (ΔE). The degradation of OPs was also directly associated with their structure, the apparent rate constants correlated well with the highest occupied molecular orbital energy (EHOMO), IP, and ΔE, and among them ΔE had a greater effect. Furthermore, Fe(III)-PICA complexes displayed excellent long-term effectiveness for OPs removal in actual water matrixes, along with the non-toxic conversion of PI, indicating a broad application perspective of Fe(III)-PICA/PI process. This study provides an efficient method to improve the performance of Fe(III)/PI process and reveals the mechanism and relationship between removal efficiency and pollutant structure.
Collapse
Affiliation(s)
- Jiansen Lei
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Linjie Ding
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Yangju Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Xiang Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Siyuan Pan
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Dapeng Wu
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Kai Jiang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| |
Collapse
|
8
|
Zeng Y, He D, Sun J, Zhang A, Luo H, Pan X. Non-radical oxidation driven by iron-based materials without energy assistance in wastewater treatment. WATER RESEARCH 2024; 264:122255. [PMID: 39153313 DOI: 10.1016/j.watres.2024.122255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Chemical oxidation is extensively utilized to mitigate the impact of organic pollutants in wastewater. The non-radical oxidation driven by iron-based materials is noted for its environmental friendliness and resistance to wastewater matrix, and it is a promising approach for practical wastewater treatment. However, the complexity of heterogeneous systems and the diversity of evolutionary pathways make the mechanisms of non-radical oxidation driven by iron-based materials elusive. This work provides a systematic review of various non-radical oxidation systems driven by iron-based materials, including singlet oxygen (1O2), reactive iron species (RFeS), and interfacial electron transfer. The unique mechanisms by which iron-based materials activate different oxidants (ozone, hydrogen peroxide, persulfate, periodate, and peracetic acid) to produce non-radical oxidation are described. The roles of active sites and the unique structures of iron-based materials in facilitating non-radical oxidation are discussed. Commonly employed identification methods in wastewater treatment are compared, such as quenching, chemical probes, spectroscopy, mass spectrometry, and electrochemical testing. According to the process of iron-based materials driving non-radical oxidation to remove organic pollutants, the driving factors at different stages are summarized. Finally, challenges and countermeasures are proposed in terms of mechanism exploration, detection methods and practical applications of non-radical oxidation driven by iron-based materials. This work provides valuable insights for understanding and developing non-radical oxidation systems.
Collapse
Affiliation(s)
- Yifeng Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
9
|
De Paepe L, Madder A, Cadoni E. Exploiting G-Quadruplex-DNA Damage as a Tool to Quantify Singlet Oxygen Production. SMALL METHODS 2024; 8:e2301570. [PMID: 38623961 DOI: 10.1002/smtd.202301570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/18/2024] [Indexed: 04/17/2024]
Abstract
G-Quadruplexes (G4s) are highly dynamic and polymorphic nucleic acid structures that can adopt a variety of conformations. When exposed to oxidative conditions, more specifically singlet oxygen, the guanosine nucleobases can be oxidized, which in turn can affect the conformation and folding of the G4. Based on this peculiar phenomenon, it is rationalized that G4s can serve as quantification sensors for the production of singlet oxygen. Here, a method for determining the quantum yield of singlet oxygen generation for visible as well as UV-light excited photosensitizers, using a short G4 DNA sequence, readily available from common DNA companies, as a biological and water-soluble probe, is presented.
Collapse
Affiliation(s)
- Lessandro De Paepe
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, Ghent, B-9000, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, Ghent, B-9000, Belgium
| | - Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, Ghent, B-9000, Belgium
| |
Collapse
|
10
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
11
|
Zhu C, Chen ZL, Li H, Lu L, Kang X, Xuan J, Zhu M. Rational Design of Highly Phosphorescent Nanoclusters for Efficient Photocatalytic Oxidation. J Am Chem Soc 2024; 146:23212-23220. [PMID: 39084600 DOI: 10.1021/jacs.4c05530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Analyzing the molecular structure-photophysical property correlations of metal nanoclusters to accomplish function-oriented photocatalysis could be challenging. Here, the selective heteroatom alloying has been exploited to a Au15 nanocluster, making up a structure-correlated nanocluster series, including homogold Au15, bimetallic AgxAu15-x and CuxAu15-x, trimetallic AgxCuyAu15-x-y, and tetrametallic Pt1AgxCuyAu15-x-y. Their structure-dependent photophysical properties were investigated due to the atomically precise structures of these nanoclusters. Cu-alloyed CuxAu15-x showed intense phosphorescence and the highest singlet oxygen production efficiency. Moreover, the generation of 1O2 species from excited nanoclusters enabled CuxAu15-x as a suitable catalyst for efficient photocatalytic oxidation of silyl enol ethers to produce α,β-unsaturated carbonyl compounds. The generality and applicability of the CuxAu15-x catalysts toward different photocatalytic oxidations were assessed. Overall, this study presents an intriguing Au15-based cluster series enabling an atomic-level understanding of structure-photophysical property correlations, which hopefully provides guidance for the fabrication of cluster-based catalysts with customized photocatalytic performance.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Ze-Le Chen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Luyao Lu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jun Xuan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
12
|
Tian H, Du Y, Luo X, Dong J, Chen S, Hu X, Zhang M, Liu Z, Abolfathi S. Understanding visible light and microbe-driven degradation mechanisms of polyurethane plastics: Pathways, property changes, and product analysis. WATER RESEARCH 2024; 259:121856. [PMID: 38875861 DOI: 10.1016/j.watres.2024.121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
The accumulation of polyurethane plastics (PU-PS) in the environment is on the rise, posing potential risks to the health and function of ecosystems. However, little is known about the degradation behavior of PU-PS in the environment, especially water environment. To address this knowledge gap, we investigated and isolated a degrading strain of Streptomyces sp. B2 from the surface of polyurethane coatings. Subsequently, a photoreactor was employed to simulate the degradation process of bio-based polyurethane (BPU) and petroleum-based polyurethane (PPU) under three conditions, including single microorganism (SM), single light exposure (SL), and combined light exposure/microorganism action (ML) in aqueous solution. The results indicated that PU-PS mainly relies on biodegradation, with the highest degradation rate observed after 28 d under SM condition (BPU 5.69 %; PPU 5.25 %). SL inhibited microbial growth and degradation, with the least impact on plastic degradation. Microorganisms colonized the plastic surface, secreting relevant hydrolytic enzymes and organic acids into the culture medium, providing a negative charge. The carbon chains were broken and aged through hydrogen peroxide induction or attack by oxygen free radicals. This process promoted the formation of oxidized functional groups such as OH and CO, disrupting the polymer's structure. Consequently, localized fragmentation and erosion of the microstructure occurred, resulting in the generation of secondary microplastic (MPs) particles, weight loss of the original plastic, increased surface roughness, and enhanced hydrophilicity. Additionally, BPU exhibited greater degradability than PPU, as microorganisms could utilize the produced fatty acids, which promoted their reproduction. In contrast, PPU degradation generated a large amount of isocyanate, potentially toxic to cells and inhibiting biodegradation. This study unveils the significant role of microorganisms in plastic degradation and the underlying degradation mechanisms of BPU, providing a novel strategy for polyurethane degradation and valuable information for comprehensive assessment of the behavior and fate of MPs in the environment.
Collapse
Affiliation(s)
- Hongyu Tian
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yuping Du
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xinyu Luo
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jingjing Dong
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Siyu Chen
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiaomin Hu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Min Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhiguang Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Soroush Abolfathi
- School of Engineering, University of Warwick, Coventry, CV47AL, United Kingdom
| |
Collapse
|
13
|
Pan J, Wang J, Li K, Dai X, Li Q, Chong D, Chen B, Yan J, Wang H. Efficient molecular doping of polymeric semiconductors improved by coupled reaction. Nat Commun 2024; 15:5854. [PMID: 38997309 PMCID: PMC11245478 DOI: 10.1038/s41467-024-50293-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Exploring chemical doping method to improve the electrical conductivity of polymers is still very attractive for researchers. In this work, we report a developed method of doping a polymer semiconductor aided by the coupled reaction that commonly exists in biological systems where a non-spontaneous reaction is driven by a spontaneous reaction. During the doping process, the chemical reaction between the dopant and the polymer is promoted by introducing a thermodynamically favorable reaction via adding additives that are highly reactive to the reduction product of the dopant to form a coupled reaction, thus significantly improving the electrical conductivity of polymers by 3-7 orders. This coupled reaction doping process shows the potential of wide applications in exploring efficient doping systems to prepare functional conducting polymers, which could be a powerful tool for modern organic electronics.
Collapse
Affiliation(s)
- Jiahao Pan
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Kuncai Li
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xu Dai
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qing Li
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong, China
| | - Daotong Chong
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Bin Chen
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Junjie Yan
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Hong Wang
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
14
|
Xie H, Wang J, Lou Z, Hu L, Segawa S, Kang X, Wu W, Luo Z, Kwok RTK, Lam JWY, Zhang J, Tang BZ. Mechanochemical Fabrication of Full-Color Luminescent Materials from Aggregation-Induced Emission Prefluorophores for Information Storage and Encryption. J Am Chem Soc 2024; 146:18350-18359. [PMID: 38937461 PMCID: PMC11240258 DOI: 10.1021/jacs.4c02954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
The development of luminescent materials via mechanochemistry embodies a compelling yet intricate frontier within materials science. Herein, we delineate a methodology for the synthesis of brightly luminescent polymers, achieved by the mechanochemical coupling of aggregation-induced emission (AIE) prefluorophores with generic polymers. An array of AIE moieties tethered to the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical are synthesized as prefluorophores, which initially exhibit weak fluorescence due to intramolecular quenching. Remarkably, the mechanical coupling of these prefluorophores with macromolecular radicals, engendered through ball milling of generic polymers, leads to substantial augmentation of fluorescence within the resultant polymers. We meticulously evaluate the tunable emission of the AIE-modified polymers, encompassing an extensive spectrum from the visible to the near-infrared region. This study elucidates the potential of such materials in stimuli-responsive systems with a focus on information storage and encryption displays. By circumventing the complexity inherent to the conventional synthesis of luminescent polymers, this approach contributes a paradigm to the field of AIE-based polymers with implications for advanced technological applications.
