1
|
Saxon E, Ali T, Peng X. Hydrogen peroxide responsive theranostics for cancer-selective activation of DNA alkylators and real-time fluorescence monitoring in living cells. Eur J Med Chem 2024; 276:116695. [PMID: 39047609 DOI: 10.1016/j.ejmech.2024.116695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Triple negative breast cancer (TNBC) is a notoriously difficult disease to treat, and many of the existing TNBC chemotherapeutics lack tumor selectivity and the capability for simultaneously visualizing and monitoring their own activity in the biological context. However, TNBC cells have been known to generate high levels of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2). To this end, three novel small molecule theranostics 1a, 1c, and 2 consisting of both H2O2-responsive nitrogen mustard prodrug and profluorophore character have been designed, synthesized, and evaluated as targeted cancer therapeutics and bioimaging agents. The three theranostics comprise of boronate esters that deactivate nitrogen mustard functional groups and fluorophores but allow their selective activation through H2O2-specific oxidative deboronation for the release of the active drug and fluorophore. The three theranostics demonstrated H2O2-inducible DNA-alkylating capability and fluorescence turn-on properties in addition to selective anticancer activity. They are particularly effective in killing TNBC MDA-MB-468 cells with high H2O2 level while safe to normal epithelial MCF-10A cell. The conjugated boron-masked fluorophores in 1c and 2 are highly responsive towards H2O2, which enabled tracking of the theranostics in living cellular mitochondria and nucleus organelles. The three theranostics 1a, 1c, and 2 are capable of both selective release of the active drug to take effect in H2O2-rich cancer sites and simultaneously monitoring its activity. This single molecule system is of utmost importance to understand the function, efficacy, and mechanism of the H2O2-activated prodrugs and theranostics within the living recipient.
Collapse
Affiliation(s)
- Eron Saxon
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer St., Milwaukee, WI, 53211, USA
| | - Taufeeque Ali
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer St., Milwaukee, WI, 53211, USA
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer St., Milwaukee, WI, 53211, USA.
| |
Collapse
|
2
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
3
|
Ji X, Zhou J, Liu C, Zhang J, Dong X, Zhang F, Zhao W. Regulating the activity of boronate moiety to construct fluorescent probes for the detection of ONOO -in vitro and in vivo. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5027-5033. [PMID: 36468627 DOI: 10.1039/d2ay01727j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Abnormal intracellular peroxynitrite (ONOO-) concentration is related to oxidative damage, which is correlated with many pathological consequences, such as local inflammation and other diseases. In this work, a series of resorufin benzyl ether-based fluorescent probes were designed using boronate as a recognizing moiety installed on a phenyl moiety for ONOO- detection via a self-immolation mechanism. The location of the boronate as well as the substitution patterns on the phenyl moiety were investigated and the responding behaviors of the designed probes to ONOO-, other reactive oxygen species, and biothiols were examined. It was found that all the immolative probes were inevitably dominated by ONOO-. Compared with other probes, p-Borate possessed favorable selectivity and high sensitivity to ONOO-. Moreover, p-Borate was successfully used to detect ONOO- in cells and inflamed mice.
Collapse
Affiliation(s)
- Xin Ji
- School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
| | - Junliang Zhou
- School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
| | - Chang Liu
- School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Xiaochun Dong
- School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
| | - Fuli Zhang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, P. R. China.
| | - Weili Zhao
- School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
4
|
Escada-Rebelo S, Cristo MI, Ramalho-Santos J, Amaral S. Mitochondria-Targeted Compounds to Assess and Improve Human Sperm Function. Antioxid Redox Signal 2022; 37:451-480. [PMID: 34847742 DOI: 10.1089/ars.2021.0238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Currently 10%-15% of couples in reproductive age face infertility issues. More importantly, male factor contributes to 50% of these cases (either alone or in combination with female causes). Among various reasons, impaired sperm function is the main cause for male infertility. Furthermore, mitochondrial dysfunction and oxidative stress due to increased reactive oxygen species (ROS) production, particularly of mitochondrial origin, are believed to be the main contributors. Recent Advances: Mitochondrial dysfunction, particularly due to increased ROS production, has often been linked to impaired sperm function/quality. For decades, different methods and approaches have been developed to assess mitochondrial features that might correlate with sperm functionality. This connection is now completely accepted, with mitochondrial functionality assessment used more commonly as a readout of sperm functionality. More recently, mitochondria-targeted compounds are on the frontline for both assessment and therapeutic approaches. Critical Issues: In this review, we summarize the current methods for assessing key mitochondrial parameters known to reflect sperm quality as well as therapeutic strategies using mitochondria-targeted antioxidants aiming to improve sperm function in various situations, particularly after sperm cryopreservation. Future Directions: Although more systematic research is needed, mitochondria-targeted compounds definitely represent a promising tool to assess as well as to protect and improve sperm function. Antioxid. Redox Signal. 37, 451-480.
