1
|
Villella VR, Castaldo A, Scialò F, Castaldo G. How Effectively Can Oxidative Stress and Inflammation Be Reversed When CFTR Function Is Pharmacologically Improved? Antioxidants (Basel) 2025; 14:310. [PMID: 40227282 PMCID: PMC11939277 DOI: 10.3390/antiox14030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
A critical challenge in the age of advanced modulator therapies is to understand and determine how effectively chronic oxidative stress and oxidative stress-induced inflammation can be reversed and physiological balance restored when CFTR function is pharmacologically improved. The triple therapy with elexacaftor-tezacaftor-ivacaftor (ETI) suggests that CFTR activity in individuals with at least one F508del mutation can be partially restored to about 50% of normal levels. Although incomplete, the partial recovery of CFTR function has been shown to drastically lower sputum pathogen content, enhance microbiome diversity, and lower inflammation markers within the first year of treatment in adolescents and adults with cystic fibrosis. However, despite these advancements, residual airway infection, oxidative stress and inflammation persist, with levels similar to other chronic lung conditions, like non-CF bronchiectasis. This persistence highlights the necessity for innovative antioxidant and anti-inflammatory treatments, in particular for individuals with advanced lung disease. To address this issue, emerging multi-omics technologies offer valuable tools to investigate the impact of modulator therapies on various molecular pathways. By analyzing changes in gene expression, epigenetic modifications, protein profiles and metabolic processes in airway-derived samples, it could be possible to uncover the mechanisms driving persistent oxidative stress and inflammation. These insights could pave the way for identifying new therapeutic targets to fully restore airway health and overall physiological balance.
Collapse
Affiliation(s)
| | - Alice Castaldo
- SC di Pneumologia e UTSIR, AORN Santobono-Pausilipon, 80122 Naples, Italy;
- Dipartimento di Scienze Mediche Traslazionali, Sezione di Pediatria, Università di Napoli Federico II, 80131 Naples, Italy
| | - Filippo Scialò
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy; (V.R.V.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy; (V.R.V.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|
2
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Blake TL, Sly PD, Andersen I, Wainwright CE, Reid DW, Bell SC, Smith BR, Kettle AJ, Dickerhof N. Changes in urinary glutathione sulfonamide (GSA) levels between admission and discharge of patients with cystic fibrosis. J Cyst Fibros 2024; 23:1163-1166. [PMID: 38658253 DOI: 10.1016/j.jcf.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
There is an urgent need to develop sensitive, non-invasive biomarkers that can track airway inflammatory activity for patients with cystic fibrosis (CF). Urinary glutathione sulfonamide (GSA) levels correlate well with GSA levels in BAL samples and other markers of neutrophilic inflammation, suggesting that this biomarker may be suitable for tracking disease activity in this population. We recruited 102 children (median 11.5 years-old) and 64 adults (median 32.5 years-old) who were admitted to hospital for management of an acute pulmonary exacerbation and/or eradication of infectious agents such as Pseudomonas aeruginosa or Staphylococcus aureus. Our aim was to explore how urinary GSA levels changed across admission timepoints. Urine samples were collected at admission and discharge, and GSA measured by liquid chromatography with mass spectrometry. Paired admission-discharge results were compared using Wilcoxon signed-rank test. Paired admission-discharge samples were available for 53 children and 60 adults. A statistically significant difference was observed between admission-discharge for children and adults. Spearman's correlation analysis identified a correlation between urinary GSA levels and sex and S. aureus infection for children only. Our preliminary findings suggest that urinary GSA is responsive to the resolution of an acute pulmonary exacerbation and therefore warrants further studies in this population.
Collapse
Affiliation(s)
- Tamara L Blake
- Children's Health and Environment Program, Child Health Research Centre, University of Queensland, 62 Graham St, South Brisbane, Australia, 4101.
