1
|
Tashkandi AJ, Gorman A, McGoldrick Mathers E, Carney G, Yacoub A, Setyaningsih WAW, Kuburas R, Margariti A. Metabolic and Mitochondrial Dysregulations in Diabetic Cardiac Complications. Int J Mol Sci 2025; 26:3016. [PMID: 40243689 PMCID: PMC11988959 DOI: 10.3390/ijms26073016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The growing prevalence of diabetes highlights the urgent need to study diabetic cardiovascular complications, specifically diabetic cardiomyopathy, which is a diabetes-induced myocardial dysfunction independent of hypertension or coronary artery disease. This review examines the role of mitochondrial dysfunction in promoting diabetic cardiac dysfunction and highlights metabolic mechanisms such as hyperglycaemia-induced oxidative stress. Chronic hyperglycaemia and insulin resistance can activate harmful pathways, including advanced glycation end-products (AGEs), protein kinase C (PKC) and hexosamine signalling, uncontrolled reactive oxygen species (ROS) production and mishandling of Ca2+ transient. These processes lead to cardiomyocyte apoptosis, fibrosis and contractile dysfunction. Moreover, endoplasmic reticulum (ER) stress and dysregulated RNA-binding proteins (RBPs) and extracellular vesicles (EVs) contribute to tissue damage, which drives cardiac function towards heart failure (HF). Advanced patient-derived induced pluripotent stem cell (iPSC) cardiac organoids (iPS-COs) are transformative tools for modelling diabetic cardiomyopathy and capturing human disease's genetic, epigenetic and metabolic hallmarks. iPS-COs may facilitate the precise examination of molecular pathways and therapeutic interventions. Future research directions encourage the integration of advanced models with mechanistic techniques to promote novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Refik Kuburas
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| | - Andriana Margariti
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| |
Collapse
|
2
|
Lu J, Xu H, Li L, Tang X, Zhang Y, Zhang D, Xu P, Sun L, Wang J. Didang Tang alleviates neuronal ferroptosis after intracerebral hemorrhage by modulating the PERK/eIF2α/ATF4/CHOP/GPX4 signaling pathway. Front Pharmacol 2024; 15:1472813. [PMID: 39525631 PMCID: PMC11544539 DOI: 10.3389/fphar.2024.1472813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Ferroptosis is a crucial process contributing to neuronal damage following intracerebral hemorrhage (ICH). Didang Tang (DDT), a traditional therapeutic, has been used clinically to manage ICH for many years, yet the molecular mechanisms by which by DDT protects neurons from ferroptosis after ICH remain elusive. Methods This study utilized high-performance liquid chromatography-based fingerprint analysis to characterize DDT's chemical composition. An ICH rat model and hemin and erastin-induced PC12 cell ferroptosis models were developed to investigate DDT's neuroprotective mechanisms. Histological assessments of brain tissue morphology and iron deposition were performed using hematoxylin-eosin, Nissl, and Perl's blue staining. Neurological function was evaluated using Longa and Berderson scores, while lipid peroxidation was measured using biochemical assays and flow cytometry. Protein expression levels of ferroptosis- and endoplasmic reticulum stress (ERS)-related markers were analyzed via Western blotting and immunofluorescence. Results Our results demonstrated that DDT reduced hematoma volume, decreased iron deposition, lowered malondialdehyde (MDA) levels, and upregulated glutathione peroxidase (GPX4) and SLC7A11 expression in affected brain regions. Furthermore, DDT downregulated GRP78 expression and inhibited the PERK/eIF2α/ATF4/CHOP/GPX4 pathway, exerting strong neuroprotective effects. The fluorescence staining results of MAP2/GPX4 and MAP2/CHOP suggested that DDT may regulate neuronal ferroptosis and ERs to exert the protective effect. In vitro experiments using hemin- and erastin-induced neuron-derived PC12 cells as neuronal ferroptosis models developed in our laboratory corroborated these in vivo findings, showing increased survival and reduced lipid peroxidation in DDT-treated cells, along with similar inhibitory effects on ferroptosis and ERS. Molecular docking suggested that DDT components, such as sennoside B, amygdalin, rhein, and emodin, interact favorably with PERK/eIF2α/ATF4/CHOP signaling pathway proteins, highlighting their potential role in DDT's anti-ferroptosis effects. Conclusion DDT alleviates neuronal ferroptosis after ICH by modulating the PERK/eIF2α/ATF4/CHOP/GPX4 signaling pathway. Overall, this study provides novel insights into DDT's protective mechanisms against ICH-induced neuronal injury by modulating ferroptosis and ERS pathways, underscoring its potential as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Hanying Xu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
- Department of Encephalopathy, The Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Li Li
- Nursing Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Xiaolei Tang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Ying Zhang
- Department of Encephalopathy, The Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Dongmei Zhang
- Scientific Research Office, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Peng Xu
- Department of Encephalopathy, The Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Jian Wang
- Department of Encephalopathy, The Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
3
|
Prasad MK, Victor PS, Ganesh GV, Juttada U, Kumpatla S, Viswanathan V, Ramkumar KM. Sodium-Glucose Cotransporter-2 Inhibitor Suppresses Endoplasmic Reticulum Stress and Oxidative Stress in Diabetic Nephropathy Through Nrf2 Signaling: A Clinical and Experimental Study. J Clin Pharmacol 2024; 64:1193-1203. [PMID: 38831713 DOI: 10.1002/jcph.2465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024]
Abstract
Diabetic nephropathy (DN), a severe complication of type 2 diabetes mellitus (T2DM), is marked by heightened endoplasmic reticulum stress (ERS) and oxidative stress (OS) due to protein misfolding and free radical generation. We investigated the sodium-glucose co-transporter-2 inhibitor (SGLT2i), canagliflozin (Cana), in alleviating ERS and OS in DN patients and THP-1 cells under hyperglycemic condition. A total of 120 subjects were divided into four groups, with 30 subjects in each group: healthy controls, T2DM individuals, DN patients receiving standard treatment, and those treated with Cana. The control group had no history of diabetes, cardiovascular or renal diseases, or other comorbidities. Cana was administered at doses of either 100 or 300 mg per day based on the estimated glomerular filtration rate (eGFR) value of DN individuals, with a mean follow-up of 6 months. Additionally, THP-1 monocytes were exposed to HGM (33.3 mM glucose with a cytokine cocktail of TNF-α and IFN-γ at 50 ng/mL each) to evaluate the relative levels of ERS, OS markers, and nuclear factor erythroid 2-related factor 2 (Nrf2), the transcription factor regulating cellular redox, which is downregulated in diabetes. Our results revealed that ERS markers GRP78 and PERK, as well as OS markers TXNIP and p22phox, were elevated in both DN patients and HGM-treated THP-1 monocytes and were reduced by Cana intervention. Furthermore, Cana regulated the phosphorylation of Nrf2, Akt, and EIF2α in HGM-treated monocytes. In conclusion, our findings highlight the role of Cana in activating Nrf2, thereby attenuating ERS and OS to mitigate DN progression.
Collapse
Affiliation(s)
- Murali Krishna Prasad
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Paul S Victor
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Goutham V Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Udayama Juttada
- Department of Biochemistry and Molecular Genetics, Prof. M. Viswanathan's Diabetes Research Center, M.V. Hospital for Diabetes, Royapuram Chennai, Tamilnadu, India
| | - Satyavani Kumpatla
- Department of Biochemistry and Molecular Genetics, Prof. M. Viswanathan's Diabetes Research Center, M.V. Hospital for Diabetes, Royapuram Chennai, Tamilnadu, India
| | - Vijay Viswanathan
- Department of Biochemistry and Molecular Genetics, Prof. M. Viswanathan's Diabetes Research Center, M.V. Hospital for Diabetes, Royapuram Chennai, Tamilnadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| |
Collapse
|
4
|
Tumurbaatar B, Ogawa S, Nakamura N, Yamada T, Minato T, Mori Y, Saiki T, Matsubara T, Naruse K, Suda H. The effect of hydrogen gas on the oxidative stress response in adipose tissue. Sci Rep 2024; 14:21425. [PMID: 39271809 PMCID: PMC11399153 DOI: 10.1038/s41598-024-72626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Oxidative stress in adipose tissue may alter the secretion pattern of adipocytokines and potentially promote atherosclerosis. However, the therapeutic role of hydrogen in adipose tissue under oxidative stress remains unclear. In this study, subcutaneous adipose tissue (SCAT) was collected from the mid-thoracic wounds of 12 patients who underwent open-heart surgery with a mid-thoracic incision. The adipose tissue was then immersed in a culture medium dissolved with hydrogen, which was generated using a hydrogen-generating device. The weight of the adipose tissue was measured before and after hydrogenation, and the tissue was immunostained for nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and superoxide dismutase (SOD), which are markers of oxidative stress. The immunostaining results showed that HO-1 and Nrf2 expression levels were significantly decreased in the hydrogenated group, whereas SOD expression levels increased, but did not attain statistical significance. Image analysis of adipose tissue revealed that a reduction in adipocyte size. Furthermore, hydrogenated adipose tissue showed a trend toward increased gene expression levels of adiponectin and decreased gene expression levels of chemerin, an adipocytokine involved in adipogenesis. These results demonstrated the therapeutic potential of hydrogen gas for oxidative stress in adipose tissue and for reducing adipocyte size.
Collapse
Affiliation(s)
- Batkhishig Tumurbaatar
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan
| | - Shinji Ogawa
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan
- Department of Cardiovascular Surgery, Toyokawa City Hospital, Toyokawa, 442-8561, Japan
| | - Nobuhisa Nakamura
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan.
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651, Japan.
| | - Toshiyuki Yamada
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan
- Department of Cardiovascular Surgery, Nagoya City University Midori Municipal Hospital, Nagoya, 458-0037, Japan
| | - Tomomi Minato
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651, Japan
- Department of Clinical Laboratory, Aichi Gakuin University Dental Hospital, Nagoya, 464-8651, Japan
| | - Yoshiharu Mori
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan
- Department of Cardiovascular Surgery, Toyokawa City Hospital, Toyokawa, 442-8561, Japan
| | - Tomokazu Saiki
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651, Japan
- Department of Pharmacy, Aichi Gakuin University Dental Hospital, Nagoya, 464-8651, Japan
| | - Tatsuaki Matsubara
- Faculty of Human Sciences, Aichi Mizuho College, Nagoya, 467-0867, Japan
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651, Japan
| | - Hisao Suda
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan
| |
Collapse
|
5
|
Dong H, Jia W, Wang C, Teng D, Xu B, Ding X, Yang J, Zhong L, Gong L. Key subdomains of mesencephalic astrocyte-derived neurotrophic factor attenuate myocardial ischemia/reperfusion injury by JAK1/STAT1/NF-κB signaling pathway. Mol Med 2024; 30:139. [PMID: 39242993 PMCID: PMC11380330 DOI: 10.1186/s10020-024-00916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Myocardial ischemia/reperfusion (I/R) injury is a common pathological process in clinical practice. Developing effective therapeutic strategies to reduce or prevent this injury is crucial. The article aimed to investigate the role and mechanism of mesencephalic astrocyte-derived neurotrophic factor (MANF) and its key subdomains in modulating myocardial I/R-induced cardiomyocyte apoptosis. METHODS MANF stable knockout cell line and MANF mutant overexpression plasmids were constructed. The effects of MANF and mutants on apoptosis and endoplasmic reticulum (ER) stress related proteins were evaluated in hypoxia/reoxygenation-induced HL-1 cardiomyocytes by western blot, immunofluorescence, Tunel and flow cytometry. Echocardiography, ELISA, TTC and Masson were used to observe the effects of recombinant MANF protein (rMANF) on cardiac function in myocardial I/R mice. RESULTS This study observed increased expression of MANF in both myocardial infarction patients and I/R mice. MANF overexpression in cardiomyocytes decreased ER stress-induced apoptosis, while MANF knockout exacerbated it. rMANF improved cardiac function in I/R mice by reducing injury and inflammation. This study specifically demonstrates that mutations in the α-helix of MANF were more effective in reducing ER stress and cardiomyocyte apoptosis. Mechanistically, MANF and the α-helix mutant attenuated I/R injury by inhibiting the JAK1/STAT1/NF-κB signaling pathway in addition to reducing ER stress-induced apoptosis. CONCLUSION These findings highlight MANF and its subdomains as critical regulators of myocardial I/R injury, offering promising therapeutic targets with significant clinical implications for I/R-related diseases.