Collapse
Affiliation(s)
- Huilin Xie
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Department of
Chemical and Biological Engineering, The
Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| | - Jingchun Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| | - Zhenchen Lou
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Shanghai
Frontiers Science Center of Molecule Intelligent Syntheses, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lianrui Hu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Shanghai
Frontiers Science Center of Molecule Intelligent Syntheses, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Shinsuke Segawa
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| | - Xiaowo Kang
- Department
of Biomedical Engineering, Southern University
of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Weijun Wu
- Department
of Biomedical Engineering, Southern University
of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Zhi Luo
- Department
of Biomedical Engineering, Southern University
of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Department of
Chemical and Biological Engineering, The
Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Department of
Chemical and Biological Engineering, The
Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jianquan Zhang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| | - Ben Zhong Tang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Department of
Chemical and Biological Engineering, The
Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| |
Collapse
|
15
|
Dai M, Dong X, Yang Y, Wu Y, Chen L, Jiang C, Guo Z, Yang T. Mechanistic insight into the impact of interaction between goethite and humic acid on the photooxidation and photoreduction of bifenthrin. ENVIRONMENTAL RESEARCH 2024; 252:118779. [PMID: 38552825 DOI: 10.1016/j.envres.2024.118779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Numerous application of pyrethroid insecticides has led to their accumulation in the environment, threatening ecological environment and human health. Its fate in the presence of iron-bearing minerals and natural organic matter under light irradiation is still unknown. We found that goethite (Gt) and humic acid (HA) could improve the photodegradation of bifenthrin (BF) in proper concentration under light irradiation. The interaction between Gt and HA may further enhance BF degradation. On one hand, the adsorption of HA on Gt may decrease the photocatalytic activity of HA through decreasing HA content in solution and sequestering the functional groups related with the production of reactive species. On the other hand, HA could improve the photocatalytic activity of Gt through extending light absorption, lowing of bandgap energy, hindering the recombination of photo-generated charges, and promoting the oxidation and reduction reaction on Gt surface. The increased oxygen vacancies on Gt surface along with the reduction of trivalent iron and the nucleophilic attack of hole to surface hydroxyl group contributed to the increasing photocatalytic activity of Gt. Electron paramagnetic resonance and quenching studies demonstrated that both oxidation species, such as hydroxyl radical (•OH) and singlet oxygen (1O2), and reducing species, such as hydrogen atoms (H•) and superoxide anion radical (O2•-), contributed to BF degradation in UV-Gt-HA system. Mass spectrometry, ion chromatography, and toxicity assessment indicated that less toxic C23H22ClF3O3 (OH-BF), C9H10ClF3O (TFP), C14H14O2 (OH-MBP), C14H12O2 (MBP acid), C14H12O3 (OH-MBP acid), and chloride ions were the main degradation products. The production of OH-BF, MPB, and TFP acid through oxidation and the production of MPB and TFP via reduction were the two primary pathways of BF degradation.
Collapse
Affiliation(s)
- Miaomiao Dai
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Xiaona Dong
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Yongbo Yang
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yuwei Wu
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Lulu Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Canlan Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zechong Guo
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Tongyi Yang
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| |
Collapse
|
16
|
Hu X, Zhu M. Were Persulfate-Based Advanced Oxidation Processes Really Understood? Basic Concepts, Cognitive Biases, and Experimental Details. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10415-10444. [PMID: 38848315 DOI: 10.1021/acs.est.3c10898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Persulfate (PS)-based advanced oxidation processes (AOPs) for pollutant removal have attracted extensive interest, but some controversies about the identification of reactive species were usually observed. This critical review aims to comprehensively introduce basic concepts and rectify cognitive biases and appeals to pay more attention to experimental details in PS-AOPs, so as to accurately explore reaction mechanisms. The review scientifically summarizes the character, generation, and identification of different reactive species. It then highlights the complexities about the analysis of electron paramagnetic resonance, the uncertainties about the use of probes and scavengers, and the necessities about the determination of scavenger concentration. The importance of the choice of buffer solution, operating mode, terminator, and filter membrane is also emphasized. Finally, we discuss current challenges and future perspectives to alleviate the misinterpretations toward reactive species and reaction mechanisms in PS-AOPs.
Collapse
Affiliation(s)
- Xiaonan Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
| |
Collapse
|
17
|
Puchán Sánchez D, Josse P, Plassais N, Park G, Khan Y, Park Y, Seinfeld M, Guyard A, Allain M, Gohier F, Khrouz L, Lungerich D, Ahn HS, Walker B, Monnereau C, Cabanetos C, Le Bahers T. Driving Triplet State Population in Benzothioxanthene Imide Dyes: Let's twist! Chemistry 2024; 30:e202400191. [PMID: 38498874 DOI: 10.1002/chem.202400191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Controlling the formation of photoexcited triplet states is critical for many (photo)chemical and physical applications. Here, we demonstrate that a permanent out-of-plane distortion of the benzothioxanthene imide (BTI) dye promotes intersystem crossing by increasing spin-orbit coupling. This manipulation was achieved through a subtle chemical modification, specifically the bay-area methylation. Consequently, this simple yet efficient approach expands the catalog of known molecular engineering strategies for synthesizing heavy atom-free, dual redox-active, yet still emissive and synthetically accessible photosensitizers.
Collapse
Affiliation(s)
| | - Pierre Josse
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000, Angers, France
| | - Nathan Plassais
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000, Angers, France
- Department of Physics, University of Seoul, 02504, Seoul, Republic of Korea
| | - Geonwoo Park
- Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Yeasin Khan
- Department of Chemistry, Kyung Hee University, 730-701 Seoul, Republic of Korea
| | - Yejoo Park
- Department of Chemistry, Kyung Hee University, 730-701 Seoul, Republic of Korea
| | - Mathilde Seinfeld
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 L, yon, France E-mail
| | - Antoine Guyard
- Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Magali Allain
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000, Angers, France
| | - Frédéric Gohier
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000, Angers, France
| | - Lhoussain Khrouz
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 L, yon, France E-mail
| | - Dominik Lungerich
- Center for Nanomedicine, Institute for Basic Science (IBS), IBS Hall, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyun S Ahn
- Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Bright Walker
- Department of Chemistry, Kyung Hee University, 730-701 Seoul, Republic of Korea
| | - Cyrille Monnereau
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 L, yon, France E-mail
| | - Clément Cabanetos
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000, Angers, France
- 2BFUEL, IRL CNRS 2002, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Tangui Le Bahers
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 L, yon, France E-mail
- Institut Universitaire de France, 5 rue Descartes, 75005, Paris, France
| |
Collapse
|
18
|
Liu S, Du J, Wang H, Jia W, Wu Y, Qi P, Zhan S, Wu Q, Ma J, Ren N, Guo WQ. How hetero-single-atom dispersion reconstructed electronic structure of carbon materials and regulated Fenton-like oxidation pathways. WATER RESEARCH 2024; 254:121417. [PMID: 38461597 DOI: 10.1016/j.watres.2024.121417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Single-atom catalysts (SACs) have emerged as competitive candidates for Fenton-like oxidation of micro-pollutants in water. However, the impact of metal insertion on the intrinsic catalytic activity of carrier materials has been commonly overlooked, and the environmental risk due to metal leaching still requires attention. In contrast to previous reports, where metal sites were conventionally considered as catalytic centers, our study investigates, for the first time, the crucial catalytic role of the carbon carrier modulated through hetero-single-atom dispersion and the regulation of Fenton-like oxidation pathways. The inherent differences in electronic properties between Fe and Co can effectively trigger long-range electron rearrangement in the sp2-carbon-conjugated structure, creating more electron-rich regions for peroxymonosulfate (PMS) complexation and initiating the electron transfer process (ETP) for pollutant degradation, which imparts the synthesized catalyst (FeCo-NCB) with exceptional catalytic efficiency despite its relatively low metal content. Moreover, the FeCo-NCB/PMS system exhibits enduring decontamination efficiency in complex water matrices, satisfactory catalytic stability, and low metal leaching, signifying promising practical applications. More impressively, the spatial relationship between metal sites and electron density clouds is revealed to determine whether high-valent metal-oxo species (HVMO) are involved during the decomposition of surface complexes. Unlike single-type single-atom dispersion, where metal sites are situated within electron-rich regions, hetero-single-atom dispersion can cause the deviation of electron density clouds from the metal sites, thus hindering the in-situ oxidation of metal within the complexes and minimizing the contribution of HVMO. These findings provide new insights into the development of carbon-based SACs and advance the understanding of nonradical mechanisms underpinning Fenton-like treatments.