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, University of Queensland, 62 Graham St, South Brisbane, Australia, 4101
| | - Isabella Andersen
- Children's Health and Environment Program, Child Health Research Centre, University of Queensland, 62 Graham St, South Brisbane, Australia, 4101
| | - Claire E Wainwright
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, 501 Stanley St, South Brisbane, Australia, 4101
| | - David W Reid
- Department of Thoracic Medicine, The Prince Charles Hospital, Staib Rd, Chermside, Australia, 4032
| | - Scott C Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Staib Rd, Chermside, Australia, 4032; Translational Research Institute, 37 Kent St, Woolloongabba, Australia, 4102
| | - Briana R Smith
- Mātai Hāora - Centre for Redox Biology, Department of Pathology and Biomedical Science, University of Otago Christchurch, New Zealand, 8140
| | - Anthony J Kettle
- Mātai Hāora - Centre for Redox Biology, Department of Pathology and Biomedical Science, University of Otago Christchurch, New Zealand, 8140
| | - Nina Dickerhof
- Mātai Hāora - Centre for Redox Biology, Department of Pathology and Biomedical Science, University of Otago Christchurch, New Zealand, 8140
| |
Collapse
|
4
|
Gopika MG, Gopidas S, Jayan GS, Arathy PS, Saraswathyamma B. Unveiling thiol biomarkers: Glutathione and cysteamine. Clin Chim Acta 2024; 563:119915. [PMID: 39134217 DOI: 10.1016/j.cca.2024.119915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
The physiological and clinical importance of Glutathione and Cysteamine is emphasized by their participation in a range of conditions, such as diabetes, cancer, renal failure, Parkinson's disease, and hypothyroidism. This necessitates the requirement for accessible, expedited, and cost-efficient testing that can facilitate clinical diagnosis and treatment options. This article examines numerous techniques used to detect both glutathione and cysteamine. The discussed methods include electroanalytical techniques such as voltammetry and amperometry, which are examined for their sensitivity and ability to provide real-time analysis. Furthermore, this study investigates the accuracy of gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) in measuring the concentrations of glutathione and cysteamine. Additionally, the potential of new nanotechnology-based methods, such as plasmonic nanoparticles and quantum dots, to improve the sensitivity of detecting glutathione and cysteamine is emphasized.
Collapse
Affiliation(s)
- M G Gopika
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - Surya Gopidas
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - Gokul S Jayan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - P S Arathy
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - Beena Saraswathyamma
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India.
| |
Collapse
|
5
|
Umashankar B, Eliasson L, Ooi CY, Kim KW, Shaw JAM, Waters SA. Beyond insulin: Unraveling the complex interplay of ER stress, oxidative damage, and CFTR modulation in CFRD. J Cyst Fibros 2024; 23:842-852. [PMID: 38897882 DOI: 10.1016/j.jcf.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
CF-related diabetes (CFRD) is a prevalent comorbidity in people with Cystic Fibrosis (CF), significantly impacting morbidity and mortality rates. This review article critically evaluates the current understanding of CFRD molecular mechanisms, including the role of CFTR protein, oxidative stress, unfolded protein response (UPR) and intracellular communication. CFRD manifests from a complex interplay between exocrine pancreatic damage and intrinsic endocrine dysfunction, further complicated by the deleterious effects of misfolded CFTR protein on insulin secretion and action. Studies indicate that ER stress and subsequent UPR activation play critical roles in both exocrine and endocrine pancreatic cell dysfunction, contributing to β-cell loss and insulin insufficiency. Additionally, oxidative stress and altered calcium flux, exacerbated by CFTR dysfunction, impair β-cell survival and function, highlighting the significance of antioxidant pathways in CFRD pathogenesis. Emerging evidence underscores the importance of exosomal microRNAs (miRNAs) in mediating inflammatory and stress responses, offering novel insights into CFRD's molecular landscape. Despite insulin therapy remaining the cornerstone of CFRD management, the variability in response to CFTR modulators underscores the need for personalized treatment approaches. The review advocates for further research into non-CFTR therapeutic targets, emphasizing the need to address the multifaceted pathophysiology of CFRD. Understanding the intricate mechanisms underlying CFRD will pave the way for innovative treatments, moving beyond insulin therapy to target the disease's root causes and improve the quality of life for individuals with CF.
Collapse
Affiliation(s)
- Bala Umashankar
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Lena Eliasson
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Chee Y Ooi
- Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Department of Gastroenterology, Sydney Children's Hospital Randwick, NSW, Australia
| | - Ki Wook Kim
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Virology and Serology Division (SaViD), New South Wales Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - James A M Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shafagh A Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Wallbanks S, Griffiths B, Thomas M, Price OJ, Sylvester KP. Impact of environmental air pollution on respiratory health and function. Physiol Rep 2024; 12:e70006. [PMID: 39175108 PMCID: PMC11341277 DOI: 10.14814/phy2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
Environmental air pollution presents a considerable risk to global respiratory health. If critical levels are exceeded, inhaled pollutants can lead to the development of respiratory dysfunction and provoke exacerbation in those with pre-existing chronic respiratory disease. Over 90% of the global population currently reside in areas where environmental air pollution is considered excessive-with adverse effects ranging from acute airway irritation to complex immunomodulatory alterations. This narrative review provides an up-to-date perspective concerning the impact of environmental air pollution on respiratory health and function and describes the underpinning mechanisms that contribute to the development and progression of chronic respiratory disease.
