1
|
Jin X, Shao M, Ding J, Li L, Chen Y, Zhao H. Metabolomics analysis of osmotic tolerance enhancement mechanism of wheat gluten peptides on industrial yeast. Food Chem 2025; 482:144092. [PMID: 40184741 DOI: 10.1016/j.foodchem.2025.144092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Plant-derived wheat gluten peptides have an effective protective ability on industrial yeast against osmotic stress, the enhancement mechanism of osmotic tolerance in yeast by wheat gluten peptides addition was clarified in this study. Results showed that wheat gluten peptides addition increased the intracellular pH and trehalose levels of yeast under osmotic stress, compared to the control. Furthermore, peptides supplementation could regulate the antioxidant defense system and reduce the reactive oxygen species accumulation in yeast, including the increase of intracellular glutathione levels and the activities of antioxidant enzymes catalase and glutathione peroxidase. Metabolomic results indicated that the enhancement mechanism of wheat gluten peptides on yeast osmotic tolerance was related to the promotion of arginine and proline metabolism, pantothenate and coenzyme A biosynthesis, pyrimidine metabolism, and cysteine and methionine metabolism pathways. These results provide new insight into the enhancement mechanism of yeast stress tolerance by plant-derived peptides from a metabolic perspective.
Collapse
Affiliation(s)
- Xiaofan Jin
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg SE412 96, Sweden; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingwei Shao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Ding
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lingyun Li
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg SE412 96, Sweden
| | - Yun Chen
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg SE412 96, Sweden.
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
2
|
Wang L, Zhang Y, Zang X, Yang Y, Wang W, Zhang J, Que Y, Liang F, Wang T, Zhang J, Ma H, Guan L. Physicochemical properties and fermentation characteristics of a novel polysaccharide degraded from Flammulina velutipes residues polysaccharide. Food Chem X 2024; 24:102049. [PMID: 39717408 PMCID: PMC11665304 DOI: 10.1016/j.fochx.2024.102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Flammulina velutipes (F. velutipes) residues polysaccharide (FVRP) is a high molecular weight polysaccharide with diverse bioactivities extracted from F. velutipes residues (FVR). However, high molecular weight polysaccharides have been shown to face significant challenges in crossing the cell membrane barrier, thereby limiting their absorption and application in the body. Therefore, an ultrasonic-assisted H2O2-Fe3+ method was employed for the first time to degrade FVRP, resulting in the production of a new polysaccharide, FVRPF. Compared with FVRP, there was no significant difference in the main chemical structure of FVRPF, but the monosaccharide composition ratio varied. and FVRPF had lower molecular weight and stronger antioxidant capacity. Moreover, FVRPF could be degraded by human microbiota, modulate gut microbiota composition, and increase the production of total short-chain fatty acids (SCFAs). These findings suggest that FVRPF holds potential as a promising prebiotic for applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Liping Wang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Yao Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Xinyuan Zang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Yiting Yang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Wanting Wang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Jingbo Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Yunxiang Que
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Fengxiang Liang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Tiezhu Wang
- Changchun Gaorong Biotechnological Co., Ltd., Changchun 130102, Jilin, PR China
| | - Jian Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, PR China
- Institute for Safflower Industry Research of Shihezi University, Pharmacy College of Shihezi University, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832003, Xinjiang, PR China
| | - Hongxia Ma
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Lili Guan
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| |
Collapse
|
3
|
Kerdsomboon K, Techo T, Mhuantong W, Limcharoensuk T, Luangkamchorn ST, Laoburin P, Auesukaree C. Genomic and transcriptomic analyses reveal insights into cadmium resistance mechanisms of Cupriavidus nantongensis strain E324. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175915. [PMID: 39216765 DOI: 10.1016/j.scitotenv.2024.175915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The cadmium-resistant Cupriavidus sp. strain E324 has been previously shown to have a high potential for use in cadmium (Cd) remediation, due to its high capacity for cadmium bioaccumulation. According to the comparative genomic analysis, the strain E324 was most closely related to C. nantongensis X1T, indicating that the strain E324 should be re-identified as C. nantongensis. To unravel the Cd tolerance mechanisms of C. nantongensis strain E324, the transcriptional response of this strain to acute Cd exposure was assessed using RNA-seq-based transcriptome analysis, followed by validation through qRT-PCR. The results showed that the upregulated Differentially Expressed Genes (DEGs) were significantly enriched in categories related to metal binding and transport, phosphate transport, and oxidative stress response. Consistently, we observed significant increases in both the cell wall and intracellular contents of certain essential metals (Cu, Fe, Mn, and Zn) upon Cd exposure. Among these, only the Zn pretreatment resulting in high Zn accumulation in the cell walls could enhance bacterial growth under Cd stress conditions through its role in inhibiting Cd accumulation. Additionally, the promotion of catalase activity and glutathione metabolism upon Cd exposure to cope with Cd-induced oxidative stress was demonstrated. Meanwhile, the upregulation of phosphate transport-related genes upon Cd treatment seems to be the bacterial response to Cd-induced phosphate depletion. Altogether, our findings suggest that these adaptive responses are critical mechanisms contributing to increased Cd tolerance in C. nantongensis strain E324 via the enhancement of metal-chelating and antioxidant capacities of the cells.