Collapse
Affiliation(s)
- Haibin Dong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Wenjuan Jia
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Chunxiao Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Da Teng
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Bowen Xu
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Xiaoning Ding
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China.
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China.
| |
Collapse
|
6
|
Behzadi M, Bideshki MV, Ahmadi-Khorram M, Zarezadeh M, Hatami A. Effect of dark chocolate/ cocoa consumption on oxidative stress and inflammation in adults: A GRADE-assessed systematic review and dose-response meta-analysis of controlled trials. Complement Ther Med 2024; 84:103061. [PMID: 38925412 DOI: 10.1016/j.ctim.2024.103061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Oxidative stress and inflammation play critical roles in the pathogenesis of many chronic diseases. Dark chocolate (DC)/cocoa, as a rich source of polyphenols like flavonoids, has anti-inflammatory and antioxidant properties that may confer health benefits, but findings in this context are inconsistent. OBJECTIVE This systematic review and dose-response meta-analysis aimed to provide a comprehensive overview of the controlled trials (CTs) that have examined the effects of DC/cocoa on oxidative stress and inflammation biomarkers in adults. SEARCH METHODS Databases including PubMed, Web of Science, and Scopus, were searched for relevant studies through April 2024. SELECTION CRITERIA Studies assessed C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), nitric oxide (NO), P-selectin, E-selectin and thiobarbituric acid reactive substances (TBARS) in adults were included. DATA ANALYSIS Based on the random-effects model, we calculated WMDs, SMDs and 95 % confidence intervals (CIs). Sensitivity, sub-group, meta-regression and dose-response analyses were also conducted. RESULTS Thirty-three eligible CTs with 1379 participants were included. All studies reported the intervention types (cocoa powder, beverages and chocolate bars) and dosage. However, sixteen studies didn't do/report testing for purity and potency by independent groups. Also, none of the studies mentioned the risk of contamination with heavy metals. Another limitation was the lack of blinding assessment in studies. DC/cocoa significantly reduced MDA (SMD: -0.69, 95 %CI: -1.17, -0.2, p = 0.005) and increased NO levels (SMD: 2.43, 95 %CI: 1.11,3.75, p < 0.001); However, it has no significant effects on the other outcomes. Greater anti-inflammatory effects occurred at higher flavonoid doses (>450 mg/day) and for shorter durations (≤4 weeks) in the non-healthy participants. Non-linear dose-response relationships between cocoa dosage and CRP level and also between flavonoid dosage and IL-6 level were observed. Based on the GRADE evaluation, just CRP and MDA results were considered as high certainty evidence and the other outcomes results were categorized as very low to moderate certainty. CONCLUSIONS DC/cocoa may improve systemic oxidative status and inflammation in adults. However, further studies should be performed to determine its benefits.
Collapse
Affiliation(s)
- Mehrdad Behzadi
- Student Research Committee, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Vesal Bideshki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Diet Therapy, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ahmadi-Khorram
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Hatami
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Mentese A, Demir S, Yulug E, Kucuk H, Alemdar NT, Demir EA, Aliyazicioglu Y. Gentisic acid attenuates 5-fluorouracil-induced ovotoxicity in rats via modulating Nrf2 signalling: An experimental approach. Reprod Toxicol 2024; 128:108661. [PMID: 38986848 DOI: 10.1016/j.reprotox.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
5-Fluorouracil (5-FU) is the third most used chemotherapeutic in the world with its anticancer effect resulting from its potential to block DNA replication. Like other cytotoxic agents, 5-FU has side effects on healthy tissues, and the reproductive system is among the tissues most affected by these undesirable effects. Gentisic acid (GEA) is a secondary metabolite that is abundant in fruits, vegetables and spices and has antioxidant activity. This study was conducted to investigate the toxicity of 5-FU in rat ovarian tissue and to determine the therapeutic activity of GEA on ovotoxicity caused by 5-FU. The results showed that 5-FU caused histopathological findings by suppressing Nrf2 pathway and accordingly increasing oxidative stress, inflammation, endoplasmic reticulum stress and apoptosis. However, GEA treatments after 5-FU application ameliorated 5-FU-induced ovotoxicity dose-dependently through activation of Nrf2 pathway. All these findings provided strong evidence supporting the hypothesis that GEA treatment may have therapeutic effects against 5-FU-induced ovarian damage. However, the beneficial effect of GEA use in eliminating ovarian damage in women after 5-FU chemotherapy should continue to be investigated with more detailed molecular studies.
Collapse
Affiliation(s)
- Ahmet Mentese
- Department of Medical Services and Techniques, Vocational School of Health Services, Karadeniz Technical University, Trabzon 61080, Turkiye
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon 61080, Turkiye.
| | - Esin Yulug
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Hatice Kucuk
- Department of Pathology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon 61250, Turkiye
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon 61080, Turkiye; Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize 53100, Turkiye
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, Trabzon 61750, Turkiye
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| |
Collapse
|
8
|
Xu D, Zhang L, Meng H, Zhao W, Hu Z, Wang J. Exploring the anti-ischemic stroke potential of wogonoside: Insights from Nrf2/Sirt3 signaling pathway and UPLC-TripleTOF-MS/MS-based metabolomics. J Pharm Biomed Anal 2024; 246:116206. [PMID: 38733762 DOI: 10.1016/j.jpba.2024.116206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Ischemic stroke, accounting for 80 % of all strokes, is a major cause of morbidity and mortality worldwide. However, effective and safe pharmacotherapy options for ischemic injury are limited. This study investigated the therapeutic effects of wogonoside, a compound derived from Radix Scutellariae, on ischemia/reperfusion (I/R) injury. The results showed that wogonoside treatment had significant therapeutic effects in rats with middle cerebral artery occlusion. It effectively reduced mortality rates, neurological deficits, cerebral infarct size, and brain water content. In an in vitro model using PC12 cells, wogonoside activated the Nrf2/Sirt3 signaling pathway. This activation contributed to the attenuation of oxidative damage and inflammation. Metabolomics analysis revealed increased levels of γ-aminobutyric acid (GABA) and glutathione in response to wogonoside treatment, suggesting their potential as therapeutic biomarkers for ischemic stroke. Additionally, wogonoside restored perturbed energy metabolism, including the tricarboxylic acid cycle. Wogonoside has the potential to ameliorate cerebral ischemic injury by targeting GABA-related amino acid metabolism, energy metabolism, and glutathione metabolism, maintaining redox homeostasis, and attenuating oxidative stress. These findings provide valuable insights into the protective mechanisms of wogonoside in cerebral I/R injury and highlight the promising therapeutic approach of wogonoside in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Di Xu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Lin Zhang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huihui Meng
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenlong Zhao
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ziyun Hu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
9
|
Ma C, Liu Y, Fu Z. Implications of endoplasmic reticulum stress and autophagy in aging and cardiovascular diseases. Front Pharmacol 2024; 15:1413853. [PMID: 39119608 PMCID: PMC11306071 DOI: 10.3389/fphar.2024.1413853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The average lifespan of humans has been increasing, resulting in a rapidly rising percentage of older individuals and high morbidity of aging-associated diseases, especially cardiovascular diseases (CVDs). Diverse intracellular and extracellular factors that interrupt homeostatic functions in the endoplasmic reticulum (ER) induce ER stress. Cells employ a dynamic signaling pathway of unfolded protein response (UPR) to buffer ER stress. Recent studies have demonstrated that ER stress triggers various cellular processes associated with aging and many aging-associated diseases, including CVDs. Autophagy is a conserved process involving lysosomal degradation and recycling of cytoplasmic components, proteins, organelles, and pathogens that invade the cytoplasm. Autophagy is vital for combating the adverse influence of aging on the heart. The present report summarizes recent studies on the mechanism of ER stress and autophagy and their overlap in aging and on CVD pathogenesis in the context of aging. It also discusses possible therapeutic interventions targeting ER stress and autophagy that might delay aging and prevent or treat CVDs.
Collapse
Affiliation(s)
- Chenguang Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- 32295 Troops of P.L.A, Liaoyang, China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Zhang J, Zhao Y, Gong N. Endoplasmic reticulum stress signaling modulates ischemia/reperfusion injury in the aged heart by regulating mitochondrial maintenance. Mol Med 2024; 30:107. [PMID: 39044180 PMCID: PMC11265325 DOI: 10.1186/s10020-024-00869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Aging is associated with an increased risk of myocardial ischemia/reperfusion injury (IRI). With an increasing prevalence of cardiovascular diseases such as coronary arteriosclerosis in older people, there has been increasing interest in understanding the mechanisms of myocardial IRI to develop therapeutics that can attenuate its damaging effects. Previous studies identified that abnormal mitochondria, involved in cellar senescence and oxidative stress, are the master subcellular organelle that induces IRI. In addition, endoplasmic reticulum (ER) stress is also associated with IRI. Cellular adaptation to ER stress is achieved by the activation of ER molecular chaperones and folding enzymes, which provide an important link between ER stress and oxidative stress gene programs. In this review, we outline how these ER stress-related molecules affect myocardial IRI via the crosstalk of ER stress and mitochondrial homeostasis and discuss how these may offer promising novel therapeutic targets and strategies against age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Ji Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, P.R. China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, 230022, P.R. China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, P.R. China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, P.R. China.
| |
Collapse
|
11
|
Yuvaraj S, Vasudevan V, Puhari SSM, Sasikumar S, Ramprasath T, Selvi MS, Selvam GS. Chrysin reduces heart endoplasmic reticulum stress-induced apoptosis by inhibiting PERK and Caspase 3-7 in high-fat diet-fed rats. Mol Biol Rep 2024; 51:678. [PMID: 38796673 DOI: 10.1007/s11033-024-09612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/03/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Chrysin (Chy) is a naturally occurring flavonoid found in fruits, vegetables, honey, propolis, and many plant extracts that has shown notable medicinal value. Chy exhibits diverse pharmacological properties, including anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholesteremic, and cardioprotective. However, the influence of Chy in mitigating high-fat diet (HFD)-induced ER stress of rat myocardium remains unknown. PURPOSE The current work intended to determine the therapeutic potential of Chy against HFD-induced endoplasmic stress-mediated apoptosis. METHODS To evaluate the therapeutic value of Chy in HFD-induced endoplasmic stress-mediated apoptosis in the myocardium; The male wistar rats were divided into different groups; control, HFD control, HFD fed followed by Chy-treated and HFD fed followed by atorvastatin (Atv) treated rats. RESULTS When compared to the control group, the HFD-fed rats had significantly higher levels of marker enzymes such as CK-NAC and ALP, as well as lipid peroxidation and lipid profile (TC, TG, LDL, and VLDL). Chy therapy greatly reversed these marker enzymes and the lipid profile. qRT-PCR Studies showed that Chy supplementation considerably improved Nrf2 and its target genes. In addition, Chy lowered the expression of PERK, CHOP, ATF6, GRP78, and Caspase-3 genes in the heart tissue of HFD-fed rats. Immunohistochemistry results demonstrated that Chy substantially enhanced the Nrf2 and reduced PERK and Caspase3-7 protein expression in HFD-fed rats. CONCLUSION The current study concluded that Chy may mediate the cardioprotective effect by activating Nrf2 and inhibiting PERK signaling pathway against ER stress-mediated apoptosis induced by HFD. Therefore, supplementation with Chy could serve as a promising therapeutic target against HFD-induced ER stress-mediated cardiac complication.