Collapse
Affiliation(s)
- Samuel Wallbanks
- Birmingham Heartlands HospitalUniversity Hospitals BirminghamBirminghamUK
| | - Benjamin Griffiths
- School of Biomedical Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Maximillian Thomas
- Respiratory PhysiologyUniversity Hospitals Sussex NHS Foundation TrustBrightonUK
| | - Oliver J. Price
- School of Biomedical Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- Department of Respiratory MedicineLeeds Teaching Hospitals NHS TrustLeedsUK
| | - Karl P. Sylvester
- Respiratory PhysiologyPapworth Hospital NHS Foundation TrustCambridgeUK
- Respiratory PhysiologyCambridge University Hospitals NHS Foundation TrustCambridgeUK
| |
Collapse
|
7
|
Edwards TS, Day AS. The role of fecal biomarkers in individuals with inflammatory bowel disease. Expert Rev Mol Diagn 2024; 24:497-508. [PMID: 38995110 DOI: 10.1080/14737159.2024.2375224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and Ulcerative Colitis (UC), is a relapsing and remitting condition. Noninvasive biomarkers have an increasingly important role in the diagnosis of IBD and in the prediction of future disease course in individuals with IBD. Strategies for the management of IBD increasingly rely upon close monitoring of gastrointestinal inflammation. AREAS COVERED This review provides an update on the current understanding of established and novel stool-based biomarkers in the diagnosis and management of IBD. It also highlights key gaps, identifies limitations, and advantages of current markers, and examines aspects that require further study and analysis. EXPERT OPINION Current noninvasive inflammatory markers play an important role in the diagnosis and management of IBD; however, limitations exist. Future work is required to further characterize and validate current and novel markers of inflammation. In addition, it is essential to better understand the roles and characteristics of noninvasive markers to enable the appropriate selection to accurately determine the condition of the intestinal mucosa.
Collapse
Affiliation(s)
- Teagan S Edwards
- Department of Paediatrics, University of Otago Christchurch, Christchurch, New Zealand
| | - Andrew S Day
- Department of Paediatrics, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
8
|
Wu X, Yang Y. Neutrophil extracellular traps (NETs) and fibrotic diseases. Int Immunopharmacol 2024; 133:112085. [PMID: 38626550 DOI: 10.1016/j.intimp.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Fibrosis, a common cause and serious outcome of organ failure that can affect any organ, is responsible for up to 45% of all deaths in various clinical settings. Both preclinical models and clinical trials investigating various organ systems have shown that fibrosis is a highly dynamic process. Although many studies have sought to gain understanding of the mechanism of fibrosis progression, their findings have been mixed. In recent years, increasing evidence indicates that neutrophil extracellular traps (NETs) are involved in many inflammatory and autoimmune disorders and participate in the regulation of fibrotic processes in various organs and systems. In this review, we summarize the current understanding of the role of NETs in fibrosis development and progression and their possibility as therapeutic targets.