Collapse
Affiliation(s)
- Sara Escada-Rebelo
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| | - Maria Inês Cristo
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sandra Amaral
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Tang J, Li F, Liu C, Shu J, Yue J, Xu B, Liu X, Zhang K, Jiang W. Attractive benzothiazole-based fluorescence probe for the highly efficient detection of hydrogen peroxide. Anal Chim Acta 2022; 1214:339939. [DOI: 10.1016/j.aca.2022.339939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/19/2022]
|
6
|
Li L, Zheng M, Yan X, Huang H, Cao S, Liu K, Liu JB. Quantitative detection of H2O2 with a composite fluorescent probe of 8-quinoline boronic acid-Al(III). J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Riley L, Ammar O, Mello T, Giovannelli L, Vignozzi L, Muratori M. Novel methods to detect ROS in viable spermatozoa of native semen samples. Reprod Toxicol 2021; 106:51-60. [PMID: 34637913 DOI: 10.1016/j.reprotox.2021.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/15/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
A crucial issue in male infertility work-up is to have reliable methods to detect oxidative stress in native semen samples. Here, we explored flow cytometric detection of Reactive Oxygen Species (ROS) in viable spermatozoa using native semen samples. To this aim, we challenged three fluorescent probes: CM-H2DCFDA, CellROX Green and MitoSOX Red. After excluding all non-sperm cells, each probe was coupled to a suitable stain to eliminate also semen apoptotic bodies and non-viable spermatozoa: Merocyanine 540 (M540) for CM-H2DCFDA and CellROX Green, and LIVE/DEAD Fixable Green Dead Cell Stain (LD-G) for MitoSOX Red. We found that CM-H2DCFDA was confined in the sperm midpiece, whereas CellROX Green and MitoSOX Red were localized in the head of spermatozoa. Treatment with H2O2 highly increased MitoSOX Red fluorescence (36.20 ± 5.24 vs 18.02 ± 2.25, %, p < 0.01), but not, or only slightly, the labelling with CMH2DCFDA (2.57 ± 1.70 vs 2.77 ± 1.43, p > 0.05) and CellROX Green (5.34 ± 3.18 vs 3.76 ± 2.04, p < 0.05), respectively. Menadione treatment highly increased CellROX Green (10.13 ± 5.85 vs 3.82 ± 2.70, p < 0.01) and MitoSOX Red (69.20 ± 27.14 vs 21.18 ± 7.96, %, p < 0.05), but not CM-H2DCFDA fluorescence (8.30 ± 11.56 vs 7.30 ± 9.19, p > 0.05). Further, only MitoSOX Red was able to detect spontaneous ROS generation during in vitro sperm incubation. We also detected DNA fragmentation by Comet and SCD Assay after sorting MitoSOX Red positive and negative sperm viable fractions. Results indicated that MitoSOX labelling in viable spermatozoa was strictly associated to sperm DNA fragmentation. In conclusion, MitoSOX Red/LD-G appears to be a promising method to detect oxidative stress in human semen for male infertility work-up.
Collapse
Affiliation(s)
- Lucrezia Riley
- Data Medica, Via della Salute, 1 Montecatini Terme, Pistoia, Italy
| | - Oumaima Ammar
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Lisa Giovannelli
- Department NEUROFARBA, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Monica Muratori
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini 6, Florence, Italy.
| |
Collapse
|
8
|
Abstract
A positive relationship between mitochondrial functionality and gamete quality, ultimately contributing to fertilization success and normal embryo development has been established for some years now. Both mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production are major indicators of mitochondrial function, and the need for accurate biomarkers mirroring gamete quality highlights the importance of a precise assessment of mitochondrial quality and function. In this chapter, we discuss the use of some mitochondrial fluorescent probes coupled to flow cytometry and/or fluorescence microscopy to specifically assess mitochondrial ROS production and MMP in both sperm and oocytes. Furthermore, as the distribution/aggregation of mitochondria in the oocyte is of interest to determine its quality, a detailed protocol is also given. These methodologies are easy, accurate and can be safely applied in research- and/or clinical-based contexts.
Collapse
|
9
|
Escada-Rebelo S, Mora FG, Sousa AP, Almeida-Santos T, Paiva A, Ramalho-Santos J. Fluorescent probes for the detection of reactive oxygen species in human spermatozoa. Asian J Androl 2021; 22:465-471. [PMID: 31939350 PMCID: PMC7523605 DOI: 10.4103/aja.aja_132_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) production is a by-product of mitochondrial activity and is necessary for the acquisition of the capacitated state, a requirement for functional spermatozoa. However, an increase in oxidative stress, due to an abnormal production of ROS, has been shown to be related to loss of sperm function, highlighting the importance of an accurate detection of sperm ROS, given the specific nature of this cell. In this work, we tested a variety of commercially available fluorescent probes to detect ROS and reactive nitrogen species (RNS) in human sperm, to define their specificity. Using both flow cytometry (FC) and fluorescence microscopy (FM), we confirmed that MitoSOX™ Red and dihydroethidium (DHE) detect superoxide anion (as determined using antimycin A as a positive control), while DAF-2A detects reactive nitrogen species (namely, nitric oxide). For the first time, we also report that RedoxSensor™ Red CC-1, CellROX® Orange Reagent, and MitoPY1 seem to be mostly sensitive to hydrogen peroxide, but not superoxide. Furthermore, mean fluorescence intensity (and not percentage of labeled cells) is the main parameter that can be reproducibly monitored using this type of methodology.