Collapse
Affiliation(s)
- Kittikhun Kerdsomboon
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand; Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Todsapol Techo
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani 12120, Thailand
| | - Tossapol Limcharoensuk
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Supinda Tatip Luangkamchorn
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Analytical Sciences and National Doping Test Institute, Mahidol University, Bangkok 10400, Thailand
| | - Patcharee Laoburin
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Choowong Auesukaree
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
4
|
Limcharoensuk T, Chusuth P, Utaisincharoen P, Auesukaree C. Protein quality control systems in the endoplasmic reticulum and the cytosol coordinately prevent alachlor-induced proteotoxic stress in Saccharomyces cerevisiae. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134270. [PMID: 38640676 DOI: 10.1016/j.jhazmat.2024.134270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Alachlor, a widely used chloroacetanilide herbicide for controlling annual grasses in crops, has been reported to rapidly trigger protein denaturation and aggregation in the eukaryotic model organism Saccharomyces cerevisiae. Therefore, this study aimed to uncover cellular mechanisms involved in preventing alachlor-induced proteotoxicity. The findings reveal that the ubiquitin-proteasome system (UPS) plays a crucial role in eliminating alachlor-denatured proteins by tagging them with polyubiquitin for subsequent proteasomal degradation. Exposure to alachlor rapidly induced an inhibition of proteasome activity by 90 % within 30 min. The molecular docking analysis suggests that this inhibition likely results from the binding of alachlor to β subunits within the catalytic core of the proteasome. Notably, our data suggest that nascent proteins in the endoplasmic reticulum (ER) are the primary targets of alachlor. Consequently, the unfolded protein response (UPR), responsible for coping with aberrant proteins in the ER, becomes activated within 1 h of alachlor treatment, leading to the splicing of HAC1 mRNA into the active transcription activator Hac1p and the upregulation of UPR gene expression. These findings underscore the critical roles of the protein quality control systems UPS and UPR in mitigating alachlor-induced proteotoxicity by degrading alachlor-denatured proteins and enhancing the protein folding capacity of the ER.
Collapse
Affiliation(s)
- Tossapol Limcharoensuk
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phakawat Chusuth
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pongsak Utaisincharoen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Choowong Auesukaree
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
5
|
Sillapawattana P, Gruhlke MCH, Seiler TB, Klungsupya P, Charerntantanakul W. Oxidative stress related effect of xenobiotics on eukaryotic model organism, Saccharomyces cerevisiae. Free Radic Biol Med 2024; 212:149-161. [PMID: 38151215 DOI: 10.1016/j.freeradbiomed.2023.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Ecotoxicological assays have traditionally focused on the effects of chemicals at the individual level by exploiting mortality and reproduction as endpoints. Although these two parameters are ecologically relevant, they rarely provide information regarding the elemental toxic mechanisms. Obviously, the number of xenobiotics used has been rapidly increased. Thus, any established measurement that shortens the actual outcome and, simultaneously provides information about toxic mechanisms is desirable. This research focused on the study of oxidative stress response as a biomarker in the eukaryotic model organism, Saccharomyces cerevisiae. For this, yeast cells were exposed to a set of selected environmentally relevant chemicals via different approaches, including cellular diagnostics, gene expression analysis and chemo-genetic screening. The results demonstrated that at the cellular level, model organisms reacted to different chemicals in distinct manner. For each xenobiotic, the correlation between toxic response of molecular and cellular levels are presented. Namely, the expression of target genes after chemical exposure affected the cellular alteration as evidenced by an elevated level of superoxide dismutase and a reduced amount of glutathione. Furthermore, the results derived from chemo-genetic screening, in which mutants lacking of gene of interest were employed, exhibited more susceptibility to test chemicals in comparison to the wildtype. The response of oxidative stress upon chemical exposure in budding yeast from this study is potentially useful for an establishment of a proper bio-test system which can eventually be linked to adverse effects at an individual level in higher eukaryotes.
Collapse
Affiliation(s)
- Panwad Sillapawattana
- Program in Environmental Technology, Faculty of Science, Maejo University, Chiang Mai, Thailand.
| | | | | | - Prapaipat Klungsupya
- Thailand Institute for Scientific and Technological Research (TISTR), Pathum Thani, Thailand
| | | |
Collapse
|
6
|
Sillapawattana P, Klungsupya P. Ecotoxicity testing of paraquat metabolites degraded by filamentous fungi in model organism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153631. [PMID: 35124045 DOI: 10.1016/j.scitotenv.2022.153631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Paraquat has been intensively used worldwide for several decades for the purpose of weed control in profit crop plantation. This leads to the accumulation of the herbicide and its metabolites in the environment. One promising method to reduce and/or eliminate the paraquat-contaminants is via microbial bioremediation. Filamentous fungi, Aspergillus tamarii PRPY-2, isolated from rubber tree plantation in the northern part of Thailand exhibited the ability to degrade paraquat in liquid media at laboratory scale. Thus, utilization of this species in paraquat-contaminated sites is potentially feasible. However, metabolites generated during biodegradation processes are possibly more toxic than the parent compound. Hence, before introducing this microbe into the environment, it is necessary to ensure that metabolites have no adverse effects on the ecosystem. The present work focuses on the study of the toxic effects of paraquat metabolites on the eukaryote model organism using Saccharomyces cerevisiae of wild type and five mutant strains. The relation between paraquat degradation and growth of fungi was firstly performed. Ecotoxicity testing was done via chemo-genetic screening method. Oxidative stress-related enzyme, superoxide dismutase of S. cerevisiae was also verified. The results illustrated that fungi could degrade 100% of paraquat in Czapeck Dox liquid medium within 21 days. Ecotoxicity data indicated that all yeast strains grew better in a medium containing paraquat metabolites than the one containing parent compound. Among them, mutant lacking superoxide dismutase (SOD1) gene was the most affected strain. Moreover, enzyme activity of yeast cells exposed to paraquat metabolites was found to be lower than that exposed to parent compound. In summary, metabolites degraded by A. tamarii are less toxic to model organism than paraquat. Therefore, the utilization of this species for remediation purpose was found to be safe for the environment.