Collapse
Affiliation(s)
- Xiaojiao Wu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Horati H, Margaroli C, Chandler JD, Kilgore MB, Manai B, Andrinopoulou ER, Peng L, Guglani L, Tiddens HAMW, Caudri D, Scholte BJ, Tirouvanziam R, Janssens HM. Key inflammatory markers in bronchoalveolar lavage predict bronchiectasis progression in young children with CF. J Cyst Fibros 2024; 23:450-456. [PMID: 38246828 DOI: 10.1016/j.jcf.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Inflammation appears early in cystic fibrosis (CF) pathogenesis, with specific elevated inflammatory markers in bronchoalveolar lavage fluid (BALF) correlating with structural lung disease. Our aim was to identify markers of airway inflammation able to predict bronchiectasis progression over two years with high sensitivity and specificity. METHODS Children with CF with two chest computed tomography (CT) scans and bronchoscopies at a two-year interval were included (n= 10 at 1 and 3 years and n= 27 at 3 and 5 years). Chest CTs were scored for increase in bronchiectasis (Δ%Bx), using the PRAGMA-CF score. BALF collected with the first CT scan were analyzed for neutrophil% (n= 36), myeloperoxidase (MPO) (n= 25), neutrophil elastase (NE) (n= 26), and with a protein array for inflammatory and fibrotic markers (n= 26). RESULTS MPO, neutrophil%, and inducible T-cell costimulator ligand (ICOSLG), but not clinical characteristics, correlated significantly with Δ%Bx. Evaluation of neutrophil%, NE, MPO, interleukin-8 (IL-8), ICOSLG, and hepatocyte growth factor (HGF), for predicting an increase of > 0.5% of Δ%Bx in two years, showed that IL-8 had the best sensitivity (82%) and specificity (73%). Neutrophil%, ICOSLG and HGF had sensitivities of 85, 82, and 82% and specificities of 59, 67 and 60%, respectively. The odds ratio for risk of >0.5% Δ%Bx was higher for IL-8 (12.4) than for neutrophil%, ICOSLG, and HGF (5.9, 5.3, and 6.7, respectively). Sensitivity and specificity were lower for NE and MPO). CONCLUSIONS High levels of IL-8, neutrophil%, ICOSGL and HGF in BALF may be good predictors for progression of bronchiectasis in young children with CF.
Collapse
Affiliation(s)
- Hamed Horati
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Camilla Margaroli
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Joshua D Chandler
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Matthew B Kilgore
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Badies Manai
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Eleni-Rosalina Andrinopoulou
- Department of Biostatistics and Bioinformatics, Erasmus MC, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Limin Peng
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA, USA
| | - Lokesh Guglani
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Harm A M W Tiddens
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands; Department of radiology, Erasmus MC, University Hospital Rotterdam, Rotterdam, The Netherlands; Thirona, Nijmegen, The Netherlands
| | - Daan Caudri
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Bob J Scholte
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands; Department of Cell Biology, Erasmus MC, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Hettie M Janssens
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands.
| |
Collapse
|
10
|
Shearer HL, Currie MJ, Agnew HN, Trappetti C, Stull F, Pace PE, Paton JC, Dobson RCJ, Dickerhof N. Hypothiocyanous acid reductase is critical for host colonization and infection by Streptococcus pneumoniae. J Biol Chem 2024; 300:107282. [PMID: 38604564 PMCID: PMC11107202 DOI: 10.1016/j.jbc.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
The major human pathogen Streptococcus pneumoniae encounters the immune-derived oxidant hypothiocyanous acid (HOSCN) at sites of colonization and infection. We recently identified the pneumococcal hypothiocyanous acid reductase (Har), a member of the flavoprotein disulfide reductase enzyme family, and showed that it contributes to the HOSCN tolerance of S. pneumoniae in vitro. Here, we demonstrate in mouse models of pneumococcal infection that Har is critical for colonization and invasion. In a colonization model, bacterial load was attenuated dramatically in the nasopharynx when har was deleted in S. pneumoniae. The Δhar strain was also less virulent compared to wild type in an invasion model as reflected by a significant reduction in bacteria in the lungs and no dissemination to the blood and brain. Kinetic measurements with recombinant Har demonstrated that this enzyme reduced HOSCN with near diffusion-limited catalytic efficiency, using either NADH (kcat/KM = 1.2 × 108 M-1s-1) or NADPH (kcat/KM = 2.5 × 107 M-1s-1) as electron donors. We determined the X-ray crystal structure of Har in complex with the FAD cofactor to 1.50 Å resolution, highlighting the active site architecture characteristic for this class of enzymes. Collectively, our results demonstrate that pneumococcal Har is a highly efficient HOSCN reductase, enabling survival against oxidative host immune defenses. In addition, we provide structural insights that may aid the design of Har inhibitors.
Collapse
Affiliation(s)
- Heather L Shearer
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand; Biomolecular Interaction Centre, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Michael J Currie
- Biomolecular Interaction Centre, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Hannah N Agnew
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Claudia Trappetti
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA
| | - Paul E Pace
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - James C Paton
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Nina Dickerhof
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand.
