1
|
Wang X, Wu K, Liu R, Wang K, Xie W, Zhai X, Yang S, Wang X, Tang Z. Detection of hypochlorous acid fluctuation via a near-infrared fluorescent probe in Parkinson's disease cells and mouse models. Methods 2025; 238:11-18. [PMID: 40049433 DOI: 10.1016/j.ymeth.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 04/19/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by excessive reactive halogen species leading to the death of dopaminergic (DA) neurons, which disrupts the coordination of normal physiological structures and functions. Hypochlorous acid (HOCl) is a reactive halogen species whose overproduction is associated with the death of DA neurons. Herein, overproduction of HOCl may be a neurotoxin substance in the pathogenesis of PD. Therefore, it is essential to understand the disease of HOCl in PD model. However, early detection HOCl in PD model remains lacking of effective methods. In this study, a high sensitivity off-on near-infrared probe (MB-HOCl) was designed and synthesized. MB-HOCl showed a quantitative response toward HOCl (0-100 μM) with detection limit of 0.32 μM. Importantly, MB-HOCl was capable of selectively and specially detecting exogenous and endogenous HOCl in PC-12 cells and was successfully used for imaging in PD mice models. All results demonstrate that the probe (MB-HOCl) holds great promise for understanding the disease and diagnosis of HOCl-mediated PD models.
Collapse
Affiliation(s)
- Xumei Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ke Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ruixin Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Kai Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenyu Xie
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xinyuan Zhai
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shangshen Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhixin Tang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Engineering Research Center of Traditional Chinese Medicine Precise Treatment of Cardiovascular Disease, Traditional Chinese Medicine Precision Treatment and Industrialization Collaborative Innovation Center for Cardiovascular Diseases in the Yellow River Basin, Jinan 250355, China.
| |
Collapse
|
2
|
Anastassova N, Kondeva-Burdina M, Hristova-Avakumova N, Stefanova D, Rangelov M, Todorova N, Yancheva D. Exploring the Potential of Indole-3-acetic Acid Arylhydrazone Hybrids for Parkinson's Disease Treatment: A Comprehensive Evaluation of Neuroprotective, MAOB Inhibitory, and Antioxidant Properties. ACS Chem Neurosci 2025; 16:1161-1181. [PMID: 40066901 DOI: 10.1021/acschemneuro.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
In the current study, a small series of five indole-3-acetic acid-derived arylhydrazone hybrids were synthesized and subjected to comprehensive evaluation of their neuropharmacological and radical-scavenging properties. Minimal neurotoxic effects were observed across diverse subcellular fractions, with particular emphasis on the compound 3a bearing a 2,3-dihydroxy moiety, exhibiting superior neuroprotective effects against H2O2-induced oxidative stress by preserving the cell viability up to 68%. Noteworthy neuroprotection was observed in 6-OHDA-induced neurotoxicity using isolated rat brain synaptosomes, with compounds 3b and 3c displaying prominent effects. Compound 3a demonstrated robust neuroprotective and antioxidant effects in models of tert-butyl hydroperoxide-induced oxidative stress on isolated rat brain mitochondria and nonenzyme-induced lipid peroxidation using isolated rat brain microsomes (Fe/AA). All compounds exhibited MAOB inhibition within the range of 0.130-0.493 μM, with compounds 3d, 3e, and 3a showing notable selectivity against hMAOB. Molecular docking studies further validated ligand binding within MAOB active sites. The derivatives demonstrated scavenging activity and antioxidant effects against various ROS types, with compound 3a consistently exhibiting the most potent activity. Structural modifications exerted discernible effects on scavenging capabilities and antioxidant effects, underscoring their potential therapeutic implications in neuroprotection and oxidative stress mitigation.