Collapse
Affiliation(s)
- Panwad Sillapawattana
- Program in Environmental Technology, Faculty of Science, Maejo University, Chiangmai, Thailand.
| | - Prapaipat Klungsupya
- Thailand Institute of Scientific and Technological Research (TISTR), Techno Polis, Pathum Thani, Thailand
| |
Collapse
|
7
|
Kerdsomboon K, Techo T, Limcharoensuk T, Tatip S, Auesukaree C. Low phosphate mitigates cadmium-induced oxidative stress in Saccharomyces cerevisiae by enhancing endogenous antioxidant defence system. Environ Microbiol 2021; 24:707-720. [PMID: 34927334 DOI: 10.1111/1462-2920.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022]
Abstract
Cadmium is a highly toxic heavy metal that causes many harmful effects on human health and ecosystems. Metal chelation-based techniques have become a common approach for the treatment of metal poisoning and also for the remediation of metal contamination. Phosphate, an essential nutrient required for key cellular functions, has been supposed to be effective in reducing cadmium bioavailability, possibly through its chelating potential. In this study, we explored the effects of phosphate on cadmium toxicity and cellular response to cadmium stress in the eukaryotic model Saccharomyces cerevisiae. Our results reveal that cadmium toxicity is unexpectedly enhanced during phosphate repletion and optimal phosphate levels for yeast growth under cadmium stress conditions decline with increasing cadmium concentrations. The profound cadmium toxicity during phosphate repletion is unlikely to result from either elevated cadmium accumulation or dysregulated homeostasis of essential metals, but rather due to increased production of intracellular reactive oxygen species. We show that, under phosphate-depleted conditions, the activities of antioxidant enzymes, especially Mn-superoxide dismutase and catalase, are significantly promoted through transcriptional upregulation. Our findings highlight the important role of cellular response to phosphate limitation in mitigating cadmium toxicity and endogenous oxidative stress through the enhancement of antioxidant enzyme activity.
Collapse
Affiliation(s)
- Kittikhun Kerdsomboon
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, 10400, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Todsapol Techo
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, 10400, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Tossapol Limcharoensuk
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, 10400, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Supinda Tatip
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, 10400, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Choowong Auesukaree
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, 10400, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
8
|
Pereira SP, Santos SMA, Fernandes MAS, Deus CM, Martins JD, Pedroso de Lima MC, Vicente JAF, Videira RA, Jurado AS. Improving pollutants environmental risk assessment using a multi model toxicity determination with in vitro, bacterial, animal and plant model systems: The case of the herbicide alachlor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117239. [PMID: 33990048 DOI: 10.1016/j.envpol.2021.117239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Several environmental pollutants, including pesticides, herbicides and persistent organic pollutants play an important role in the development of chronic diseases. However, most studies have examined environmental pollutants toxicity in target organisms or using a specific toxicological test, losing the real effect throughout the ecosystem. In this sense an integrative environmental risk of pollutants assessment, using different model organisms is necessary to predict the real impact in the ecosystem and implications for target and non-target organisms. The objective of this study was to use alachlor, a chloroacetanilide herbicide responsible for chronic toxicity, to understand its impact in target and non-target organisms and at different levels of biological organization by using several model organisms, including membranes of dipalmitoylphosphatidylcholine (DPPC), rat liver mitochondria, bacterial (Bacillus stearothermophilus), plant (Lemna gibba) and mammalian cell lines (HeLa and neuro2a). Our results demonstrated that alachlor strongly interacted with membranes of DPPC and interfered with mitochondrial bioenergetics by reducing the respiratory control ratio and the transmembrane potential. Moreover, alachlor also decreased the growth of B. stearothermophilus and its respiratory activity, as well as decreased the viability of both mammalian cell lines. The values of TC50 increased in the following order: Lemna gibba < neuro2a < HeLa cells < Bacillus stearothermophilus. Together, the results suggest that biological membranes constitute a putative target for the toxic action of this lipophilic herbicide and point out the risks of its dissemination on environment, compromising ecosystem equilibrium and human health.
