1
|
Li L, Guo Z, Zhao Y, Liang C, Zheng W, Tian W, Chen Y, Cheng Y, Zhu F, Xiang X. The impact of oxidative stress on abnormal lipid metabolism-mediated disease development. Arch Biochem Biophys 2025; 766:110348. [PMID: 39961502 DOI: 10.1016/j.abb.2025.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Oxidative stress arises from an imbalance between cellular oxidation and anti-oxidation mechanisms, leading to various harmful effects on physiological health. These include inflammatory neutrophil infiltration, increased secretion of proteases, and increased production of oxidative intermediates, all of which significantly contribute to aging and the onset of multiple diseases. This review explores abnormal lipid metabolism, characterized by dysregulation in lipid synthesis, catabolism, digestion, absorption, and transport, with the potential to lead to lipid droplet accumulation or deficit across tissues, thus causing adverse health outcomes. Importantly, the intricate relationship between oxidative stress and inflammation plays a central role in exacerbating metabolic disorders, including diabetes, obesity, hypertension, non-alcoholic fatty liver disease, atherosclerosis, and lung fibrosis. This review seeks to compile and integrate recent research findings on the influence of oxidative stress on abnormal lipid metabolism pathology. A deeper understanding of this connection could reveal new perspectives for advancing the treatment and management of metabolic disorders.
Collapse
Affiliation(s)
- Lanlan Li
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Zhiliang Guo
- The 80th Group Army Hospital of Chinese PLA, Weifang, Shandong, 261021, China
| | - Yi Zhao
- Shandong Provincial Hospital Affiliated with Shandong's First Medical University, Shandong, China
| | - Chuanjie Liang
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Wenxiang Zheng
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Wenxiu Tian
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Yalin Chen
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Yi Cheng
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Fengwen Zhu
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China.
| | - Xinxin Xiang
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China.
| |
Collapse
|
2
|
Chan V, Camardi C, Zhang K, Orofiamma LA, Anderson KE, Hoque J, Bone LN, Awadeh Y, Lee DKC, Fu NJ, Chow JTS, Salmena L, Stephens LR, Hawkins PT, Antonescu CN, Botelho RJ. The LCLAT1/LYCAT acyltransferase is required for EGF-mediated phosphatidylinositol-3,4,5-trisphosphate generation and Akt signaling. Mol Biol Cell 2024; 35:ar118. [PMID: 39024272 PMCID: PMC11449395 DOI: 10.1091/mbc.e23-09-0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Receptor tyrosine kinases such as EGF receptor (EGFR) stimulate phosphoinositide 3 kinases to convert phosphatidylinositol-4,5-bisphosophate [PtdIns(4,5)P2] into phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3]. PtdIns(3,4,5)P3 then remodels actin and gene expression, and boosts cell survival and proliferation. PtdIns(3,4,5)P3 partly achieves these functions by triggering activation of the kinase Akt, which phosphorylates targets like Tsc2 and GSK3β. Consequently, unchecked upregulation of PtdIns(3,4,5)P3-Akt signaling promotes tumor progression. Interestingly, 50-70% of PtdIns and PtdInsPs have stearate and arachidonate at sn-1 and sn-2 positions of glycerol, respectively, forming a species known as 38:4-PtdIns/PtdInsPs. LCLAT1 and MBOAT7 acyltransferases partly enrich PtdIns in this acyl format. We previously showed that disruption of LCLAT1 lowered PtdIns(4,5)P2 levels and perturbed endocytosis and endocytic trafficking. However, the role of LCLAT1 in receptor tyrosine kinase and PtdIns(3,4,5)P3 signaling was not explored. Here, we show that LCLAT1 silencing in MDA-MB-231 and ARPE-19 cells abated the levels of PtdIns(3,4,5)P3 in response to EGF signaling. Importantly, LCLAT1-silenced cells were also impaired for EGF-driven and insulin-driven Akt activation and downstream signaling. Thus, our work provides first evidence that the LCLAT1 acyltransferase is required for receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
- Victoria Chan
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Cristina Camardi
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Kai Zhang
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Laura A. Orofiamma
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Karen E. Anderson
- Signalling Programme, Babraham Institute, Cambridge CB22 4AT, United Kingdom
| | - Jafarul Hoque
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Leslie N. Bone
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Yasmin Awadeh
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Daniel K. C. Lee
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Norman J. Fu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Jonathan T. S. Chow
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Leonardo Salmena
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Len R. Stephens
- Signalling Programme, Babraham Institute, Cambridge CB22 4AT, United Kingdom
| | - Phillip T. Hawkins
- Signalling Programme, Babraham Institute, Cambridge CB22 4AT, United Kingdom
| | - Costin N. Antonescu
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Roberto J. Botelho
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| |
Collapse
|
3
|
Tong Z, Du X, Zhou Y, Jing F, Ma J, Feng Y, Lou S, Wang Q, Dong Z. Drp1-mediated mitochondrial fission promotes pulmonary fibrosis progression through the regulation of lipid metabolic reprogramming by ROS/HIF-1α. Cell Signal 2024; 117:111075. [PMID: 38311302 DOI: 10.1016/j.cellsig.2024.111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE To confirm the mechanism of dynamic-related protein 1 (Drp1)-mediated mitochondrial fission through ROS/HIF-1α-mediated regulation of lipid metabolic reprogramming in the progression of pulmonary fibrosis (PF). METHODS A mouse model of PF was established by intratracheal instillation of bleomycin (BLM) (2.5 mg/kg). A PF cell model was constructed by stimulating MRC-5 cells with TGF-β (10 ng/mL). Pathological changes in the lung tissue and related protein levels were observed via tissue staining. The indicators related to lipid oxidation were detected by a kit, and lipid production was confirmed through oil red O staining. Inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). RT-qPCR, Western blotting and immunofluorescence staining were used to detect the expression of genes and proteins related to the disease. We used CCK-8 and EdU staining to confirm cell proliferation, flow cytometry was used to confirm apoptosis and ROS levels, α-SMA expression was detected by immunofluorescence staining, and mitochondria were observed by MitoTracker staining. RESULTS The BLM induced lung tissue structure and alveolar wall thickening in mice. Mitochondrial fission was observed in MRC-5 cells induced by TGF-β, which led to increased cell proliferation; decreased apoptosis; increased expression of collagen, α-SMA and Drp1; and increased lipid oxidation and inflammation. Treatment with the Drp1 inhibitor mdivi-1 or transfection with si-Drp1 attenuated the induction of BLM and TGF-β. For lipid metabolism, lipid droplets were formed in BLM-induced lung tissue and in TGF-β-induced cells, fatty acid oxidation genes and lipogenesis-related genes were upregulated, ROS levels in cells were increased, and the expression of HIF-1α was upregulated. Mdivi-1 treatment reversed TGF-β induction, while H2O2 treatment or OE-HIF-1α transfection reversed the effect of mdivi-1. CONCLUSION In PF, inhibition of Drp1 can prevent mitochondrial fission in fibroblasts and regulate lipid metabolism reprogramming through ROS/HIF-1α; thus, fibroblast activation was inhibited, alleviating the progression of PF.