Collapse
Affiliation(s)
- Neda Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
| | - Nadya Hristova-Avakumova
- Department of Medical Physics and Biophysics, Faculty of Medicine, Medical University of Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria
| | - Denitsa Stefanova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| |
Collapse
|
3
|
Xu J, Zhou X, He H, Li S, Ma C. A turn-on fluorescence strategy for hypochlorous acid detection based on DNAzyme-assisted cyclic signal amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123243. [PMID: 37562215 DOI: 10.1016/j.saa.2023.123243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Hypochlorous acid (HClO) is a crucial active oxygen component and one of the innate immunity's barrier substances in the body. Abnormal fluctuations in HClO concentration can lead to increased oxidative stress, cellular dysfunction, and the onset of various diseases. Thus, developing convenient, affordable, efficient, and sensitive methods to monitor HClO concentration in healthcare and pathophysiology research is highly significant. In this study, we developed a novel fluorescence strategy for HClO detection based on nucleic acid oxidative cleavage and Pb2+-dependent DNAzyme. By introducing a phosphorothioate site in the hairpin-structured nucleic acid sequence, the nucleic acid probe specifically recognized HClO and underwent oxidative cleavage. Upon cleavage, the enzyme strand is liberated, forming DNAzyme. This DNAzyme then cleaves the substrate strand, liberating the initially quenched fluorescent dyes and generating a turn-on fluorescent signal. The enzyme strand produced by the oxidative cleavage of HClO can be repeatedly utilized, thus realizing the cyclic signal amplification to reduce background noise. We verified the detection mechanism of this strategy through stepwise fluorescence spectroscopy analysis and electrophoresis. Under optimal experimental conditions, the method achieved a detection limit of 5.38 nM and a linear range of 1 nM-800 nM. This method demonstrated exceptional performance in actual biological sample testing and presented an exciting opportunity for expanded utilization in clinical diagnosis and medical research.
Collapse
Affiliation(s)
- Jiaqi Xu
- School of Life Sciences, Central South University, Changsha 410013, China; Xiangya Hospital, Central South University, Changsha 410013, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xi Zhou
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Shanni Li
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
4
|
Badillo-Ramírez I, Landeros-Rivera B, Saniger JM, Popp J, Cialla-May D. SERS-based detection of 5- S-cysteinyl-dopamine as a novel biomarker of Parkinson's disease in artificial biofluids. Analyst 2023; 148:1848-1857. [PMID: 36939184 DOI: 10.1039/d3an00027c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The early detection of Parkinson's disease (PD) can significantly improve treatment and quality of life in patients. 5-S-Cysteinyl-dopamine (CDA) is a key metabolite of high relevance for the early detection of PD. Therefore, its sensitive detection with fast and robust methods can improve its use as a biomarker. In this work we show the potentialities of label-free SERS spectroscopy in detecting CDA in aqueous solutions and artificial biofluids, with a simple, fast and sensitive approach. We present a detailed experimental SERS band assignment of CDA employing silver nanoparticle (AgNP) substrates in aqueous media, which was supported by theoretical calculations and simulated Raman and SERS spectra. The tentative orientation of CDA over the AgNP was also studied, indicating that catechol and carboxylic acid play a key role in the metallic surface adsorption. Moreover, we showed that SERS can allow us to identify CDA in aqueous media at low concentration, leading to the identification of some of its characteristic bands in pure water and in synthetic cerebrospinal fluid (SCSF) below 1 × 10-8 M, while its band identification in simulated urine (SUR) can be reached at 1 × 10-7 M. In conclusion, we show that CDA can be suitably detected by means of label-free SERS spectroscopy, which can significantly improve its sensitive detection for further analytical studies as a novel biomarker and further clinical diagnosis in PD patients.
Collapse
Affiliation(s)
- Isidro Badillo-Ramírez
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Bruno Landeros-Rivera
- Facultad de Química, Departamento de Química Inorgánica y Nuclear, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - José M Saniger
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Jürgen Popp
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Dana Cialla-May
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| |
Collapse
|
5
|
Redox cycling of quinones reduced by ascorbic acid. Chem Biol Interact 2023; 373:110397. [PMID: 36764370 DOI: 10.1016/j.cbi.2023.110397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
In aqueous solutions containing ascorbic acid and O2, many quinones undergo reduction to the semiquinone followed by reoxidation. This redox cycling mediates the oxidation of ascorbic acid and the reduction of O2 to superoxide and ultimately hydrogen peroxide. For that reason, redox cycling has attracted attention as a source of reactive oxygen species. This redox cycling is paradoxical, however, because the one-equivalent reduction potentials of the reactants are unfavorable, so the concentrations of the products, monodehydroascorbate and superoxide, must be kept extremely low. Disproportionation is not fast enough to eliminate these products. We have investigated the mechanism of ascorbate-driven redox cycling by monitoring the redox status of the quinone and the rate of redox cycling in parallel. Evidence is presented for a mechanism in which monodehydroascorbate is oxidized by the semiquinone. The result is that cycling of the semiquinone and hydroquinone mediates a rapid disproportionation of monodehydroascorbate. This mechanism accounts for the dependence of the redox cycling rate on quinone and ascorbate concentrations as well as on the reduction potential of the quinone. Therefore, it predicts how fast ascorbate-driven redox cycling will generate hydrogen peroxide under a variety of conditions and with different quinones.