Collapse
Affiliation(s)
- Subramani Yuvaraj
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Varadaraj Vasudevan
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Shanavas Syed Mohamed Puhari
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Sunderasan Sasikumar
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Mariaraj Sivakumar Selvi
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Govindan Sadasivam Selvam
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
12
|
Ford HR, Bionaz M. The Experimental and In Silico-Based Evaluation of NRF2 Modulators, Sulforaphane and Brusatol, on the Transcriptome of Immortalized Bovine Mammary Alveolar Cells. Int J Mol Sci 2024; 25:4264. [PMID: 38673850 PMCID: PMC11049820 DOI: 10.3390/ijms25084264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Changes during the production cycle of dairy cattle can leave these animals susceptible to oxidative stress and reduced antioxidant health. In particular, the periparturient period, when dairy cows must rapidly adapt to the sudden metabolic demands of lactation, is a period when the production of damaging free radicals can overwhelm the natural antioxidant systems, potentially leading to tissue damage and reduced milk production. Central to the protection against free radical damage and antioxidant defense is the transcription factor NRF2, which activates an array of genes associated with antioxidant functions and cell survival. The objective of this study was to evaluate the effect that two natural NRF2 modulators, the NRF2 agonist sulforaphane (SFN) and the antagonist brusatol (BRU), have on the transcriptome of immortalized bovine mammary alveolar cells (MACT) using both the RT-qPCR of putative NRF2 target genes, as well as RNA sequencing approaches. The treatment of cells with SFN resulted in the activation of many putative NRF2 target genes and the upregulation of genes associated with pathways involved in cell survival, metabolism, and antioxidant function while suppressing the expression of genes related to cellular senescence and DNA repair. In contrast, the treatment of cells with BRU resulted in the upregulation of genes associated with inflammation, cellular stress, and apoptosis while suppressing the transcription of genes involved in various metabolic processes. The analysis also revealed several novel putative NRF2 target genes in bovine. In conclusion, these data indicate that the treatment of cells with SFN and BRU may be effective at modulating the NRF2 transcriptional network, but additional effects associated with cellular stress and metabolism may complicate the effectiveness of these compounds to improve antioxidant health in dairy cattle via nutrigenomic approaches.
Collapse
Affiliation(s)
| | - Massimo Bionaz
- Department of Animal and Rangeland Science, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
13
|
Mbiandjeu SCT, Siciliano A, Mattè A, Federti E, Perduca M, Melisi D, Andolfo I, Amoresano A, Iolascon A, Valenti MT, Turrini F, Bovi M, Pisani A, Recchiuti A, Mattoscio D, Riccardi V, Dalle Carbonare L, Brugnara C, Mohandas N, De Franceschi L. Nrf2 Plays a Key Role in Erythropoiesis during Aging. Antioxidants (Basel) 2024; 13:454. [PMID: 38671902 PMCID: PMC11047311 DOI: 10.3390/antiox13040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Aging is characterized by increased oxidation and reduced efficiency of cytoprotective mechanisms. Nuclear factor erythroid-2-related factor (Nrf2) is a key transcription factor, controlling the expression of multiple antioxidant proteins. Here, we show that Nrf2-/- mice displayed an age-dependent anemia, due to the combined contributions of reduced red cell lifespan and ineffective erythropoiesis, suggesting a role of Nrf2 in erythroid biology during aging. Mechanistically, we found that the expression of antioxidants during aging is mediated by activation of Nrf2 function by peroxiredoxin-2. The absence of Nrf2 resulted in persistent oxidation and overactivation of adaptive systems such as the unfolded protein response (UPR) system and autophagy in Nrf2-/- mouse erythroblasts. As Nrf2 is involved in the expression of autophagy-related proteins such as autophagy-related protein (Atg) 4-5 and p62, we found impairment of late phase of autophagy in Nrf2-/- mouse erythroblasts. The overactivation of the UPR system and impaired autophagy drove apoptosis of Nrf2-/- mouse erythroblasts via caspase-3 activation. As a proof of concept for the role of oxidation, we treated Nrf2-/- mice with astaxanthin, an antioxidant, in the form of poly (lactic-co-glycolic acid) (PLGA)-loaded nanoparticles (ATS-NPs) to improve its bioavailability. ATS-NPs ameliorated the age-dependent anemia and decreased ineffective erythropoiesis in Nrf2-/- mice. In summary, we propose that Nrf2 plays a key role in limiting age-related oxidation, ensuring erythroid maturation and growth during aging.
Collapse
Affiliation(s)
| | - Angela Siciliano
- Dipartimento Ingegneria per la Medicina di Innovazione—DIMI, University of Verona, 37134 Verona, Italy; (A.S.); (E.F.); (V.R.); (L.D.C.)
- Department of Medicine, AOUI Verona, 37134 Verona, Italy
| | - Alessandro Mattè
- Department of Medicine, University of Verona, 37134 Verona, Italy; (S.C.T.M.); (A.M.); (D.M.)
| | - Enrica Federti
- Dipartimento Ingegneria per la Medicina di Innovazione—DIMI, University of Verona, 37134 Verona, Italy; (A.S.); (E.F.); (V.R.); (L.D.C.)
- Department of Medicine, AOUI Verona, 37134 Verona, Italy
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (M.P.); (M.B.); (A.P.)
| | - Davide Melisi
- Department of Medicine, University of Verona, 37134 Verona, Italy; (S.C.T.M.); (A.M.); (D.M.)
| | - Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (I.A.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80131 Naples, Italy
| | - Angela Amoresano
- Department of Chimical Sciences, University Federico II, 80138 Naples, Italy;
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (I.A.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80131 Naples, Italy
| | | | | | - Michele Bovi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (M.P.); (M.B.); (A.P.)
| | - Arianna Pisani
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (M.P.); (M.B.); (A.P.)
| | - Antonio Recchiuti
- Department of Medical, Oral, and Biotechnology Science, “G. d’Annunzio” University Chieti–Pescara, 66013 Chieti, Italy; (A.R.); (D.M.)
| | - Domenico Mattoscio
- Department of Medical, Oral, and Biotechnology Science, “G. d’Annunzio” University Chieti–Pescara, 66013 Chieti, Italy; (A.R.); (D.M.)
| | - Veronica Riccardi
- Dipartimento Ingegneria per la Medicina di Innovazione—DIMI, University of Verona, 37134 Verona, Italy; (A.S.); (E.F.); (V.R.); (L.D.C.)
| | - Luca Dalle Carbonare
- Dipartimento Ingegneria per la Medicina di Innovazione—DIMI, University of Verona, 37134 Verona, Italy; (A.S.); (E.F.); (V.R.); (L.D.C.)
- Department of Medicine, AOUI Verona, 37134 Verona, Italy
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, MA 02114, USA;
- Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Narla Mohandas
- New York Blood Center Enterprises, New York, NY 10065, USA;
| | - Lucia De Franceschi
- Dipartimento Ingegneria per la Medicina di Innovazione—DIMI, University of Verona, 37134 Verona, Italy; (A.S.); (E.F.); (V.R.); (L.D.C.)
- Department of Medicine, AOUI Verona, 37134 Verona, Italy
| |
Collapse
|
14
|
Demir S, Mentese A, Kucuk H, Yulug E, Turkmen Alemdar N, Ayazoglu Demir E, Aliyazicioglu Y. Ethyl pyruvate attenuates cisplatin-induced ovarian injury in rats via activating Nrf2 pathway. Drug Chem Toxicol 2024; 47:218-226. [PMID: 37246941 DOI: 10.1080/01480545.2023.2217481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 05/30/2023]
Abstract
Although cisplatin (CDDP) is an antineoplastic drug widely used for the treatment of various tumors, its toxicity on the reproductive system is a concern for patients. Ethyl pyruvate (EP) possesses potent antioxidant and anti-inflammatory activities. The objective of this study was to evaluate the therapeutic potential of EP on CDDP-mediated ovotoxicity for the first time. Rats were exposed to CDDP (5 mg/kg) and then treated with two doses of EP (20 and 40 mg/kg) for 3 days. Serum fertility hormone markers were evaluated using ELISA kits. Oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers were also determined. In addition, how CDDP affects the nuclear factor erythroid 2-associated factor 2 (Nrf2) pathway and the effect of EP on this situation were also addressed. EP improved CDDP-induced histopathological findings and restored decreasing levels of fertility hormones. EP treatment also reduced the levels of CDDP-mediated OS, inflammation, ERS and apoptosis. In addition, EP attenuated CDDP-induced suppression in the levels of Nrf2 and its target genes, including heme oxygenase-1, NAD(P)H quinone dehydrogenase-1, superoxide dismutase and glutathione peroxidase. Histological and biochemical results showed that EP can have therapeutic effects against CDDP-induced ovotoxicity with antioxidant, anti-inflammatory and Nrf2 activator activities.
Collapse
Affiliation(s)
- Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Hatice Kucuk
- Department of Pathology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon, Turkey
| | - Esin Yulug
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize, Turkey
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, Trabzon, Turkey
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
15
|
Kamińska D, Skrzycki M. Lipid droplets, autophagy, and ER stress as key (survival) pathways during ischemia-reperfusion of transplanted grafts. Cell Biol Int 2024; 48:253-279. [PMID: 38178581 DOI: 10.1002/cbin.12114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Ischemia-reperfusion injury is an event concerning any organ under a procedure of transplantation. The early result of ischemia is hypoxia, which causes malfunction of mitochondria and decrease in cellular ATP. This leads to disruption of cellular metabolism. Reperfusion also results in cell damage due to reoxygenation and increased production of reactive oxygen species, and later by induced inflammation. In damaged and hypoxic cells, the endoplasmic reticulum (ER) stress pathway is activated by increased amount of damaged or misfolded proteins, accumulation of free fatty acids and other lipids due to inability of their oxidation (lipotoxicity). ER stress is an adaptive response and a survival pathway, however, its prolonged activity eventually lead to induction of apoptosis. Sustaining cell functionality in stress conditions is a great challenge for transplant surgeons as it is crucial for maintaining a desired level of graft vitality. Pathways counteracting negative consequences of ischemia-reperfusion are autophagy and lipid droplets (LD) metabolism. Autophagy remove damaged organelles and molecules driving them to lysosomes, digested simpler compounds are energy source for the cell. Mitophagy and ER-phagy results in improvement of cell energetic balance and alleviation of ER stress. This is important in sustaining metabolic homeostasis and thus cell survival. LD metabolism is connected with autophagy as LD are degraded by lipophagy, a source of free fatty acids and glycerol-thus autophagy and LD can readily remove lipotoxic compounds in the cell. In conclusion, monitoring and pharmaceutic regulation of those pathways during transplantation procedure might result in increased/improved vitality of transplanted organ.
Collapse
Affiliation(s)
- Daria Kamińska
- Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warszawa, Poland
| | - Michał Skrzycki
- Chair and Department of Biochemistry, Medical University of Warsaw, Warszawa, Poland
| |
Collapse
|
16
|
Demir EA. Syringic acid alleviates cisplatin-induced ovarian injury through modulating endoplasmic reticulum stress, inflammation and Nrf2 pathway. J Trace Elem Med Biol 2024; 82:127356. [PMID: 38086229 DOI: 10.1016/j.jtemb.2023.127356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Reproductive toxicity is one of the most important side effects of cisplatin (CIS) and leading to discontinuation of treatment. Syringic acid (SA) is a phenolic acid whose industrial use has increased in recent years due to its antioxidant properties. Recent reports highlight the importance of the supressed Nrf2 pathway in the molecular pathogenesis of CIS toxicity. Therefore, this study aimed to evaluate the therapeutic effect of SA on CIS-induced ovotoxicity through the Nrf2 pathway for the first time. MATERIAL AND METHODS Thirty female rats were divided into 5 groups: control, CIS, CIS+SA (5 and 10 mg/kg) and only SA (per se, 10 mg/kg). CIS was administered intraperitoneally at a dose of 5 mg/kg on the 1st day, injections of SA followed by three consecutive days in the rats. Serum anti-mullerian hormone (AMH) levels and ovarian oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS), apoptosis and Nrf2 pathway markers were determined colorimetrically. Histopathological examinations of the ovaries with hematoxylin and eosin staining were also used to evaluate CIS-induced ovotoxicity. RESULTS The CIS treatment depleted serum AMH levels, caused histopathological findings and increased OS, inflammation, ERS and apoptosis levels in ovarian tissue. However, treatments with SA significantly ameliorated CIS-induced biochemical and histopathological changes by activating Nrf2 pathway. CONCLUSION The promising adjuvant potential of SA to alleviate CIS-related ovarian damage should be supported by more comprehensive studies.