Collapse
Affiliation(s)
- Zhongkai Tong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Xuekui Du
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Ying Zhou
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Fangxue Jing
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China; Health Science Center, Ningbo University, Ningbo 315211, China
| | - JiangPo Ma
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325000, China
| | - Yingying Feng
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China; Health Science Center, Ningbo University, Ningbo 315211, China
| | - Saiyun Lou
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China; Second Clinical Medicine Faculty of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiong Wang
- Department of Respiratory Infection, Zhenhai Hospital of Traditional Chinese Medicine, Ningbo 315200, China
| | - Zhaoxing Dong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China.
| |
Collapse
|
4
|
Zhang K, Chan V, Botelho RJ, Antonescu CN. A tail of their own: regulation of cardiolipin and phosphatidylinositol fatty acyl profile by the acyltransferase LCLAT1. Biochem Soc Trans 2023; 51:1765-1776. [PMID: 37737061 DOI: 10.1042/bst20220603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Cardiolipin and phosphatidylinositol along with the latter's phosphorylated derivative phosphoinositides, control a wide range of cellular functions from signal transduction, membrane traffic, mitochondrial function, cytoskeletal dynamics, and cell metabolism. An emerging dimension to these lipids is the specificity of their fatty acyl chains that is remarkably distinct from that of other glycerophospholipids. Cardiolipin and phosphatidylinositol undergo acyl remodeling involving the sequential actions of phospholipase A to hydrolyze acyl chains and key acyltransferases that re-acylate with specific acyl groups. LCLAT1 (also known as LYCAT, AGPAT8, LPLAT6, or ALCAT1) is an acyltransferase that contributes to specific acyl profiles for phosphatidylinositol, phosphoinositides, and cardiolipin. As such, perturbations of LCLAT1 lead to alterations in cardiolipin-dependent phenomena such as mitochondrial respiration and dynamics and phosphoinositide-dependent processes such as endocytic membrane traffic and receptor signaling. Here we examine the biochemical and cellular actions of LCLAT1, as well as the contribution of this acyltransferase to the development and specific diseases.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
| | - Victoria Chan
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
- Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
| | - Roberto J Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
- Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
- Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
| |
Collapse
|
5
|
Yang F, Wendusubilige, Kong J, Zong Y, Wang M, Jing C, Ma Z, Li W, Cao R, Jing S, Gao J, Li W, Wang J. Identifying oxidative stress-related biomarkers in idiopathic pulmonary fibrosis in the context of predictive, preventive, and personalized medicine using integrative omics approaches and machine-learning strategies. EPMA J 2023; 14:417-442. [PMID: 37605652 PMCID: PMC10439879 DOI: 10.1007/s13167-023-00334-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2023] [Indexed: 08/23/2023]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a rare interstitial lung disease with a poor prognosis that currently lacks effective treatment methods. Preventing the acute exacerbation of IPF, identifying the molecular subtypes of patients, providing personalized treatment, and developing individualized drugs are guidelines for predictive, preventive, and personalized medicine (PPPM / 3PM) to promote the development of IPF. Oxidative stress (OS) is an important pathological process of IPF. However, the relationship between the expression levels of oxidative stress-related genes (OSRGs) and clinical indices in patients with IPF is unclear; therefore, it is still a challenge to identify potential beneficiaries of antioxidant therapy. Because PPPM aims to recognize and manage diseases by integrating multiple methods, patient stratification and analysis based on OSRGs and identifying biomarkers can help achieve the above goals. Methods Transcriptome data from 250 IPF patients were divided into training and validation sets. Core OSRGs were identified in the training set and subsequently clustered to identify oxidative stress-related subtypes. The oxidative stress scores, clinical characteristics, and expression levels of senescence-associated secretory phenotypes (SASPs) of different subtypes were compared to identify patients who were sensitive to antioxidant therapy to conduct differential gene functional enrichment analysis and predict potential therapeutic drugs. Diagnostic markers between subtypes were obtained by integrating multiple machine learning methods, their expression levels were tested in rat models with different degrees of pulmonary fibrosis and validation sets, and nomogram models were constructed. CIBERSORT, single-cell RNA sequencing, and immunofluorescence staining were used to explore the effects of OSRGs on the immune microenvironment. Results Core OSRGs classified IPF into two subtypes. Patients classified into subtypes with low oxidative stress levels had better clinical scores, less severe fibrosis, and lower expression of SASP-related molecules. A reliable nomogram model based on five diagnostic markers was constructed, and these markers' expression stability was verified in animal experiments. The number of neutrophils in the immune microenvironment was significantly different between the two subtypes and was closely related to the degree of fibrosis. Conclusion Within the framework of PPPM, this work comprehensively explored the role of OSRGs and their mediated cellular senescence and immune processes in the progress of IPF and assessed their capabilities aspredictors of high oxidative stress and disease progression,targets of the vicious loop between regulated pulmonary fibrosis and OS for targeted secondary and tertiary prevention, andreferences for personalized antioxidant and antifibrotic therapies. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00334-4.
Collapse
Affiliation(s)
- Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wendusubilige
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Kong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Manting Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanqing Jing
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaotian Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), Beijing, China
| | - Renshuang Cao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuwen Jing
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenxin Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Thannickal VJ, Jandeleit‐Dahm K, Szyndralewiez C, Török NJ. Pre-clinical evidence of a dual NADPH oxidase 1/4 inhibitor (setanaxib) in liver, kidney and lung fibrosis. J Cell Mol Med 2023; 27:471-481. [PMID: 36658776 PMCID: PMC9930438 DOI: 10.1111/jcmm.17649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 01/21/2023] Open
Abstract
Fibrosis describes a dysregulated tissue remodelling response to persistent cellular injury and is the final pathological consequence of many chronic diseases that affect the liver, kidney and lung. Nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) enzymes produce reactive oxygen species (ROS) as their primary function. ROS derived from NOX1 and NOX4 are key mediators of liver, kidney and lung fibrosis. Setanaxib (GKT137831) is a first-in-class, dual inhibitor of NOX1/4 and is the first NOX inhibitor to progress to clinical trial investigation. The anti-fibrotic effects of setanaxib in liver, kidney and lung fibrosis are supported by multiple lines of pre-clinical evidence. However, despite advances in our understanding, the precise roles of NOX1/4 in fibrosis require further investigation. Additionally, there is a translational gap between the pre-clinical observations of setanaxib to date and the applicability of these to human patients within a clinical setting. This narrative review critically examines the role of NOX1/4 in liver, kidney and lung fibrosis, alongside the available evidence investigating setanaxib as a therapeutic agent in pre-clinical models of disease. We discuss the potential clinical translatability of this pre-clinical evidence, which provides rationale to explore NOX1/4 inhibition by setanaxib across various fibrotic pathologies in clinical trials involving human patients.