Collapse
|
6
|
Highly selective and sensitive response of curcumin thioether derivative for the detection of hypochlorous acid by fluorimetric method. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02528-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Marwah PK, Paik G, Issa CJ, Jemison CC, Qureshi MB, Hanna TM, Palomino E, Maddipati KR, Njus D. Manganese-stimulated redox cycling of dopamine derivatives: Implications for manganism. Neurotoxicology 2022; 90:10-18. [PMID: 35217070 DOI: 10.1016/j.neuro.2022.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Abstract
Manganism, the condition caused by chronic exposure to high levels of manganese, selectively targets the dopamine-rich basal ganglia causing a movement disorder with symptoms similar to Parkinson's disease. While the basis for this specific targeting is unknown, we hypothesize that it may involve complexation of Mn by dopamine derivatives. At micromolar concentrations, MnCl2 accelerates the two-equivalent redox cycling of a dopamine-derived benzothiazine (dopathiazine) by an order of magnitude. In the process, O2 is reduced to superoxide and hydrogen peroxide. This effect is unique to Mn and is not shared by Fe, Cu, Zn, Co, Ca or Mg. Notably, the effect of Mn requires the presence of inorganic phosphate, suggesting that phosphate may stabilize a Mn/catecholate complex, which reacts readily with O2. This or similar endogenous dopamine derivatives may exacerbate Mn-dependent oxidative stress accounting for the neurological selectivity of manganism.
Collapse
Affiliation(s)
- Praneet Kaur Marwah
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Gijong Paik
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Christopher J Issa
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | - Muhammad B Qureshi
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Tareq M Hanna
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Eduardo Palomino
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA; Walker Cancer Research Institute, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Wayne State Univ. School of Medicine, Detroit, MI 48201, USA
| | - David Njus
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
8
|
Zhong Y, Yang L, Zhou Y, Peng J. Biomarker-responsive Fluorescent Probes for In Vivo Imaging of Liver Injury. Chem Asian J 2022; 17:e202200038. [PMID: 35182452 DOI: 10.1002/asia.202200038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/16/2022] [Indexed: 11/08/2022]
Abstract
Liver injury-related diseases have aroused widespread concern due to its extreme unpredictability, acute onset, and severe consequences. Nowadays, the clinical prediction and assessment of liver injury mainly focus on histopathological and serological approaches, which undergoes a tedious process and sometimes requires invasive biopsy. Over the past decades, fluorescence imaging technique have emerged as a rising star for the diagnosis of diseases owing to its noninvasiveness, high fidelity and ease of operation. On regard to liver injury, the fluorescent probes have been delicately designed to response a variety of endogenous biomolecules to precisely offer comprehensive information about the lesion site. Herein, we make a brief summary and discussion about the design strategies and applications of the recently reported fluorescent biosensors responsive to a series of biomarkers involved in the liver injury. The potential prospects and remaining challenges are also discussed to promote the progression in this field.
Collapse
Affiliation(s)
- Yang Zhong
- China Pharmaceutical University, State Key Laboratory of Natural Medicines, CHINA
| | - Lulu Yang
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, CHINA
| | - Yunyun Zhou
- China Pharmaceutical University, State Key Laboratory of Natural Medicines, CHINA
| | - Juanjuan Peng
- China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing, CHINA
| |
Collapse
|
9
|
Li C, Zhuo Y, Xiao X, Li S, Han K, Lu M, Zhang J, Chen S, Gu H. Facile Electrochemical Microbiosensor Based on In Situ Self-Assembly of Ag Nanoparticles Coated on Ti 3C 2T x for In Vivo Measurements of Chloride Ions in the PD Mouse Brain. Anal Chem 2021; 93:7647-7656. [PMID: 34014093 DOI: 10.1021/acs.analchem.1c00342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chloride ion (Cl-), one of the most important anions in the brain, has been confirmed to participate in the pathological process of Parkinson's disease (PD). As such, the development of a reliable method for in vivo measurements of Cl- is extremely appealing, especially for understanding the pathogenesis of PD. We herein designed a facile electrochemical microbiosensor (ECMB), based on in situ self-assembly of Ag nanoparticles (Ag NPs) coated on Ti3C2Tx. The uniform nanosized Ag NPs were reduced by Ti3C2Tx by a simple dipping process, endowing the ECMB with excellent specificity toward Cl- detection and remarkably reproducible preparation process. Meanwhile, electro-oxidized graphene oxide was introduced as an inner reference, thus avoiding the environmental interference of the complicated brain systems to increase the determination accuracy. An extensive in vitro study revealed that the proposed ECMB would be a robust candidate for real-time monitoring of Cl- in the PD mouse brain with high selectivity, accuracy, and reproducibility. Moreover, the availability and reliability toward in vivo Cl- monitoring of the designed ECMB were well confirmed by comparing with the standard Volhard's method. Finally, by virtue of the successful employment of the developed detecting platform in the in vivo measurement of Cl- in the PD mouse brain, systematic analysis and comparison of the average levels of Cl- in the three regions including cortex, striatum, and hippocampus of brains from normal and PD model mice have been achieved.