Collapse
Affiliation(s)
- Sara Escada-Rebelo
- PhD Programme in Experimental Biology and Biomedicine, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra 3030-789, Portugal
| | - Francisca G Mora
- Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Ana P Sousa
- Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Reproductive Medicine Unit, University Hospitals of Coimbra, Coimbra 3004-561, Portugal
| | - Teresa Almeida-Santos
- Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Reproductive Medicine Unit, University Hospitals of Coimbra, Coimbra 3004-561, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra 3000-370, Portugal
| | - Artur Paiva
- Clinical Pathology Unit, University Hospitals of Coimbra, Coimbra 3004-561, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| |
Collapse
|
10
|
Lorenzo-Anota HY, Zarate-Triviño DG, Uribe-Echeverría JA, Ávila-Ávila A, Rangel-López JR, Martínez-Torres AC, Rodríguez-Padilla C. Chitosan-Coated Gold Nanoparticles Induce Low Cytotoxicity and Low ROS Production in Primary Leucocytes, Independent of Their Proliferative Status. Pharmaceutics 2021; 13:942. [PMID: 34202522 PMCID: PMC8309170 DOI: 10.3390/pharmaceutics13070942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 01/02/2023] Open
Abstract
(1) Background: Chitosan-coated gold nanoparticles (CH-AuNPs) have important theranostic applications in biomedical sciences, including cancer research. However, although cell cytotoxicity has been studied in cancerous cells, little is known about their effect in proliferating primary leukocytes. Here, we assessed the effect of CH-AuNPs and the implication of ROS on non-cancerous endothelial and fibroblast cell lines and in proliferative lymphoid cells. (2) Methods: The Turkevich method was used to synthetize gold nanoparticles. We tested cell viability, cell death, ROS production, and cell cycle in primary lymphoid cells, compared with non-cancer and cancer cell lines. Concanavalin A (ConA) or lipopolysaccharide (LPS) were used to induce proliferation on lymphoid cells. (3) Results: CH-AuNPs presented high cytotoxicity and ROS production against cancer cells compared to non-cancer cells; they also induced a different pattern of ROS production in peripheral blood mononuclear cells (PBMCs). No significant cell-death difference was found in PBMCs, splenic mononuclear cells, and bone marrow cells (BMC) with or without a proliferative stimuli. (4) Conclusions: Taken together, our results highlight the selectivity of CH-AuNPs to cancer cells, discarding a consistent cytotoxicity upon proliferative cells including endothelial, fibroblast, and lymphoid cells, and suggest their application in cancer treatment without affecting immune cells.
Collapse
Affiliation(s)
- Helen Yarimet Lorenzo-Anota
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Monterrey, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico; (H.Y.L.-A.); (D.G.Z.-T.); (J.A.U.-E.); (A.Á.-Á.); (J.R.R.-L.); (C.R.-P.)
| | - Diana G. Zarate-Triviño
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Monterrey, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico; (H.Y.L.-A.); (D.G.Z.-T.); (J.A.U.-E.); (A.Á.-Á.); (J.R.R.-L.); (C.R.-P.)
| | - Jorge Alberto Uribe-Echeverría
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Monterrey, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico; (H.Y.L.-A.); (D.G.Z.-T.); (J.A.U.-E.); (A.Á.-Á.); (J.R.R.-L.); (C.R.-P.)
| | - Andrea Ávila-Ávila
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Monterrey, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico; (H.Y.L.-A.); (D.G.Z.-T.); (J.A.U.-E.); (A.Á.-Á.); (J.R.R.-L.); (C.R.-P.)
| | - José Raúl Rangel-López
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Monterrey, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico; (H.Y.L.-A.); (D.G.Z.-T.); (J.A.U.-E.); (A.Á.-Á.); (J.R.R.-L.); (C.R.-P.)
| | - Ana Carolina Martínez-Torres
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Monterrey, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico; (H.Y.L.-A.); (D.G.Z.-T.); (J.A.U.-E.); (A.Á.-Á.); (J.R.R.-L.); (C.R.-P.)
| | - Cristina Rodríguez-Padilla
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Monterrey, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico; (H.Y.L.-A.); (D.G.Z.-T.); (J.A.U.-E.); (A.Á.-Á.); (J.R.R.-L.); (C.R.-P.)
- LONGEVEDEN SA de CV, Monterrey, Nuevo León 64710, Mexico
| |
Collapse
|
11
|
Zhao F, Whiting S, Lambourne S, Aitken RJ, Sun YP. Melatonin alleviates heat stress-induced oxidative stress and apoptosis in human spermatozoa. Free Radic Biol Med 2021; 164:410-416. [PMID: 33482333 DOI: 10.1016/j.freeradbiomed.2021.01.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Oxidative stress generates a large amount of reactive oxygen species (ROS) and affects sperm quality via damaging sperm DNA and compromising the intracellular homeostasis in human spermatozoa. In assisted reproductive technology (ART), it is substantial to prevent spermatozoa from ROS attack. The pineal hormone melatonin has the natural antioxidant capacity and can scavenge ROS. To the best of our knowledge, however, there are presently no studies investigating if melatonin can protect human spermatozoa from heat-induced oxidative damage. Herein, we induced oxidative stress in human spermatozoa with heat treatment, and determined that melatonin could protect human spermatozoa from heat-induced oxidative stress. We first confirmed that heat stress-induced oxidative stress damaged human spermatozoa by decreasing sperm motility and viability. Furthermore, the pretreatment of human spermatozoa by melatonin was able to alleviate such damage by suppressing sperm mitochondrial ROS generation, increasing mitochondrial membrane potential, reducing the formation of the lipid peroxidation product, 4-HNE, and reducing sperm DNA damage and apoptosis. Collectively, these findings suggest that melatonin is useful as a potential treatment option for male infertility caused by heat-induced oxidative stress.