Collapse
Affiliation(s)
- Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, 61750 Trabzon, Turkey.
| |
Collapse
|
17
|
Hiyamizu S, Ishida Y, Yasuda H, Kuninaka Y, Nosaka M, Ishigami A, Shimada E, Kimura A, Yamamoto H, Osako M, Zhang W, Goto U, Kamata T, Kondo T. Forensic significance of intracardiac expressions of Nrf2 in acute myocardial ischemia. Sci Rep 2024; 14:4046. [PMID: 38374168 PMCID: PMC10876625 DOI: 10.1038/s41598-024-54530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
When exposed to oxidative and electrophilic stress, a protective antioxidant response is initiated by nuclear factor erythroid 2-related factor 2 (Nrf2). However, the extent of its importance in the forensic diagnosis of acute ischemic heart diseases (AIHD), such as myocardial infarction (MI), remains uncertain. On the other hand, immunohistochemical analyses of fibronectin (FN) and the terminal complement complex (C5b-9) prove valuable in identifying myocardial ischemia that precedes necrosis during the postmortem diagnosis of sudden cardiac death (SCD). In this study, we investigated the immunohistochemical levels of Nrf2, FN, and C5b-9 in human cardiac samples to explore their forensic relevance for the identification of acute cardiac ischemia. Heart samples were obtained from 25 AIHD cases and 39 non-AIHD cases as controls. Nrf2 was localized in the nuclei of cardiomyocytes, while FN and C5b-9 were detected in the myocardial cytoplasm. The number of intranuclear Nrf2 positive signals in cardiomyocytes increased in AIHD cases compared to control cases. Additionally, the grading of positive portions of cardiac FN and C5b-9 in the myocardium was also significantly enhanced in AIHD, compared to controls. Collectively, these results indicate that the immunohistochemical investigation of Nrf2 combined with FN, and/or C5b-9 holds the potential for identifying early-stage myocardial ischemic lesions in cases of SCD.
Collapse
Affiliation(s)
- Shion Hiyamizu
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Haruki Yasuda
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Akiko Ishigami
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Emi Shimada
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Hiroki Yamamoto
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Miyu Osako
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Wei Zhang
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Utako Goto
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Ten Kamata
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| |
Collapse
|
18
|
Demir S, Mentese A, Usta ZT, Alemdar NT, Demir EA, Aliyazicioglu Y. Alpha-pinene neutralizes cisplatin-induced reproductive toxicity in male rats through activation of Nrf2 pathway. Int Urol Nephrol 2024; 56:527-537. [PMID: 37789204 DOI: 10.1007/s11255-023-03817-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE Testicular toxicity is one of the most important side effects of cisplatin (CP) therapy. Alpha-pinene (AP) is a naturally occurring monoterpene with antioxidant character in plants. Here, we aimed to evaluate the therapeutic activity of AP against CP-induced testicular toxicity by including the nuclear factor erythroid 2-associated factor 2 (Nrf2) pathway in rats. METHODS Thirty male rats were divided into 5 groups: control, CP, CP + AP (5 and 10 mg/kg) and only AP (10 mg/kg). CP was administered intraperitoneally at a dose of 5 mg/kg on the first day, followed by three consecutive injections of AP. Serum reproductive hormone levels were evaluated using ELISA kits. Oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers in testicular tissue were also determined colorimetrically. In addition, how CP affects Nrf2 pathway and the effect of AP on this situation were also addressed. RESULTS Treatment with CP significantly increased OS, inflammation, ERS and apoptosis in testicular tissue. Administrations of AP resulted in an amelioration of these altered parameters. The mechanism of therapeutic effect of AP appeared to involve induction of Nrf2. Furthermore, these results were also confirmed by histological data. CONCLUSION Results suggest that AP can exhibit therapeutic effects against CP-induced testicular toxicity. It can be concluded that AP may be a potential molecule to abolish reproductive toxicity after chemotherapy.
Collapse
Affiliation(s)
- Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Zeynep Turkmen Usta
- Department of Medical Pathology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, 61750, Trabzon, Turkey
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
19
|
Xu C, Xia L, Xu D, Liu Y, Jin P, Zhai M, Mao Y, Wang Y, Wen A, Yang J, Yang L. Cardioprotective effects of asiaticoside against diabetic cardiomyopathy: Activation of the AMPK/Nrf2 pathway. J Cell Mol Med 2024; 28:e18055. [PMID: 38113341 PMCID: PMC10826442 DOI: 10.1111/jcmm.18055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a chronic microvascular complication of diabetes that is generally defined as ventricular dysfunction occurring in patients with diabetes and unrelated to known causes. Several mechanisms have been proposed to contribute to the occurrence and persistence of DCM, in which oxidative stress and autophagy play a non-negligible role. Diabetic cardiomyopathy is involved in a variety of physiological and pathological processes. The 5' adenosine monophosphate-activated protein kinase/nuclear factor-erythroid 2-related factor 2 (AMPK/Nrf2) are expressed in the heart, and studies have shown that asiaticoside (ASI) and activated AMPK/Nrf2 have a protective effect on the myocardium. However, the roles of ASI and AMPK/Nrf2 in DCM are unknown. The intraperitoneal injection of streptozotocin (STZ) and high-fat feed were used to establish the DCM models in 100 C57/BL mice. Asiaticoside and inhibitors of AMPK/Nrf2 were used for intervention. Cardiac function, oxidative stress, and autophagy were measured in mice. DCM mice displayed increased levels of oxidative stress while autophagy levels declined. In addition, AMPK/Nrf2 was activated in DCM mice with ASI intervention. Further, we discovered that AMPK/Nrf2 inhibition blocked the protective effect of ASI by compound C and treatment with ML-385. The present study demonstrates that ASI exerts a protective effect against DCM via the potential activation of the AMPK/Nrf2 pathway. Asiaticoside is a potential therapeutic target for DCM.
Collapse
Affiliation(s)
- Chennian Xu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of PharmacyAir Force Medical UniversityXi'anShaanxiChina
- Department of Cardiovascular Surgery, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
- Department of Cardiovascular SurgeryGeneral Hospital of Northern Theatre CommandShenyangLiaoningChina
| | - Lin Xia
- Department of Cardiovascular SurgeryGeneral Hospital of Northern Theatre CommandShenyangLiaoningChina
| | - Dengyue Xu
- Department of Cardiovascular SurgeryGeneral Hospital of Northern Theatre CommandShenyangLiaoningChina
- School of Biomedical Engineering, Faculty of MedicineDalian University of TechnologyDalianChina
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Ping Jin
- Department of Cardiovascular Surgery, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Yu Mao
- Department of Cardiovascular Surgery, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Yiwei Wang
- Department of Cardiovascular Surgery, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Anguo Wen
- Department of Cardiothoracic SurgeryThe 79th Group Military Hospital of the Chinese People's Liberation ArmyLiaoyangLiaoning ProvinceChina
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Lifang Yang
- Department of AnesthesiologyXi'an Children's HospitalXi'anShaanxiChina
| |
Collapse
|
20
|
Liu C, Xu X, He X, Ren J, Chi M, Deng G, Li G, Nasser MI. Activation of the Nrf-2/HO-1 signalling axis can alleviate metabolic syndrome in cardiovascular disease. Ann Med 2023; 55:2284890. [PMID: 38039549 PMCID: PMC10836253 DOI: 10.1080/07853890.2023.2284890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Background: Cardiovascular disease (CVD) is widely observed in modern society. CVDs are responsible for the majority of fatalities, with heart attacks and strokes accounting for approximately 80% of these cases. Furthermore, a significant proportion of these deaths, precisely one-third, occurs in individuals under 70. Metabolic syndrome encompasses a range of diseases characterized by various physiological dysfunctions. These include increased inflammation in adipose tissue, enhanced cholesterol synthesis in the liver, impaired insulin secretion, insulin resistance, compromised vascular tone and integrity, endothelial dysfunction, and atheroma formation. These factors contribute to the development of metabolic disorders and significantly increase the likelihood of experiencing cardiovascular complications.Method: We selected studies that proposed hypotheses regarding metabolic disease syndrome and cardiovascular disease (CVD) and the role of Nrf2/HO-1 and factor regulation in CVD research investigations based on our searches of Medline and PubMed.Results: A total of 118 articles were included in the review, 16 of which exclusively addressed hypotheses about the role of Nrf2 on Glucose regulation, while 16 involved Cholesterol regulation. Likewise, 14 references were used to prove the importance of mitochondria on Nrf2. Multiple studies have provided evidence suggesting the involvement of Nrf2/HO-1 in various physiological processes, including metabolism and immune response. A total of 48 research articles and reviews have been used to highlight the role of metabolic syndrome and CVD.Conclusion: This review provides an overview of the literature on Nrf2/HO-1 and its role in metabolic disease syndrome and CVD.
Collapse
Affiliation(s)
- Chi Liu
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xingli Xu
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Gang Deng
- Department of Cardiac Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Guisen Li
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Mentese A, Demir S, Mungan SA, Alemdar NT, Demir EA, Aliyazicioglu Y. Gentisic acid ameliorates cisplatin-induced reprotoxicity through suppressing endoplasmic reticulum stress and upregulating Nrf2 pathway. Tissue Cell 2023; 85:102256. [PMID: 37918215 DOI: 10.1016/j.tice.2023.102256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Reproductive toxicity is a serious side effect of cisplatin (CP) chemotherapy. Gentisic acid (GTA) is a phenolic acid with strong antioxidant properties. Here, we aimed to determine therapeutic effect of GTA against CP-induced testicular toxicity in rats for the first time. Male Sprague-Dawley rats received a single dose of CP (5 mg/kg; intraperitoneal) and treated with GTA (1.5 and 3 mg/kg; intraperitoneal; 3 consecutive days). The levels of oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS) and apoptosis biomarkers were assessed in the testicular tissue of rats. In addition, how CP affects the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and the effect of GTA on this situation were also addressed in the testicular tissue. CP administration induced histopathological changes in testicular tissue of rats with a significant increase in OS, inflammation, ERS and apoptosis biomarkers and a decrease in antioxidant capacity and Nrf2 expression levels. Administrations of GTA resulted in an amelioration of these altered parameters. These data suggest that GTA may be a potential therapeutic agent against CP-induced testicular toxicity. Activation of the Nrf2 pathway plays a key role of this therapeutic effect of GTA.
Collapse
Affiliation(s)
- Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Sevdegul Aydin Mungan
- Department of Medical Pathology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey; Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, 61750 Trabzon, Turkey
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
22
|
Yi S, Cao H, Zheng W, Wang Y, Li P, Wang S, Zhou Z. Targeting the opioid remifentanil: Protective effects and molecular mechanisms against organ ischemia-reperfusion injury. Biomed Pharmacother 2023; 167:115472. [PMID: 37716122 DOI: 10.1016/j.biopha.2023.115472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Opioids are widely used in clinical practice by activating opioid receptors (OPRs), but their clinical application is limited by a series of side effects. Researchers have been making tremendous efforts to promote the development and application of opioids. Fortunately, recent studies have identified the additional effects of opioids in addition to anesthesia and analgesia, particularly in terms of organ protection against ischemia-reperfusion (I/R) injury, with unique advantages. I/R injury in vital organs not only leads to cell dysfunction and structural damage but also induces acute and chronic organ failure, even death. Early prevention and appropriate therapeutic targets for I/R injury are crucial for organ protection. Opioids have shown cardioprotective effects for over 20 years, especially remifentanil, a derivative of fentanyl, which is a new ultra-short-acting opioid analgesic widely used in clinical anesthesia induction and maintenance. In this review, we provide current knowledge about the physiological effects related to OPR-mediated organ protection, focusing on the protective effect and mechanism of remifentanil on I/R injury in the heart and other vital organs. Herein, we also explored the potential application of remifentanil in clinical I/R injury. These findings provide a theoretical basis for the use of remifentanil to inhibit or alleviate organ I/R injury during the perioperative period and provide insights for opioid-induced human organ protection and drug development.
Collapse
Affiliation(s)
- Shuyuan Yi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China; School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Hong Cao
- Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China
| | - Weilei Zheng
- Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Shoushi Wang
- Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China.