Collapse
Affiliation(s)
- Shiyu Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juanshan Du
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yaohua Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peishi Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuyan Zhan
- Win Future Environmental Protection Tech. Co., Ltd, Tianjin 300308, China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
19
|
Kechiche A, Al Shehimy S, Khrouz L, Monnereau C, Bucher C, Parola S, Bessmertnykh-Lemeune A, Rousselin Y, Cheprakov AV, Nasri H. Phosphonate-substituted porphyrins as efficient, cost-effective and reusable photocatalysts. Dalton Trans 2024; 53:7498-7516. [PMID: 38596893 DOI: 10.1039/d4dt00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Recent advances in visible light photocatalysis represent a significant stride towards sustainable catalytic chemistry. However, its successful implementation in fine chemical production remains challenging and requires careful optimization of available photocatalysts. Our work aims to structurally modify bioinspired porphyrin catalysts, addressing issues related to their laborious synthesis and low solubility, with the goal of increasing their efficiency and developing reusable catalytic systems. We have demonstrated the catalytic potential of readily available meso-tetrakis[4-(diethoxyphosphoryl)phenyl]porphyrins (M(TPPP)). Novel metal (Pd(II), Co(II) and In(III)) complexes with this ligand were prepared in good yields. These chromophores were characterized in solution using spectroscopic (NMR, UV-vis, fluorescence) and electrochemical methods. The introduction of phosphonate groups on the phenyl substituents of meso-tetraphenylporphyrins (M(TPP)) improves solubility in polar organic solvents without significantly altering the photophysical properties and photostability of complexes. This structural modification also leads to easier reductions and harder oxidations of the macrocycle for all investigated complexes compared to the corresponding TPP derivatives. The free base porphyrin, zinc(II), palladium(II), and indium(III) complexes were studied as photocatalysts for oxidation of sulfides to sulfoxides using molecular oxygen as a terminal oxidant. Both dialkyl and alkyl aryl sulfides were quantitatively transformed into sulfoxides under blue LED irradiation in the acetonitrile-water mixture (10 : 1 v/v) with a low loading (0.005-0.05 mol%) of porphyrin photocatalysts, where H2(TPPP) and Pd(TPPP) were found to be the most efficient. The reaction mechanism was studied using photoluminescence and EPR spectroscopies. Then, to access reusable catalysts, water-soluble derivatives bearing phosphonic acid groups, H2(TPPP-A) and Pd(TPPP-A), were prepared in high yields. These compounds were characterized using spectroscopic methods. Single-crystal X-ray diffraction analysis of Pd(TPPP-A) reveals that the complex forms a 3D hydrogen-bonded organic framework (HOF) in the solid state. Both H2(TPPP-A) and Pd(TPPP-A) were found to catalyze the photooxidation of sulfides by molecular oxygen in the acetonitrile-water mixture (1 : 1 v/v), while only Pd(TPPP-A) resulted in selective production of sulfoxides. The complex Pd(TPPP-A) was easily recovered through extraction in the aqueous phase and successfully reused in five consecutive cycles of the sulfoxidation reaction.
Collapse
Affiliation(s)
- Azhar Kechiche
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Shaymaa Al Shehimy
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Lhoussain Khrouz
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Cyrille Monnereau
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Christophe Bucher
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Stephane Parola
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Alla Bessmertnykh-Lemeune
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Yoann Rousselin
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, 21078 Dijon, France
| | - Andrey V Cheprakov
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia
| | - Habib Nasri
- University of Monastir, Laboratory of Physical Chemistry of Materials (LR01ES19), Faculty of Sciences of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| |
Collapse
|
20
|
Chen X, Yue Y, Wang Z, Sun J, Dong S. Co-existing inorganic anions influenced the Norrish I and Norrish II type photoaging mechanism of biodegradable microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171756. [PMID: 38494013 DOI: 10.1016/j.scitotenv.2024.171756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The degradation of biodegradable plastics (BPs) in natural environments is constrained, and the mechanisms underlying their photoaging in aquatic settings remain inadequately understood. In view of this, this study systematically investigated the photoaging process of biodegradable Poly (butyleneadipate-co-terephthalate) microplastics (PBAT-MPs), which are more widely used. The investigation was carried out in the presence of common inorganic anions (Br-, Cl- and NO3-). The results of EPR, FTIR and FESEM tests, along with pseudo-first-order kinetics analyses, showed that the presence of NO3- promoted the photoaging of PBAT-MPs, while the presence of Br- and Cl- inhibited the photoaging of PBAT-MPs. In addition, the results of the Two-Dimensional Correlation Spectroscopy (2D-COS) analysis determined the order of the changes in the functional groups, revealing that the Norrish I and Norrish II reaction mechanisms are presented by PBAT-MPs during the aging process, and the process is closely related to the ion concentration and UV irradiation time. This study provides valuable insights for understanding the phototransformation process of BPs in natural aqueous environments.
Collapse
Affiliation(s)
- Xi Chen
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Yiying Yue
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Zihan Wang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Jianhui Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Shuying Dong
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
21
|
Azam S, Zhu J, Jiang J, Wang J, Zhao H. Photolysis of dinotefuran in aqueous solution: Kinetics, influencing factors and photodegradation mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123352. [PMID: 38219898 DOI: 10.1016/j.envpol.2024.123352] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
The environmental behaviour of neonicotinoid insecticides (NNIs) is of momentous concern due to their frequent detection in aquatic environment and their biotoxicity for non-target organisms. Phototransformation is one of the most significant transformation processes, which is directly related to NNIs exposure and environmental risks. In this study, the photodegradation of dinotefuran (DIN, 1-Methyl-2-nitro-3-(tetrahydro-3-furanylmethyl)-guanidine), one of the most promising NNIs, was conducted under irritated light in the presence of Cl-, DOM along with the effect of pH and initial concentration. The findings demonstrated that in ultra-pure (UP) water, the photolysis rate constants (k) of DIN rose with increasing initial concentration. Whereas, in tap water, at varied pH levels, and in the presence of Cl-, the outcomes were reversed. At the same time, lower concentration of DOM promoted DIN photolysis processes due to the production of reactive oxygen species, while higher concentrations of DOM inhibited the photolysis by the predominance of light shielding effects. The singlet oxygen (1O2) was produced in the photolysis processes of DIN with Cl- and DOM, which was confirmed by electron spin resonance (EPR) analysis. Four main photolysis products and three intermediates were identified by UPLC-Q-Exactive Orbitrap MS analysis. The possible photodegradation pathways of DIN were proposed including the oxidation by 1O2, reduction and hydrolysis after the removal of nitro group from parent compounds. This study expanding our understanding of transformation behavior and fate of NNIs in the aquatic environment, which is essential for estimating their environmental risks.
Collapse
Affiliation(s)
- Shafiul Azam
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China
| | - Jie Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingqiu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China.
| | - Jingyao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China
| |
Collapse
|
22
|
Peng Y, Da X, Zhou W, Xu Y, Liu X, Wang X, Zhou Q. A photo-degradable BODIPY-modified Ru(II) photosensitizer for safe and efficient PDT under both normoxic and hypoxic conditions. Dalton Trans 2024; 53:3579-3588. [PMID: 38314620 DOI: 10.1039/d3dt04063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Photodynamic therapy (PDT) is promising for cancer treatment but still suffers from some limitations. For instance, PDT based on 1O2 generation (in a type-II mechanism) is heavily dependent on high oxygen concentrations and will be significantly depressed in hypoxic tumors. In addition, the residual photosensitizers after PDT treatment may cause severe side-effects under light irradiation. To solve these problems, herein a BODIPY (boron dipyrromethene)-modified Ru(II) complex [Ru(dip)2(tpy-BODIPY)]2+ (complex 1, dip = 4,7-diphenyl-1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine) was designed and synthesized. Complex 1 exhibited both high singlet oxygen quantum yield (Φ = 0.7 in CH3CN) and excellent superoxide radical (O2˙-) generation, and thus demonstrated efficient PDT activity under both normoxic and hypoxic conditions. Moreover, complex 1 is photo-degradable in water, and greatly loses its ROS generation ability after PDT treatment. These novel properties of complex 1 make it promising for efficient PDT under both normoxic and hypoxic conditions with reduced side-effects.
Collapse
Affiliation(s)
- Yatong Peng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuwen Da
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Wanpeng Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunli Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiulian Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuesong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
23
|
Raikar LG, Gandhi J, Gupta KVK, Prakash H. Degradation of Ampicillin with antibiotic activity removal using persulfate and submersible UVC LED: Kinetics, mechanism, electrical energy and cost analysis. CHEMOSPHERE 2024; 349:140831. [PMID: 38040251 DOI: 10.1016/j.chemosphere.2023.140831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Effective water treatment to remove antibiotics and its activity from contaminated water is urgently needed to prevent antibiotic-resistant bacteria (ARB) emergence. In this study, we investigated degradation of Ampicillin (AMP), an extensively used β-lactam antibiotic, using submersible Ultraviolet C Light Emitting Diode (λmax = 276 nm) irradiation source, and Persulfate (UVC LED/PS system). Pseudo first order rate constant (kobs) for degradation of AMP (1 ppm) by UVC LED/PS system was determined to be 0.5133 min-1 (PS = 0.2 mM). kobs value at pH 2.5 (0.7259 min-1) was found to be higher than pH 6.5 (0.5133 min-1) and pH 12 (0.1745 min-1). kobs value for degradation of AMP in deionized water spiked with inorganic anions (Cl-=0.5369 min-1,SO42-=0.4545 min-1, NO3-=0.1526 min-1, HCO3-=0.0226 min-1), in real tap water (0.1182 min-1) and simulated ground water (0.0372 min-1) were presented. Radical scavenging experiment reveal involvement of sulfate radical anion and hydroxyl radical in UVC LED/PS system. EPR analysis confirms the generation of sulfate radical anion and hydroxyl radical. Importantly, 74% reduction of total organic carbon (TOC) occurred within 60 min of AMP treatment by UVC LED/PS system. Seven degradation by-products were identified by high resolution mass spectrometry, and degradation pathways were proposed. Antibacterial activity of AMP towards Bacillus subtilis and Staphylococcus aureus was completely removed after UVC LED/PS treatment. ECOSAR model predicted no very toxic degradation by-products generation by UVC LED/PS system. Electrical Energy per order (EEo) and cost of UVC LED/PS system were determined to be 0.9351 kW/m3/order and ₹ 7.91/m3 ($ 0.095/m3 or € 0.087/m3), respectively. Overall, this study highlights, UVC LED/PS system as energy efficient, low-cost, and its potential to emerge as sulfate radical anion based advanced oxidation process (AOP) to treat water with antibiotics.