Collapse
Affiliation(s)
- Chenchen Li
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincical Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P. R. China
| | - Xia Xiao
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Shuangfu Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Kai Han
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincical Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P. R. China
| | - Jiaxin Zhang
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Shu Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Hui Gu
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|
10
|
McCarty MF, Lerner A. Nutraceuticals Targeting Generation and Oxidant Activity of Peroxynitrite May Aid Prevention and Control of Parkinson's Disease. Int J Mol Sci 2020; 21:3624. [PMID: 32455532 PMCID: PMC7279222 DOI: 10.3390/ijms21103624] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a chronic low-grade inflammatory process in which activated microglia generate cytotoxic factors-most prominently peroxynitrite-which induce the death and dysfunction of neighboring dopaminergic neurons. Dying neurons then release damage-associated molecular pattern proteins such as high mobility group box 1 which act on microglia via a range of receptors to amplify microglial activation. Since peroxynitrite is a key mediator in this process, it is proposed that nutraceutical measures which either suppress microglial production of peroxynitrite, or which promote the scavenging of peroxynitrite-derived oxidants, should have value for the prevention and control of PD. Peroxynitrite production can be quelled by suppressing activation of microglial NADPH oxidase-the source of its precursor superoxide-or by down-regulating the signaling pathways that promote microglial expression of inducible nitric oxide synthase (iNOS). Phycocyanobilin of spirulina, ferulic acid, long-chain omega-3 fatty acids, good vitamin D status, promotion of hydrogen sulfide production with taurine and N-acetylcysteine, caffeine, epigallocatechin-gallate, butyrogenic dietary fiber, and probiotics may have potential for blunting microglial iNOS induction. Scavenging of peroxynitrite-derived radicals may be amplified with supplemental zinc or inosine. Astaxanthin has potential for protecting the mitochondrial respiratory chain from peroxynitrite and environmental mitochondrial toxins. Healthful programs of nutraceutical supplementation may prove to be useful and feasible in the primary prevention or slow progression of pre-existing PD. Since damage to the mitochondria in dopaminergic neurons by environmental toxins is suspected to play a role in triggering the self-sustaining inflammation that drives PD pathogenesis, there is also reason to suspect that plant-based diets of modest protein content, and possibly a corn-rich diet high in spermidine, might provide protection from PD by boosting protective mitophagy and thereby aiding efficient mitochondrial function. Low-protein diets can also promote a more even response to levodopa therapy.
Collapse
Affiliation(s)
| | - Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| |
Collapse
|
11
|
New benzimidazole-aldehyde hybrids as neuroprotectors with hypochlorite and superoxide radical-scavenging activity. Pharmacol Rep 2020; 72:846-856. [PMID: 32125683 DOI: 10.1007/s43440-020-00077-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Many neurodegenerative disorders include oxidative stress-mediated pathology. Melatonin and its metabolites act as endogenous reactive oxygen species (ROS) scavengers and antioxidants. N,N'-Disubstituted benzimidazole-2-thiones with extended side chains could exert antioxidant and neuroprotective properties due to structural similarities to melatonin. METHODS The toxicological potential of the compounds was evaluated by monitoring the synaptosomal viability and the levels of reduced glutathione (GSH) in isolated rat brain synaptosomes. The neuroprotective effects were assessed in vitro in a model of 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. The capability to decrease superoxide anion radical and hypochlorite was evaluated by luminol-dependent chemiluminescent assays. RESULTS Compounds 5-7 containing residues of veratraldehyde, vanillin, and syringaldehyde at concentration 250 μM, preserved at the highest degree the synaptosomal viability and GSH levels. Further screening of compounds 5-7 at lower concentrations of 100 μM, 10 μM, and 1 μM, respectively, demonstrated that 6 and 7 do not show any toxicity within this concentration range. In the model of 6-OHDA-induced oxidative stress, 6 revealed concentration-dependent, neuroprotective, and antioxidant activities similar to melatonin. All the three compounds demonstrated ability to decrease the chemiluminescent scavenging index (CL-SI) in the hypochlorite containing system. In the superoxide system, the hydrazones exhibited different effects on the signal. CONCLUSIONS Our studies suggest that the benzimidazole-aldehyde hybrids act as direct ROS scavengers and membranes' stabilizers against free radicals. Thus, they play a role in the antioxidative defense system and have a promising potential as therapeutic neuroprotective agents for the treatment of neurodegenerative disorders.