Collapse
Affiliation(s)
- Susana P Pereira
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal.
| | - Sandra M A Santos
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal.
| | | | - Cláudia M Deus
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal.
| | - João D Martins
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal.
| | - Maria C Pedroso de Lima
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal.
| | | | - Romeu A Videira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Amália S Jurado
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal.
| |
Collapse
|
9
|
Lin NX, He RZ, Xu Y, Yu XW. Augmented peroxisomal ROS buffering capacity renders oxidative and thermal stress cross-tolerance in yeast. Microb Cell Fact 2021; 20:131. [PMID: 34247591 PMCID: PMC8273976 DOI: 10.1186/s12934-021-01623-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/01/2021] [Indexed: 12/28/2022] Open
Abstract
Background Thermotolerant yeast has outstanding potential in industrial applications. Komagataella phaffii (Pichia pastoris) is a common cell factory for industrial production of heterologous proteins. Results Herein, we obtained a thermotolerant K. phaffii mutant G14 by mutagenesis and adaptive evolution. G14 exhibited oxidative and thermal stress cross-tolerance and high heterologous protein production efficiency. The reactive oxygen species (ROS) level and lipid peroxidation in G14 were reduced compared to the parent. Oxidative stress response (OSR) and heat shock response (HSR) are two major responses to thermal stress, but the activation of them was different in G14 and its parent. Compared with the parent, G14 acquired the better performance owing to its stronger OSR. Peroxisomes, as the main cellular site for cellular ROS generation and detoxification, had larger volume in G14 than the parent. And, the peroxisomal catalase activity and expression level in G14 was also higher than that of the parent. Excitingly, the gene knockdown of CAT encoding peroxisomal catalase by dCas9 severely reduced the oxidative and thermal stress cross-tolerance of G14. These results suggested that the augmented OSR was responsible for the oxidative and thermal stress cross-tolerance of G14. Nevertheless, OSR was not strong enough to protect the parent from thermal stress, even when HSR was initiated. Therefore, the parent cannot recover, thereby inducing the autophagy pathway and resulting in severe cell death. Conclusions Our findings indicate the importance of peroxisome and the significance of redox balance in thermotolerance of yeasts. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01623-1.
Collapse
Affiliation(s)
- Nai-Xin Lin
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, People's Republic of China
| | - Rui-Zhen He
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, People's Republic of China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, People's Republic of China
| | - Xiao-Wei Yu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, People's Republic of China.
| |
Collapse
|
10
|
Kerdsomboon K, Chumsawat W, Auesukaree C. Effects of Moringa oleifera leaf extracts and its bioactive compound gallic acid on reducing toxicities of heavy metals and metalloid in Saccharomyces cerevisiae. CHEMOSPHERE 2021; 270:128659. [PMID: 33757277 DOI: 10.1016/j.chemosphere.2020.128659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/26/2020] [Accepted: 10/15/2020] [Indexed: 05/07/2023]
Abstract
Moringa oleifera leaf extract is rich in antioxidants and has high potential for use to alleviate metal toxicity. Previously, we have reported the roles of aqueous M. oleifera leaf extract in mitigating intracellular cadmium (Cd) accumulation and Cd-induced oxidative stress. In this study, we investigated the protective role of aqueous and/or ethanolic M. oleifera leaf extracts (AMOLE and/or EMOLE) against other metal(loid)s in the eukaryotic model Saccharomyces cerevisiae. Our results show that only the AMOLE remarkably promoted the growth of yeast cells grown in the presence of arsenite (As(III)), Cd, nickel (Ni), and lead (Pb). Although the AMOLE contained lower amount of total phenolic and flavonoid contents and displayed lower DPPH scavenging capacity than the EMOLE, both AMOLE and EMOLE had the same capacity for reducing intracellular ROS levels in yeast cells exposed to As(III), Cd, Ni, and Pb. Moreover, the AMOLE was more effective than the EMOLE in inhibiting intracellular accumulation of these toxic metal(loid)s. In addition, we found that gallic acid, one of important phenolic constituents present in both extracts, could protect yeast cells against As(III) toxicity, likely through its role in decreasing As(III) accumulation and As(III)-induced ROS production. Furthermore, the hydroxyl and carboxyl groups of gallic acid appear to play a critical role in chelating As(III). The present study suggests the promising applications of the AMOLE (and also gallic acid) as protective agents against hazardous metal(loid)s.
Collapse
Affiliation(s)
- Kittikhun Kerdsomboon
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Wisuta Chumsawat
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Choowong Auesukaree
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence on Biodiversity, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology, Bangkok, Thailand.