Collapse
Affiliation(s)
- Laxman G Raikar
- Energy and Environmental Chemistry Laboratory, Department of Chemistry, Birla Institute of Technology and Science, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - Jemi Gandhi
- Energy and Environmental Chemistry Laboratory, Department of Chemistry, Birla Institute of Technology and Science, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - K V K Gupta
- Kwality Photonics Pvt. Ltd., Kushaiguda, Hyderabad, 500062, India
| | - Halan Prakash
- Energy and Environmental Chemistry Laboratory, Department of Chemistry, Birla Institute of Technology and Science, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.
| |
Collapse
|
24
|
Mondal S, Jethwa RB, Pant B, Hauschild R, Freunberger SA. Singlet oxygen formation in non-aqueous oxygen redox chemistry: direct spectroscopic evidence for formation pathways and reliability of chemical probes. Faraday Discuss 2024; 248:175-189. [PMID: 37750344 DOI: 10.1039/d3fd00088e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Singlet oxygen (1O2) formation is now recognised as a key aspect of non-aqueous oxygen redox chemistry. For identifying 1O2, chemical trapping via 9,10-dimethylanthracene (DMA) to form the endoperoxide (DMA-O2) has become the main method due to its sensitivity, selectivity, and ease of use. While DMA has been shown to be selective for 1O2, rather than forming DMA-O2 with a wide variety of potentially reactive O-containing species, false positives might hypothetically be obtained in the presence of previously overlooked species. Here, we first provide unequivocal direct spectroscopic proof via the 1O2-specific near-infrared (NIR) emission at 1270 nm for the previously proposed 1O2 formation pathways, which centre around superoxide disproportionation. We then show that peroxocarbonates, common intermediates in metal-O2 and metal carbonate electrochemistry, do not produce false-positive DMA-O2. Moreover, we identify a previously unreported 1O2-forming pathway through the reaction of CO2 with superoxide. Overall, we provide unequivocal proof for 1O2 formation in non-aqueous oxygen redox chemistry and show that chemical trapping with DMA is a reliable method to assess 1O2 formation.
Collapse
Affiliation(s)
- Soumyadip Mondal
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Rajesh B Jethwa
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Bhargavi Pant
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Robert Hauschild
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Stefan A Freunberger
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
25
|
Hu J, Wang R, Li S, Wu J, Qiang Z. Mechanisms of iopamidol transformation catalyzed by a copper corrosion product (c-Cu 2O) during peroxymonosulfate disinfection. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132821. [PMID: 37879278 DOI: 10.1016/j.jhazmat.2023.132821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Peroxymonosulfate (PMS) is an alternative disinfectant for drinking water. This study aimed to investigate the transformation of iopamidol (IPM) catalyzed by a main copper corrosion product (c-Cu2O) with PMS as a disinfectant. The observed pseudo-first-order constant (kobs) for the IPM degradation in the c-Cu2O/PMS system (0.033 min-1) was 3 times that in the CuO/PMS system (0.011 min-1). The quenching tests and the electron paramagnetic resonance (EPR) experiments indicate that O2•- and 1O2 contributed to IPM degradation in the c-Cu2O/ PMS system. The complexation of metastable Cu(II) with a PMS molecule polarized the OO bond and then facilitated the electron transfer from the PMS molecule to other PMS and O2 molecules, which directly and indirectly promoted the yield of O2•- and 1O2. The iodine balance indicated that 26.0% of initial TOI was converted to IO3-, and CHI3 only accounted for 0.6% of the residual TOI. In the c-Cu2O/PMS system, IPM conversion was started with amide C-N bond breakage, deiodination reaction and hydrogen abstraction. This study helps to better understand the conversion mechanisms of iodine-containing organic micropollutants when PMS is deployed as a disinfectant in copper pipes.
Collapse
Affiliation(s)
- Jun Hu
- College of Environment, Center for Membrane and Water Science & Technology, Zhe, jiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China; Innovation Research Center for Advanced Environmental Technology, Eco-industrial Innovation Institute ZJUT, 2 Rong-chang East Road, Quzhou 324400, China
| | - Ruiqi Wang
- College of Environment, Center for Membrane and Water Science & Technology, Zhe, jiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China
| | - Shangkun Li
- College of Environment, Center for Membrane and Water Science & Technology, Zhe, jiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China; Zhejiang Huanke Environmental Research Institute Co., Ltd., Hangzhou 311121, China
| | - Jun Wu
- College of Environment, Center for Membrane and Water Science & Technology, Zhe, jiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China.
| | - Zhimin Qiang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco, Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| |
Collapse
|
26
|
Wang Y, Lin Y, He S, Wu S, Yang C. Singlet oxygen: Properties, generation, detection, and environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132538. [PMID: 37734310 DOI: 10.1016/j.jhazmat.2023.132538] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Singlet oxygen (1O2) is molecular oxygen in the excited state with high energy and electrophilic properties. It is widely found in nature, and its important role is gradually extending from chemical syntheses and medical techniques to environmental remediation. However, there exist ambiguities and controversies regarding detection methods, generation pathways, and reaction mechanisms which have hindered the understanding and applications of 1O2. For example, the inaccurate detection of 1O2 has led to an overestimation of its role in pollutant degradation. The difficulty in detecting multiple intermediate species obscures the mechanism of 1O2 production. The applications of 1O2 in environmental remediation have also not been comprehensively commented on. To fill these knowledge gaps, this paper systematically discussed the properties and generation of 1O2, reviewed the state-of-the-art detection methods for 1O2 and long-standing controversies in the catalytic systems. Future opportunities and challenges were also discussed regarding the applications of 1O2 in the degradation of pollutants dissolved in water and volatilized in the atmosphere, the disinfection of drinking water, the gas/solid sterilization, and the self-cleaning of filter membranes. This review is expected to provide a better understanding of 1O2-based advanced oxidation processes and practical applications in the environmental protection of 1O2.
Collapse
Affiliation(s)
- Yue Wang
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
27
|
Wu S, Liu J, Li J, You W, Zhong K, Feng L, Han S, Zhang X, Pan T, Liu W, Zheng H. PMS coupled Mn(II) mediated electrochemistry processes (E-Mn(II)-PMS) on the efficient RB19 wastewater treatment: Focus on the regulation and reinforcement of Mn(III)/Mn(II). ENVIRONMENTAL RESEARCH 2024; 240:117220. [PMID: 37863166 DOI: 10.1016/j.envres.2023.117220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
Dye wastewater, represented by reactive blue 19 (RB19), severely threatens the aquatic ecological environment and human health, such that an efficient RB19 wastewater treatment technology should be urgently developed. Based on manganese ion-mediated electrochemistry, PMS was introduced to develop a novel electrocatalytic system (E-Mn(II)-PMS) that can efficiently remove and degrade RB19. The synergistic effect between E, Mn(II), and PMS was verified in this study through comparative experiments of a wide variety of systems. The removal efficiency of RB19 reached 95.1% in 50 min under reasonable power consumption (3.29 kWh/m3). Moreover, the effects exerted by different operating conditions (e.g., initial pH, current density, RB19 concentration, Mn(II) concentration, as well as PMS concentration) and water matrix on the degradation efficiency of RB19 were explored through single factor experiments. The active oxidation species (ROS) and their contribution rate for the degrading and removing RB19 were studied through quenching experiments, EPR experiments, TMT-15 metal capture experiments, as well as PP complexation experiments. The role played by non-free radicals took on critical significance in the oxidation removal of RB19, which comprised direct electro oxidation, Mn(III) oxidation, and 1O2 oxidation. The enhancement effect of free radicals (SO4·- and HO∙) was not sufficiently significant, with a low degree of contribution. The oxidation effect of the anode facilitated the conversion of Mn (II) to Mn (III), which was employed in PMS for expediting the production of 1O2. The reduction effect of the cathode blocked the production of Mn (IV) as a side reaction, such that the continuous circulation of manganese ions between divalent and trivalent was promoted. Meanwhile, the cathode reacted with PMS to generate a small part of SO4·- and HO∙. In addition, the reaction active site of RB19 was predicted, and a possible degradation pathway was proposed in accordance with the mass spectrometry results and the DFT calculation. As revealed by the results of the QSAR analysis and the plant culture experiments, the biological toxicity of RB19 was markedly reduced after the sample was administrated with E-Mn(II)-PMS. E-Mn(II)-PMS-mediated electrochemical technology displays several advantages (e.g., high efficiency, low consumption, recyclability, wide pH window, and strong applicability) while showing promising market development and utilization for treating dye wastewater.
Collapse
Affiliation(s)
- Shenyu Wu
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Jiajun Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Junda Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Weihong You
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Kunyu Zhong
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China.
| | - Shuai Han
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Xionghao Zhang
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Tingyu Pan
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Weiseng Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
28
|
Lu F, Lin T, Chen H. Singlet oxygen-mediated fluconazole degradation during the activation of chlorine dioxide with sulfite. WATER RESEARCH 2024; 248:120887. [PMID: 37992637 DOI: 10.1016/j.watres.2023.120887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Singlet oxygen (1O2)-mediated advanced oxidations have received considerable attention due to their strong capacity to resist the water matrix and high selectivity for organic pollutants. In this study, the activation of chlorine dioxide with sulfite (sulfite/ClO2 process) to effectively produce 1O2 was proposed to degrade fluconazole (FLC) and simultaneously control the formation of disinfection byproducts (DBPs). The results revealed that FLC could be rapidly degraded by 78.6 % within 10 s by the sulfite/ClO2 process. Radical quenching tests and electron paramagnetic resonance (EPR) measurements confirm that 1O2 produced by the cleavage of epoxides formed by the combination of triazole electron-rich groups in FLC with peroxymonosulfate (PMS) was the main active species in the sulfite/ClO2 process. The degradation of FLC was favored under alkaline conditions because of the fast electron transfer rate at higher pH values. The presence of chloride (Cl-), bicarbonate (HCO3-), and humic acid (HA) hindered the degradation of FLC mainly because they compete with PMS for the electron-rich groups produced by the reaction. The degradation intermediates of FLC were identified by UPLC‒MS/MS, and their transformation pathways were deduced by the condensed Fukui function (CFF) theory. Using sulfite/ClO2 as a pretreatment process to treat real potable water, aldehydes, ketones, carboxylic acids and other intermediates may be produced via the carboxylation and carbonylation reactions mediated by 1O2, therefore promoting the formation of DBPs during the following chlorination. This study provided a new perspective that while 1O2 is effectively produced in the sulfite/ClO2 process for contaminant degradation, the formation of DBPs during subsequent chlorination should be cautioned.