| |
Collapse
|
11
|
Reula A, Castillo-Corullón S, Armengot M, Herrera G, Escribano A, Dasí F. Redox Imbalance in Nasal Epithelial Cells of Primary Ciliary Dyskinesia Patients. Antioxidants (Basel) 2024; 13:190. [PMID: 38397788 PMCID: PMC10885940 DOI: 10.3390/antiox13020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Background: Primary Ciliary Dyskinesia (PCD) represents a rare condition marked by an abnormal mobility pattern of cilia and flagella, resulting in impaired mucociliary clearance. This deficiency leads to recurrent infections and persistent inflammation of the airways. While previous studies have indicated heightened oxidative stress levels in the exhaled breath condensate of pediatric PCD patients, the assessment of oxidative stress within the affected respiratory tissue remains unexplored. Aims: To assess the oxidative status of human nasal epithelial cells (NECs) in PCD patients. Methods: Thirty-five PCD patients and thirty-five healthy control subjects were prospectively included in the study. Levels of reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), intracellular Ca2+, plasma membrane potential, and oxidative damage in lipids and proteins were measured. In addition, apoptosis and mitochondrial function were analyzed by flow cytometry in NECs. Results: NECs from PCD patients showed reduced levels of apoptosis (p = 0.004), superoxide anion (O2-, p = 0.018), peroxynitrite (ONOO-, p = 0.007), nitric oxide (NO, p = 0.007), mitochondrial hydrogen peroxide (mtH2O2, p < 0.0001), and mitochondrial superoxide anion (mtO2-, p = 0.0004) and increased mitochondrial mass (p = 0.009) compared to those from healthy individuals. No significant differences were observed in oxidized proteins (p = 0.137) and the oxidized/reduced lipid ratio (p = 0.7973). The oxidative profile of NEC cells in PCD patients, according to their ciliary motility, recurrent otitis, recurrent pneumonia, atelectasis, bronchiectasis, and situs inversus, showed no statistically significant differences in the parameters studied. Conversely, patients with chronic rhinosinusitis exhibited lower levels of ONOO- than PCD patients without this condition, with no significant differences related to other symptoms. Conclusions: Our findings strongly suggest the presence of a redox imbalance, specifically leaning toward a reductive state, in PCD patients.
Collapse
Affiliation(s)
- Ana Reula
- Valencia University Clinical Hospital Research Foundation, Instituto de Investigación Sanitaria INCLIVA, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (A.R.); (S.C.-C.); (A.E.)
- Rare Respiratory Diseases Research Group, Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain
- Biomedical Sciences Department, CEU-Cardenal Herrera University, 12006 Castellón, Spain
- Molecular, Cellular, and Genomic Biomedicine Group, IIS La Fe, 46026 Valencia, Spain;
| | - Silvia Castillo-Corullón
- Valencia University Clinical Hospital Research Foundation, Instituto de Investigación Sanitaria INCLIVA, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (A.R.); (S.C.-C.); (A.E.)
- Paediatrics Unit, Department of Pediatrics, Obstetrics and Gynecology, Hospital Clínico Universitario Valencia, University of Valencia, 46022 Valencia, Spain
| | - Miguel Armengot
- Molecular, Cellular, and Genomic Biomedicine Group, IIS La Fe, 46026 Valencia, Spain;
- ENT Unit, Department of Surgery, School of Medicine, Hospital La Fe, University of Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain
| | - Guadalupe Herrera
- Flow Cytometry Unit, Fundación Investigación Hospital Clínico Valencia, Instituto de Investigación Sanitaria INCLIVA, University of Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain;
| | - Amparo Escribano
- Valencia University Clinical Hospital Research Foundation, Instituto de Investigación Sanitaria INCLIVA, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (A.R.); (S.C.-C.); (A.E.)
- Paediatrics Unit, Department of Pediatrics, Obstetrics and Gynecology, Hospital Clínico Universitario Valencia, University of Valencia, 46022 Valencia, Spain
| | - Francisco Dasí
- Valencia University Clinical Hospital Research Foundation, Instituto de Investigación Sanitaria INCLIVA, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (A.R.); (S.C.-C.); (A.E.)
- Rare Respiratory Diseases Research Group, Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain
| |
Collapse
|
12
|
Kaimal R, Dube A, Souwaileh AA, Wu JJ, Anandan S. A copper metal-organic framework-based electrochemical sensor for identification of glutathione in pharmaceutical samples. Analyst 2024; 149:947-957. [PMID: 38197180 DOI: 10.1039/d3an01714a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The construction of a new electrochemical sensing platform based on a copper metal-organic framework (Cu-MOF) heterostructure is described in this paper. Drop-casting Cu-MOF suspension onto the electrode surface primed the sensor for glutathione detection. The composition and morphology of the Cu-MOF heterostructure were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FT-IR), and UV-visible spectroscopy. The Cu-MOF heterostructure can identify glutathione (GSH) with an enhanced sensitivity of 0.0437 μA μM-1 at the detection limit (LOD; 0.1 ± 0.005 μM) and a large dynamic range of 0.1-20 μM. Boosting the conductivity and surface area enhances electron transport and promotes redox processes. The constructed sensors were also adequately selective against interference from other contaminants in a similar potential window. Furthermore, the Cu-MOF heterostructure has outstanding selectivity, long-term stability, and repeatability, and the given sensors have demonstrated their capacity to detect GSH with high accuracy (recovery range = 98.2-100.8%) in pharmaceutical samples.