Collapse
Affiliation(s)
- Feifei Zhao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sara Whiting
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sarah Lambourne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Sikora A, Zielonka J, Dębowska K, Michalski R, Smulik-Izydorczyk R, Pięta J, Podsiadły R, Artelska A, Pierzchała K, Kalyanaraman B. Boronate-Based Probes for Biological Oxidants: A Novel Class of Molecular Tools for Redox Biology. Front Chem 2020; 8:580899. [PMID: 33102447 PMCID: PMC7545953 DOI: 10.3389/fchem.2020.580899] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 01/21/2023] Open
Abstract
Boronate-based molecular probes are emerging as one of the most effective tools for detection and quantitation of peroxynitrite and hydroperoxides. This review discusses the chemical reactivity of boronate compounds in the context of their use for detection of biological oxidants, and presents examples of the practical use of those probes in selected chemical, enzymatic, and biological systems. The particular reactivity of boronates toward nucleophilic oxidants makes them a distinct class of probes for redox biology studies. We focus on the recent progress in the design and application of boronate-based probes in redox studies and perspectives for further developments.
Collapse
Affiliation(s)
- Adam Sikora
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Karolina Dębowska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Renata Smulik-Izydorczyk
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jakub Pięta
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Podsiadły
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Angelika Artelska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Karolina Pierzchała
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
13
|
Otasevic V, Stancic A, Korac A, Jankovic A, Korac B. Reactive oxygen, nitrogen, and sulfur species in human male fertility. A crossroad of cellular signaling and pathology. Biofactors 2020; 46:206-219. [PMID: 31185138 DOI: 10.1002/biof.1535] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/17/2019] [Indexed: 12/23/2022]
Abstract
Infertility is a significant global health problem that currently affects one of six couples in reproductive age. The quality of male reproductive cells dramatically decreased over the last years and almost every aspect of modern life additionally worsen sperm functional parameters that consequently markedly increase male infertility. This clearly points out the importance of finding a new approach to treat male infertility. Redox signaling mediated by reactive oxygen, nitrogen and sulfur species (ROS, RNS, and RSS respectively), has appeared important for sperm reproductive function. Present review summarizes the current knowledge of ROS, RNS, and RSS in male reproductive biology and identifies potential targets for development of novel pharmacological and therapeutic approaches for male infertility by targeted therapeutic modulation of redox signaling.
Collapse
Affiliation(s)
- Vesna Otasevic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Belgrade, Serbia
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Belgrade, Serbia
| | - Aleksandra Korac
- University of Belgrade, Faculty of Biology, Center for Electron Microscopy, Belgrade, Serbia
| | - Aleksandra Jankovic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Belgrade, Serbia
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Belgrade, Serbia
| |
Collapse
|
14
|
Aitken RJ, Baker MA. The Role of Genetics and Oxidative Stress in the Etiology of Male Infertility-A Unifying Hypothesis? Front Endocrinol (Lausanne) 2020; 11:581838. [PMID: 33101214 PMCID: PMC7554587 DOI: 10.3389/fendo.2020.581838] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the high prevalence of male infertility, very little is known about its etiology. In recent years however, advances in gene sequencing technology have enabled us to identify a large number of rare single point mutations responsible for impeding all aspects of male reproduction from its embryonic origins, through the endocrine regulation of spermatogenesis to germ cell differentiation and sperm function. Such monogenic mutations aside, the most common genetic causes of male infertility are aneuploidies such as Klinefelter syndrome and Y-chromosome mutations which together account for around 20-25% of all cases of non-obstructive azoospermia. Oxidative stress has also emerged as a major cause of male fertility with at least 40% of patients exhibiting some evidence of redox attack, resulting in high levels of lipid peroxidation and oxidative DNA damage in the form of 8-hydroxy-2'-deoxyguanosine (8OHdG). The latter is highly mutagenic and may contribute to de novo mutations in our species, 75% of which are known to occur in the male germ line. An examination of 8OHdG lesions in the human sperm genome has revealed ~9,000 genomic regions vulnerable to oxidative attack in spermatozoa. While these oxidized bases are generally spread widely across the genome, a particular region on chromosome 15 appears to be a hot spot for oxidative attack. This locus maps to a genetic location which has linkages to male infertility, cancer, imprinting disorders and a variety of behavioral conditions (autism, bipolar disease, spontaneous schizophrenia) which have been linked to the age of the father at the moment of conception. We present a hypothesis whereby a number of environmental, lifestyle and clinical factors conspire to induce oxidative DNA damage in the male germ line which then triggers the formation de novo mutations which can have a major impact on the health of the offspring including their subsequent fertility.