Collapse
Affiliation(s)
- Feiyu Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
29
|
Hananya N, Green O, Gutiérrez-Fernández I, Shabat D, Arellano JB. Singlet Oxygen Detection by Chemiluminescence Probes in Living Cells. Methods Mol Biol 2024; 2798:27-43. [PMID: 38587734 DOI: 10.1007/978-1-0716-3826-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Singlet oxygen is a reactive oxygen species that causes oxidative damage to plant cells, but intriguingly it can also act as a signalling molecule to reprogram gene expression required to induce plant physiological/cellular responses. Singlet oxygen photosensitization in plants mainly occurs in chloroplasts after the molecular collision of ground-state molecular oxygen with triplet-excited-state chlorophyll. Singlet oxygen direct detection through phosphorescence emission in chloroplasts is a herculean task due to its extremely low luminescence quantum yield. Because of this, indirect alternative methods have been developed for its detection in biological systems, for example, by measuring the changes in the EPR signal or fluorescence intensity of singlet oxygen reaction-based probes. The singlet oxygen chemiluminescence (SOCL) is a chemiluminescence probe with high sensitivity and selectivity towards singlet oxygen and promising use to detect it in living cells without the inconvenience of low stability of the EPR signal of spin probes in the presence of redox compounds, spurious light scattering coming from the light source required for the excitation of fluorescence probes or the light emission of endogenous fluorescent molecules like chlorophyll in chloroplasts. The protocol presented in this chapter describes the first steps to characterizing singlet oxygen production within the biological system under study; this is accomplished through monitoring molecular oxygen consumption by SOCL using a Clark-type oxygen electrode and measuring the chemiluminescence generated by SOCL 1,2-dioxetane using a spectrofluorometer. For singlet oxygen detection within living cells, a version of SOCL with increased membrane permeability (SOCL-CPP) is described.
Collapse
Affiliation(s)
- Nir Hananya
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| | - Ori Green
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| | - Ismael Gutiérrez-Fernández
- Departamento de Estrés Abiótico, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Doron Shabat
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Juan B Arellano
- Departamento de Estrés Abiótico, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca, Spain.
| |
Collapse
|
30
|
Petrongari A, Piacentini V, Pierini A, Fattibene P, De Angelis C, Bodo E, Brutti S. Insights into the LiI Redox Mediation in Aprotic Li-O 2 Batteries: Solvation Effects and Singlet Oxygen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59348-59357. [PMID: 38090803 PMCID: PMC10755701 DOI: 10.1021/acsami.3c12330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023]
Abstract
Lithium-oxygen aprotic batteries (aLOBs) are highly promising next-generation secondary batteries due to their high theoretical energy density. However, the practical implementation of these batteries is hindered by parasitic reactions that negatively impact their reversibility and cycle life. One of the challenges lies in the oxidation of Li2O2, which requires large overpotentials if not catalyzed. To address this issue, redox mediators (RMs) have been proposed to reduce the oxygen evolution reaction (OER) overpotentials. In this study, we focus on a lithium iodide RM and investigate its role on the degradation chemistry and the release of singlet oxygen in aLOBs, in different solvent environments. Specifically, we compare the impact of a polar solvent, dimethyl sulfoxide (DMSO), and a low polarity solvent, tetraglyme (G4). We demonstrate a strong interplay between solvation, degradation, and redox mediation in OER by LiI in aLOBs. The results show that LiI in DMSO-based electrolytes leads to extensive degradation and to 1O2 release, affecting the cell performance, while in G4-based electrolytes, the release of 1O2 appears to be suppressed, resulting in better cyclability.
Collapse
Affiliation(s)
- Angelica Petrongari
- Department
of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Vanessa Piacentini
- Department
of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Adriano Pierini
- Department
of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Paola Fattibene
- Core
Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Cinzia De Angelis
- Core
Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Enrico Bodo
- Department
of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Sergio Brutti
- Department
of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
- CNR-ISC,
Consiglio Nazionale Delle Ricerche, Istituto
Dei Sistemi Complessi, Rome 00185, Italy
- GISEL
- Centro di Riferimento Nazionale per i Sistemi di Accumulo Elettrochimico
di Energia, Florence 50121, Italy
| |
Collapse
|
31
|
Berbille A, Li XF, Su Y, Li S, Zhao X, Zhu L, Wang ZL. Mechanism for Generating H 2 O 2 at Water-Solid Interface by Contact-Electrification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304387. [PMID: 37487242 DOI: 10.1002/adma.202304387] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Indexed: 07/26/2023]
Abstract
The recent intensification of the study of contact-electrification at water-solid interfaces and its role in physicochemical processes lead to the realization that electron transfers during water-solid contact-electrification can drive chemical reactions. This mechanism, named contact-electro-catalysis (CEC), allows chemically inert fluorinated polymers to act like single electrode electrochemical systems. This study shows hydrogen peroxide (H2 O2 ) is generated from air and deionized water, by ultrasound driven CEC, using fluorinated ethylene propylene (FEP) as the catalyst. For a mass ratio of catalyst to solution of 1:10000, at 20 °C, the kinetic rate of H2 O2 evolution reaches 58.87 mmol L-1 gcat -1 h-1 . Electron paramagnetic resonance (EPR) shows electrons are emitted in the solution by the charged FEP, during ultrasonication. EPR and isotope labelling experiments show H2 O2 is formed from hydroxyl radicals (HO• ) or two superoxide radicals (O2 •- ) generated by CEC. Finally, it is traditionally believed such radicals migrate in the solution by Brownian diffusion prior to reactions. However, ab-initio molecular dynamic calculations reveal the radicals can react by exchanging protons and electrons through the hydrogen bonds network of water, i.e., owing to the Grotthuss mechanism. This mechanism can be relevant to other systems, artificial or natural, generating H2 O2 from air and water.
Collapse
Affiliation(s)
- Andy Berbille
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Fen Li
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- China Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yusen Su
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunning Li
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Xin Zhao
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Laipan Zhu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
32
|
Fu S, Zhang Y, Xu X, Tan Y, Zhu L. N-doped citrate-sludge-derived carbon (NCSC) effectively promotes peroxymonosulfate activation for perfluorooctanoic acid (PFOA) removal with surface-mediated electron transfer mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115592. [PMID: 37837698 DOI: 10.1016/j.ecoenv.2023.115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
In traditional wastewater treatment methods, the removal of emerging contaminants including perfluorooctanoic acid (PFOA) can be challenging. To address this, biochar is commonly utilized as an activator for peroxymonosulphate (PMS) to effectively eliminate organic pollutants. Sewage sludge has shown potential as a biochar precursor, but its complex composition and variable iron content, as well as the low specific surface area of the product limit the practical use of iron-dominated sludge-derived catalysts. To overcome this limitation, N-doped citrate-sludge-derived carbon (NCSC) was synthesized, possessing a low iron content (0.29 at%) and a large specific surface area (315.31 m2 g-1). As a comparison, Fe-/N-doped citrate-sludge-derived carbon (Fe-NCSC) was prepared by introducing exogenous iron, resulting in a higher iron content (2.12 at%) but a significantly reduced specific surface area (73.87 m2 g-1). In performance evaluation, the NCSC/PMS system achieved impressive removal efficiency, effectively eliminating 99.8% of PFOA (at an initial concentration of 2 mg L-1) within 60 min, while Fe-NCSC/PMS only achieved 84.6%. The slightly lower reaction rate per specific surface area of NCSC/PMS proved that large specific surface area was NCSC's key advantage. The lower sensitivity of NCSC to pH and water substrates than FeNCSC suggested different activation mechanisms. Further analysis of reactive sites and species showed that the main oxidation mechanism of NCSC/PMS was forming the surface-bound PMS-NCSC complexes at the N sites, followed by PFOA donating electrons to the complexes to be oxidized, which was different from the Fe/N-dominated singlet oxygen mechanism of Fe-NSC/PMS. Furthermore, the reusability of the NCSC was demonstrated, with the removal rate decreasing to only 90.1% after four cycles and recovering to 94.8% after heated regeneration. In conclusion, this study provides a viable method for the elimination of emerging contaminants such as PFOA in water remediation.
Collapse
Affiliation(s)
- Shiyuan Fu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhang
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Yingyu Tan
- Zhejiang Ecological Environment Scientific Design and Research Institute, Hangzhou 310007, China
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China.
| |
Collapse
|
33
|
Fang Q, Yang H, Ye S, Zhang P, Dai M, Hu X, Gu Y, Tan X. Generation and identification of 1O 2 in catalysts/peroxymonosulfate systems for water purification. WATER RESEARCH 2023; 245:120614. [PMID: 37717327 DOI: 10.1016/j.watres.2023.120614] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/13/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Catalysts for peroxymonosulfate (PMS) activation are appealing in the purification of organic wastewater. Singlet oxygen (1O2) is widely recognized as a crucial reactive species for degrading organic contaminants in catalysts/PMS systems due to its adamant resistance to inorganic anions, high selectivity, and broad pH applicability. With the rapid growth of studies on 1O2 in catalysts/PMS systems, it becomes necessary to provide a comprehensive review of its current state. This review highlights recent advancements concerning 1O2 in catalysts/PMS systems, with a primary focus on generation pathways and identification methods. The generation pathways of 1O2 are summarized based on whether (distinguished by the geometric structures of metal species) or not (distinguished by the active sites) the metal element is included in the catalysts. Furthermore, this review thoroughly discusses the influence of metal valence states and metal species with different geometric structures on 1O2 generation. Various potential strategies are explored to regulate the generation of 1O2 from the perspective of catalyst design. Identification methods of 1O2 primarily include electron paramagnetic resonance (EPR), quenching experiments, reaction in D2O solution, and chemical probe tests in catalysts/PMS systems. The principles and applications of these methods are presented comprehensively along with their applicability, possible disagreements, and corresponding solutions. Besides, an identifying procedure on the combination of main identification methods is provided to evaluate the role of 1O2 in catalysts/PMS systems. Lastly, several perspectives for further studies are proposed to facilitate developments of 1O2 in catalysts/PMS systems.