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
23
|
Zhang J, Zhao Y, Gong N. XBP1 Modulates the Aging Cardiorenal System by Regulating Oxidative Stress. Antioxidants (Basel) 2023; 12:1933. [PMID: 38001786 PMCID: PMC10669121 DOI: 10.3390/antiox12111933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic-region leucine zipper (bZIP) transcription factor. Over recent years, the powerful biological functions of XBP1 in oxidative stress have been gradually revealed. When the redox balance remains undisturbed, oxidative stress plays a role in physiological adaptations and signal transduction. However, during the aging process, increased cellular senescence and reduced levels of endogenous antioxidants cause an oxidative imbalance in the cardiorenal system. Recent studies from our laboratory and others have indicated that these age-related cardiorenal diseases caused by oxidative stress are guided and controlled by a versatile network composed of diversified XBP1 pathways. In this review, we describe the mechanisms that link XBP1 and oxidative stress in a range of cardiorenal disorders, including mitochondrial instability, inflammation, and alterations in neurohumoral drive. Furthermore, we propose that differing degrees of XBP1 activation may cause beneficial or harmful effects in the cardiorenal system. Gaining a comprehensive understanding of how XBP1 exerts influence on the aging cardiorenal system by regulating oxidative stress will enhance our ability to provide new directions and strategies for cardiovascular and renal safety outcomes.
Collapse
Affiliation(s)
- Ji Zhang
- Anhui Province Key Laboratory of Genitourinary Diseases, Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Hefei 230022, China;
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yuanyuan Zhao
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Nianqiao Gong
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
24
|
Mentese A, Demir S, Kucuk H, Yulug E, Alemdar NT, Demir EA, Aliyazicioglu Y. Vanillic acid abrogates cisplatin-induced ovotoxicity through activating Nrf2 pathway. Tissue Cell 2023; 84:102161. [PMID: 37478646 DOI: 10.1016/j.tice.2023.102161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Although cisplatin (CDDP) is an effective anticancer agent, the ovotoxicity that can occur in female patients limits its use. Oxidative stress (OS) and inflammation are known to contribute to CDDP-induced ovotoxicity. Vanillic acid (VA) is a dietary herbal secondary metabolite with high free radical scavenging activity. It was aimed to evaluate the therapeutic effects of VA against CDDP-induced ovotoxicity in rats in this study for the first time. Ovotoxicity was achieved with a single dose of CDDP (5 mg/kg) in female rats. The therapeutic effect of VA was evaluated with 3-day administration of two different doses (5 and 10 mg/kg). While OS, inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers were measured in tissue samples, the levels of reproductive hormones were determined in serum samples using colorimetric methods. The results showed that CDDP-induced nuclear factor erythroid 2-associated factor 2 (Nrf2) inhibition combined with increased OS, inflammation, ERS and apoptosis increased ovarian damage. VA treatments reversed these changes via activating Nrf2 pathway dose-dependently. In addition, histopathological findings also supported the biochemical results. VA may be a good therapeutic molecule candidate for CDDP-induced ovarian damage due to strong antioxidant and Nrf2 activator properties.
Collapse
Affiliation(s)
- Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Hatice Kucuk
- Department of Pathology, Kanuni Training and Research Hospital, University of Health Sciences, 61250 Trabzon, Turkey
| | - Esin Yulug
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey; Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Elif Ayazoglu Demir
- Department of Ch emistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, 61750 Trabzon, Turkey
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
25
|
Casper E. The crosstalk between Nrf2 and NF-κB pathways in coronary artery disease: Can it be regulated by SIRT6? Life Sci 2023; 330:122007. [PMID: 37544377 DOI: 10.1016/j.lfs.2023.122007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Oxidative stress and inflammation are major mechanisms responsible for the progression of CAD. Nuclear transcription factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that modulates the cellular redox status. Nrf2 upregulation increases the expression of antioxidant genes, decreases the expression of Nuclear factor-kappa B (NF-kB), and increases free radical metabolism. Activated NF-kB increases the production of inflammatory cytokines causing endothelial dysfunction. The two pathways of Nrf2 and NF-kB can regulate the expression of each other. Foremost, the Nrf2 pathway can decrease the level of active NF-κB by increasing the level of antioxidants and cytoprotective enzymes. Furthermore, the Nrf2 pathway prevents IκB-α degradation, an inhibitor of NF-kB, and thus inhibits NF-κB mediated transcription. Also, NF-kB transcription inhibits Nrf2 activation by reducing the antioxidant response element (ARE) transcription. Sirtuin 6 (SIRT6) is a member of the Sirtuins family that was found to protect against cardiovascular diseases. SIRT6 can suppress the production of Reactive oxygen species (ROS) through deacetylation of NRF2 which results in NRF2 activation. Furthermore, SIRT6 can inhibit the inflammatory process through the downregulation of NF-kB transcription. Therefore, targeting sirtuins could be a therapeutic strategy to treat CAD. This review describes the potential role of SIRT6 in regulating the crosstalk between NRF2 and NF-kB signaling pathways in CAD.
Collapse
Affiliation(s)
- Eman Casper
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
26
|
Cao X, Yao F, Zhang B, Sun X. Mitochondrial dysfunction in heart diseases: Potential therapeutic effects of Panax ginseng. Front Pharmacol 2023; 14:1218803. [PMID: 37547332 PMCID: PMC10399631 DOI: 10.3389/fphar.2023.1218803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Heart diseases have a high incidence and mortality rate, and seriously affect people's quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. Panax ginseng (P. ginseng), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that P. ginseng and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of P. ginseng on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of P. ginseng.
Collapse
Affiliation(s)
- Xinxin Cao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Fan Yao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
27
|
Wang Z, Li J, Liu Z, Yue L. Nrf2 as a novel diagnostic biomarker for papillary thyroid carcinoma. Eur J Histochem 2023; 67. [PMID: 36951264 PMCID: PMC10080292 DOI: 10.4081/ejh.2023.3622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/28/2023] [Indexed: 03/22/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy. However, it is very difficult to distinguish PTC from benign carcinoma. Thus, specific diagnostic biomarkers are actively pursued. Previous studies observed that Nrf2 was highly expressed in PTC. Based on this research, we hypothesized that Nrf2 may serve as a novel specific diagnostic biomarker. A single-center retrospective study, including 60 patients with PTC and 60 patients with nodular goiter, who underwent thyroidectomy at the Central Theater General Hospital from 2018 to July 2020, was conducted. The clinical data of the patients were collected. Nrf2, BRAF V600E, CK-19, and Gal-3 proteins were compared from paraffin samples of the patients. Through this study, we obtained the following results: i) Nrf2 exhibits high abundance expression in PTC, but not in adjacent to PTC and nodular goiter; increased Nrf2 expression could serve as a valuable biomarker for PTC diagnosis; the sensitivity and specificity for the diagnosis of PTC were 96.70% and 89.40%, respectively. ii) Nrf2 also shows higher expression in PTC with lymph node metastasis, but not adjacent to PTC and nodular goiter, thus the increased Nrf2 expression might serve as a valuable predictor for lymph node metastasis in PTC patients; the sensitivity and specificity for the prediction in lymph node metastasis were 96.00% and 88.57%, respectively; excellent diagnostic agreements were found between Nrf2 and other routine parameters including HO-1, NQO1 and BRAF V600E. iii) The downstream molecular expression of Nrf2 including HO-1 and NQO1 consistently increased. In conclusion, Nrf2 displays a high abundance expression in human PTC, which leads to the higher expression of downstream transcriptional proteins: HO-1 and NQO1. Moreover, Nrf2 can be used as an extra biomarker for differential diagnosis of PTC and a predictive biomarker for lymph node metastasis of PTC.
Collapse
Affiliation(s)
- Zhiyang Wang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan.
| | - Jing Li
- Southern Medical University, Guangzhou.
| | - Ziwei Liu
- Wuhan University of Science and Technology, Wuhan.
| | - Ling Yue
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan; Hubei University of Chinese Medicine, Wuhan.
| |
Collapse
|
28
|
Yuvaraj S, Ajeeth AK, Puhari SSM, Abhishek A, Ramprasath T, Vasudevan V, Vignesh N, Selvam GS. Chrysin protects cardiac H9c2 cells against H 2O 2-induced endoplasmic reticulum stress by up-regulating the Nrf2/PERK pathway. Mol Cell Biochem 2023; 478:539-553. [PMID: 35943656 DOI: 10.1007/s11010-022-04531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022]
Abstract
Oxidative and endoplasmic reticulum (ER) stress-mediated cardiac apoptosis is an essential pathological process in cardiovascular diseases (CVDs). Chrysin (Chy) is a natural flavonoid that exerts several health benefits, particularly anti-oxidative and anti-apoptotic effects. However, its protective effect against CVDs and its mechanism of action at a molecular level remains unclear. Therefore, the present study aimed to investigate the interaction of ER stress response protein with Chy by computational analysis and molecular action in H2O2-induced oxidative and ER stress in cardiomyoblast cells. H9c2 cells were pre-treated with 50 μM of Chy for 24 h and exposed to H2O2 for 1 h. Explore the Chy-mediated Nrf2 signalling on ER stress reduction, H9c2 cell lines were transfected with Nrf2 siRNA for 48 h and further treated with Chy for 24 h and subjected to H2O2 for 1 h. Chy pre-treatment increased the Nrf2-regulated gene expression, reduced the ER stress signalling genes such as CHOP and GRP78, and increased the PERK and AFT6 expression compared to H2O2-treated cells. Chy preincubation down-regulated the expression of PI3K, NF-κB, and caspase-3. Fluorescence staining revealed that Chy reduced intracellular ROS generation, ER stress, apoptosis, and increased MMP. This beneficial effect of Chy was abolished when silencing Nrf2 in H9c2 cells. Overall, the present study confirmed that Chy showed the cardioprotective effect by attenuating ER stress via the activation of Nrf2 signalling. Therefore, the study concluded that improving Nrf2 signalling by Chy supplementation could provide a promising therapeutic target in oxidative and ER stress-mediated CVDs complications.
Collapse
Affiliation(s)
- Subramani Yuvaraj
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Arumugam Kalaiselvi Ajeeth
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Shanavas Syed Mohamed Puhari
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Albert Abhishek
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Varadaraj Vasudevan
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Narasimman Vignesh
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Govindan Sadasivam Selvam
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
29
|
Batty M, Bennett MR, Yu E. The Role of Oxidative Stress in Atherosclerosis. Cells 2022; 11:3843. [PMID: 36497101 PMCID: PMC9735601 DOI: 10.3390/cells11233843] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular system and is the leading cause of cardiovascular diseases worldwide. Excessive generation of reactive oxygen species (ROS) leads to a state of oxidative stress which is a major risk factor for the development and progression of atherosclerosis. ROS are important for maintaining vascular health through their potent signalling properties. However, ROS also activate pro-atherogenic processes such as inflammation, endothelial dysfunction and altered lipid metabolism. As such, considerable efforts have been made to identify and characterise sources of oxidative stress in blood vessels. Major enzymatic sources of vascular ROS include NADPH oxidases, xanthine oxidase, nitric oxide synthases and mitochondrial electron transport chains. The production of ROS is balanced by ROS-scavenging antioxidant systems which may become dysfunctional in disease, contributing to oxidative stress. Changes in the expression and function of ROS sources and antioxidants have been observed in human atherosclerosis while in vitro and in vivo animal models have provided mechanistic insight into their functions. There is considerable interest in utilising antioxidant molecules to balance vascular oxidative stress, yet clinical trials are yet to demonstrate any atheroprotective effects of these molecules. Here we will review the contribution of ROS and oxidative stress to atherosclerosis and will discuss potential strategies to ameliorate these aspects of the disease.
Collapse
Affiliation(s)
| | | | - Emma Yu
- Section of Cardiorespiratory Medicine, University of Cambridge, Cambridge CB2 0BB, UK
| |
Collapse
|
30
|
Wang T, Zhou T, Xu M, Wang S, Wu A, Zhang M, Zhou YL, Shi J. Platelet membrane-camouflaged nanoparticles carry microRNA inhibitor against myocardial ischaemia‒reperfusion injury. J Nanobiotechnology 2022; 20:434. [PMID: 36195952 PMCID: PMC9531416 DOI: 10.1186/s12951-022-01639-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/18/2022] [Indexed: 12/04/2022] Open
Abstract
The incidence of myocardial ischaemia‒reperfusion injury (MIRI) is increasing every year, and there is an urgent need to develop new therapeutic approaches. Nrf2 is thought to play a protective role during MIRI and it is regulated by microRNAs (miRNAs). This study focused on PLGA nanoparticles camouflaged by platelet membrane vesicles (PMVs) (i.e., PMVs@PLGA complexes) carrying microRNA inhibitors, which regulate Nrf2 and can play a therapeutic role in the MIRI process. In vitro and in vivo characterization showed that PMVs@PLGA has excellent transfection efficiency, low toxicity and good targeting. MicroRNAs that effectively regulate Nrf2 were identified, and then PMVs@PLGA-miRNA complexes were prepared and used for in vitro and in vivo treatment. PMVs@PLGA-miRNA complexes can effectively target the delivery of inhibitors to cardiomyocytes. Our results suggest that PMVs@PLGA complexes are a novel delivery system and a novel biological approach to the treatment of MIRI.