Collapse
Affiliation(s)
- Robert John Aitken
- Faculty of Science and Faculty of Health and Medicine, Priority Research Centre in Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Robert John Aitken
| | - Mark A. Baker
- Faculty of Science and Faculty of Health and Medicine, Priority Research Centre in Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
15
|
Zheng DJ, Yang YS, Zhu HL. Recent progress in the development of small-molecule fluorescent probes for the detection of hydrogen peroxide. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Han Q, Liu J, Meng Q, Wang YL, Feng H, Zhang Z, Xu ZP, Zhang R. Turn-On Fluorescence Probe for Nitric Oxide Detection and Bioimaging in Live Cells and Zebrafish. ACS Sens 2019; 4:309-316. [PMID: 30387591 DOI: 10.1021/acssensors.8b00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An effective bioanalytical method for rapid, sensitive, specific, and in situ sensing of nitric oxide (NO) is the key for further unveiling the biological functions of this gasotransmitter molecule in vitro and in vivo. In this contribution, a new fluorescence probe for sensing and imaging of NO in live systems was developed. The probe, FP-NO, was designed by exploring a novel sensing mechanism, i.e., the rotation of the N-N single bond of a coumarin derivative. FP-NO was prepared by incorporating a recognition unit, thiosemicarbazide moiety into a coumarin fluorophore. The weakly fluorescent FP-NO quickly and selectively reacts with NO to form a highly fluorescent product, FP-P. Such an enhancement of fluorescence emission allows NO detection with high sensitivity. The detection limit was 47.6 nM. The reaction mechanism was validated by HRMS titration analysis and the "OFF-ON" fluorescence response mechanism was rationalized by theoretical computation. FP-NO is biocompatible and live cell membrane permeable. The feasibility of FP-NO as the fluorescence probe for imaging and flow cytometry analysis of exogenous NO in MCF-7 cells and exogenous NO production in inflamed J774A.1 macrophage cells was then evaluated. Visualization of exogenous and endogenous NO production in live zebrafish was then achieved, implying the potential application of FP-NO in the studies of the NO roles in live organisms.
Collapse
Affiliation(s)
- Qian Han
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, P. R. China
| | - Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, P. R. China
| | - Yong-Lei Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Huan Feng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, P. R. China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
17
|
A NIR fluorescent sensor with large Stokes shift for the real-time visualization of endogenous hydrogen peroxide in living cells. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.10.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Wang L, Shao J, Cheng B, Li X, Ma J. Recent advances in fluorescent probes for peroxynitrite detection. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01604-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
PECULIARITIES OF PRO-OXIDANT AND ANTIOXIDANT HOMEOSTASIS IN PIGS DURING REPRODUCTIVE CYCLE. WORLD OF MEDICINE AND BIOLOGY 2019. [DOI: 10.26724/2079-8334-2019-2-68-234-237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Kalezic A, Macanovic B, Garalejic E, Korac A, Otasevic V, Korac B. Level of NO/nitrite and 3-nitrotyrosine in seminal plasma of infertile men: Correlation with sperm number, motility and morphology. Chem Biol Interact 2018; 291:264-270. [DOI: 10.1016/j.cbi.2018.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/11/2018] [Accepted: 07/01/2018] [Indexed: 01/20/2023]
|
21
|
PROOXIDANT-ANTIOXIDANT HOMEOSTASIS IN THE TISSUES OF THE UTERUS OF PIG, DEPENDING ON THE PERIODS OF THE REPRODUCTIVE CYCLE. WORLD OF MEDICINE AND BIOLOGY 2018. [DOI: 10.26724/2079-8334-2018-2-64-198-203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Purdey MS, Capon PK, Pullen BJ, Reineck P, Schwarz N, Psaltis PJ, Nicholls SJ, Gibson BC, Abell AD. An organic fluorophore-nanodiamond hybrid sensor for photostable imaging and orthogonal, on-demand biosensing. Sci Rep 2017; 7:15967. [PMID: 29162856 PMCID: PMC5698319 DOI: 10.1038/s41598-017-15772-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/02/2017] [Indexed: 11/21/2022] Open
Abstract
Organic fluorescent probes are widely used to detect key biomolecules; however, they often lack the photostability required for extended intracellular imaging. Here we report a new hybrid nanomaterial (peroxynanosensor, PNS), consisting of an organic fluorescent probe bound to a nanodiamond, that overcomes this limitation to allow concurrent and extended cell-based imaging of the nanodiamond and ratiometric detection of hydrogen peroxide. Far-red fluorescence of the nanodiamond offers continuous monitoring without photobleaching, while the green fluorescence of the organic fluorescent probe attached to the nanodiamond surface detects hydrogen peroxide on demand. PNS detects basal production of hydrogen peroxide within M1 polarised macrophages and does not affect macrophage growth during prolonged co-incubation. This nanosensor can be used for extended bio-imaging not previously possible with an organic fluorescent probe, and is spectrally compatible with both Hoechst 33342 and MitoTracker Orange stains for hyperspectral imaging.