Collapse
Affiliation(s)
- Qianzhen Fang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Shenzhen Research Institute of Hunan University, Shenzhen 518055, PR China
| | - Hailan Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Shujing Ye
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Mingyang Dai
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yanling Gu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Shenzhen Research Institute of Hunan University, Shenzhen 518055, PR China.
| |
Collapse
|
34
|
Zhang F, Xin J, Wu X, Liu J, Niu L, Wang D, Li X, Shao C, Li X, Liu Y. Floating metal phthalocyanine@polyacrylonitrile nanofibers for peroxymonosulfate activation: Synergistic photothermal effects and highly efficient flowing wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132228. [PMID: 37557048 DOI: 10.1016/j.jhazmat.2023.132228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Highly efficient floating photocatalysis has potential applications in organic pollutant treatment but remains limited by low degradation efficiency in practical applications. By introducing the photothermal effect into a peroxymonosulfate (PMS) coupled photocatalysis system, tetracycline hydrochloride (TCH) degradation could be significantly enhanced using floating metal phthalocyanine@polyacrylonitrile (MPc@PAN) nanofiber mats. MPc@PAN nanofibers with different metal centers showed similar photothermal conversion performance but different activation energies for PMS activation, resulting in metal-center-dependent synergistic photothermal effects, i.e., light-enhanced dominated, thermal-enhanced dominated, and conjointly light-thermal dominated mechanisms. The porous structures and floating ability of the FePc@PAN nanofibers provided a fast mass transfer process, with higher solar energy utilization and superior photothermal conversion performance than the FePc nanopowders. Meanwhile, the FePc@PAN nanofibers showed excellent TCH removal stability within 10 cycles (>92%) and extremely low Fe ion leaching (<0.055 mg/L) in a dual-channel flowing wastewater treatment system. This work provides new insight into PMS activation via photothermal effects for environmental remediation.
Collapse
Affiliation(s)
- Fang Zhang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Jiayu Xin
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Xi Wu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Jie Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Luyao Niu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Dan Wang
- College of information technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, People's Republic of China
| | - Xinghua Li
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.
| | - Changlu Shao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.
| | - Xiaowei Li
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| |
Collapse
|
35
|
Li J, Du X, Zhou X, Yoon J. Self-Assembly Induced Photosensitization of Long-Tailed Heavy-Atom-Free BODIPY Derivatives for Photodynamic Therapy. Adv Healthc Mater 2023; 12:e2301022. [PMID: 37209386 DOI: 10.1002/adhm.202301022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Indexed: 05/22/2023]
Abstract
Type I photosensitizers (PSs) are a promising approach for photodynamic therapy (PDT) since they can generate radicals that are tolerant to hypoxia. Thus, the development of highly efficient type I PSs is essential. Self-assembly is a promising strategy for developing novel PSs with desirable properties. Here, a simple and effective approach is developed to create heavy-atom-free PSs for PDT by self-assembling long-tailed boron dipyrromethene dyes (BODIPYs). The resulting aggregates BY-I16 and BY-I18 can efficiently convert their excited energy to the triplet state, producing reactive oxygen species that are essential for PDT. Furthermore, the aggregation and PDT performance can be regulated by adjusting the length of the tailed alkyl chains. As proof of concept, the efficacy of these heavy-atom-free PSs both in vitro and in vivo under both normoxic and hypoxic conditions is demonstrated.
Collapse
Affiliation(s)
- Jigai Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Xianfa Du
- Department of Orthopedics, the Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Xin Zhou
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, South Korea
| |
Collapse
|
36
|
Tian Y, Li Y, Ying GG, Feng Y. Activation of peroxymonosulfate by Fe-Mn-modified MWCNTs for selective decontamination: Formation of high-valent metal-oxo species and superoxide anion radicals. CHEMOSPHERE 2023; 338:139458. [PMID: 37433410 DOI: 10.1016/j.chemosphere.2023.139458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023]
Abstract
The extensive presence of organic micropollutants in complex water matrices requires the development of selective oxidation technologies. In this study, a novel selective oxidation process was developed via the conjunction of FeMn/CNTs with peroxymonosulfate and successfully used to remove micropollutants such as sulfamethoxazole (SMX) and bisphenol A from aqueous solutions. FeMn/CNTs were prepared using a facile co-precipitation method, characterized using a series of surface characterization techniques, and then tested for pollutant removal. The results showed that the FeMn/CNTs had much greater reactivity than CNTs, manganese oxide, and iron oxide. The pseudo-first-order rate constant with FeMn/CNTs was more than 2.9-5.7 times that of the other tested materials. The FeMn/CNTs had great reactivity in a wide range of pH values from 3.0 to 9.0, with the best reactivity found at pH values of 5.0 and 7.0. High-valent metal-oxo species such as Fe(IV)O and Mn(IV)O and superoxide anion radicals were determined to be the reactive species and were responsible for the oxidation of SMX. These reactive species were selective; therefore, the overall removal performance of SMX was not obviously influenced by high levels of water components including chloride ions, bicarbonates, and natural organic matters. The results from this study may promote the design and application of selective oxidation technologies for micropollutant abatement.
Collapse
Affiliation(s)
- Yanye Tian
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Yu Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Yong Feng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
37
|
Wang C, Liu H, Sun P, Cai J, Sun M, Xie H, Shen G. A novel peroxymonosulfate activation process by single-atom iron catalyst from waste biomass for efficient singlet oxygen-mediated degradation of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131333. [PMID: 37060750 DOI: 10.1016/j.jhazmat.2023.131333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Single-atom dispersed catalysts (SACs) have gained considerable attention in organic contaminants remediation due to their superior reactivity and stability. However, the complex and costly synthesis processes limit their practical applications in environmental protection. Herein, a facile and cost-effective single-atom iron catalyst (Fe-SA/NC) anchored on nitrogen-doped porous carbon was first fabricated by using waste biomass as a carbon source. The Fe-SA/NC catalyst exhibited outstanding performance with a high turnover frequency of 1.72 min-1 toward antibiotics degradation via peroxymonosulfate activation. ECOSAR program and algae growth experiments demonstrated that the byproducts produced during the sulfamethoxazole degradation process were not detrimental to the aquatic environment. Radical quenching and electron paramagnetic resonance experiments revealed that Fe-SA/NC remarkably promoted 1O2 production in PMS-assisted reaction, and thus 1O2 contributed as much as 78.77% to sulfamethoxazole degradation. As indicated by experiment and density functional theory (DFT) calculations, FeN2O2 configuration serves as the active site. DFT calculations further presented the most rational generation route of 1O2 as PMS→OH* →O* →1O2. We also designed Fe-SA/NC embedded spherical pellets for contaminants elimination at the device level. This study offers new insights into the synthesis of SACs from waste biomass and their practical application in environmental remediation.
Collapse
Affiliation(s)
- Chen Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Huanran Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Peng Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Jingjing Cai
- Technical Center for industrial Products and Raw Materials Inspection and Testing, Shanghai Customs District, Shanghai 200135, PR China
| | - Mingxing Sun
- Technical Center for industrial Products and Raw Materials Inspection and Testing, Shanghai Customs District, Shanghai 200135, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, PR China
| | - Guoqing Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
38
|
Takajo T, Nagahama H, Zuinen K, Tsuchida K, Okino A, Anzai K. Evaluation of cold atmospheric pressure plasma irradiation of water as a method of singlet oxygen generation. J Clin Biochem Nutr 2023; 73:9-15. [PMID: 37534089 PMCID: PMC10390813 DOI: 10.3164/jcbn.22-111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 08/04/2023] Open
Abstract
We used cold atmospheric pressure plasma jet to examine in detail 1O2 generation in water. ESR with 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide, a secondary amine probe, was used for the detection of 1O2. Nitroxide radical formation was detected after cold atmospheric pressure plasma jet irradiation of a 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide solution. An 1O2 scavenger/quencher inhibited the ESR signal intensity induced by cold atmospheric pressure plasma jet irradiation, but this inhibition was not 100%. As 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide reacts with oxidizing species other than 1O2, it was assumed that the signal intensity inhibited by NaN3 corresponds to only the nitroxide radical generated by 1O2. The concentration of 1O2 produced by cold atmospheric pressure plasma jet irradiation for 60 s was estimated at 8 μM. When this 1O2 generation was compared to methods of 1O2 generation like rose bengal photoirradiation and 4-methyl-1,4-etheno-2,3-benzodioxin-1(4H)-propanoic acid (endoperoxide) thermal decomposition, 1O2 generation was found to be, in decreasing order, rose bengal photoirradiation ≥ cold atmospheric pressure plasma jet > endoperoxide thermal decomposition. Cold atmospheric pressure plasma jet is presumed to not specifically generate 1O2, but can be used to mimic states of oxidative stress involving multiple ROS.