Collapse
Affiliation(s)
- Victor J. Thannickal
- John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLouisianaUSA
- Southeast Louisiana Veterans Healthcare SystemNew OrleansLouisianaUSA
| | - Karin Jandeleit‐Dahm
- Department of Diabetes, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Cédric Szyndralewiez
- Calliditas Therapeutics Suisse SAGenevaSwitzerland
- Present address:
Pherecydes PharmaNantesFrance
| | - Natalie J. Török
- Division of Gastroenterology and Hepatology, Department of MedicineStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
7
|
Tian Y, Duan C, Feng J, Liao J, Yang Y, Sun W. Roles of lipid metabolism and its regulatory mechanism in idiopathic pulmonary fibrosis: A review. Int J Biochem Cell Biol 2023; 155:106361. [PMID: 36592687 DOI: 10.1016/j.biocel.2022.106361] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/06/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. Several lung cell types, including alveolar epithelial cells and fibroblasts, have been implicated in the development and progression of fibrosis. However, the pathogenesis of idiopathic pulmonary fibrosis is still incompletely understood. The latest research has found that dysregulation of lipid metabolism plays an important role in idiopathic pulmonary fibrosis. The changes in the synthesis and activity of fatty acids, cholesterol and other lipids seriously affect the regenerative function of alveolar epithelial cells and promote the transformation of fibroblasts into myofibroblasts. Mitochondrial function is the key to regulating the metabolic needs of a variety of cells, including alveolar epithelial cells. Sirtuins located in mitochondria are essential to maintain mitochondrial function and cellular metabolic homeostasis. Sirtuins can maintain normal lipid metabolism by regulating respiratory enzyme activity, resisting oxidative stress, and protecting mitochondrial function. In this review, we aimed to discuss the difference between normal and idiopathic pulmonary fibrosis lungs in terms of lipid metabolism. Additionally, we highlight recent breakthroughs on the effect of abnormal lipid metabolism on idiopathic pulmonary fibrosis, including the effects of sirtuins. Idiopathic pulmonary fibrosis has its high mortality and limited therapeutic options; therefore, we believe that this review will help to develop a new therapeutic direction from the aspect of lipid metabolism in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Yunchuan Tian
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunyan Duan
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Jiayue Feng
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China; Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Jie Liao
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China; Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Yang Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
8
|
The Role of Nrf2 in Pulmonary Fibrosis: Molecular Mechanisms and Treatment Approaches. Antioxidants (Basel) 2022; 11:antiox11091685. [PMID: 36139759 PMCID: PMC9495339 DOI: 10.3390/antiox11091685] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Pulmonary fibrosis is a chronic, progressive, incurable interstitial lung disease with high mortality after diagnosis and remains a global public health problem. Despite advances and breakthroughs in understanding the pathogenesis of pulmonary fibrosis, there are still no effective methods for the prevention and treatment of pulmonary fibrosis. The existing treatment options are imperfect, expensive, and have considerable limitations in effectiveness and safety. Hence, there is an urgent need to find novel therapeutic targets. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a central regulator of cellular antioxidative responses, inflammation, and restoration of redox balance. Accumulating reports reveal that Nrf2 activators exhibit potent antifibrosis effects and significantly attenuate pulmonary fibrosis in vivo and in vitro. This review summarizes the current Nrf2-related knowledge about the regulatory mechanism and potential therapies in the process of pulmonary fibrosis. Nrf2 orchestrates the activation of multiple protective genes that target inflammation, oxidative stress, fibroblast–myofibroblast differentiation (FMD), and epithelial–mesenchymal transition (EMT), and the mechanisms involve Nrf2 and its downstream antioxidant, Nrf2/HO−1/NQO1, Nrf2/NOX4, and Nrf2/GSH signaling pathway. We hope to indicate potential for Nrf2 system as a therapeutic target for pulmonary fibrosis.
Collapse
|
9
|
Zhang Y, Li T, Pan M, Wang W, Huang W, Yuan Y, Xie Z, Chen Y, Peng J, Li X, Meng Y. SIRT1 prevents cigarette smoking-induced lung fibroblasts activation by regulating mitochondrial oxidative stress and lipid metabolism. J Transl Med 2022; 20:222. [PMID: 35568871 PMCID: PMC9107262 DOI: 10.1186/s12967-022-03408-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/24/2022] [Indexed: 12/06/2022] Open
Abstract
BACKGROUND Cigarette smoking (CS) is a strong risk factor for idiopathic pulmonary fibrosis (IPF). It can activate lung fibroblasts (LF) by inducing redox imbalance. We previously showed that clearing mitochondrial reactive oxygen species (mtROS) protects against CS-induced pulmonary fibrosis. However, the precise mechanisms of mtROS in LF need further investigation. Here we focused on mtROS to elucidate how it was regulated by CS in LF and how it contributed to LF activation. METHODS We treated cells with 1% cigarette smoking extract (CSE) and examined mtROS level by MitoSOX™ indicator. And the effect of CSE on expression of SIRT1, SOD2, mitochondrial NOX4 (mtNOX4), fatty acid oxidation (FAO)-related protein PPARα and CPT1a and LF activation marker Collagen I and α-SMA were detected. Nile Red staining was performed to show cellular lipid content. Then, lipid droplets, autophagosome and lysosome were marked by Bodipy 493/503, LC3 and LAMP1, respectively. And lipophagy was evaluated by the colocalization of lipid droplets with LC3 and LAMP1. The role of autophagy on lipid metabolism and LF activation were explored. Additionally, the effect of mitochondria-targeted ROS scavenger mitoquinone and SIRT1 activator SRT1720 on mitochondrial oxidative stress, autophagy flux, lipid metabolism and LF activation were investigated in vitro and in vivo. RESULTS We found that CS promoted mtROS production by increasing mtNOX4 and decreasing SOD2. Next, we proved mtROS inhibited the expression of PPARα and CPT1a. It also reduced lipophagy and upregulated cellular lipid content, suggesting lipid metabolism was disturbed by CS. In addition, we showed both insufficient FAO and lipophagy resulted from blocked autophagy flux caused by mtROS. Moreover, we uncovered decreased SIRT1 was responsible for mitochondrial redox imbalance. Furthermore, we proved that both SRT1720 and mitoquinone counteracted the effect of CS on NOX4, SOD2, PPARα and CPT1a in vivo. CONCLUSIONS We demonstrated that CS decreased SIRT1 to activate LF through dysregulating lipid metabolism, which was due to increased mtROS and impaired autophagy flux. These events may serve as therapeutic targets for IPF patients.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Li
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Miaoxia Pan
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenhui Huang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yafei Yuan
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhanzhan Xie
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yixin Chen
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Peng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Emergency and Trauma, Hainan Medical University, Haikou, China.
| | - Ying Meng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Bandela M, Suryadevara V, Fu P, Reddy SP, Bikkavilli K, Huang LS, Dhavamani S, Subbaiah PV, Singla S, Dudek SM, Ware LB, Ramchandran R, Natarajan V. Role of Lysocardiolipin Acyltransferase in Cigarette Smoke-Induced Lung Epithelial Cell Mitochondrial ROS, Mitochondrial Dynamics, and Apoptosis. Cell Biochem Biophys 2022; 80:203-216. [PMID: 34724158 PMCID: PMC11650883 DOI: 10.1007/s12013-021-01043-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Cigarette smoke is the primary cause of Chronic Obstructive Pulmonary Disorder (COPD). Cigarette smoke extract (CSE)-induced oxidative damage of the lungs results in mitochondrial dysfunction and apoptosis of epithelium. Mitochondrial cardiolipin (CL) present in the inner mitochondrial membrane plays an important role in mitochondrial function, wherein its fatty acid composition is regulated by lysocardiolipin acyltransferase (LYCAT). In this study, we investigated the role of LYCAT expression and activity in mitochondrial oxidative stress, mitochondrial dynamics, and lung epithelial cell apoptosis. LYCAT expression was increased in human lung specimens from smokers, and cigarette smoke-exposed-mouse lung tissues. Cigarette smoke extract (CSE) increased LYCAT mRNA levels and protein expression, modulated cardiolipin fatty acid composition, and enhanced mitochondrial fission in the bronchial epithelial cell line, BEAS-2B in vitro. Inhibition of LYCAT activity with a peptide mimetic, attenuated CSE-mediated mitochondrial (mt) reactive oxygen species (ROS), mitochondrial fragmentation, and apoptosis, while MitoTEMPO attenuated CSE-induced MitoROS, mitochondrial fission and apoptosis of BEAS-2B cells. Collectively, these findings suggest that increased LYCAT expression promotes MitoROS, mitochondrial dynamics and apoptosis of lung epithelial cells. Given the key role of LYCAT in mitochondrial cardiolipin remodeling and function, strategies aimed at inhibiting LYCAT activity and ROS may offer an innovative approach to minimize lung inflammation caused by cigarette smoke.