Collapse
Affiliation(s)
- Reshma Kaimal
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India.
| | - Aashutosh Dube
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India.
| | - Abdullah Al Souwaileh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jerry J Wu
- Department of Environmental Engineering & Science, Feng Chia University, Taichung-407, Taiwan
| | - Sambandam Anandan
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India.
| |
Collapse
|
13
|
Lin W, Chen H, Chen X, Guo C. The Roles of Neutrophil-Derived Myeloperoxidase (MPO) in Diseases: The New Progress. Antioxidants (Basel) 2024; 13:132. [PMID: 38275657 PMCID: PMC10812636 DOI: 10.3390/antiox13010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Myeloperoxidase (MPO) is a heme-containing peroxidase, mainly expressed in neutrophils and, to a lesser extent, in monocytes. MPO is known to have a broad bactericidal ability via catalyzing the reaction of Cl- with H2O2 to produce a strong oxidant, hypochlorous acid (HOCl). However, the overproduction of MPO-derived oxidants has drawn attention to its detrimental role, especially in diseases characterized by acute or chronic inflammation. Broadly speaking, MPO and its derived oxidants are involved in the pathological processes of diseases mainly through the oxidation of biomolecules, which promotes inflammation and oxidative stress. Meanwhile, some researchers found that MPO deficiency or using MPO inhibitors could attenuate inflammation and tissue injuries. Taken together, MPO might be a promising target for both prognostic and therapeutic interventions. Therefore, understanding the role of MPO in the progress of various diseases is of great value. This review provides a comprehensive analysis of the diverse roles of MPO in the progression of several diseases, including cardiovascular diseases (CVDs), neurodegenerative diseases, cancers, renal diseases, and lung diseases (including COVID-19). This information serves as a valuable reference for subsequent mechanistic research and drug development.
Collapse
Affiliation(s)
- Wei Lin
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Huili Chen
- Center of System Pharmacology and Pharmacometrics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA;
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Chaorui Guo
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| |
Collapse
|
14
|
Wellems D, Hu Y, Jennings S, Wang G. Loss of CFTR function in macrophages alters the cell transcriptional program and delays lung resolution of inflammation. Front Immunol 2023; 14:1242381. [PMID: 38035088 PMCID: PMC10687418 DOI: 10.3389/fimmu.2023.1242381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the CF Transmembrane-conductance Regulator (CFTR) gene. The most severe pathologies of CF occur in the lung, manifesting as chronic bacterial infection, persistent neutrophilic inflammation, and mucopurulent airway obstruction. Despite increasing knowledge of the CF primary defect and the resulting clinical sequelae, the relationship between the CFTR loss of function and the neutrophilic inflammation remains incompletely understood. Here, we report that loss of CFTR function in macrophages causes extended lung inflammation. After intratracheal inoculation with Pseudomonas aeruginosa, mice with a macrophage-specific Cftr-knockout (Mac-CF) were able to mount an effective host defense to clear the bacterial infection. However, three days post-inoculation, Mac-CF lungs demonstrated significantly more neutrophil infiltration and higher levels of inflammatory cytokines, suggesting that Mac-CF mice had a slower resolution of inflammation. Single-cell RNA sequencing revealed that absence of CFTR in the macrophages altered the cell transcriptional program, affecting the cell inflammatory and immune responses, antioxidant system, and mitochondrial respiration. Thus, loss of CFTR function in macrophages influences cell homeostasis, leading to a dysregulated cellular response to infection that may exacerbate CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
15
|