Collapse
Affiliation(s)
- Tianyi Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Tingting Zhou
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Mingming Xu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Shuo Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Anqi Wu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Mingyang Zhang
- Department of Forensic Sciences, Soochow University, NO.178, Ganjiang Road, Suzhou, 215000, Jiangsu, China.
| | - You Lang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China. .,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China. .,School of Public Health, Nantong University, NO.9, Seyuan Road, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
31
|
LncRNA H19 inhibits ER stress induced apoptosis and improves diabetic cardiomyopathy by regulating PI3K/AKT/mTOR axis. Aging (Albany NY) 2022; 14:6809-6828. [PMID: 36044268 PMCID: PMC9467416 DOI: 10.18632/aging.204256] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/17/2022] [Indexed: 02/06/2023]
Abstract
Objective: Extensive studies have shown that ERS may be implicated in the pathogenesis of DCM. We explored the therapeutic effects of lncRNAH19 on DCM and its effect on ERS-associated cardiomyocyte apoptosis. Methods: C57/BL-6j mice were randomly divided into 3 groups: non-DM group (controls), DM group (DCM), and lncRNAH19 overexpression group (DCM+H19 group). The effect of H19 on cardiac function was detected. The effect of H19 on cardiomyocyte apoptosis and cardiac fibrosis in DM was examined. Differentially expressed genes (DEGs) and activated pathways were examined by bioinformatics analysis. STRING database was applied to construct a PPI network using Cytoscape software. The expression of p-PERK, p-IRE1, ATF6, CHOP, cleaved caspase-3, -9, -12 and BAX proteins in cardiac tissue was used to determine the ERS-associated apoptotic indicators. We established the HG-stimulated inflammatory cell model. The expression of p-PERK and CHOP in HL-1 cells following HG was determined by immunofluorescence labeling. The effects of H19 on ERS and PI3K/AKT/mTOR pathway were also detected. Results: H19 improved left ventricular dysfunction in DM. H19 could reduce cardiomyocytes apoptosis and improve fibrosis in vivo. H19 could reduce the expression of p-PERK, p-IRE1α, ATF6, CHOP, cleaved caspase-3, cleaved caspase-9, cleaved caspase-12, and BAX proteins in cardiac tissues. Furthermore, H19 repressed oxidative stress, ERS and apoptosis in vitro. Moreover, the effect of H19 on ERS-associated apoptosis might be rescued by LY294002 (the specific inhibitor for PI3K and AKT). Conclusion: H19 attenuates DCM in DM and ROS, ERS-induced cardiomyocyte apoptosis, which is associated with the activation of PI3K/AKT/mTOR signaling pathway.
Collapse
|
32
|
Jiang X, Cao M, Wu J, Wang X, Zhang G, Yang C, Gao P, Zou Y. Protections of transcription factor BACH2 and natural product myricetin against pathological cardiac hypertrophy and dysfunction. Front Physiol 2022; 13:971424. [PMID: 36105283 PMCID: PMC9465486 DOI: 10.3389/fphys.2022.971424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Pathological hypertrophic myocardium under consistent adverse stimuli eventually can cause heart failure. This study aims to explore the role of BACH2, a member of the basic region leucine zipper transcription factor family, in cardiac hypertrophy and failure. Transverse aortic constriction surgery was operated to induce cardiac hypertrophy and failure in mice. BACH2 was overexpressed in mice through tail vein injection of AAV9-Bach2. Mice with systemic or cardiac-specific knockdown of Bach2 were adopted. Neonatal rat ventricular myocytes (NRVMs) were isolated and infected with lentivirus to overexpress Bach2 or transfected with siRNA to knock down Bach2. Our data showed that overexpression of BACH2 ameliorated TAC-induced cardiac hypertrophy and failure in mice and decreased isoproterenol (ISO)-triggered myocyte hypertrophy in NRVMs. Systemic or cardiac-specific knockdown of Bach2 worsened the cardiac hypertrophy and failure phenotype in mice. Further assays showed that BACH2 bound to the promotor region of Akap6 at the -600 to -587 site and repressed its expression, which functioned as a crucial scaffold for cardiac hypertrophy and failure signaling pathways. Small molecular natural product library screening suggested that myricetin could up-regulate expression of Bach2 and simultaneously suppress the transcriptional levels of hypertrophic marker genes Bnp and Myh7. Further studies showed that myricetin exerted a BACH2-dependent protective effect against cardiac hypertrophy in vivo and in vitro. Taken together, our findings demonstrated that BACH2 plays a crucial role in the regulation of cardiac hypertrophy and failure and can be a potential therapeutic target in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pan Gao
- *Correspondence: Yunzeng Zou, ; Pan Gao,
| | | |
Collapse
|
33
|
Xu C, Liu Y, Yang J, Zhai M, Fan Z, Qiao R, Jin P, Yang L. Effects of berbamine against myocardial ischemia/reperfusion injury: Activation of the 5' adenosine monophosphate-activated protein kinase/nuclear factor erythroid 2-related factor pathway and changes in the mitochondrial state. Biofactors 2022; 48:651-664. [PMID: 35129229 PMCID: PMC9305777 DOI: 10.1002/biof.1820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
This study was designed to investigate whether berbamine (BA)-induced cardioprotective effects were related to 5' adenosine monophosphate-activated protein kinase (AMPK)/nuclear factor erythroid 2-related factor (Nrf2) signaling and changes in the mitochondria in myocardial ischemia/reperfusion (I/R) injury. C57/BL6 mice were exposed to BA (10 mg/kg/d), with or without administration of the AMPK specific inhibitor compound C (5 mg/kg/d) or the Nrf2 specific inhibitor ML-385 (30 mg/kg/d), and then subjected to a myocardial I/R operation. As expected, BA significantly improved post-ischemic cardiac function, reduced infarct size and apoptotic cell death, decreased oxidative stress, and improved the mitochondrial state. Furthermore, BA markedly increased AMPK activation, Nrf2 nuclear translocation, and the levels of NAD(P)H quinone dehydrogenase and heme oxygenase-1. Nevertheless, these BA-induced changes were abrogated by compound C. In addition, ML-385 also canceled the cardioprotective effects of BA but had little effect on AMPK activation. Our results demonstrate that BA alleviates myocardial I/R injury and the mitochondrial state by inhibiting apoptosis and oxidative stress via the AMPK/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Chennian Xu
- Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangChina
- Department of Cardiovascular SurgeryXijing Hospital, Air Force Medical UniversityXi'anChina
| | - Yang Liu
- Department of Cardiovascular SurgeryXijing Hospital, Air Force Medical UniversityXi'anChina
| | - Jian Yang
- Department of Cardiovascular SurgeryXijing Hospital, Air Force Medical UniversityXi'anChina
| | - Mengen Zhai
- Department of Cardiovascular SurgeryXijing Hospital, Air Force Medical UniversityXi'anChina
| | - Zhenge Fan
- Department of Cardiovascular SurgeryXijing Hospital, Air Force Medical UniversityXi'anChina
| | - Rui Qiao
- Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangChina
| | - Ping Jin
- Department of Cardiovascular SurgeryXijing Hospital, Air Force Medical UniversityXi'anChina
| | - Lifang Yang
- Department of AnesthesiologyXi'an Children's HospitalXi'anChina
| |
Collapse
|
34
|
Modification of Ischemia/Reperfusion-Induced Alterations in Subcellular Organelles by Ischemic Preconditioning. Int J Mol Sci 2022; 23:ijms23073425. [PMID: 35408783 PMCID: PMC8998910 DOI: 10.3390/ijms23073425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
It is now well established that ischemia/reperfusion (I/R) injury is associated with the compromised recovery of cardiac contractile function. Such an adverse effect of I/R injury in the heart is attributed to the development of oxidative stress and intracellular Ca2+-overload, which are known to induce remodeling of subcellular organelles such as sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils. However, repeated episodes of brief periods of ischemia followed by reperfusion or ischemic preconditioning (IP) have been shown to improve cardiac function and exert cardioprotective actions against the adverse effects of prolonged I/R injury. This protective action of IP in attenuating myocardial damage and subcellular remodeling is likely to be due to marked reductions in the occurrence of oxidative stress and intracellular Ca2+-overload in cardiomyocytes. In addition, the beneficial actions of IP have been attributed to the depression of proteolytic activities and inflammatory levels of cytokines as well as the activation of the nuclear factor erythroid factor 2-mediated signal transduction pathway. Accordingly, this review is intended to describe some of the changes in subcellular organelles, which are induced in cardiomyocytes by I/R for the occurrence of oxidative stress and intracellular Ca2+-overload and highlight some of the mechanisms for explaining the cardioprotective effects of IP.
Collapse
|
35
|
Roles of Cullin-RING Ubiquitin Ligases in Cardiovascular Diseases. Biomolecules 2022; 12:biom12030416. [PMID: 35327608 PMCID: PMC8946067 DOI: 10.3390/biom12030416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022] Open
Abstract
Maintenance of protein homeostasis is crucial for virtually every aspect of eukaryotic biology. The ubiquitin-proteasome system (UPS) represents a highly regulated quality control machinery that protects cells from a variety of stress conditions as well as toxic proteins. A large body of evidence has shown that UPS dysfunction contributes to the pathogenesis of cardiovascular diseases. This review highlights the latest findings regarding the physiological and pathological roles of cullin-RING ubiquitin ligases (CRLs), an essential player in the UPS, in the cardiovascular system. To inspire potential therapeutic invention, factors regulating CRL activities are also discussed.
Collapse
|
36
|
Han D, Wang F, Wang B, Qiao Z, Cui X, Zhang Y, Jiang Q, Liu M, Shangguan J, Zheng X, Bai Y, Du C, Shen D. A Novel Compound, Tanshinol Borneol Ester, Ameliorates Pressure Overload-Induced Cardiac Hypertrophy by Inhibiting Oxidative Stress via the mTOR/β-TrCP/NRF2 Pathway. Front Pharmacol 2022; 13:830763. [PMID: 35185583 PMCID: PMC8850779 DOI: 10.3389/fphar.2022.830763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 01/14/2023] Open
Abstract
Tanshinol borneol ester (DBZ) exerts anti-atherosclerotic and anti-inflammatory effects. However, its effects on cardiac hypertrophy are not well understood. In this work, we investigated the treatment effects and potential mechanisms of DBZ on the hypertrophic heart under oxidative stress and endoplasmic reticulum (ER) stress. A hypertrophic model was established in rats using transverse-aortic constriction (TAC) surgery and in neonatal rat cardiomyocytes (NRCMs) using angiotensin II (Ang II). Our results revealed that DBZ remarkably inhibited oxidative stress and ER stress, blocked autophagy flow, and decreased apoptosis in vivo and in vitro through nuclear NRF2 accumulation, and enhanced NRF2 stability via regulating the mTOR/β-TrcP/NRF2 signal pathway. Thus, DBZ may serve as a promising therapeutic for stress-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Dongjian Han
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuhang Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhentao Qiao
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyue Cui
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingjiao Jiang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Miaomiao Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiahong Shangguan
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an, China
| | - Yajun Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Yajun Bai, ; Chunyan Du, ; Deliang Shen,
| | - Chunyan Du
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- *Correspondence: Yajun Bai, ; Chunyan Du, ; Deliang Shen,
| | - Deliang Shen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yajun Bai, ; Chunyan Du, ; Deliang Shen,
| |
Collapse
|
37
|
Yang L, Yu S, Yang Y, Wu H, Zhang X, Lei Y, Lei Z. Berberine improves liver injury induced glucose and lipid metabolic disorders via alleviating ER stress of hepatocytes and modulating gut microbiota in mice. Bioorg Med Chem 2022; 55:116598. [PMID: 34979291 DOI: 10.1016/j.bmc.2021.116598] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022]
Abstract
Liver injury mediated by endoplasmic reticulum (ER) stress can cause many kinds of liver diseases including hepatic glucose and lipid metabolic disorders, and long term liver injury would lead to cirrhosis and hepatic cancer. Therefore, effective drugs for treating liver injury are urgent in need. Berberine is a multifunctional drug of traditional Chinese medicine, and it can improve various liver diseases. To study the effects of berberine on ER stress-induced liver injury, tunicamycin was administrated to C57BL/6 mice with or without berberine pre-treatment. H&E staining was used to check the morphology and histology of liver tissues. The serum and liver tissues were harvested to test biochemical indexes and the expression levels of genes related with glucose and lipid metabolism, ER stress and unfold protein response (UPR). 16S rDNA sequence technology was conducted to check the fecal microbiota. Pre-administration with berberine could alleviate the excess accumulation of triglyceride (TG) in the liver of mice treated with tunicamycin. Tunicamycin administration caused significant increase of the expression level of genes related to ER stress and UPR, such as CHOP, Grp78 and ATF6, but the berberine pre-treatment could significantly downregulate the expression level of these genes. Tunicamycin administration resulted in increased ratio of Prevotellaceae to Erysipelotrichaceae at the family level of the fecal microbiota in mice, and this trend was reversed by the pre-treatment of berberine. These results demonstrated that berberine could improve liver injury induced hepatic metabolic disorders through relieving ER stress in hepatocytes and regulating gut microbiota in mice.