Collapse
Affiliation(s)
- Mounica Bandela
- Departments of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Vidyani Suryadevara
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Panfeng Fu
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
- The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Sekhar P Reddy
- Departments of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Kamesh Bikkavilli
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Long Shuang Huang
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sugasini Dhavamani
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Papasani V Subbaiah
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sunit Singla
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven M Dudek
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ramaswamy Ramchandran
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Viswanathan Natarajan
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Li Q, Peng W, Zhang Z, Pei X, Sun Z, Ou Y. A phycocyanin derived eicosapeptide attenuates lung fibrosis development. Eur J Pharmacol 2021; 908:174356. [PMID: 34280398 DOI: 10.1016/j.ejphar.2021.174356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 01/06/2023]
Abstract
Pulmonary fibrosis (PF) is a progressive respiratory disease. Phycocyanin derived eicosapeptide (PP20) is a novel peptide derived from active protein C-phycocyanin in Cyanobacteria. The aim of our study was to explore the anti-fibrotic activity of the PP20 and its underlying mechanism. Characteristic features of pulmonary fibrosis in oleic acid (OA)-induced mice and epithelial-mesenchymal transition (EMT) in TGF-β1-exposed A549 and HFL-1 cells with or without PP20 and the change of TGF-β/Smad and MAPK signaling pathways were examined. Smad and MAPK agonists were used to explore the role of TGF-β/Smad and MAPK signaling in TGF-β1- induced collagen I expression in A549 cells and α-SMA expression in HFL-1 cells when treated with PP20. Our results showed that PP20 significantly alleviated the inflammatory response and tissue destruction, inhibited EMT, restored the imbalance of TIMP-1/MMP-9 and reduced collagen fiber deposition. Moreover, PP20 inhibited TGF-β1-induced EMT and collagen I expression in A549 cells. PP20 could also inhibit the proliferation, and decrease TGF-β1-induced the expression of collagen I and transformation of fibroblasts into myofibroblasts in HFL-1 cells. Additionally, animal experiments and cell experiments combined with pathway agonists have shown that PP20 can negatively regulate TGF-β/Smad and MAPK pathways and show anti-fibrotic properties. PP20 may be a promising drug candidate for protection against pulmonary fibrosis.
Collapse
Affiliation(s)
- Qihao Li
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Wen Peng
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Zhaoyu Zhang
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Xin Pei
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Zhongkan Sun
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
12
|
Abstract
An overview of Prof. Viswanathan Natarajan's journey in academia as a mentor, teacher, and lipid scientist for nearly 50 years is presented. As a graduate student, Dr. Natarajan interrogated biosynthesis and catabolism of phospholipids in the developing brain; however, in the last five decades, he has been investigating the role of sphingolipids and sphingolipid-metabolizing enzymes in pulmonary endothelial cells, epithelial cells, and fibroblasts under normal conditions and during various lung pathologies such as sepsis, asthma, pulmonary hypertension, idiopathic pulmonary fibrosis, bronchopulmonary dysplasia, and lung cancer. His recent work on sphingosine-1-phosphate and lysophosphatidic acid metabolism in pre-clinical animal models has identified small molecule inhibitors in the signaling pathways that could have therapeutic potential in ameliorating pulmonary fibrosis, hypoxia-induced pulmonary hypertension, lung cancer, and bronchopulmonary dysplasia. Future research in bioactive lipids in combination with OMICS should unravel the importance of various lipid mediators as modulators of cell function under normal and pathological conditions.
Collapse
Affiliation(s)
- Viswanathan Natarajan
- Departments of Pharmacology & Regenerative Medicine and Medicine, University of Illinois, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Wang Y, Sima X, Ying Y, Huang Y. Exogenous BMP9 promotes lung fibroblast HFL-1 cell activation via ALK1/Smad1/5 signaling in vitro. Exp Ther Med 2021; 22:728. [PMID: 34007337 PMCID: PMC8120641 DOI: 10.3892/etm.2021.10160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic protein 9 (BMP9) has recently been described as a crucial regulator in modulating fibroblast-type cell activation. Activin receptor-like kinase 1 (ALK1) is a high affinity receptor for BMP9 that exerts its role via Smad1/5. However, the functional roles of BMP9 in activating lung fibroblasts and the underlying signaling pathway are not completely understood. The present study aimed to explore the effect of exogenous BMP9 on human lung fibroblast HFL-1 cell proliferation and differentiation, as well as the potential role of the ALK1/Smad1/5 signaling pathway. In the present study, fibroblast proliferation was assessed using Cell Counting Kit-8 and colony formation assays, and the mRNA and protein expression of target genes was examined using reverse transcription-quantitative PCR and western blot assays, respectively. Compared with the control group, BMP9 treatment increased HFL-1 cell proliferation, mRNA and protein expression of differentiated markers, including α-smooth muscle actin, type I collagen and type III collagen, and the expression of ALK1 and phosphorylated Smad1/5 expression. Furthermore, the effects of BMP9 were partially rescued by dorsomorphin-1, an inhibitor of ALK1. The results indicated that BMP9 may serve as a key inducer of lung fibroblast activation and ALK1/Smad1/5 signaling might be associated with BMP9-mediated effects in HFL-1 cells. Therefore, the present study highlighted that the potential role of the BMP9/ALK1/Smad1/5 signaling pathway in the development of pulmonary fibrosis requires further investigation.
Collapse
Affiliation(s)
- Yaqun Wang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Graduate College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaonan Sima
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Ying Ying
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yonghong Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
14
|
Tong Y, Li Z, Wu Y, Zhu S, Lu K, He Z. Lotus leaf extract inhibits ER - breast cancer cell migration and metastasis. Nutr Metab (Lond) 2021; 18:20. [PMID: 33602253 PMCID: PMC7891157 DOI: 10.1186/s12986-021-00549-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients with estrogen receptor negative (ER-) breast cancer have poor prognosis due to high rates of metastasis. However, there is no effective treatment and drugs for ER- breast cancer metastasis. Our purpose of this study was to evaluate the effect of lotus leaf alcohol extract (LAE) on the cell migration and metastasis of ER- breast cancer. METHODS The anti-migratory effect of LAE were analyzed in ER- breast cancer cells including SK-BR-3, MDA-MB-231 and HCC1806 cell lines. Cell viability assay, wound-healing assay, RNA-sequence analysis and immunoblotting assay were used to evaluate the cytotoxicity and anti-migratory effect of LAE. To further investigate the inhibitory effect of LAE on metastasis in vivo, subcutaneous xenograft and intravenous injection nude mice models were established. Lung and liver tissues were analyzed by the hematoxylin and eosin staining and immunoblotting assay. RESULTS We found that lotus LAE, not nuciferine, inhibited cell migration significantly in SK-BR-3, MDA-MB-231 and HCC1806 breast cancer cells, and did not affect viability of breast cancer cells. The anti-migratory effect of LAE was dependent on TGF-β1 signaling, while independent of Wnt signaling and autophagy influx. Intracellular H2O2 was involved in the TGF-β1-related inhibition of cell migration. LAE inhibited significantly the breast cancer cells metastasis in mice models. RNA-sequence analysis showed that extracellular matrix signaling pathways are associated with LAE-suppressed cell migration. CONCLUSIONS Our findings demonstrated that lotus leaf alcohol extract inhibits the cell migration and metastasis of ER- breast cancer, at least in part, via TGF-β1/Erk1/2 and TGF-β1/SMAD3 signaling pathways, which provides a potential therapeutic strategy for ER- breast cancer.