Collapse
|
12
|
Shi L, Yu H, Zeng X, Yang S, Gong S, Xiang H, Zhang K, Shao G. A novel ratiometric fluorescent probe based on thienocoumarin and its application for the selective detection of hypochlorite in real water samples and in vivo. NEW J CHEM 2020. [DOI: 10.1039/d0nj00318b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel ratiometric fluorescent probe based on thieno[3,2-c]coumarin has been prepared for sensing hypochlorite, which could exhibit a large emission shift and a 338-fold emission ratio (I470/I640).
Collapse
Affiliation(s)
- Lei Shi
- Guangdong Engineering Technical Research Center for Green Household Chemicals
- Guangdong Industry Polytechnic
- Guangzhou
- P. R. China
| | - Huijuan Yu
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Xianqing Zeng
- Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources
- School of Chemistry and Food Engineering, Changsha University of Science and Technology
- Changsha
- P. R. China
| | - Sheng Yang
- Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources
- School of Chemistry and Food Engineering, Changsha University of Science and Technology
- Changsha
- P. R. China
| | - Shengzhao Gong
- Guangdong Engineering Technical Research Center for Green Household Chemicals
- Guangdong Industry Polytechnic
- Guangzhou
- P. R. China
| | - Hua Xiang
- Guangdong Engineering Technical Research Center for Green Household Chemicals
- Guangdong Industry Polytechnic
- Guangzhou
- P. R. China
| | - Kai Zhang
- College of Preclinical Medicine
- Southwest Medical University
- Luzhou
- P. R. China
| | - Guang Shao
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- P. R. China
- Shenzhen Research Institute
| |
Collapse
|
13
|
Lan J, Guo J, Jiang X, Chen Y, Hu Z, Que Y, Li H, Gu J, Ho RJ, Zeng R, Ding Y, Zhang T. A new dicyanoisophorone-based ratiometric and colorimetric near-infrared fluorescent probe for specifically detecting hypochlorite and its bioimaging on a model of acute inflammation. Anal Chim Acta 2020; 1094:70-79. [DOI: 10.1016/j.aca.2019.09.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
|
14
|
Maki RA, Holzer M, Motamedchaboki K, Malle E, Masliah E, Marsche G, Reynolds WF. Human myeloperoxidase (hMPO) is expressed in neurons in the substantia nigra in Parkinson's disease and in the hMPO-α-synuclein-A53T mouse model, correlating with increased nitration and aggregation of α-synuclein and exacerbation of motor impairment. Free Radic Biol Med 2019; 141:115-140. [PMID: 31175983 PMCID: PMC6774439 DOI: 10.1016/j.freeradbiomed.2019.05.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
α-Synuclein (αSyn) is central to the neuropathology of Parkinson's disease (PD) due to its propensity for misfolding and aggregation into neurotoxic oligomers. Nitration/oxidation of αSyn leads to dityrosine crosslinking and aggregation. Myeloperoxidase (MPO) is an oxidant-generating enzyme implicated in neurodegenerative diseases. In the present work we have examined the impact of MPO in PD through analysis of postmortem PD brain and in a novel animal model in which we crossed a transgenic mouse expressing the human MPO (hMPO) gene to a mouse expressing human αSyn-A53T mutant (A53T) (hMPO-A53T). Surprisingly, our results show that in PD substantia nigra, the hMPO gene is expressed in neurons containing aggregates of nitrated αSyn as well as MPO-generated HOCl-modified epitopes. In our hMPO-A53T mouse model, we also saw hMPO expression in neurons but not mouse MPO. In the mouse model, hMPO was expressed in neurons colocalizing with nitrated αSyn, carbamylated lysine, nitrotyrosine, as well as HOCl-modified epitopes/proteins. RNAscope in situ hybridization confirmed hMPO mRNA expression in neurons. Interestingly, the hMPO protein expressed in hMPO-A53T brain is primarily the precursor proMPO, which enters the secretory pathway potentially resulting in interneuronal transmission of MPO and oxidative species. Importantly, the hMPO-A53T mouse model, when compared to the A53T model, exhibited significant exacerbation of motor impairment on rotating rods, balance beams, and wire hang tests. Further, hMPO expression in the A53T model resulted in earlier onset of end stage paralysis. Interestingly, there was a high concentration of αSyn aggregates in the stratum lacunosum moleculare of hippocampal CA2 region, which has been associated in humans with accumulation of αSyn pathology and neural atrophy in dementia with Lewy bodies. This accumulation of αSyn aggregates in CA2 was associated with markers of endoplasmic reticulum (ER) stress and the unfolded protein response with expression of activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), MPO, and cleaved caspase-3. Together these findings suggest that MPO plays an important role in nitrative and oxidative damage that contributes to αSyn pathology in synucleinopathies.