| |
Collapse
|
11
|
Jing H, Liu H, Lu Z, liuqing, C, Tan X. Mitophagy Improves Ethanol Tolerance in Yeast: Regulation by Mitochondrial Reactive Oxygen Species in Saccharomyces cerevisiae. J Microbiol Biotechnol 2020; 30:1876-1884. [PMID: 33046676 PMCID: PMC9728279 DOI: 10.4014/jmb.2004.04073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Ethanol often accumulates during the process of wine fermentation, and mitophagy has critical role in ethanol output. However, the relationship between mitophagy and ethanol stress is still unclear. In this study, the expression of ATG11 and ATG32 genes exposed to ethanol stress was accessed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The result indicated that ethanol stress induced expression of the ATG11 and ATG32 genes. The colony sizes and the alcohol yield of atg11 and atg32 were also smaller and lower than those of wild type strain under ethanol whereas the mortality of mutants is higher. Furthermore, compared with wild type, the membrane integrity and the mitochondrial membrane potential of atg11 and atg32 exhibited greater damage following ethanol stress. In addition, a greater proportion of mutant cells were arrested at the G1/G0 cell cycle. There was more aggregation of peroxide hydrogen (H2O2) and superoxide anion (O2•-) in mutants. These changes in H2O2 and O2•- in yeasts were altered by reductants or inhibitors of scavenging enzyme by means of regulating the expression of ATG11 and ATG32 genes. Inhibitors of the mitochondrial electron transport chain (mtETC) also increased production of H2O2 and O2•- by enhancing expression of the ATG11 and ATG32 genes. Further results showed that activator or inhibitor of autophagy also activated or inhibited mitophagy by altering production of H2O2 and O2•. Therefore, ethanol stress induces mitophagy which improves yeast the tolerance to ethanol and the level of mitophagy during ethanol stress is regulated by ROS derived from mtETC.
Collapse
Affiliation(s)
- Hongjuan Jing
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China,Corresponding authors H.Jing Phone: +86-371-67756513 E-mail:
| | - Huanhuan Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Zhang Lu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Cui liuqing,
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Xiaorong Tan
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China,X.Tan Phone: +86-371-67756513 E-mail:
| |
Collapse
|
12
|
Involvement of the Cell Wall Integrity Pathway of Saccharomyces cerevisiae in Protection against Cadmium and Arsenate Stresses. Appl Environ Microbiol 2020; 86:AEM.01339-20. [PMID: 32859590 DOI: 10.1128/aem.01339-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023] Open
Abstract
Contamination of soil and water with heavy metals and metalloids is a serious environmental problem. Cadmium and arsenic are major environmental contaminants that pose a serious threat to human health. Although toxicities of cadmium and arsenic to living organisms have been extensively studied, the molecular mechanisms of cellular responses to cadmium and arsenic remain poorly understood. In this study, we demonstrate that the cell wall integrity (CWI) pathway is involved in coping with cell wall stresses induced by cadmium and arsenate through its role in the regulation of cell wall modification. Interestingly, the Rlm1p and SBF (Swi4p-Swi6p) complex transcription factors of the CWI pathway were shown to be specifically required for tolerance to cadmium and arsenate, respectively. Furthermore, we found the PIR2 gene, encoding cell wall O-mannosylated heat shock protein, whose expression is under the control of the CWI pathway, is important for maintaining cell wall integrity during cadmium and arsenate stresses. In addition, our results revealed that the CWI pathway is involved in modulating the expression of genes involved in cell wall biosynthesis and cell cycle control in response to cadmium and arsenate via distinct sets of transcriptional regulators.IMPORTANCE Environmental pollution by metal/metalloids such as cadmium and arsenic has become a serious problem in many countries, especially in developing countries. This study shows that in the yeast S. cerevisiae, the CWI pathway plays a protective role against cadmium and arsenate through the upregulation of genes involved in cell wall biosynthesis and cell cycle control, possibly in order to modulate cell wall reconstruction and cell cycle phase transition, respectively. These data provide insights into molecular mechanisms underlying adaptive responses to cadmium and arsenate.
Collapse
|
13
|
Kim H, Wang H, Abassi S, Ki JS. The herbicide alachlor severely affects photosystem function and photosynthetic gene expression in the marine dinoflagellate Prorocentrum minimum. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:620-629. [PMID: 32364417 DOI: 10.1080/03601234.2020.1755198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Alachlor is one of the most widely used herbicides and can remain in agricultural soils and wastewater. The toxicity of alachlor to marine life has been rarely studied; therefore, we evaluated the physiological and transcriptional responses in the marine dinoflagellate Prorocentrum minimum. The herbicide led to considerable decreases in P. minimum cell numbers and pigment contents. The EC50 was determined to be 0.373 mg/L. Photosynthesis efficiency and chlorophyll autofluorescence dramatically decreased with increasing alachlor dose and exposure time. Real-time PCR analysis showed that the photosynthesis-related genes PmpsbA, PmatpB, and PmrbcL were induced the most by alachlor; the transcriptional level of each gene varied with time. PmrbcL expression increased after 30 min of alachlor treatment, whereas PmatpB and PmpsbA increased after 24 h. The PmpsbA expression level was highest (5.0 times compared to control) after 6 h of alachlor treatment. There was no significant change in PmpsaA expression with varying treatment time or concentration. Additionally, there was no notable change in the expression of antioxidant genes PmGST and PmKatG, or in ROS accumulation. These suggest that alachlor may affect microalgal photosystem function, with little oxidative stress, causing severe physiological damage to the cells, and even cell death.