Collapse
Affiliation(s)
- Lanxiang Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, P.R. China; School of Biological Engineering, Wuhu Institute of Technology, Wenjin West Road 201#, Wuhu 241003, P.R. China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Siping Yu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, P.R. China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19#, Yue-Xiu District, Guangzhou 510080, P.R. China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, P.R. China; School of Biological Engineering, Wuhu Institute of Technology, Wenjin West Road 201#, Wuhu 241003, P.R. China
| | - Xueying Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, P.R. China; School of Biological Engineering, Wuhu Institute of Technology, Wenjin West Road 201#, Wuhu 241003, P.R. China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, P.R. China
| | - Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, P.R. China.
| |
Collapse
|
38
|
Kim S, Lee SE, Yi S, Jun S, Yi YS, Nagar H, Kim CS, Shin C, Yeo MK, Kang YE, Oh SH. Tauroursodeoxycholic Acid Decreases Keloid Formation by Reducing Endoplasmic Reticulum Stress as Implicated in the Pathogenesis of Keloid. Int J Mol Sci 2021; 22:ijms221910765. [PMID: 34639105 PMCID: PMC8509846 DOI: 10.3390/ijms221910765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022] Open
Abstract
Keloids are a common form of pathologic wound healing and are characterized by an excessive production of extracellular matrix. This study examined the major contributing mechanism of human keloid pathogenesis using transcriptomic analysis. We identified the upregulation of mitochondrial oxidative stress response, protein processing in the endoplasmic reticulum, and TGF-β signaling in human keloid tissue samples compared to controls, based on ingenuity pathway and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Electron microscopic examinations revealed an increased number of dysmorphic mitochondria and expanded endoplasmic reticulum (ER) in human keloid tissue samples than that in controls. Western blot analysis performed using human tissues suggested noticeably higher ER stress signaling in keloids than in normal tissues. Treatment with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, significantly decreased scar formation in rabbit models, compared to normal saline and steroid injections. In summary, our findings demonstrate the contributions of mitochondrial dysfunction and dysregulated ER stress signaling in human keloid formation and the potential of TUDCA in the treatment of keloids.
Collapse
Affiliation(s)
- Sunje Kim
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.K.); (C.S.)
| | - Seong Eun Lee
- Research Institute for Medicinal Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.E.L.); (S.Y.)
| | - Shinae Yi
- Research Institute for Medicinal Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.E.L.); (S.Y.)
| | - Sangmi Jun
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Korea; (S.J.); (Y.-S.Y.)
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Yoon-Sun Yi
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Korea; (S.J.); (Y.-S.Y.)
| | - Harsha Nagar
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (H.N.); (C.-S.K.)
| | - Cuk-Seong Kim
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (H.N.); (C.-S.K.)
| | - Chungmin Shin
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.K.); (C.S.)
| | - Min-Kyung Yeo
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Yea Eun Kang
- Research Institute for Medicinal Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.E.L.); (S.Y.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence: (Y.E.K.); (S.-H.O.); Tel.: +82-42-280-7148 (Y.E.K.); +82-42-280-7387 (S.-H.O.); Fax: +82-42-280-7168 (Y.E.K.); +82-42-280-7384 (S.-H.O.)
| | - Sang-Ha Oh
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.K.); (C.S.)
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence: (Y.E.K.); (S.-H.O.); Tel.: +82-42-280-7148 (Y.E.K.); +82-42-280-7387 (S.-H.O.); Fax: +82-42-280-7168 (Y.E.K.); +82-42-280-7384 (S.-H.O.)
| |
Collapse
|
39
|
Farhadi Z, Esmailidehaj M, Rezvani ME, Shahbazian M, Jafary F, Ghafari MA, Alizade J, Azizian H. A review of the Effects of 17 β-Estradiol on Endoplasmic Reticulum Stress: Mechanisms and Pathway. PHYSIOLOGY AND PHARMACOLOGY 2021; 0:0-0. [DOI: 10.52547/phypha.26.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
40
|
Sharma S, Advani D, Das A, Malhotra N, Khosla A, Arora V, Jha A, Yadav M, Ambasta RK, Kumar P. Pharmacological intervention in oxidative stress as a therapeutic target in neurological disorders. J Pharm Pharmacol 2021; 74:461-484. [PMID: 34050648 DOI: 10.1093/jpp/rgab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Oxidative stress is a major cellular burden that triggers reactive oxygen species (ROS) and antioxidants that modulate signalling mechanisms. Byproducts generated from this process govern the brain pathology and functions in various neurological diseases. As oxidative stress remains the key therapeutic target in neurological disease, it is necessary to explore the multiple routes that can significantly repair the damage caused due to ROS and consequently, neurodegenerative disorders (NDDs). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is the critical player of oxidative stress that can also be used as a therapeutic target to combat NDDs. KEY FINDINGS Several antioxidants signalling pathways are found to be associated with oxidative stress and show a protective effect against stressors by increasing the release of various cytoprotective enzymes and also exert anti-inflammatory response against this oxidative damage. These pathways along with antioxidants and reactive species can be the defined targets to eliminate or reduce the harmful effects of neurological diseases. SUMMARY Herein, we discussed the underlying mechanism and crucial role of antioxidants in therapeutics together with natural compounds as a pharmacological tool to combat the cellular deformities cascades caused due to oxidative stress.
Collapse
Affiliation(s)
- Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Nishtha Malhotra
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Vanshika Arora
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Megha Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
41
|
Role of Oxidative Stress in Reperfusion following Myocardial Ischemia and Its Treatments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6614009. [PMID: 34055195 PMCID: PMC8149218 DOI: 10.1155/2021/6614009] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/21/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Myocardial ischemia is a disease with high morbidity and mortality, for which reperfusion is currently the standard intervention. However, the reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MI/RI). Oxidative stress is one of the most important pathological mechanisms in reperfusion injury, which causes apoptosis, autophagy, inflammation, and some other damage in cardiomyocytes through multiple pathways, thus causing irreversible cardiomyocyte damage and cardiac dysfunction. This article reviews the pathological mechanisms of oxidative stress involved in reperfusion injury and the interventions for different pathways and targets, so as to form systematic treatments for oxidative stress-induced myocardial reperfusion injury and make up for the lack of monotherapy.
Collapse
|
42
|
Ren J, Wu NN, Wang S, Sowers JR, Zhang Y. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol Rev 2021; 101:1745-1807. [PMID: 33949876 PMCID: PMC8422427 DOI: 10.1152/physrev.00030.2020] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The prevalence of heart failure is on the rise and imposes a major health threat, in part, due to the rapidly increased prevalence of overweight and obesity. To this point, epidemiological, clinical, and experimental evidence supports the existence of a unique disease entity termed “obesity cardiomyopathy,” which develops independent of hypertension, coronary heart disease, and other heart diseases. Our contemporary review evaluates the evidence for this pathological condition, examines putative responsible mechanisms, and discusses therapeutic options for this disorder. Clinical findings have consolidated the presence of left ventricular dysfunction in obesity. Experimental investigations have uncovered pathophysiological changes in myocardial structure and function in genetically predisposed and diet-induced obesity. Indeed, contemporary evidence consolidates a wide array of cellular and molecular mechanisms underlying the etiology of obesity cardiomyopathy including adipose tissue dysfunction, systemic inflammation, metabolic disturbances (insulin resistance, abnormal glucose transport, spillover of free fatty acids, lipotoxicity, and amino acid derangement), altered intracellular especially mitochondrial Ca2+ homeostasis, oxidative stress, autophagy/mitophagy defect, myocardial fibrosis, dampened coronary flow reserve, coronary microvascular disease (microangiopathy), and endothelial impairment. Given the important role of obesity in the increased risk of heart failure, especially that with preserved systolic function and the recent rises in COVID-19-associated cardiovascular mortality, this review should provide compelling evidence for the presence of obesity cardiomyopathy, independent of various comorbid conditions, underlying mechanisms, and offer new insights into potential therapeutic approaches (pharmacological and lifestyle modification) for the clinical management of obesity cardiomyopathy.
Collapse
Affiliation(s)
- Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Ne N Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Shuyi Wang
- School of Medicine, Shanghai University, Shanghai, China.,University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - James R Sowers
- Dalton Cardiovascular Research Center, Diabetes and Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
43
|
Different Expression of Mitochondrial and Endoplasmic Reticulum Stress Genes in Epicardial Adipose Tissue Depends on Coronary Atherosclerosis. Int J Mol Sci 2021; 22:ijms22094538. [PMID: 33926122 PMCID: PMC8123607 DOI: 10.3390/ijms22094538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022] Open
Abstract
The aim of our study was to analyze mitochondrial and endoplasmic reticulum (ER) gene expression profiles in subcutaneous (SAT) and epicardial (EAT) adipose tissue, skeletal muscle, and myocardium in patients with and without CAD undergoing elective cardiac surgery. Thirty-eight patients, 27 with (CAD group) and 11 without CAD (noCAD group), undergoing coronary artery bypass grafting and/or valvular surgery were included in the study. EAT, SAT, intercostal skeletal muscle, and right atrium tissue and blood samples were collected at the start and end of surgery; mRNA expression of selected mitochondrial and ER stress genes was assessed using qRT-PCR. The presence of CAD was associated with decreased mRNA expression of most of the investigated mitochondrial respiratory chain genes in EAT, while no such changes were seen in SAT or other tissues. In contrast, the expression of ER stress genes did not differ between the CAD and noCAD groups in almost any tissue. Cardiac surgery further augmented mitochondrial dysfunction in EAT. In our study, CAD was associated with decreased expression of mitochondrial, but not endoplasmic reticulum stress genes in EAT. These changes may contribute to the acceleration of coronary atherosclerosis.
Collapse
|
44
|
Slezak J, Kura B, LeBaron TW, Singal PK, Buday J, Barancik M. Oxidative Stress and Pathways of Molecular Hydrogen Effects in Medicine. Curr Pharm Des 2021; 27:610-625. [PMID: 32954996 DOI: 10.2174/1381612826666200821114016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/02/2020] [Indexed: 11/22/2022]
Abstract
There are many situations of excessive production of reactive oxygen species (ROS) such as radiation, ischemia/reperfusion (I/R), and inflammation. ROS contribute to and arises from numerous cellular pathologies, diseases, and aging. ROS can cause direct deleterious effects by damaging proteins, lipids, and nucleic acids as well as exert detrimental effects on several cell signaling pathways. However, ROS are important in many cellular functions. The injurious effect of excessive ROS can hypothetically be mitigated by exogenous antioxidants, but clinically this intervention is often not favorable. In contrast, molecular hydrogen provides a variety of advantages for mitigating oxidative stress due to its unique physical and chemical properties. H2 may be superior to conventional antioxidants, since it can selectively reduce ●OH radicals while preserving important ROS that are otherwise used for normal cellular signaling. Additionally, H2 exerts many biological effects, including antioxidation, anti-inflammation, anti-apoptosis, and anti-shock. H2 accomplishes these effects by indirectly regulating signal transduction and gene expression, each of which involves multiple signaling pathways and crosstalk. The Keap1-Nrf2-ARE signaling pathway, which can be activated by H2, plays a critical role in regulating cellular redox balance, metabolism, and inducing adaptive responses against cellular stress. H2 also influences the crosstalk among the regulatory mechanisms of autophagy and apoptosis, which involve MAPKs, p53, Nrf2, NF-κB, p38 MAPK, mTOR, etc. The pleiotropic effects of molecular hydrogen on various proteins, molecules and signaling pathways can at least partly explain its almost universal pluripotent therapeutic potential.