Collapse
Affiliation(s)
- Richard A Maki
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael Holzer
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Khatereh Motamedchaboki
- Tumor Initiation & Maintenance Program and NCI Cancer Centre Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ernst Malle
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA; Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA; Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Wanda F Reynolds
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
15
|
Badillo-Ramírez I, Saniger JM, Rivas-Arancibia S. 5-S-cysteinyl-dopamine, a neurotoxic endogenous metabolite of dopamine: Implications for Parkinson's disease. Neurochem Int 2019; 129:104514. [PMID: 31369776 DOI: 10.1016/j.neuint.2019.104514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/04/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide and is characterized for being an idiopathic and multifactorial disease. Extensive research has been conducted to explain the origin of the disease, but it still remains elusive. It is well known that dopamine oxidation, through the endogenous formation of toxic metabolites, is a key process in the activation of a cascade of molecular events that leads to cellular death in the hallmark of PD. Thio-catecholamines, such as 5-S-cysteinyl-dopamine, 5-S-glutathionyl-dopamine and derived benzothiazines, are endogenous metabolites formed in the dopamine oxidative degradation pathway. Those metabolites have been shown to be highly toxic to neurons in the substantia nigra pars compacta, activating molecular mechanisms that ultimately lead to neuronal death. In this review we describe the origin, formation and the toxic effects of 5-S-cysteinyl-dopamine and its oxidative derivatives that cause death to dopaminergic neurons. Furthermore, we correlate the formation of those metabolites with the neurodegeneration progress in PD. In addition, we present the reported neuroprotective strategies of products that protect against the cellular damage of those thio-catecholamines. Finally, we discuss the advantages in the use of 5-S-cysteinyl-dopamine as a potential biomarker for PD.
Collapse
Affiliation(s)
- Isidro Badillo-Ramírez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito externo S/N, Cd. Universitaria, 04510, Ciudad de México, Mexico; Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito externo S/N, Cd. Universitaria, 04510, Ciudad de México, Mexico
| | - José M Saniger
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito externo S/N, Cd. Universitaria, 04510, Ciudad de México, Mexico.
| | - Selva Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito externo S/N, Cd. Universitaria, 04510, Ciudad de México, Mexico.
| |
Collapse
|
16
|
Are Proteinopathy and Oxidative Stress Two Sides of the Same Coin? Cells 2019; 8:cells8010059. [PMID: 30654525 PMCID: PMC6356376 DOI: 10.3390/cells8010059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease, like other neurodegenerative diseases, exhibits two common features: Proteinopathy and oxidative stress, leading to protein aggregation and mitochondrial damage respectively. Because both protein aggregates and dysfunctional mitochondria are eliminated by autophagy, we suggest that inadequate clearance may couple the two phenomena. If a neuron's autophagy machinery is overwhelmed, whether by excessive oxidative stress or by excessive protein aggregation, protein aggregates and dysfunctional mitochondria will both accumulate. Parkinson's disease may provide a unique window into this because there is evidence that both sides contribute. Mutations amplifying the aggregation of α-synuclein are associated with Parkinson's disease. Likewise, mutations in Parkin and PINK1, proteins involved in mitophagy, suggest that impaired mitochondrial clearance is also a contributing factor. Many have suggested that dopamine oxidation products lead to oxidative stress accounting for the dopaminergic selectivity of the disease. We have presented evidence for the specific involvement of hypochlorite-oxidized cysteinyl-dopamine (HOCD), a redox-cycling benzothiazine derivative. While toxins like 6-hydroxydopamine and 1-methyl-4-phenyl pyridinium (MPP+) have been used to study mitochondrial involvement in Parkinson's disease, HOCD may provide a more physiologically relevant approach. Understanding the role of mitochondrial dysfunction and oxidative stress in Parkinson's disease and their relation to α-synuclein proteinopathy is important to gain a full picture of the cause, especially for the great majority of cases which are idiopathic.