Collapse
Affiliation(s)
- Yuelin Tong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhongwei Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yikuan Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Shenglong Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Keke Lu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. .,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China. .,Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
15
|
Li H, Ma C, Liu W, He J, Li K. Gypenosides Protect Orbital Fibroblasts in Graves Ophthalmopathy via Anti-Inflammation and Anti-Fibrosis Effects. Invest Ophthalmol Vis Sci 2020; 61:64. [PMID: 32462203 PMCID: PMC7405800 DOI: 10.1167/iovs.61.5.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose To investigate the effect of Gypenosides (Gyps) on the inflammation and fibrosis in orbital fibroblasts (OFs) in Graves ophthalmopathy (GO). Methods Bioinformatics analyses were performed to identify the enriched genes and signaling pathways related to Gyps function. For ex vivo experiments, OFs were cultured from orbital connective tissues from patients with GO. OF proliferation was estimated by Cell Counting Kit-8 assay. Effects of Gyps treatment on interleukin (IL)-1β-induced inflammation and transforming growth factor-β1 (TGF-β1)-induced fibrosis were evaluated by real-time quantitative PCR (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and Western blotting. OFs were treated with IL-1β or TGF-β1 in the absence or presence of Gyps pretreatment, and the levels of related mRNA or proteins were evaluated by RT-qPCR or ELISA. Results Eight inflammation-related target genes and nine fibrosis-related target genes were screened out. These genes were mainly enriched in pathways corresponding to inflammation and fibrosis, respectively. IL-1β-induced upregulation of inflammatory cytokines, and TGF-β-induced upregulation of fibrotic mediators in OFs were downregulated by Gyps. Moreover, Gyps reduced the activation of Toll like receptors 4/nuclear factor-κ B signaling and TGF-β1/SMAD2/SMAD4 signaling in GO OFs. Conclusions Gyps could protect GO-derived OFs against IL-1β-induced inflammation and TGF-β1-induced fibrosis. Thus Gyps might have therapeutic potential on inflammation and fibrosis in GO.
Collapse
|
16
|
Li X, Zhang W, Cao Q, Wang Z, Zhao M, Xu L, Zhuang Q. Mitochondrial dysfunction in fibrotic diseases. Cell Death Discov 2020; 6:80. [PMID: 32963808 PMCID: PMC7474731 DOI: 10.1038/s41420-020-00316-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Although fibrosis is a common pathological feature of most end-stage organ diseases, its pathogenesis remains unclear. There is growing evidence that mitochondrial dysfunction contributes to the development and progression of fibrosis. The heart, liver, kidney and lung are highly oxygen-consuming organs that are sensitive to mitochondrial dysfunction. Moreover, the fibrotic process of skin and islet is closely related to mitochondrial dysfunction as well. This review summarized emerging mechanisms related to mitochondrial dysfunction in different fibrotic organs and tissues above. First, it highlighted the important elucidation of mitochondria morphological changes, mitochondrial membrane potential and structural damage, mitochondrial DNA (mtDNA) damage and reactive oxidative species (ROS) production, etc. Second, it introduced the abnormality of mitophagy and mitochondrial transfer also contributed to the fibrotic process. Therefore, with gaining the increasing knowledge of mitochondrial structure, function, and origin, we could kindle a new era for the diagnostic and therapeutic strategies of many fibrotic diseases based on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xinyu Li
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, 410013 Changsha, Hunan China
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan China
| | - Wei Zhang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, 410013 Changsha, Hunan China
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan China
| | - Qingtai Cao
- Hunan Normal University School of Medicine, 410013 Changsha, Hunan China
| | - Zeyu Wang
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan China
| | - Mingyi Zhao
- Pediatric Department of the 3rd Xiangya Hospital, Central South University, 410013 Changsha, Hunan China
| | - Linyong Xu
- School of Life Science, Central South University, 410013 Changsha, Hunan China
| | - Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, 410013 Changsha, Hunan China
- Research Center of National Health Ministry on Transplantation Medicine, 410013 Changsha, Hunan China
| |
Collapse
|
17
|
Cong L, Li T, Wang H, Wu Y, Wang S, Zhao Y, Zhang G, Duan J. IL-17A-producing T cells exacerbate fine particulate matter-induced lung inflammation and fibrosis by inhibiting PI3K/Akt/mTOR-mediated autophagy. J Cell Mol Med 2020; 24:8532-8544. [PMID: 32643865 PMCID: PMC7412687 DOI: 10.1111/jcmm.15475] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/24/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022] Open
Abstract
Fine particulate matter (PM2.5) is the primary air pollutant that is able to induce airway injury. Compelling evidence has shown the involvement of IL-17A in lung injury, while its contribution to PM2.5-induced lung injury remains largely unknown. Here, we probed into the possible role of IL-17A in mouse models of PM2.5-induced lung injury. Mice were instilled with PM2.5 to construct a lung injury model. Flow cytometry was carried out to isolate γδT and Th17 cells. ELISA was adopted to detect the expression of inflammatory factors in the supernatant of lavage fluid. Primary bronchial epithelial cells (mBECs) were extracted, and the expression of TGF signalling pathway-, autophagy- and PI3K/Akt/mTOR signalling pathway-related proteins in mBECs was detected by immunofluorescence assay and Western blot analysis. The mitochondrial function was also evaluated. PM2.5 aggravated the inflammatory response through enhancing the secretion of IL-17A by γδT/Th17 cells. Meanwhile, PM2.5 activated the TGF signalling pathway and induced EMT progression in bronchial epithelial cells, thereby contributing to pulmonary fibrosis. Besides, PM2.5 suppressed autophagy of bronchial epithelial cells by up-regulating IL-17A, which in turn activated the PI3K/Akt/mTOR signalling pathway. Furthermore, IL-17A impaired the energy metabolism of airway epithelial cells in the PM2.5-induced models. This study suggested that PM2.5 could inhibit autophagy of bronchial epithelial cells and promote pulmonary inflammation and fibrosis by inducing the secretion of IL-17A in γδT and Th17 cells and regulating the PI3K/Akt/mTOR signalling pathway.