Kim SO, Shapiro JP, Cottrill KA, Collins GL, Shanthikumar S, Rao P, Ranganathan S, Stick SM, Orr ML, Fitzpatrick AM, Go YM, Jones DP, Tirouvanziam RM, Chandler JD. Substrate-dependent metabolomic signatures of myeloperoxidase activity in airway epithelial cells: Implications for early cystic fibrosis lung disease. Free Radic Biol Med 2023; 206:180-190. [PMID: 37356776 PMCID: PMC10513041 DOI: 10.1016/j.freeradbiomed.2023.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Myeloperoxidase (MPO) is released by neutrophils in inflamed tissues. MPO oxidizes chloride, bromide, and thiocyanate to produce hypochlorous acid (HOCl), hypobromous acid (HOBr), and hypothiocyanous acid (HOSCN), respectively. These oxidants are toxic to pathogens, but may also react with host cells to elicit biological activity and potential toxicity. In cystic fibrosis (CF) and related diseases, increased neutrophil inflammation leads to increased airway MPO and airway epithelial cell (AEC) exposure to its oxidants. In this study, we investigated how equal dose-rate exposures of MPO-derived oxidants differentially impact the metabolome of human AECs (BEAS-2B cells). We utilized enzymatic oxidant production with rate-limiting glucose oxidase (GOX) coupled to MPO, and chloride, bromide (Br-), or thiocyanate (SCN-) as substrates. AECs exposed to GOX/MPO/SCN- (favoring HOSCN) were viable after 24 h, while exposure to GOX/MPO (favoring HOCl) or GOX/MPO/Br- (favoring HOBr) developed cytotoxicity after 6 h. Cell glutathione and peroxiredoxin-3 oxidation were insufficient to explain these differences. However, untargeted metabolomics revealed GOX/MPO and GOX/MPO/Br- diverged significantly from GOX/MPO/SCN- for dozens of metabolites. We noted methionine sulfoxide and dehydromethionine were significantly increased in GOX/MPO- or GOX/MPO/Br--treated cells, and analyzed them as potential biomarkers of lung damage in bronchoalveolar lavage fluid from 5-year-olds with CF (n = 27). Both metabolites were associated with increasing bronchiectasis, neutrophils, and MPO activity. This suggests MPO production of HOCl and/or HOBr may contribute to inflammatory lung damage in early CF. In summary, our in vitro model enabled unbiased identification of exposure-specific metabolite products which may serve as biomarkers of lung damage in vivo. Continued research with this exposure model may yield additional oxidant-specific biomarkers and reveal explicit mechanisms of oxidant byproduct formation and cellular redox signaling.
Collapse
Affiliation(s)
- Susan O Kim
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University, Atlanta, GA, USA
| | - Joseph P Shapiro
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University, Atlanta, GA, USA
| | - Kirsten A Cottrill
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University, Atlanta, GA, USA
| | - Genoah L Collins
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University, Atlanta, GA, USA
| | - Shivanthan Shanthikumar
- Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, VIC, Australia; Respiratory Diseases, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Padma Rao
- Medical Imaging, Royal Children's Hospital, Parkville, VIC, Australia
| | - Sarath Ranganathan
- Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, VIC, Australia; Respiratory Diseases, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Stephen M Stick
- Telethon Kids Institute, Perth, Western Australia, Australia
| | - Michael L Orr
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Anne M Fitzpatrick
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Young-Mi Go
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Rabindra M Tirouvanziam
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Joshua D Chandler
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University, Atlanta, GA, USA; Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
16
|
Wróblewska J, Wróblewski M, Hołyńska-Iwan I, Modrzejewska M, Nuszkiewicz J, Wróblewska W, Woźniak A. The Role of Glutathione in Selected Viral Diseases. Antioxidants (Basel) 2023; 12:1325. [PMID: 37507865 PMCID: PMC10376684 DOI: 10.3390/antiox12071325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
During inflammatory processes, immunocompetent cells are exposed to substantial amounts of free radicals and toxic compounds. Glutathione is a cysteine-containing tripeptide that is an important and ubiquitous antioxidant molecule produced in human organs. The intracellular content of GSH regulates the detoxifying capacity of cells, as well as the inflammatory and immune response. GSH is particularly important in the liver, where it serves as the major non-protein thiol involved in cellular antioxidant defense. There are numerous causes of hepatitis. The inflammation of the liver can be caused by a variety of infectious viruses. The relationship between oxidative stress and the hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis E virus (HEV) infection is not fully known. The aim of this study was to examine the relationship between hepatotropic viruses and glutathione status, including reduced glutathione (GSH) and oxidized glutathione (GSSG), as well as antioxidant enzymes, e.g., glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) in liver diseases.