Collapse
Affiliation(s)
- Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul, South Korea
| | - Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul, South Korea
| | - Sofia Abassi
- Department of Biotechnology, Sangmyung University, Seoul, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, South Korea
| |
Collapse
|
14
|
Techo T, Jindarungrueng S, Tatip S, Limcharoensuk T, Pokethitiyook P, Kruatrachue M, Auesukaree C. Vacuolar H + -ATPase is involved in preventing heavy metal-induced oxidative stress in Saccharomyces cerevisiae. Environ Microbiol 2020; 22:2403-2418. [PMID: 32291875 DOI: 10.1111/1462-2920.15022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 04/12/2020] [Indexed: 12/31/2022]
Abstract
In Saccharomyces cerevisiae, vacuolar H+ -ATPase (V-ATPase) involved in the regulation of intracellular pH homeostasis has been shown to be important for tolerances to cadmium, cobalt and nickel. However, the molecular mechanism underlying the protective role of V-ATPase against these metals remains unclear. In this study, we show that cadmium, cobalt and nickel disturbed intracellular pH balance by triggering cytosolic acidification and vacuolar alkalinization, likely via their membrane permeabilizing effects. Since V-ATPase plays a crucial role in pumping excessive cytosolic protons into the vacuole, the metal-sensitive phenotypes of the Δvma2 and Δvma3 mutants lacking V-ATPase activity were supposed to result from highly acidified cytosol. However, we found that the metal-sensitive phenotypes of these mutants were caused by increased production of reactive oxygen species, likely as a result of decreased expression and activities of manganese superoxide dismutase and catalase. In addition, the loss of V-ATPase function led to aberrant vacuolar morphology and defective endocytic trafficking. Furthermore, the sensitivities of the Δvma mutants to other chemical compounds (i.e. acetic acid, H2 O2 , menadione, tunicamycin and cycloheximide) were a consequence of increased endogenous oxidative stress. These findings, therefore, suggest the important role of V-ATPase in preventing endogenous oxidative stress induced by metals and other chemical compounds.
Collapse
Affiliation(s)
- Todsapol Techo
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Supat Jindarungrueng
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Supinda Tatip
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tossapol Limcharoensuk
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prayad Pokethitiyook
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Maleeya Kruatrachue
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Choowong Auesukaree
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Nykiel-Szymańska J, Różalska S, Bernat P, Słaba M. Assessment of oxidative stress and phospholipids alterations in chloroacetanilides-degrading Trichoderma spp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109629. [PMID: 31509783 DOI: 10.1016/j.ecoenv.2019.109629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/31/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
To investigate the induction of oxidative stress and antioxidant response in the chloroacetanilides-degrading Trichoderma spp. under alachlor and metolachlor exposure, a comparative analysis using popular biomarkers was employed. An increased intracellular level of reactive oxygen species (ROS; especially superoxide anion [O2-]) as well as products of lipid and protein oxidation after 24 h incubation with the herbicides confirmed chloroacetanilide-induced oxidative stress in tested Trichoderma strains. However, the considerable decline in the ROS levels and the carbonyl group content (biomarkers of protein peroxidation) in a time-dependent manner and changes in the antioxidant enzyme activities indicated an active response against chloroacetanilide-induced oxidative stress and the mechanism of tolerance in tested fungi. Moreover, the tested herbicides clearly modified the phospholipids (PLs) content in Trichoderma spp. in the stationary phase of growth, which was manifested through the difference in phosphatidic acid (PA), phosphatidylethanolamine (PE) and phosphatidylcholines (PC) levels. Despite enhanced lipid peroxidation and changes in PLs in most tested fungi, only a slight modification in membrane integrity of Trichoderma spp. under chloroacetanilides exposure was noted. The obtained results suggest that the alterations in the antioxidant system and the PLs profile of Trichoderma spp. might be useful biomarkers of chloroacetanilide-induced oxidative stress.
Collapse
Affiliation(s)
- Justyna Nykiel-Szymańska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Mirosława Słaba
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland.
| |
Collapse
|
16
|
Development of Robust Yeast Strains for Lignocellulosic Biorefineries Based on Genome-Wide Studies. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:61-83. [PMID: 30911889 DOI: 10.1007/978-3-030-13035-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lignocellulosic biomass has been widely studied as the renewable feedstock for the production of biofuels and biochemicals. Budding yeast Saccharomyces cerevisiae is commonly used as a cell factory for bioconversion of lignocellulosic biomass. However, economic bioproduction using fermentable sugars released from lignocellulosic feedstocks is still challenging. Due to impaired cell viability and fermentation performance by various inhibitors that are present in the cellulosic hydrolysates, robust yeast strains resistant to various stress environments are highly desired. Here, we summarize recent progress on yeast strain development for the production of biofuels and biochemical using lignocellulosic biomass. Genome-wide studies which have contributed to the elucidation of mechanisms of yeast stress tolerance are reviewed. Key gene targets recently identified based on multiomics analysis such as transcriptomic, proteomic, and metabolomics studies are summarized. Physiological genomic studies based on zinc sulfate supplementation are highlighted, and novel zinc-responsive genes involved in yeast stress tolerance are focused. The dependence of host genetic background of yeast stress tolerance and roles of histones and their modifications are emphasized. The development of robust yeast strains based on multiomics analysis benefits economic bioconversion of lignocellulosic biomass.