Collapse
Affiliation(s)
- Malcolm S Purdey
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
- South Australian Health and Medical Research Institute (SAHMRI) and School of Medicine, The University of Adelaide, North Terrace, Adelaide, SA 5001, Australia.
| | - Patrick K Capon
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Benjamin J Pullen
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute (SAHMRI) and School of Medicine, The University of Adelaide, North Terrace, Adelaide, SA 5001, Australia
| | - Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Nisha Schwarz
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia
- South Australian Health and Medical Research Institute (SAHMRI) and School of Medicine, The University of Adelaide, North Terrace, Adelaide, SA 5001, Australia
| | - Peter J Psaltis
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia
- South Australian Health and Medical Research Institute (SAHMRI) and School of Medicine, The University of Adelaide, North Terrace, Adelaide, SA 5001, Australia
| | - Stephen J Nicholls
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia
- South Australian Health and Medical Research Institute (SAHMRI) and School of Medicine, The University of Adelaide, North Terrace, Adelaide, SA 5001, Australia
| | - Brant C Gibson
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| |
Collapse
|
23
|
Martín Muñoz P, Anel-López L, Ortiz-Rodríguez JM, Álvarez M, de Paz P, Balao da Silva C, Rodríguez Martinez H, Gil MC, Anel L, Peña FJ, Ortega Ferrusola C. Redox cycling induces spermptosis and necrosis in stallion spermatozoa while the hydroxyl radical (OH•) only induces spermptosis. Reprod Domest Anim 2017; 53:54-67. [DOI: 10.1111/rda.13052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/10/2017] [Indexed: 11/30/2022]
Affiliation(s)
- P Martín Muñoz
- Laboratory of Equine Reproduction and Equine Spermatology; Veterinary Teaching Hospital; University of Extremadura; Cáceres Spain
| | - L Anel-López
- Reproduction and Obstetrics Department of Animal Medicine and Surgery; University of León; León Spain
| | - JM Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology; Veterinary Teaching Hospital; University of Extremadura; Cáceres Spain
| | - M Álvarez
- Reproduction and Obstetrics Department of Animal Medicine and Surgery; University of León; León Spain
| | - P de Paz
- Department of Molecular Biology; University of León; León Spain
| | - C Balao da Silva
- Portalagre Polytechnic Institute; Superior Agriculture School of Elvas; Elvas Portugal
| | - H Rodríguez Martinez
- Department of Clinical and Experimental Medicine; Faculty of Medicine & Health Sciences; Linköping University; Linköping Sweden
| | - MC Gil
- Laboratory of Equine Reproduction and Equine Spermatology; Veterinary Teaching Hospital; University of Extremadura; Cáceres Spain
| | - L Anel
- Reproduction and Obstetrics Department of Animal Medicine and Surgery; University of León; León Spain
| | - FJ Peña
- Laboratory of Equine Reproduction and Equine Spermatology; Veterinary Teaching Hospital; University of Extremadura; Cáceres Spain
| | - C Ortega Ferrusola
- Reproduction and Obstetrics Department of Animal Medicine and Surgery; University of León; León Spain
| |
Collapse
|
24
|
Vancomycin induces reactive oxygen species-dependent apoptosis via mitochondrial cardiolipin peroxidation in renal tubular epithelial cells. Eur J Pharmacol 2017; 800:48-56. [PMID: 28216050 DOI: 10.1016/j.ejphar.2017.02.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/08/2017] [Accepted: 02/15/2017] [Indexed: 12/11/2022]
Abstract
Vancomycin (VCM) is a first-line antibiotic for serious infections caused by methicillin-resistant Staphylococcus aureus. However, nephrotoxicity is one of the most complaint in VCM therapy. We previously reported that VCM induced apoptosis in a porcine proximal tubular epithelial cell line (LLC-PK1), in which mitochondrial complex I may generate superoxide, leading to cell death. In the present study, VCM caused production of mitochondrial reactive oxygen species and peroxidation of the mitochondrial phospholipid cardiolipin that was reversed by administration of the mitochondrial uncoupler carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP). FCCP also significantly suppressed VCM-induced depolarization of the mitochondrial membrane and apoptosis. Moreover, the lipophilic antioxidant vitamin E and a mitochondria-targeted antioxidant, mitoTEMPO, also significantly suppressed VCM-induced depolarization of mitochondrial membrane and apoptosis, whereas vitamin C, n-acetyl cysteine, or glutathione did not provide significant protection. These findings suggest that peroxidation of the mitochondrial membrane cardiolipin mediated the VCM-induced production of intracellular reactive oxygen species and initiation of apoptosis in LLC-PK1 cells. Furthermore, regulation of mitochondrial function using a mitochondria-targeted antioxidant, such as mitoTEMPO, may constitute a potential strategy for mitigation of VCM-induced proximal tubular epithelial cell injury.