Collapse
Affiliation(s)
- Tokuko Takajo
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Hiroki Nagahama
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Katsuya Zuinen
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Kazunori Tsuchida
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Akitoshi Okino
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Kazunori Anzai
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| |
Collapse
|
39
|
Zong Y, Chen L, Zeng Y, Xu J, Zhang H, Zhang X, Liu W, Wu D. Do We Appropriately Detect and Understand Singlet Oxygen Possibly Generated in Advanced Oxidation Processes by Electron Paramagnetic Resonance Spectroscopy? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37311080 DOI: 10.1021/acs.est.3c01553] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy using sterically hindered amine is extensively applied to detect singlet oxygen (1O2) possibly generated in advanced oxidation processes. However, EPR-detectable 1O2 signals were observed in not only the 1O2-dominated hydrogen peroxide (H2O2)/hypochlorite (NaClO) reaction but surprisingly also the 1O2-absent Fe(II)/H2O2, UV/H2O2, and ferrate [Fe(VI)] process with even stronger intensities. By taking advantage of the characteristic reaction between 1O2 and 9,10-diphenyl-anthracene and near-infrared phosphorescent emission of 1O2, 1O2 was excluded in the Fe(II)/H2O2, UV/H2O2, and Fe(VI) process. The false detection of 1O2 was ascribed to the direct oxidation of hindered amine to piperidyl radical by reactive species [e.g., •OH and Fe(VI)/Fe(V)/Fe(IV)] via hydrogen transfer, followed by molecular oxygen addition (forming a piperidylperoxyl radical) and back reaction with piperidyl radical to generate a nitroxide radical, as evidenced by the successful identification of a piperidyl radical intermediate at 100 K and theoretical calculations. Moreover, compared to the highly oxidative species (e.g., •OH and high-valence Fe), the much lower reactivity of 1O2 and the profound nonradiative relaxation of 1O2 in H2O resulted it too selective and inefficient in organic contaminant destruction. This study demonstrated that EPR-based 1O2 detection could be remarkably misled by common oxidative species and thereby jeopardize the understandings on 1O2.
Collapse
Affiliation(s)
- Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Long Chen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yunqiao Zeng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Jun Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Xiaomeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
40
|
Wang L, Xiao K, Zhao H. The debatable role of singlet oxygen in persulfate-based advanced oxidation processes. WATER RESEARCH 2023; 235:119925. [PMID: 37028213 DOI: 10.1016/j.watres.2023.119925] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Singlet oxygen (1O2) attracts much attention in persulfate-based advanced oxidation processes (PS-AOPs), because of its wide pH tolerance and high selectivity toward electron-rich organics. However, there are conflicts about the 1O2 role in PS-AOPs on several aspects, including the formation of different key reactive oxygen species (ROS) at similar active sites, pH dependence, broad-spectrum activity, and selectivity in the elimination of organic pollutants. To a large degree, these conflicts root in the drawbacks of the methods to identify and evaluate the role of 1O2. For example, the quenchers of 1O2 have high reactivity to other ROS and persulfate as well. In addition, electron transfer process (ETP) also selectively oxidizes organics, having a misleading effect on the identification of 1O2. Therefore, in this review, we summarized and discussed some basic properties of 1O2, the debatable role of 1O2 in PS-AOPs on multiple aspects, and the methods and their drawbacks to identify and evaluate the role of 1O2. On the whole, this review aims to better understand the role of 1O2 in PS-AOPs and further help with its reasonable utilization.
Collapse
Affiliation(s)
- Liangjie Wang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
41
|
Dai J, Liu P, Wang C, Li H, Qiang H, Yang Z, Guo X, Gao S. Which factors mainly drive the photoaging of microplastics in freshwater? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159845. [PMID: 36461563 DOI: 10.1016/j.scitotenv.2022.159845] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Light irradiation is considered as most important process for the aging of microplastics (MPs); however, which factors drive the process is still unknown. This study investigated the role of typical environmental factors including ultraviolet (UV), oxygen, temperature and physical abrasion in the photoaging of polystyrene (PS) in freshwater. Results showed that UV irradiation and abrasion were dominant factors for affecting photoaging of PS based on dynamic analysis in the property of MP itself and leachate. Especially, when both factors worked together on MPs, they caused more destructive effect. Mechanical exploration revealed that photoaging of MPs was mainly controlled by reactive oxygen species (ROS, 1O2) generated from the reaction of dissolved oxygen/water molecules with polymer radicals initiated by UV energy. As an attacker on MPs, ROS formation was significantly linked with UV intensity, highlighting the important role of UV. The fragmentation was correlated to abrasion intensity, where a higher abrasion generated stronger physical force to tear MPs into fragments. The low roles of oxygen and temperature were presumably related to multiple effects of ROS formation and UV absorption. The findings firstly clarify the drivers in the photoaging of MPs, and contribute our effort to assess their fate and pollution risk in the environment.
Collapse
Affiliation(s)
- Jiamin Dai
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Chenyang Wang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Huang Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hong Qiang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Zeyuan Yang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
42
|
Ding C, Zeng G, Tao Y, Long X, Gong D, Zhou N, Zeng R, Liu X, Deng Y, Zhong ME. Environmental-friendly hydrochar-montmorillonite composite for efficient catalytic degradation of dicamba and alleviating its damage to crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158917. [PMID: 36155028 DOI: 10.1016/j.scitotenv.2022.158917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
In recent years, carbon-based materials catalyzing peroxymonosulfate (PMS) for green degradation of persistent organic pollutants have attracted increasing attention. However, PMS activation by hydrochar composite (e.g. hydrochar-montomorillonite) has rarely been investigated. Herein, a simple preparation, low-cost and eco-friendly catalyst of hydrochar-montmorillonite composite (HC-Mt) was prepared to firstly catalyze PMS for the degradation of dicamba (DIC). The as-prepared HC-Mt showed a remarkably better catalyzing performance for PMS than pure hydrochar (HC) due to its good physicochemical characteristics and abundant oxygen-containing groups. Furthermore, the electron spin resonance (ESR) and quenching tests revealed that active species such as SO4-, OH and O2- all participated in the degradation process. DIC sites on C6, Cl 10, and O15 exhibited higher reactivity according to the density functional theory (DFT) calculation, which were easily attacked by active species. The DIC degradation mainly occurred via hydroxyl substitution, decarboxylation, oxidation and ring-cleavage and finally most of the intermediates were mineralized into CO2 and H2O. Finally, the phytotoxicity assessment was measured by the germination growth situation of tobacco and mung beans in the presence of DIC (with or without treatment by HC-Mt/PMS). The result showed that HC-Mt/PMS could significantly reduce the phytotoxicity of DIC to crops, suggesting that catalyzing PMS using HC-Mt was environmentally friendly. Therefore, this work did not only provide a novel catalyzing PMS strategy using hydrochar composite for wastewater treatment, but also give a new idea for herbicide phytotoxicity management.
Collapse
Affiliation(s)
- Chunxia Ding
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Guangyong Zeng
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Yaping Tao
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang 471934, China
| | - Xiuyu Long
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Daoxin Gong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410082, China
| | - Nan Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Rongying Zeng
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, China
| | - Xiangying Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| | - Yaocheng Deng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410082, China.
| | - Mei-E Zhong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
43
|
Yu S, Peng Y, Shao P, Wang Y, He Y, Ren W, Yang L, Shi H, Luo X. Electron-transfer-based peroxymonosulfate activation on defect-rich carbon nanotubes: Understanding the substituent effect on the selective oxidation of phenols. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130108. [PMID: 36209610 DOI: 10.1016/j.jhazmat.2022.130108] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Nanocarbon-based persulfate oxidation technologies are promising for green elimination of phenolic pollutants. Previous studies revealed the electron transfer via defective carbon nanotube (CNTs) for selective oxidation of various phenols. However, an underlying relationship between the molecular structure of phenols and the selectivity of electron transfer-induced oxidation has not been well understood. Herein, we report that defect-rich CNTs could initiate electron-transfer regime from phenols to peroxymonosulfate (PMS), resulting in the efficient degradation of phenols. Further studies uncover a distinctive substituent group-dependent selective oxidation of phenols via the CNT-mediated electron transfer process. Specifically, the degradation rate of para-substituted phenols with electron-donating groups (e.g., -NH2 and -OCH3) is faster than those with electron-withdrawing groups (e.g., -NO2 and -COOH). For a kind of substituted phenols, the substituent position has a great influence on the phenols degradation and their degradation rates follow this sequence: para > ortho > meta -position. Besides, increasing the number of the substituent group can accelerate the degradation of substituted phenols. This study elucidates the substituent effect on the electron transfer-dominated selective oxidation of phenols for the first time, which guides the application of carbon/persulfate system for the targeted remediation of phenols-polluted wastewater.
Collapse
Affiliation(s)
- Shuiping Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; CECEP Environmental Protection Investment Development (Jiangxi) Co., Ltd., Nanchang 330096, PR China
| | - Yanhua Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Yuanyue Wang
- CECEP Environmental Protection Investment Development (Jiangxi) Co., Ltd., Nanchang 330096, PR China; CECEP Engineering Technology Research Institute Co., Ltd., Beijing 100082, PR China
| | - Youwen He
- CECEP Environmental Protection Investment Development (Jiangxi) Co., Ltd., Nanchang 330096, PR China.