Collapse
|
17
|
Nykiel-Szymańska J, Bernat P, Słaba M. Potential of Trichoderma koningii to eliminate alachlor in the presence of copper ions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:1-9. [PMID: 29957402 DOI: 10.1016/j.ecoenv.2018.06.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
The filamentous fungus Trichoderma koningii is capable of fast and effective eliminate alachlor (90% after 72 h when added separately and 80-60% in the presence of 1-5 mM of copper). After 168 h over 99% elimination of alachlor resulted in detoxification and was connected with the mitigation of reactive oxygen species (ROS) production. Using MS/MS techniques, seven dechlorinated and hydroxylated metabolites were identified. Cytochrome P450 and laccase participate in biotransformation of the herbicide by this non-ligninolytic fungus. Laccase activity is stimulated both by copper and the mixture of copper and alachlor, which seems to be important for combined pollutants. T. koningii is characterized by high tolerance to copper (up to 7.5 mM). The metal content in mycelia reached 0.9-7.76 mg in 1 g of dry biomass. Our results suggest that T. koningii strain seems to be a promising tool for bioremediation of agricultural areas co-contaminated with copper-based fungicides and chloroacetanilide herbicides.
Collapse
Affiliation(s)
- Justyna Nykiel-Szymańska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, Lodz 90-237, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, Lodz 90-237, Poland
| | - Mirosława Słaba
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, Lodz 90-237, Poland.
| |
Collapse
|
18
|
Enhancement of ethanol production in very high gravity fermentation by reducing fermentation-induced oxidative stress in Saccharomyces cerevisiae. Sci Rep 2018; 8:13069. [PMID: 30166576 PMCID: PMC6117276 DOI: 10.1038/s41598-018-31558-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/21/2018] [Indexed: 11/09/2022] Open
Abstract
During fermentation, yeast cells encounter a number of stresses, including hyperosmolarity, high ethanol concentration, and high temperature. Previous deletome analysis in the yeast Saccharomyces cerevisiae has revealed that SOD1 gene encoding cytosolic Cu/Zn-superoxide dismutase (SOD), a major antioxidant enzyme, was required for tolerances to not only oxidative stress but also other stresses present during fermentation such as osmotic, ethanol, and heat stresses. It is therefore possible that these fermentation-associated stresses may also induce endogenous oxidative stress. In this study, we show that osmotic, ethanol, and heat stresses promoted generation of intracellular reactive oxygen species (ROS) such as superoxide anion in the cytosol through a mitochondria-independent mechanism. Consistent with this finding, cytosolic Cu/Zn-SOD, but not mitochondrial Mn-SOD, was required for protection against oxidative stress induced by these fermentation-associated stresses. Furthermore, supplementation of ROS scavengers such as N-acetyl-L-cysteine (NAC) alleviated oxidative stress induced during very high gravity (VHG) fermentation and enhanced fermentation performance at both normal and high temperatures. In addition, NAC also plays an important role in maintaining the Cu/Zn-SOD activity during VHG fermentation. These findings suggest the potential role of ROS scavengers for application in industrial-scale VHG ethanol fermentation.
Collapse
|
19
|
Che H, Fu X, Zhang L, Gao X, Wen M, Du L, Xue C, Xu J, Wang Y. Neuroprotective Effects of n-3 Polyunsaturated Fatty Acid-Enriched Phosphatidylserine Against Oxidative Damage in PC12 Cells. Cell Mol Neurobiol 2018; 38:657-668. [PMID: 28689275 PMCID: PMC11481886 DOI: 10.1007/s10571-017-0516-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/22/2017] [Indexed: 01/06/2023]
Abstract
Neurodegenerative diseases are defined by progressive loss of specific neuronal cell populations and are associated with protein aggregates. Oxidative stress has been implicated in their pathological processes. Previous studies revealed that docosahexaenoic acid (DHA) is beneficial in neurodegenerative diseases. Phospholipids (PLs) derived from marine products are rich in DHA and eicosapentaenoic acid (EPA). In the present study, we investigated the neuroprotective effects of DHA-enriched and unenriched phosphatidylcholine (PC) and phosphatidylserine (PS) on oxidative stress induced by hydrogen peroxide (H2O2) and tert-butylhydroperoxide in PC12 cells. Cell viability and leakage of lactate dehydrogenase results showed that the neuroprotective effect of PS was superior to that of PC. DHA- and EPA-enriched PC and PS were superior to that without DHA or EPA; in addition, the improvement with n-3 polyunsaturated fatty acid-enriched PS (n-3 PS) was dose dependent. Acridine orange/ethidium bromide staining showed that DHA- and EPA-enriched PS (DHA/EPA-PS) could significantly inhibit apoptosis. Mechanistic studies revealed that EPA-PS and DHA-PS were effective to increase superoxide dismutase (SOD) levels by 48.4 and 58.2 % and total antioxidant capacity (T-AOC) level by 51 and 94 %, respectively, in the H2O2 model. Similar results for SOD and T-AOC levels were shown in the t-BHP model. EPA/DHA-PS could downregulate the messenger RNA level of Caspase-3, Caspase-9, and Bax, upregulate Bcl-2, inhibit Bax, and increase Bcl-2 at protein level. In conclusion, EPA/DHA-PS could protect PC12 cells from oxidative stress and prevent mitochondrial-mediated apoptosis. Our findings indicate that the neuroprotective effects of DHA/EPA-PLs depend on the molecular form. Further studies are necessary to reveal detailed mechanisms and structure-effect relationships.