Collapse
|
25
|
Tan TC, Ritter LJ, Whitty A, Fernandez RC, Moran LJ, Robertson SA, Thompson JG, Brown HM. Gray level Co‐occurrence Matrices (GLCM) to assess microstructural and textural changes in pre‐implantation embryos. Mol Reprod Dev 2016; 83:701-13. [DOI: 10.1002/mrd.22680] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/27/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Tiffany C.Y. Tan
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Lesley J. Ritter
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics (CNBP)University of AdelaideAdelaideSouth AustraliaAustralia
| | - Annie Whitty
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Renae C. Fernandez
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Lisa J. Moran
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Monash Centre for Health Research ImplementationSchool of Public Health and Preventative MedicineMonash UniversityMelbourneAustralia
| | - Sarah A. Robertson
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Jeremy G. Thompson
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics (CNBP)University of AdelaideAdelaideSouth AustraliaAustralia
| | - Hannah M. Brown
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics (CNBP)University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
26
|
|
27
|
New flow cytometry approaches in equine andrology. Theriogenology 2016; 86:366-72. [PMID: 27160445 DOI: 10.1016/j.theriogenology.2016.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/20/2016] [Accepted: 03/14/2016] [Indexed: 01/07/2023]
Abstract
Flow cytometry is currently recognized as a robust tool for the evaluation of sperm quality and function. However, within equine reproduction, this technique has not reached the sophistication of other areas of biology and medicine. In recent years, more sophisticated flow cytometers have been introduced in andrology laboratories, and the number of tests that can be potentially used in the evaluation of sperm physiology has increased accordingly. In this review, recent advances in the evaluation of stallion spermatozoa will be discussed. These new techniques in flow cytometry are able to simultaneously measure damage to different sperm regions and/or changes in functionality.
Collapse
|
28
|
Li HJ, Sutton-McDowall ML, Wang X, Sugimura S, Thompson JG, Gilchrist RB. Extending prematuration with cAMP modulators enhances the cumulus contribution to oocyte antioxidant defence and oocyte quality via gap junctions. Hum Reprod 2016; 31:810-21. [PMID: 26908844 DOI: 10.1093/humrep/dew020] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/11/2016] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION Can bovine oocyte antioxidant defence and oocyte quality be improved by extending the duration of pre-in vitro maturation (IVM) with cyclic adenosine mono-phosphate (cAMP) modulators? SUMMARY ANSWER Lengthening the duration of cAMP-modulated pre-IVM elevates intra-oocyte reduced glutathione (GSH) content and reduces hydrogen peroxide (H2O2) via increased cumulus cell-oocyte gap-junctional communication (GJC), associated with an improvement in subsequent embryo development and quality. WHAT IS KNOWN ALREADY Oocytes are susceptible to oxidative stress and the oocyte's most important antioxidant glutathione is supplied, at least in part, by cumulus cells. A temporary inhibition of spontaneous meiotic resumption in oocytes can be achieved by preventing a fall in cAMP, and cyclic AMP-modulated pre-IVM maintains cumulus-oocyte GJC and improves subsequent embryo development. STUDY DESIGN, SIZE, DURATION This study consisted of a series of 10 experiments using bovine oocytes in vitro, each with multiple replicates. A range of pre-IVM durations were examined as the key study treatments which were compared with a control. The study was designed to examine if one of the oocyte's major antioxidant defences can be enhanced by pre-IVM with cAMP modulators, and to examine the contribution of cumulus-oocyte GJC on these processes. PARTICIPANTS/MATERIALS, SETTING, METHODS Immature bovine cumulus-oocyte complexes were treated in vitro without (control) or with the cAMP modulators; 100 µM forskolin (FSK) and 500 µM 3-isobutyl-1-methyxanthine (IBMX), for 0, 2, 4 or 6 h (pre-IVM phase) prior to IVM. Oocyte developmental competence was assessed by embryo development and quality post-IVM/IVF. Cumulus-oocyte GJC, intra-oocyte GSH and H2O2 were quantified at various time points during pre-IVM and IVM, in the presence and the absence of functional inhibitors: carbenoxolone (CBX) to block GJC and buthionine sulfoximide (BSO) to inhibit glutathione synthesis. MAIN RESULTS AND THE ROLE OF CHANCE Pre-IVM with FSK + IBMX increased subsequent blastocyst formation rate and quality compared with standard IVM (P < 0.05), regardless of pre-IVM duration. The final blastocyst yields (proportion of blastocysts/immature oocyte) were 26.3% for the control, compared with 39.2, 35.2 and 34.2%, for the 2, 4 and 6 h pre-IVM FSK + IBMX treatments, respectively. In contrast to standard IVM (control), pre-IVM with cAMP modulators maintained open gap junctions between cumulus cells and oocytes for the duration (6 h) of pre-IVM examined, and persisted for a further 8 h in the IVM phase. Cyclic AMP-modulated pre-IVM increased intra-oocyte GSH levels at the completion of both pre-IVM and IVM, in a pre-IVM duration-dependent manner (P < 0.05), which was ablated when GJC was blocked using CBX (P < 0.05). By 4 h of pre-IVM treatment with cAMP modulators, oocyte H2O2 levels were reduced compared the control (P < 0.05), although this beneficial effect was lost when oocytes were co-treated with BSO. Inhibiting glutathione synthesis with BSO during pre-IVM ablated any positive benefits of cAMP-mediated pre-IVM on oocyte developmental competence (P < 0.01). LIMITATIONS, REASONS FOR CAUTION It is unclear if the improvement in oocyte antioxidant defence and developmental competence reported here is due to direct transfer of total and/or reduced glutathione from cumulus cells to the oocyte via gap junctions, or whether a GSH synthesis signal and/or amino acid substrates are supplied to the oocyte via gap junctions. Embryo transfer experiments are required to determine if the cAMP-mediated improvement in blastocyst rates leads to improved live birth rates. WIDER IMPLICATIONS OF THE FINDINGS IVM offers significant benefits to infertile and cancer patients and has the potential to significantly alter ART practice, if IVM efficiency in embryo production could be improved closer to that of conventional IVF (using ovarian hyperstimulation). Pre-IVM with cAMP modulators is a simple and reliable means to improve IVM outcomes. STUDY FUNDING/COMPETING INTERESTS This work was supported by grants and fellowships from the National Health and Medical Research Council of Australia (1007551, 627007, 1008137, 1023210) and by scholarships from the Chinese Scholarship Council (CSC) awarded to H.J.L. and the Japanese Society for the Promotion of Science Postdoctoral Fellowship for Research Abroad awarded to S.S. The Fluoview FV10i confocal microscope was purchased as part of the Sensing Technologies for Advanced Reproductive Research (STARR) facility, funded by the South Australian Premier's Science and Research Fund. We acknowledge partial support from the Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CE140100003). We declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.