Collapse
Affiliation(s)
- Lu‐Hong Cong
- Department of EmergencyChina‐Japan Friendship HospitalBeijingChina
| | - Tao Li
- Surgical Intensive Care UnitChina‐Japan Friendship HospitalBeijingChina
| | - Hui Wang
- Surgical Intensive Care UnitChina‐Japan Friendship HospitalBeijingChina
| | - Yi‐Na Wu
- Surgical Intensive Care UnitChina‐Japan Friendship HospitalBeijingChina
| | - Shu‐Peng Wang
- Surgical Intensive Care UnitChina‐Japan Friendship HospitalBeijingChina
| | - Yu‐Yue Zhao
- Surgical Intensive Care UnitChina‐Japan Friendship HospitalBeijingChina
| | - Guo‐Qiang Zhang
- Department of EmergencyChina‐Japan Friendship HospitalBeijingChina
| | - Jun Duan
- Surgical Intensive Care UnitChina‐Japan Friendship HospitalBeijingChina
| |
Collapse
|
18
|
Huang LS, Kotha SR, Avasarala S, VanScoyk M, Winn RA, Pennathur A, Yashaswini PS, Bandela M, Salgia R, Tyurina YY, Kagan VE, Zhu X, Reddy SP, Sudhadevi T, Punathil-Kannan PK, Harijith A, Ramchandran R, Bikkavilli RK, Natarajan V. Lysocardiolipin acyltransferase regulates NSCLC cell proliferation and migration by modulating mitochondrial dynamics. J Biol Chem 2020; 295:13393-13406. [PMID: 32732285 DOI: 10.1074/jbc.ra120.012680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Lysocardiolipin acyltransferase (LYCAT), a cardiolipin (CL)-remodeling enzyme, is crucial for maintaining normal mitochondrial function and vascular development. Despite the well-characterized role for LYCAT in the regulation of mitochondrial dynamics, its involvement in lung cancer, if any, remains incompletely understood. In this study, in silico analysis of TCGA lung cancer data sets revealed a significant increase in LYCAT expression, which was later corroborated in human lung cancer tissues and immortalized lung cancer cell lines via indirect immunofluorescence and immunoblotting, respectively. Stable knockdown of LYCAT in NSCLC cell lines not only reduced CL and increased monolyso-CL levels but also reduced in vivo tumor growth, as determined by xenograft studies in athymic nude mice. Furthermore, blocking LYCAT activity using a LYCAT mimetic peptide attenuated cell migration, suggesting a novel role for LYCAT activity in promoting NSCLC. Mechanistically, the pro-proliferative effects of LYCAT were mediated by an increase in mitochondrial fusion and a G1/S cell cycle transition, both of which are linked to increased cell proliferation. Taken together, these results demonstrate a novel role for LYCAT in promoting NSCLC and suggest that targeting LYCAT expression or activity in NSCLC may provide new avenues for the therapeutic treatment of lung cancer.
Collapse
Affiliation(s)
- Long Shuang Huang
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA
| | - Sainath R Kotha
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA
| | | | - Michelle VanScoyk
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Robert A Winn
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Arjun Pennathur
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Mounica Bandela
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Ravi Salgia
- Beckman Research Institute, City of Hope, Los Angeles, California, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Chemistry, Pharmacology, and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Laboratory of Navigational Redox Lipidomics, I. M. Sechenov Moscow State Medical University, Moscow, Russia
| | - Xiangdong Zhu
- Center for Cardiovascular Research and Department of Emergency Medicine, University of Illinois, Chicago, Illinois, USA
| | - Sekhar P Reddy
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
| | - Tara Sudhadevi
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
| | | | - Anantha Harijith
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
| | | | | | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA; Department of Medicine, University of Illinois, Chicago, Illinois, USA.
| |
Collapse
|
19
|
Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. Int J Mol Sci 2020; 21:ijms21124257. [PMID: 32549377 PMCID: PMC7352853 DOI: 10.3390/ijms21124257] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. The molecular mechanisms involved in the pathophysiology of IPF are incompletely defined. Several lung cell types including alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells have been implicated in the development and progression of fibrosis. Regardless of the cell types involved, changes in gene expression, disrupted glycolysis, and mitochondrial oxidation, dysregulated protein folding, and altered phospholipid and sphingolipid metabolism result in activation of myofibroblast, deposition of extracellular matrix proteins, remodeling of lung architecture and fibrosis. Lipid mediators derived from phospholipids, sphingolipids, and polyunsaturated fatty acids play an important role in the pathogenesis of pulmonary fibrosis and have been described to exhibit pro- and anti-fibrotic effects in IPF and in preclinical animal models of lung fibrosis. This review describes the current understanding of the role and signaling pathways of prostanoids, lysophospholipids, and sphingolipids and their metabolizing enzymes in the development of lung fibrosis. Further, several of the lipid mediators and enzymes involved in their metabolism are therapeutic targets for drug development to treat IPF.
Collapse
|
20
|
Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol 2020; 10:509-547. [PMID: 32163196 DOI: 10.1002/cphy.c190017] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to various disease states as well as physiological aging. The lungs are uniquely exposed to a highly oxidizing environment and have evolved several mechanisms to attenuate oxidative stress. Idiopathic pulmonary fibrosis (IPF) is a progressive age-related disorder that leads to architectural remodeling, impaired gas exchange, respiratory failure, and death. In this article, we discuss cellular sources of oxidant production, and antioxidant defenses, both enzymatic and nonenzymatic. We outline the current understanding of the pathogenesis of IPF and how oxidative stress contributes to fibrosis. Further, we link oxidative stress to the biology of aging that involves DNA damage responses, loss of proteostasis, and mitochondrial dysfunction. We discuss the recent findings on the role of reactive oxygen species (ROS) in specific fibrotic processes such as macrophage polarization and immunosenescence, alveolar epithelial cell apoptosis and senescence, myofibroblast differentiation and senescence, and alterations in the acellular extracellular matrix. Finally, we provide an overview of the current preclinical studies and clinical trials targeting oxidative stress in fibrosis and potential new strategies for future therapeutic interventions. © 2020 American Physiological Society. Compr Physiol 10:509-547, 2020.
Collapse
Affiliation(s)
- Eva Otoupalova
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sam Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guangjie Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
21
|
Feng F, Cheng P, Zhang H, Li N, Qi Y, Wang H, Wang Y, Wang W. The Protective Role of Tanshinone IIA in Silicosis Rat Model via TGF-β1/Smad Signaling Suppression, NOX4 Inhibition and Nrf2/ARE Signaling Activation. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4275-4290. [PMID: 31908414 PMCID: PMC6930391 DOI: 10.2147/dddt.s230572] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
Purpose Silicosis is an occupational disease caused by inhalation of silica and there are no effective drugs to treat this disease. Tanshinone IIA (Tan IIA), a traditional natural component, has been reported to possess anti-inflammatory, antioxidant, and anti-fibrotic properties. The current study’s purpose was to examine Tan IIA’s protective effects against silica-induced pulmonary fibrosis and to explore the underlying mechanisms. Methods 48 male SD rats were randomly divided into four groups (n=12): i) Control group; ii) Silicosis group; iii) Tan IIA group; iv) Silicosis +Tan IIA group. Two days after modeling, the rats of Tan IIA group and Silicosis +Tan IIA group were given intraperitoneal administration 25 mg/kg/d Tan IIA for 40 days. Then, the four groups of rats were sacrificed and the lung inflammatory responses were measured by ELISA, lung damage and fibrosis were analyzed by hematoxylin and eosin (H&E) staining and Masson staining, the expression levels of collagen I, fibronectin and α-smooth muscle actin (α-SMA) were measured by immunohistochemistry. The markers of oxidative stress were measured by commercial kits, and the activity of the TGF-β1/Smad and NOX4, Nrf2/ARE signaling pathways were measured by RT-PCR and Western blotting. Results The silica-induced pulmonary inflammtory responses, structural damage and fibrosis were significantly attenuated by Tan IIA treatment. In addition, treatment with Tan IIA decreased collagen I, fibronectin and α-SMA expression, and inhibited TGF-β1/Smad signaling in the lung tissue. The upregulated levels of oxidative stress markers in silicosis rats were also markedly restored following Tan IIA treatment. Furthermore, treatment with Tan IIA reduced NOX4 expression and enhanced activation of the Nrf2/ARE pathway in the lung tissue of silicosis rats. Conclusion These findings suggest that Tan IIA may protect lung from silica damage via the suppression of TGF-β1/Smad signaling, inhibition of NOX4 expression and activation of the Nrf2/ARE pathway. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/kPjjBxXCkyc
Collapse
Affiliation(s)
- Feifei Feng
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Peng Cheng
- Department of Neural Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Huanan Zhang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Nannan Li
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Yuxin Qi
- Department of Respiratory Medicine, Jinan People's Hospital, Jinan, Shandong 250033, People's Republic of China
| | - Hui Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Yongbin Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Wei Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| |
Collapse
|
22
|
Yu D, Zhuang Z, Ren J, Hu X, Wang Z, Zhang J, Luo Y, Wang K, He R, Wang Y. Hyaluronic acid-curcumin conjugate suppresses the fibrotic functions of myofibroblasts from contractive joint by the PTGER2 demethylation. Regen Biomater 2019; 6:269-277. [PMID: 31616564 PMCID: PMC6783700 DOI: 10.1093/rb/rbz016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Joint contracture is a fibrotic complication induced by joint immobilization and trauma, which is characterized as excessive myofibroblast proliferation in joint capsule. The treatments of joint contracture are unsatisfied and patients are suffered from joint dysfunction. Our previous study has shown that curcumin can inhibit myofibroblast proliferation in vitro, but the major challenge is the low aqueous solubility and biological activity of curcumin. In this study, hyaluronic acid-curcumin (HA-Cur) conjugate was synthesized to suppress myofibroblasts in joint contracture. Cells were isolated from the joint capsules of joint contracture patients and induced to active myofibroblasts by transforming growth factor-β (TGF-β). The anti-fibrotic function and mechanisms of HA-Cur were investigated by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (PCR), methylation-specific PCR, western blot, transwell migration assay and proliferation assay. Results showed that 30 μM HA-Cur significantly attenuated the fibrotic functions of myofibroblast in joint contracture in vitro by regulating the methylation of prostaglandin E receptor 2 (PTGER2) and inhibiting TGF-β signaling. This may provide a mechanism for the treatment of joint contracture, and provide a molecular target PTGER2 for therapy during the pathogenesis of joint contracture.