Collapse
|
17
|
Lou Y, Wang C, Chi S, Li S, Mao Z, Liu Z. Construction of a two-photon fluorescent probe for ratiometric imaging of hypochlorous acid in alcohol-induced liver injury. Chem Commun (Camb) 2019; 55:12912-12915. [DOI: 10.1039/c9cc06888k] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A ratiometric two-photon fluorescent probe for HClO was deliberately constructed to reveal the generation of HClO in alcohol-induced liver injury.
Collapse
Affiliation(s)
- Yan Lou
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- China
| | - Caixia Wang
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- China
| | - Siyu Chi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Songjiao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Zhiqiang Mao
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- China
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
| |
Collapse
|
18
|
Temoçin Z, Kim E, Li J, Panzella L, Alfieri ML, Napolitano A, Kelly DL, Bentley WE, Payne GF. The Analgesic Acetaminophen and the Antipsychotic Clozapine Can Each Redox-Cycle with Melanin. ACS Chem Neurosci 2017; 8:2766-2777. [PMID: 28945963 DOI: 10.1021/acschemneuro.7b00310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Melanins are ubiquitous but their complexity and insolubility has hindered characterization of their structures and functions. We are developing electrochemical reverse engineering methodologies that focus on properties and especially on redox properties. Previous studies have shown that melanins (i) are redox-active and can rapidly and repeatedly exchange electrons with diffusible oxidants and reductants, and (ii) have redox potentials in midregion of the physiological range. These properties suggest the functional activities of melanins will depend on their redox context. The brain has a complex redox context with steep local gradients in O2 that can promote redox-cycling between melanin and diffusible redox-active chemical species. Here, we performed in vitro reverse engineering studies and report that melanins can redox-cycle with two common redox-active drugs. Experimentally, we used two melanin models: a convenient natural melanin derived from cuttlefish (Sepia melanin) and a synthetic cysteinyldopamine-dopamine core-shell model of neuromelanin. One drug, acetaminophen (APAP), has been used clinically for over a century, and recent studies suggest that low doses of APAP can protect the brain from oxidative-stress-induced toxicity and neurodegeneration, while higher doses can have toxic effects in the brain. The second drug, clozapine (CLZ), is a second generation antipsychotic with polypharmacological activities that remain incompletely understood. These in vitro observations suggest that the redox activities of drugs may be relevant to their modes-of-action, and that melanins may interact with drugs in ways that affect their activities, metabolism, and toxicities.
Collapse
Affiliation(s)
- Zülfikar Temoçin
- Department
of Chemistry, Science and Arts Faculty, Kırıkkale University, Yahs̨ihan,71450 Kırıkkale, Turkey
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Jinyang Li
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Lucia Panzella
- Department
of Chemical Sciences, University of Naples Federico II, Via Cintia
4, I-80126 Naples, Italy
| | - Maria Laura Alfieri
- Department
of Chemical Sciences, University of Naples Federico II, Via Cintia
4, I-80126 Naples, Italy
| | - Alessandra Napolitano
- Department
of Chemical Sciences, University of Naples Federico II, Via Cintia
4, I-80126 Naples, Italy
| | - Deanna L. Kelly
- Maryland
Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228, United States
| | - William E. Bentley
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
19
|
Mao CJ, Zhong CK, Yang Y, Yang YP, Wang F, Chen J, Zhang JR, Zhang HJ, Jin H, Xu LL, Huang JY, Liu CF. Serum sodium and chloride are inversely associated with dyskinesia in Parkinson's disease patients. Brain Behav 2017; 7:e00867. [PMID: 29299386 PMCID: PMC5745246 DOI: 10.1002/brb3.867] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/25/2017] [Accepted: 09/30/2017] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE We aim to report and evaluate the associations between serum sodium and chloride and dyskinesia in patients with Parkinson's disease. One hundred and two patients with Parkinson's disease were enrolled in this study. METHODS Patients' serum electrolytes including sodium, calcium, potassium, magnesium, and chloride were measured. Other demographic information was collected, and Unified Parkinson's disease rating scale and Hoehn and Yahr stage scale were also performed. RESULTS Patients with dyskinesia tended to have longer duration of disease, higher daily levodopa-equivalent dose, and Hoehn-Yahr stage, with lower serum sodium than those without dyskinesia. Spearman correlation analyses showed that serum sodium inversely correlated with duration of disease (r = -.218, p = .028), and positively correlated with serum chloride levels (r = .565, p < .001). Univariate logistic regression analysis found that duration of disease, daily levodopa-equivalent dose, serum sodium, and serum chloride were associated with dyskinesia in Parkinson's disease patients (p < .05 for all). After adjusting for age, sex, age at onset of Parkinson's disease, medical history, and other covariates, serum sodium and chloride were still associated with dyskinesia, with corresponding Odd ratios 0.783 (95% confidence intervals, 0.642-0.955) and 0.796 (95% confidence intervals, 0.652-0.972), respectively. CONCLUSION Our findings indicated that serum sodium and chloride levels were inversely associated with dyskinesia in patients with Parkinson's disease. Further studies with large samples and range of serum sodium and chloride are needed.