Collapse
Affiliation(s)
- Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Tyler W LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Jozef Buday
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, 121 08 Prague 2, Czech Republic
| | - Miroslav Barancik
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| |
Collapse
|
45
|
Pharmacological Activation of Nrf2 by Rosolic Acid Attenuates Endoplasmic Reticulum Stress in Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2732435. [PMID: 33897939 PMCID: PMC8052152 DOI: 10.1155/2021/2732435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/17/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022]
Abstract
Endoplasmic reticulum (ER) plays a key role in the folding, modification, and trafficking of proteins. When the homeostasis of the ER is disturbed, un/misfolded proteins accumulate in the ER which leads to ER stress. Sustained ER stress results in apoptosis, which is associated with various diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major transcription factor in redox homeostasis by regulating various genes associated with detoxification and cell-protective mechanisms. We found that Rosolic acid (RA) treatment dose-dependently activates Nrf2 in endothelial cells using the enzyme fragment complementation assay. The cytoprotective role of RA against ER stress-induced endothelial apoptosis and its molecular mechanism was explored in the present study. The Nrf2 and its target genes, as well as ER stress marker expressions, were measured by qPCR in ER stress-exposed endothelial cells. The contribution of Nrf2 in RA-mediated defense mechanism in endothelial cells was established by knockout studies using Nrf2-CRISPR/Cas9. The treatment with RA to ER stress-induced endothelial cells exhibited activation of Nrf2, as demonstrated by Nrf2 translocation and reduction of ER stress markers. We found that the Nrf2 knockout sensitized the endothelial cells against ER stress, and further, RA failed to mediate its cytoprotective effect. Proteomic studies using LC-MS/MS revealed that among the 1370 proteins detected, we found 296 differentially regulated proteins in ER stress-induced endothelial cells, and RA administration ameliorated 71 proteins towards the control levels. Of note, the ER stress in endothelial cells was attenuated by the treatment with the RA, suggesting the role of the Nrf2 activator in the pathological conditions of ER stress-associated diseases.
Collapse
|
46
|
Andreadou I, Daiber A, Baxter GF, Brizzi MF, Di Lisa F, Kaludercic N, Lazou A, Varga ZV, Zuurbier CJ, Schulz R, Ferdinandy P. Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: Role of cardiac redox signaling. Free Radic Biol Med 2021; 166:33-52. [PMID: 33588049 DOI: 10.1016/j.freeradbiomed.2021.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
The morbidity and mortality from cardiovascular diseases (CVD) remain high. Metabolic diseases such as obesity, hyperlipidemia, diabetes mellitus (DM), non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) as well as hypertension are the most common comorbidities in patients with CVD. These comorbidities result in increased myocardial oxidative stress, mainly from increased activity of nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, mitochondria as well as downregulation of antioxidant defense systems. Oxidative and nitrosative stress play an important role in ischemia/reperfusion injury and may account for increased susceptibility of the myocardium to infarction and myocardial dysfunction in the presence of the comorbidities. Thus, while early reperfusion represents the most favorable therapeutic strategy to prevent ischemia/reperfusion injury, redox therapeutic strategies may provide additive benefits, especially in patients with heart failure. While oxidative and nitrosative stress are harmful, controlled release of reactive oxygen species is however important for cardioprotective signaling. In this review we summarize the current data on the effect of hypertension and major cardiometabolic comorbidities such as obesity, hyperlipidemia, DM, NAFLD/NASH on cardiac redox homeostasis as well as on ischemia/reperfusion injury and cardioprotection. We also review and discuss the therapeutic interventions that may restore the redox imbalance in the diseased myocardium in the presence of these comorbidities.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr, Germany.
| | - Gary F Baxter
- Division of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, United Kingdom
| | | | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany.
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
47
|
Brodnanova M, Hatokova Z, Evinova A, Cibulka M, Racay P. Differential impact of imipramine on thapsigargin- and tunicamycin-induced endoplasmic reticulum stress and mitochondrial dysfunction in neuroblastoma SH-SY5Y cells. Eur J Pharmacol 2021; 902:174073. [PMID: 33798597 DOI: 10.1016/j.ejphar.2021.174073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 01/10/2023]
Abstract
The aim of our work was to study effect of antidepressant imipramine on both thapsigargin- and tunicamycin-induced ER stress and mitochondrial dysfunction in neuroblastoma SH-SY5Y cells. ER stress in SH-SY5Y cells was induced by either tunicamycin or thapsigargin in the presence or absence of imipramine. Cell viability was tested by the MTT assay. Splicing of XBP1 mRNA was studied by RT-PCR. Finally, expression of Hrd1 and Hsp60 was determined by Western blot analysis. Our findings provide evidence that at high concentrations imipramine potentiates ER stress-induced death of SH-SY5Y cells. The effect of imipramine on ER stress-induced death of SH-SY5Y cells was stronger in combination of imipramine with thapsigargin. In addition, we have found that treatment of SH-SY5Y cells with imipramine in combination of either thapsigargin or tunicamycin is associated with the alteration of ER stress-induced IRE1α-XBP1 signalling. Despite potentiation of ER stress-induced XBP1 splicing, imipramine suppresses both thapsigargin- and tunicamycin-induced expression of Hrd1. Finally, imipramine in combination with thapsigargin, but not tunicamycin, aggravates ER stress-induced mitochondrial dysfunction without significant impact on intracellular mitochondrial content as indicated by the unaltered expression of Hsp60. Our results indicate the possibility that chronic treatment with imipramine might be associated with a higher risk of development and progression of neurodegenerative disorders, in particular those allied with ER stress and mitochondrial dysfunction like Parkinson's and Alzheimer's disease.
Collapse
Affiliation(s)
- Maria Brodnanova
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Mala Hora 4D, SK-03601 Martin, Slovakia
| | | | | | | | - Peter Racay
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Mala Hora 4D, SK-03601 Martin, Slovakia.
| |
Collapse
|
48
|
Novel Insight into the Role of Endoplasmic Reticulum Stress in the Pathogenesis of Myocardial Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5529810. [PMID: 33854692 PMCID: PMC8019635 DOI: 10.1155/2021/5529810] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Impaired function of the endoplasmic reticulum (ER) is followed by evolutionarily conserved cell stress responses, which are employed by cells, including cardiomyocytes, to maintain and/or restore ER homeostasis. ER stress activates the unfolded protein response (UPR) to degrade and remove abnormal proteins from the ER lumen. Although the UPR is an intracellular defense mechanism to sustain cardiomyocyte viability and heart function, excessive activation initiates ER-dependent cardiomyocyte apoptosis. Myocardial ischemia/reperfusion (I/R) injury is a pathological process occurring during or after revascularization of ischemic myocardium. Several molecular mechanisms contribute to the pathogenesis of cardiac I/R injury. Due to the dual protective/degradative effects of ER stress on cardiomyocyte viability and function, it is of interest to understand the basic concepts, regulatory signals, and molecular processes involved in ER stress following myocardial I/R injury. In this review, therefore, we present recent findings related to the novel components of ER stress activation. The complex effects of ER stress and whether they mitigate or exacerbate myocardial I/R injury are summarized to serve as the basis for research into potential therapies for cardioprotection through control of ER homeostasis.
Collapse
|
49
|
Li S, Jin S, Chen W, Yu J, Fang P, Zhou G, Li J, Jin L, Chen Y, Chen P, Pan C. Mangiferin alleviates endoplasmic reticulum stress in acute liver injury by regulating the miR-20a/miR-101a-Nrf2 axis. J Biochem 2021; 168:365-374. [PMID: 32413114 DOI: 10.1093/jb/mvaa056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 04/20/2020] [Indexed: 01/19/2023] Open
Abstract
This study aimed to investigate the mechanism of mangiferin on regulating endoplasmic reticulum (ER) stress in acute liver injury. The mouse model of acute liver injury was established by injection of LPS/D-GalN. The primary mouse hepatocytes were stimulated with LPS to induce the in vitro model. The effect of miR-20a/101a on the luciferase activity of Nrf2 3'-UTR was assessed by luciferase reporter assay. Mangiferin improved the liver function, inhibited the oxidative stress and ER stress and down-regulated the expressions of miR-20a and miR-101a in LPS/D-GalN-induced mice and LPS-induced hepatocytes. The knockdown of miR-20a and miR-101a co-operatively alleviated ER stress of LPS-induced hepatocytes. miR-20a and miR-101a both targeted Nrf2 and the over-expression of miR-20a or miR-101a decreased Nrf2 protein level, while their silences increased Nrf2 protein level. The silence of miR-20a and miR-101a promoted Nrf2 expression and inhibited the ER stress in LPS-induced hepatocytes, while the knockdown of Nrf2 reversed these effects. The over-expression of miR-20a and miR-101a eliminated the effects of mangiferin on Nrf2 protein level and ER stress in LPS-induced hepatocytes and Nrf2 over-expression altered these trends. Our findings suggest that mangiferin alleviates ER stress in acute liver injury by regulating the miR-20a/miR-101a-Nrf2 axis.
Collapse
Affiliation(s)
- Shaoxun Li
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China.,Department of Infectious Disease, The Second School of Medicine, Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang China
| | - Shuanghong Jin
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China.,Department of Infectious Disease, The Second School of Medicine, Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang China
| | - Weilai Chen
- Department of Neurology, Wenzhou People's Hospital, No. 57 Canghou Road, Wenzhou 325000, Zhejiang, China
| | - Jiake Yu
- Department of Infectious Disease, The Second School of Medicine, Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang China.,Department of Pediatric Hepatitis and Liver Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China
| | - Peipei Fang
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China.,Department of Pediatric Hepatitis and Liver Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China
| | - Guangyao Zhou
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China
| | - Jie Li
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China
| | - Lingxiang Jin
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China
| | - Yiping Chen
- Department of Pediatric Hepatitis and Liver Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China
| | - Ping Chen
- Department of Infectious Disease, Shulan Hospital, No.848 Dongxin Road, Hangzhou 310006, Zhejiang, China.,Department of Infectious Disease, The Third People's Hospital of Zhengzhou, No.136 Nanshuncheng Road, Zhengzhou 450000, Henan, China
| | - Chenwei Pan
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China.,Department of Pediatric Hepatitis and Liver Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
50
|
Yao W, Wang K, Wang X, Li X, Dong J, Zhang Y, Ding X. Icariin ameliorates endothelial dysfunction in type 1 diabetic rats by suppressing ER stress via the PPARα/Sirt1/AMPKα pathway. J Cell Physiol 2021; 236:1889-1902. [PMID: 32770555 DOI: 10.1002/jcp.29972] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Icariin (ICA), as a flavonoid glycoside, is associated with the improvement of vascular complications in diabetes. However, its protective mechanisms remain to be well-established. Here, we tested the hypothesis that ICA attenuates vascular endothelial dysfunction by inhibiting endoplasmic reticulum (ER) stress in type 1 diabetes. In streptozotocin-induced diabetic rats, ICA positively affected acetylcholine-induced vasodilation and phenylephrine-induced vasoconstriction in aortas. ICA treatment significantly attenuated ER stress in diabetic rats and high-glucose induced human umbilical vein endothelial cells. Incubation with ICA in vitro attenuated vascular reactivity in diabetic rats, which was blocked by the ER stress inducer, and peroxisome proliferator-activated receptor α (PPARα), sirtuin1 (Sirt1), or AMP-activated protein kinase-α (AMPKα) inhibitors. Western blot showed that ICA activated the PPARα/Sirt1/AMPKα pathway, which contributed to reducing ER stress and activating endothelial nitric oxide synthase in vivo and vitro. Our results implicate that ICA normalizes ER stress to attenuate endothelial dysfunction by the regulation of the PPARα/Sirt1/AMPKα pathway.
Collapse
Affiliation(s)
- Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kai Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiniao Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinran Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jieyan Dong
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yusheng Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|