Collapse
Affiliation(s)
- Dongjie Yu
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ze Zhuang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianhua Ren
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Zhe Wang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yuansen Luo
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun Wang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ronghan He
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Chen YY, Yu XY, Chen L, Vaziri ND, Ma SC, Zhao YY. Redox signaling in aging kidney and opportunity for therapeutic intervention through natural products. Free Radic Biol Med 2019; 141:141-149. [PMID: 31199964 DOI: 10.1016/j.freeradbiomed.2019.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
Kidney diseases are serious public problems with high morbidity and mortality in the general population and heavily retard renal function with aging regardless of the cause. Although myriad strategies have been assigned to prevent or harness disease progression, unfortunately, thus far, there is a paucity of effective therapies partly due to an insufficient knowledge of underlying pathological mechanisms, indicating deeper studies are urgently needed. Additionally, natural products are increasingly recognized as an alternative source for disease intervention owing to the potent safety and efficacy, which might be exploited for novel drug discovery. In this review, we primarily expatiate the new advances on mediators that might be amenable to targeting aging kidney and kidney diseases, including nicotinamide adenine dinucleotide phosphate oxidase (NOX), transforming growth factor-β (TGF-β), renin-angiotensin system (RAS), nuclear factor-erythroid 2 related factor 2 (Nrf2), peroxisome proliferator-activated γ receptor (PPARγ), advanced glycation endproducts (AGEs) as well as microRNAs and vitagenes. Of note, we conclude by highlighting some natural products which have the potential to facilitate the development of novel treatment for patients with myriad renal diseases.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, No. 2 Xihuamen, Xi'an, Shaanxi, 710003, China
| | - Lin Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
24
|
Peng LY, An L, Sun NY, Ma Y, Zhang XW, Liu WH, Liu BL, Li P, Chen J. Salvia miltiorrhiza Restrains Reactive Oxygen Species-Associated Pulmonary Fibrosis via Targeting Nrf2-Nox4 Redox Balance. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1113-1131. [DOI: 10.1142/s0192415x19500575] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pulmonary fibrosis (PF) is characterized by myofibroblast activation, which can be triggered by oxidative stress. In this study, we investigated the antifibrotic effect of the ethyl acetate extract of Salvia miltiorrhiza (EASM) on PF and examined the underlying molecular mechanism. EASM suppressed myofibroblast activation with reduced extracellular matrix deposition in the lungs of mice subjected to bleomycin (BLM) challenge, demonstrating the inhibitory effects on PF. EASM positively alleviated oxidative stress by upregulating nuclear factor-erythroid 2-related factor 2 (Nrf2) and concomitantly downregulating NADPH oxidase 4 (Nox4) in the lungs of BLM-treated mice. This effect was also observed in an in vitro model of transforming growth factor beta 1 (TGF-[Formula: see text]1)-stimulated fibroblast activation. EASM reduced reactive oxygen species (ROS) generation in fibroblasts by stabilizing Nrf2 protein with promoting kelch-like ECH-associated protein 1 (Keap1) degradation. Nrf2 knockdown in the lungs of BLM-treated mice diminished the inhibitory effects of EASM on fibrosis, providing evidence in vivo to address the unique role of Nrf2. Additionally, EASM inhibited TGF-[Formula: see text]1/Smad3 signaling by downregulating protein kinase C delta (PKC-[Formula: see text] and Smad3 phosphorylation (p-Smad3), which led to suppression of the TGF-[Formula: see text]1-induced fibrogenic response. These results indicate that EASM exhibits potent antifibrotic activity in vitro and in vivo, which might be associated with activation of Nrf2 pathway and inhibition of TGF-[Formula: see text]1/Smad3 pathway. Our findings support that EASM may act as an effective antifibrotic remedy for PF.
Collapse
Affiliation(s)
- Li-Ying Peng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Lin An
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Ning-Yuan Sun
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yi Ma
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Xiao-Wei Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Wen-Hua Liu
- School of Life Sciences, Zhaoqing University, Zhaoqing 526061, P. R. China
| | - Bao-Lin Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
25
|
Zhuang Z, Yu D, Chen Z, Liu D, Yuan G, Yirong N, Sun L, Liu Y, He R, Wang K. Curcumin Inhibits Joint Contracture through PTEN Demethylation and Targeting PI3K/Akt/mTOR Pathway in Myofibroblasts from Human Joint Capsule. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:4301238. [PMID: 31511778 PMCID: PMC6712967 DOI: 10.1155/2019/4301238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/27/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
Joint contracture is increasingly regarded as a clinical problem that leads to irreversible dysfunction of the joint. It is a pathophysiological process following joint injury, which is marked by the activation of myofibroblasts. There is currently no effective treatment for the prevention of joint contracture. Curcumin is a polyphenol pigment extracted from turmeric, which possesses anti-inflammatory, antioxidative, and antitumor properties. In the present study, we demonstrated that curcumin exerts a protective effect against joint contracture via the inhibition of myofibroblast proliferation and migration in a time- and concentration-dependent manner. Moreover, we indicated that phosphatase and tension homolog (PTEN) was downregulated in myofibroblasts in vitro and in the contracture capsule tissues of patients in vivo. Additionally, western blot analysis revealed a negative correlation between the expression levels of PTEN and the fibrosis marker protein alpha smooth muscle cell actin. Methylation-specific PCR results suggested that curcumin was able to demethylate PTEN in a similar manner to the demethylation agent 5-azacytidine, increasing PTEN expression and further inhibiting phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling. In conclusion, our data illustrate part of the mechanism of curcumin inhibition in joint contracture. These results support the hypothesis that curcumin may potentially be used as a novel candidate for the treatment of joint contracture.