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
44
|
Li MY, Yang W, Cen JH, Liu LG, Yang G, Liu HY, Liao YH, Zhong XH. Gallium(III) Amide Corroles: DNA Interaction and Photodynamic Activity in Cancer Cells. Chempluschem 2023; 88:e202200413. [PMID: 36680306 DOI: 10.1002/cplu.202200413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Indexed: 01/07/2023]
Abstract
A series of gallium(III) amide corroles including meso-5,15-bis(pentafluorophenyl)-10-(4-Pyridinamide-phenyl)corrole gallium (III) (1-Ga), meso-5,15-bis(pentafluorophenyl)-10-(4-Furamide-phenyl)corrole gallium(III) (2-Ga) and meso-5,15-bis(pentafluorophenyl)-10-(4-Thiophenamide-phenyl)corrole gallium(III) (3-Ga) were synthesized. The interaction of these complexes with DNA and their photodynamic antitumor activities have been studied. UV spectra titration showed that these gallium(III) corroles interact with calf thymus DNA (CT-DNA) through an external binding mode. All three gallium(III) corroles can effectively generate singlet oxygen under illumination and have good photostability. Among the three gallium(III) corroles, 2-Ga exhibited excellent photodynamic antitumor activity against the tested tumor cell lines under light irradiation (625±2 nm, 0.3 mW/cm2 , 1.08 J/cm2 ). The best phototoxicity was observed by 2-Ga against HepG2 cells (IC50 =6.3±0.9), which is even better than temoporfin (IC50 =8.4±1.8). It could block HepG2 cells in the sub-G0 phase and effectively induce apoptosis of HepG2 cells under 625 nm light irradiation.
Collapse
Affiliation(s)
- Meng-Yuan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Wu Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Jing-He Cen
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Ling-Gui Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Gang Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Hai-Yang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Yu-Hui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Southern Medical University, Guangzhou, Guangdong, 510091, P. R. China
| | - Xi-Hao Zhong
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, Guangdong, 5114471, P. R. China
| |
Collapse
|
45
|
Zou Y, Wang W, Wang H, Pan C, Xu J, Pozdnyakov IP, Wu F, Li J. Interaction between graphene oxide and acetaminophen in water under simulated sunlight: Implications for environmental photochemistry of PPCPs. WATER RESEARCH 2023; 228:119364. [PMID: 36413833 DOI: 10.1016/j.watres.2022.119364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
In recent years, graphene oxide (GO) as a new carbon material has been widely investigated as adsorbent and catalyst. However, effects of GO on the micro-pollutants such as pharmaceuticals and personal care products (PPCPs) under sunlight remains unclear. In this study, the degradation of PPCPs in a simulated sunlight-GO photocatalytic system was systematically investigated. Specifically, GO rapidly degrade 95% of acetaminophen (APAP) within 10 min under simulated sunlight irradiation (λ ≥ 350 nm). The influencing factors such as APAP concentration, pH, GO dosage, water matrixes (Cl-, NO3-, HCO3-, SO42-, Ca2+, Fe3+and fulvic acid) were investigated. At a GO dosage of 100 mg L-1 and an initial pH of 7, the APAP (5 μM) photodegradation kinetic constant kobs was calculated to be 0.4547 min-1. In practical applications, the GO photocatalysis system still degrade over 90% APAP within 60 min in real surface water. The electron spin resonance and radical scavenging experiments revealed that the dominated active species for degrading APAP was photogenerated holes (h+), while other mechanisms (1O2 and O2•-/HO2•) played a minor role. Furthermore, the photochemical transformation of some other typical PPCPs were comparatively studied to reveal the relationship between degradation kinetics and molecular structure. Based on descriptive variables including molar refractive index parameter, octanol-water partition coefficient, dissociation constant and dipole moment, a quantitative structural-activity relationship (QSAR) model for predicting pseudo-first-order rate constants was established with a high significance (R2 = 0.996, p < 0.05). This study helps to understand the interaction between GO and PPCPs and its effects on the photochemical transformation of PPCPs in water.
Collapse
Affiliation(s)
- Yongrong Zou
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Wenyu Wang
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Hao Wang
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Cong Pan
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Jing Xu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, PR China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, PR China.
| | - Ivan P Pozdnyakov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation
| | - Feng Wu
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Jinjun Li
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
46
|
Photodynamic Antitumor Activity of Halogenated Gallium(III) and Phosphorus(V) Corroles. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
47
|
Yang W, Yang G, Li MY, Liu ZY, Liao YH, Liu HY. Photodynamic antitumor activity of Gallium(III) and Phosphorus(V) complexes of trimethoxyl A 2B triaryl corrole. Bioorg Chem 2022; 129:106177. [PMID: 36183563 DOI: 10.1016/j.bioorg.2022.106177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
Two new trimethoxyl A2B triaryl corroles 10-(2,4,6-trimethoxyphenyl)-5,15-bis(pentafluorophenyl)- corrole (1) and 10-(3,4,5-trimethoxyphenyl)-5,15-bis(pentafluorophenyl)-corrole (2) and their gallium(III) and phosphorus(V) (1-Ga, 1-P, 2-Ga and 2-P) complexes had been prepared and well characterized by UV-vis, NMR and HR-MS. Among all compounds, 2-Ga, 1-P and 2-P showed excellent in vivo photodynamic activity against the MDA-MB-231, A549, Hela and HepG2 cell lines upon light irradiation at 625 nm. And 2-P even exhibited higher phototoxicity than the clinical photosensitizer temoporfin. Also, 2-P exhibited the highest singlet oxygen quantum yield and photostability. The preliminary investigation revealed that 2-P could be rapidly absorbed by tumor cells and mainly located in the cytoplasm. After photodynamic therapy (PDT) treatment with 2-P, mitochondrial membrane potential destruction, intracellular ROS level increasing and nuclear fragmentation of cancer cells could be observed. Cell cycle analysis demonstrated that the 2-P PDT may cause tumor cell arrest at sub-G1 stage and induce early and late apoptosis of cells. These results suggest that 2-P is a promising candidate as a photosensitizer for photodynamic therapy.
Collapse
Affiliation(s)
- Wu Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Gang Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Meng-Yuan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Ze-Yu Liu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yu-Hui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China.
| | - Hai-Yang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
48
|
Tsuchida K, Okumura H, Ikarashi T, Takahashi Y. Chlorogenic acids protect organic dyes against self-catalyzed photobleaching. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Sun Q, Yang J, Fan Y, Cai K, Lu Z, He Z, Xu Z, Lai X, Zheng Y, Liu C, Wang F, Sun Z. The role of trace N-Oxyl compounds as redox mediator in enhancing antiviral ribavirin elimination in UV/Chlorine process. APPLIED CATALYSIS. B, ENVIRONMENTAL 2022; 317:121709. [PMID: 35812172 PMCID: PMC9254691 DOI: 10.1016/j.apcatb.2022.121709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/19/2022] [Accepted: 07/03/2022] [Indexed: 05/19/2023]
Abstract
Ribavirin (RBV) is an antiviral drug used for treating COVID-19 infection. Its release into natural waters would threaten the health of aquatic ecosystem. This study reports an effective approach to degrade RBV by the trace N-oxyl compounds (2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and N-Hydroxyphthalimide (NHPI)) enhanced UV activated free chlorine (UV/Chlorine) process. The results indicated that TEMPO and NHPI at low concentrations (0.1 μM and 1 μM, respectively) could strongly enhance RBV degradation in both deionized water with different pHs and practical surface water. The enhancement was verified to be attributed to the transformation of TEMPO and NHPI into their reactive forms (i.e., TEMPO+ and PINO), which generations deeply relied on radicals. The two N-oxyl compounds inhibit ClO• yield by hindering the reaction of free chlorine vs. HO• and Cl•. The analyses on acute toxicities of RBV degradation products indicate that UV/Chlorine/N-oxyl compounds process can detoxify RBV more efficiently than UV/Chlorine process.
Collapse
Affiliation(s)
- Qiyuan Sun
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Jing Yang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yongjie Fan
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Zhilei Lu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Zhenle He
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Zeping Xu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Xingteng Lai
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yuyi Zheng
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Changqing Liu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Feifeng Wang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Zhe Sun
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| |
Collapse
|
50
|
Zhang X, Gang DD, Lei X, Wang T, Lian Q, Holmes WE, Fei L, Zappi ME, Yao H. Surface-bound hydroxyl radical-dominated degradation of sulfamethoxazole in the amorphous FeOOH/ peroxymonosulfate system: The key role of amorphous structure enhancing electron transfer. ENVIRONMENTAL RESEARCH 2022; 214:113964. [PMID: 35944621 DOI: 10.1016/j.envres.2022.113964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
In this study, activation of peroxymonosulfate (PMS) by amorphous FeOOH to degrade sulfamethoxazole (SMX) was investigated. The amorphous FeOOH showed a better performance in the decomposition of PMS and the degradation of SMX than the crystallized α-FeOOH and β-FeOOH. The quenching experiments and EPR measurements suggested that the mechanism of PMS activation by amorphous FeOOH was mainly the surface-bound radicals (●OH and SO4●-). Basically, the surface-bound ●OH radicals were the dominate reactive oxide species in this system, which were mainly generated via the decomposition of amorphous FeOOH-PMS complexes. The degradation of SMX was significantly inhibited with the presence of H2PO4-, and this adverse impact was negligibly affected by the increase of H2PO4- concentration, implying that the inhibition of SMX degradation was caused by competitive adsorption. Consequently, the Fe-OH bonds on the amorphous FeOOH were proposed as the reactive sites for forming amorphous FeOOH-PMS complexes. Besides, the amorphous FeOOH showed a better performance in the degradation of SMX in the acid conditions than that in the base conditions due to the surface charge of amorphous FeOOH. More importantly, the reduction efficiency of Fe(III) was significantly enhanced due to the excellent conductivity of amorphous FeOOH.
Collapse
Affiliation(s)
- Xu Zhang
- School of Civil Engineering, Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Jiaotong University, 3 Shangyuancun, Beijing, 100044, PR China; Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Energy Institute of Louisiana, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Xiaobo Lei
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Tiejun Wang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Nanyang Vocational College of Agriculture, Nanyang, Henan Province, 473000, PR China
| | - Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Energy Institute of Louisiana, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - William E Holmes
- Energy Institute of Louisiana, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Ling Fei
- Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Mark E Zappi
- Energy Institute of Louisiana, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Hong Yao
- School of Civil Engineering, Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Jiaotong University, 3 Shangyuancun, Beijing, 100044, PR China.
| |
Collapse
|