Collapse
Affiliation(s)
- Cheng-Jie Mao
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseasethe Second Affiliated Hospital of Soochow University Suzhou China
| | - Chong-Ke Zhong
- Department of Epidemiology School of Public Health Medical College of Soochow University Suzhou China
| | - Yong Yang
- Clinical Laboratory The Second Affiliated Hospital of Soochow University Suzhou China
| | - Ya-Ping Yang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseasethe Second Affiliated Hospital of Soochow University Suzhou China
| | - Fen Wang
- Institute of Neuroscience Soochow University Suzhou China
| | - Jing Chen
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseasethe Second Affiliated Hospital of Soochow University Suzhou China
| | - Jin-Ru Zhang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseasethe Second Affiliated Hospital of Soochow University Suzhou China
| | - Hui-Jun Zhang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseasethe Second Affiliated Hospital of Soochow University Suzhou China
| | - Hong Jin
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseasethe Second Affiliated Hospital of Soochow University Suzhou China
| | - Ling-Li Xu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseasethe Second Affiliated Hospital of Soochow University Suzhou China
| | - Juan-Ying Huang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseasethe Second Affiliated Hospital of Soochow University Suzhou China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseasethe Second Affiliated Hospital of Soochow University Suzhou China.,Institute of Neuroscience Soochow University Suzhou China
| |
Collapse
|
20
|
Chen S, Hu M, Shen M, Xu Y, Wang C, Wang X, Li F, Zeng D, Chen F, Zhao G, Chen M, Wang F, Cheng T, Su Y, Zhao J, Wang S, Wang J. Dopamine induces platelet production from megakaryocytes via oxidative stress-mediated signaling pathways. Platelets 2017; 29:702-708. [PMID: 29119850 DOI: 10.1080/09537104.2017.1356451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dopamine (DA), a catecholamine neurotransmitter, is known to for its diverse roles on hematopoiesis, yet its function in thrombopoiesis remains poorly understood. This study shows that DA stimulation can directly induce platelet production from megakaryocytes (MKs) in the final stages of thrombopoiesis via a reactive oxygen species (ROS)-dependent pathway. The mechanism was suggested by the results that DA treatment could significantly elevate the ROS levels in MKs, and time-dependently activate oxidative stress-mediated signaling, including p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, and caspase-3 signaling pathways, while the antioxidants N-acetylcysteine and L-glutathione could effectively inhibit the activation of these signaling pathways, as well as the ROS increase and platelet production triggered by DA. Therefore, our data revealed that the direct role and mechanism of DA in thrombopoiesis, which provides new insights into the function recognition of DA in hematopoiesis.
Collapse
Affiliation(s)
- Shilei Chen
- a State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Mengjia Hu
- a State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Mingqiang Shen
- a State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Yang Xu
- a State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Cheng Wang
- a State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Xinmiao Wang
- a State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Fengju Li
- a State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Dongfeng Zeng
- a State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine , Third Military Medical University , Chongqing , China.,c Department of Hematology, Daping Hospital , Third Military Medical University , Chongqing , China
| | - Fang Chen
- a State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Gaomei Zhao
- a State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Mo Chen
- a State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Fengchao Wang
- a State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Tianmin Cheng
- a State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Yongping Su
- a State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Jinghong Zhao
- b Department of Nephrology, Xinqiao Hospital , Third Military Medical University , Chongqing , China
| | - Song Wang
- a State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Junping Wang
- a State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| |
Collapse
|
21
|
Wimalasena K. Current Status, Gaps, and Weaknesses of the Mechanism of Selective Dopaminergic Toxicity of MPTP/MPP +. ADVANCES IN MOLECULAR TOXICOLOGY 2017. [DOI: 10.1016/b978-0-12-812522-9.00003-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|