Collapse
Affiliation(s)
- Ze Zhuang
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Dongjie Yu
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Zheng Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Dezhao Liu
- Departments of Anesthesiolgy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Guohui Yuan
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Ni Yirong
- MOE Key Laboratory of Laser Life Science & SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Linlin Sun
- Departments of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Yuangao Liu
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Ronghan He
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Kun Wang
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| |
Collapse
|
26
|
An L, Peng LY, Sun NY, Yang YL, Zhang XW, Li B, Liu BL, Li P, Chen J. Tanshinone IIA Activates Nuclear Factor-Erythroid 2-Related Factor 2 to Restrain Pulmonary Fibrosis via Regulation of Redox Homeostasis and Glutaminolysis. Antioxid Redox Signal 2019; 30:1831-1848. [PMID: 30105924 DOI: 10.1089/ars.2018.7569] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Pulmonary fibrosis (PF) is characterized by myofibroblast activation through oxidative stress. However, the precise regulation of myofibroblast transdifferentiation remains largely uncharacterized. RESULTS In this study, we found that tanshinone IIA (Tan-IIA), an active component in the root of Salvia miltiorrhiza Bunge, can suppress reactive oxygen species (ROS)-mediated activation of myofibroblast and reduce extracellular matrix deposition in bleomycin (BLM)-challenged mice through the regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2). Additionally, Tan-IIA restored redox homeostasis by upregulating Nrf2 with NADPH oxidase 4 suppression and effectively prevented myofibroblast activation by blocking ROS-mediated protein kinase C delta (PKCδ)/Smad3 signaling. Nrf2 knockdown in the fibroblasts and the lungs of BLM-treated mice reduced the inhibitory effects of Tan-IIA, indicating the essential role of Nrf2 in the Tan-IIA activity. Tan-IIA impaired the binding of kelch-like ECH-associated protein 1 (Keap1) to Nrf2 by promoting the degradation of Keap1 and thereby increasing Nrf2 induction by protecting Nrf2 stability against ubiquitination and proteasomal degradation. Importantly, we also found that the glutamate anaplerotic pathway was involved in energy generation and biosynthesis in activated myofibroblasts and their proliferation. Tan-IIA shunted glutaminolysis into glutathione (GSH) production by activating Nrf2, resulting in the reduction of glutamate availability for tricarboxylic acid cycle. Ultimately, myofibroblast activation was prevented by impairing cell proliferation. Innovation and Conclusion: In addition to the regulation of redox homeostasis, our work showed that Tan-IIA activated Nrf2/GSH signaling pathway to limit glutaminolysis in myofibroblast proliferation, which provided further insight into the critical function of Nrf2 in PF.
Collapse
Affiliation(s)
- Lin An
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Li-Ying Peng
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ning-Yuan Sun
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yi-Lin Yang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bin Li
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bao-Lin Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Hu Q, Zhang T, Yi L, Zhou X, Mi M. Dihydromyricetin inhibits NLRP3 inflammasome-dependent pyroptosis by activating the Nrf2 signaling pathway in vascular endothelial cells. Biofactors 2018; 44:123-136. [PMID: 29193391 DOI: 10.1002/biof.1395] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/02/2017] [Accepted: 10/19/2017] [Indexed: 01/20/2023]
Abstract
Increasing evidence demonstrates that pyroptosis, pro-inflammatory programmed cell death, is linked to atherosclerosis; however, the underlying mechanisms remain to be elucidated. Dihydromyricetin (DHM), a natural flavonoid, was reported to exert anti-oxidative and anti-inflammatory bioactivities. However, the effect of DHM on atherosclerosis-related pyroptosis has not been studied. In the present study, palmitic acid (PA) treatment led to pyroptosis in human umbilical vein endothelial cells (HUVECs), as evidenced by caspase-1 activation, LDH release, and propidium iodide-positive staining; enhanced the maturation and release of proinflammatory cytokine IL-1β and activation of the NLRP3 inflammasome; and markedly increased intracellular reactive oxygen species (ROS) and mitochondrial ROS (mtROS) levels. Moreover, NLRP3 siRNA transfection or treatment with inhibitors efficiently suppressed PA-induced pyroptosis, and pretreatment with total ROS scavenger or mtROS scavenger attenuated PA-induced NLRP3 inflammasome activation and subsequent pyroptosis. However, DHM pretreatment inhibited PA-induced pyroptotic cell death by increasing cell viability, decreasing LDH and IL-1β release, improving cell membrane integrity, and abolishing caspase-1 cleavage and subsequent IL-1β maturation. We also found that DHM pre-treatment remarkably reduced the levels of intracellular ROS and mtROS and activated the Nrf2 signaling pathway. Moreover, knockdown of Nrf2 by siRNA abrogated the inhibitory effects of DHM on ROS generation and subsequent PA-induced pyroptosis. Together, these results indicate that the Nrf2 signaling pathway plays a role, as least in part, in the DHM-mediated improvement in PA-induced pyroptosis in vascular endothelial cells, which implies the underlying medicinal value of DHM targeting immune/inflammatory-related diseases, such as atherosclerosis. © 2017 BioFactors, 44(2):123-136, 2018.
Collapse
Affiliation(s)
- Qin Hu
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Ting Zhang
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Long Yi
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Xi Zhou
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Mantian Mi
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| |
Collapse
|
28
|
Cervelli M, Leonetti A, Duranti G, Sabatini S, Ceci R, Mariottini P. Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine. Med Sci (Basel) 2018; 6:medsci6010014. [PMID: 29443878 PMCID: PMC5872171 DOI: 10.3390/medsci6010014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle comprises approximately 40% of the total body mass. Preserving muscle health and function is essential for the entire body in order to counteract chronic diseases such as type II diabetes, cardiovascular diseases, and cancer. Prolonged physical inactivity, particularly among the elderly, causes muscle atrophy, a pathological state with adverse outcomes such as poor quality of life, physical disability, and high mortality. In murine skeletal muscle C2C12 cells, increased expression of the spermine oxidase (SMOX) enzyme has been found during cell differentiation. Notably, SMOX overexpression increases muscle fiber size, while SMOX reduction was enough to induce muscle atrophy in multiple murine models. Of note, the SMOX reaction product spermidine appears to be involved in skeletal muscle atrophy/hypertrophy. It is effective in reactivating autophagy, ameliorating the myopathic defects of collagen VI-null mice. Moreover, spermidine treatment, if combined with exercise, can affect D-gal-induced aging-related skeletal muscle atrophy. This review hypothesizes a role for SMOX during skeletal muscle differentiation and outlines its role and that of spermidine in muscle atrophy. The identification of new molecular pathways involved in the maintenance of skeletal muscle health could be beneficial in developing novel therapeutic lead compounds to treat muscle atrophy.
Collapse
Affiliation(s)
- Manuela Cervelli
- Department of Science, Università degli Studi di Roma "Roma Tre", 00146 Rome, Italy.
| | - Alessia Leonetti
- Department of Science, Università degli Studi di Roma "Roma Tre", 00146 Rome, Italy.
| | - Guglielmo Duranti
- Department of of Movement Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 15, 00135 Rome, Italy.
| | - Stefania Sabatini
- Department of of Movement Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 15, 00135 Rome, Italy.
| | - Roberta Ceci
- Department of of Movement Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 15, 00135 Rome, Italy.
| | - Paolo Mariottini
- Department of Science, Università degli Studi di Roma "Roma Tre", 00146 Rome, Italy.
| |
Collapse
|