Collapse
Affiliation(s)
- Hongxia Che
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Xueyuan Fu
- Marine Biomedical Research Institute of Qingdao, No. 23 Hong Kong East Road, Qingdao, Shandong, China
| | - Lingyu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Xiang Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Min Wen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Lei Du
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong University, 44 Wenhua Xilu, Jinan, 250012, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
20
|
Sun LM, Liao K. Saccharomyces cerevisiae Hog1 MAP kinase pathway is activated in response to honokiol exposure. J Appl Microbiol 2018; 124:754-763. [PMID: 29165856 DOI: 10.1111/jam.13649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/02/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023]
Abstract
AIM The goal of the study was to investigate the cellular tolerance mechanism in response to honokiol exposure. METHODS AND RESULTS The broth microdilution method was employed to test the sensitivity of different Saccharomyces cerevisiae strains to honokiol. Intracellular levels of reactive oxygen species (ROSs) were determined by DCFH-DA staining. The phosphorylation of Hog1 was evaluated by Western blot analysis. The mRNA expressions of genes involved in the Ras-cyclic AMP (cAMP) pathway were analysed by real-time reverse transcription polymerase chain reaction. We found that the sod1▵ mutant was hypersensitive to honokiol and produced more ROS compared with wild-type and sod2▵ cells. Hog1 was phosphorylated in response to honokiol exposure and deletion of HOG1 increased the sensitivity to honokiol. The expressions of genes involved in the Ras-cAMP pathway were down-regulated after honokiol exposure; exogenous cAMP significantly reduced the phosphorylation of Hog1, although the level was higher than the control level. CONCLUSIONS In addition to SOD1, the Ras-cAMP cascade and Hog1 MAP kinase pathway is essential for protecting against honokiol-induced oxidative stress. SIGNIFICANCE AND IMPACT OF THE STUDY Our results provide insight into the understanding of the action mechanism of honokiol.
Collapse
Affiliation(s)
- L-M Sun
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - K Liao
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
21
|
Mitochondrial Superoxide Dismutase and Yap1p Act as a Signaling Module Contributing to Ethanol Tolerance of the Yeast Saccharomyces cerevisiae. Appl Environ Microbiol 2017; 83:AEM.02759-16. [PMID: 27864171 DOI: 10.1128/aem.02759-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/11/2016] [Indexed: 12/26/2022] Open
Abstract
There are two superoxide dismutases in the yeast Saccharomyces cerevisiae-cytoplasmic and mitochondrial enzymes. Inactivation of the cytoplasmic enzyme, Sod1p, renders the cells sensitive to a variety of stresses, while inactivation of the mitochondrial isoform, Sod2p, typically has a weaker effect. One exception is ethanol-induced stress. Here we studied the role of Sod2p in ethanol tolerance of yeast. First, we found that repression of SOD2 prevents ethanol-induced relocalization of yeast hydrogen peroxide-sensing transcription factor Yap1p, one of the key stress resistance proteins. In agreement with this, the levels of Trx2p and Gsh1p, proteins encoded by Yap1 target genes, were decreased in the absence of Sod2p. Analysis of the ethanol sensitivities of the cells lacking Sod2p, Yap1p, or both indicated that the two proteins act in the same pathway. Moreover, preconditioning with hydrogen peroxide restored the ethanol resistance of yeast cells with repressed SOD2 Interestingly, we found that mitochondrion-to-nucleus signaling by Rtg proteins antagonizes Yap1p activation. Together, our data suggest that hydrogen peroxide produced by Sod2p activates Yap1p and thus plays a signaling role in ethanol tolerance. IMPORTANCE Baker's yeast harbors multiple systems that ensure tolerance to high concentrations of ethanol. Still, the role of mitochondria under severe ethanol stress in yeast is not completely clear. Our study revealed a signaling function of mitochondria which contributes significantly to the ethanol tolerance of yeast cells. We found that mitochondrial superoxide dismutase Sod2p and cytoplasmic hydrogen peroxide sensor Yap1p act together as a module of the mitochondrion-to-nucleus signaling pathway. We also report cross talk between this pathway and the conventional retrograde signaling cascade activated by dysfunctional mitochondria.
Collapse
|
22
|
Gil FN, Bellí G, Viegas CA. TheSaccharomyces cerevisiaeresponse to stress caused by the herbicidal active substance alachlor requires the iron regulon transcription factor Aft1p. Environ Microbiol 2016; 19:485-499. [DOI: 10.1111/1462-2920.13439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 06/27/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Fátima N. Gil
- iBB-Institute for Bioengineering and Biosciences; Instituto Superior Técnico (IST), Universidade de Lisboa (UL); Av. Rovisco Pais Lisboa 1049-001 Portugal
| | - Gemma Bellí
- Department of Basic Medical Sciences; IRBLleida, University of Lleida; Rovira Roure 80 Lleida 25198 Spain
| | - Cristina A. Viegas
- iBB-Institute for Bioengineering and Biosciences; Instituto Superior Técnico (IST), Universidade de Lisboa (UL); Av. Rovisco Pais Lisboa 1049-001 Portugal
- Department of Bioengineering; Instituto Superior Técnico (IST), Universidade de Lisboa (UL); Av. Rovisco Pais Lisboa 1049-001 Portugal
| |
Collapse
|