Collapse
Affiliation(s)
- H J Li
- Robinson Research Institute & School of Medicine, The University of Adelaide, Adelaide SA 5005, Australia College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - M L Sutton-McDowall
- Robinson Research Institute & School of Medicine, The University of Adelaide, Adelaide SA 5005, Australia Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia
| | - X Wang
- Robinson Research Institute & School of Medicine, The University of Adelaide, Adelaide SA 5005, Australia
| | - S Sugimura
- Robinson Research Institute & School of Medicine, The University of Adelaide, Adelaide SA 5005, Australia Department of Biological Production, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - J G Thompson
- Robinson Research Institute & School of Medicine, The University of Adelaide, Adelaide SA 5005, Australia Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia
| | - R B Gilchrist
- Robinson Research Institute & School of Medicine, The University of Adelaide, Adelaide SA 5005, Australia Discipline of Obstetrics & Gynaecology, School of Women's & Children's Health, University of New South Wales, Sydney 2013, Australia
| |
Collapse
|
29
|
Mutual sensitization mechanism and self-degradation property of drug delivery system for in vitro photodynamic therapy. Int J Pharm 2016; 498:335-46. [DOI: 10.1016/j.ijpharm.2015.12.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/12/2015] [Accepted: 12/16/2015] [Indexed: 12/26/2022]
|
30
|
Liu L, Shi Y, Yang Y, Li M, Long Y, Huang Y, Zheng H. Fluorescein as an artificial enzyme to mimic peroxidase. Chem Commun (Camb) 2016; 52:13912-13915. [DOI: 10.1039/c6cc07896f] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescein was found to possess intrinsic peroxidase-like activity, which could catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2 to produce a color reaction.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ying Shi
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yufang Yang
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Menglu Li
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yijuan Long
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yuming Huang
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Huzhi Zheng
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
31
|
Purdey MS, Thompson JG, Monro TM, Abell AD, Schartner EP. A Dual Sensor for pH and Hydrogen Peroxide Using Polymer-Coated Optical Fibre Tips. SENSORS 2015; 15:31904-13. [PMID: 26694413 PMCID: PMC4721812 DOI: 10.3390/s151229893] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 11/16/2022]
Abstract
This paper demonstrates the first single optical fibre tip probe for concurrent detection of both hydrogen peroxide (H2O2) concentration and pH of a solution. The sensor is constructed by embedding two fluorophores: carboxyperoxyfluor-1 (CPF1) and seminaphtharhodafluor-2 (SNARF2) within a polymer matrix located on the tip of the optical fibre. The functionalised fibre probe reproducibly measures pH, and is able to accurately detect H2O2 over a biologically relevant concentration range. This sensor offers potential for non-invasive detection of pH and H2O2 in biological environments using a single optical fibre.
Collapse
Affiliation(s)
- Malcolm S Purdey
- ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide 5005, SA, Australia.
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, North Terrace, Adelaide 5005, SA, Australia.
- Discipline of Chemistry, School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide 5005, SA, Australia.
| | - Jeremy G Thompson
- ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide 5005, SA, Australia.
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, North Terrace, Adelaide 5005, SA, Australia.
- Robinson Research Institute, School of Medicine, The University of Adelaide, North Terrace, Adelaide 5005, SA, Australia.
| | - Tanya M Monro
- ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide 5005, SA, Australia.
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, North Terrace, Adelaide 5005, SA, Australia.
- University of South Australia, North Terrace, Adelaide 5001, SA, Australia.
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide 5005, SA, Australia.
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, North Terrace, Adelaide 5005, SA, Australia.
- Discipline of Chemistry, School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide 5005, SA, Australia.
| | - Erik P Schartner
- ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide 5005, SA, Australia.
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, North Terrace, Adelaide 5005, SA, Australia.
| |
Collapse
|