Collapse
Affiliation(s)
- Joanna Wróblewska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Marcin Wróblewski
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Weronika Wróblewska
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
17
|
Giustarini D, Milzani A, Dalle-Donne I, Rossi R. How to Increase Cellular Glutathione. Antioxidants (Basel) 2023; 12:antiox12051094. [PMID: 37237960 DOI: 10.3390/antiox12051094] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Glutathione (GSH) has special antioxidant properties due to its high intracellular concentration, ubiquity, and high reactivity towards electrophiles of the sulfhydryl group of its cysteine moiety. In most diseases where oxidative stress is thought to play a pathogenic role, GSH concentration is significantly reduced, making cells more susceptible to oxidative damage. Therefore, there is a growing interest in determining the best method(s) to increase cellular glutathione for both disease prevention and treatment. This review summarizes the major strategies for successfully increasing cellular GSH stores. These include GSH itself, its derivatives, NRf-2 activators, cysteine prodrugs, foods, and special diets. The possible mechanisms by which these molecules can act as GSH boosters, their related pharmacokinetic issues, and their advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Aldo Milzani
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
18
|
Maslinic Acid Supplementation during the In Vitro Culture Period Ameliorates Early Embryonic Development of Porcine Embryos by Regulating Oxidative Stress. Animals (Basel) 2023; 13:ani13061041. [PMID: 36978582 PMCID: PMC10044061 DOI: 10.3390/ani13061041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023] Open
Abstract
As a pentacyclic triterpene, MA exhibits effective free radical scavenging capabilities. The purpose of this study was to explore the effects of MA on porcine early-stage embryonic development, oxidation resistance and mitochondrial function. Our results showed that 1 μM was the optimal concentration of MA, which resulted in dramatically increased blastocyst formation rates and improvement of blastocyst quality of in vitro-derived embryos from parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT). Further analysis indicated that MA supplementation not only significantly decreased the abundance of intracellular reactive oxygen species (ROS) and dramatically increased the abundance of intracellular reductive glutathione (GSH) in porcine early-stage embryos, but also clearly attenuated mitochondrial dysfunction and inhibited apoptosis. Moreover, Western blotting showed that MA supplementation upregulated OCT4 (p < 0.01), SOD1 (p < 0.0001) and CAT (p < 0.05) protein expression in porcine early-stage embryos. Collectively, our data reveal that MA supplementation exerts helpful effects on porcine early embryo development competence via regulation of oxidative stress (OS) and amelioration of mitochondrial function and that MA may be useful for increasing the in vitro production (IVP) efficiency of porcine early-stage embryos.
Collapse
|
19
|
Kopčil M, Kanďár R. Screening method for the simultaneous determination of allantoin and uric acid from dried blood spots. J Pharm Biomed Anal 2023; 225:115222. [PMID: 36621284 DOI: 10.1016/j.jpba.2022.115222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Uric acid and its oxidation product allantoin are excellent biomarkers of oxidative stress in humans. Currently, there are high requirements not only for tests monitoring oxidative stress but also for screening laboratory tests in general. The highest demand is imposed on the simplest sampling, easy transport of the sample, and the shortest possible analysis time. The possible solution how to fulfil the requirements is sampling by dried blood spot technique with subsequent HPLC-MS/MS analysis. A fast, sensitive, and reliable HPLC-MS/MS method for the simultaneous determination of uric acid and allantoin from dried blood spots using stable isotopically labelled analogs as internal standards was developed. The separation took place in the reversed phase within 3 min, with protein precipitation and extraction in a one-step procedure. The analytical parameters of the method were satisfactory with an excellent linear range. The presented method was used to determine allantoin and uric acid levels in dried blood spot samples from 100 healthy volunteer donors. The median uric acid concentration in the cohort was 239.3 µmol/L and the median allantoin concentration was 5.6 µmol/L. The presented analytical protocol and method are suitable for screening and monitoring allantoin and uric acid levels as biomarkers of oxidative stress in clinical practice.
Collapse
Affiliation(s)
- Michal Kopčil
- Department of Biological and Biochemical Science, Faculty of Chemical Technology, The University of Pardubice, Pardubice, Czech Republic
| | - Roman Kanďár
- Department of Biological and Biochemical Science, Faculty of Chemical Technology, The University of Pardubice, Pardubice, Czech Republic.
| |
Collapse
|
20
|
Cystic Fibrosis and Oxidative Stress: The Role of CFTR. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165324. [PMID: 36014562 PMCID: PMC9413234 DOI: 10.3390/molecules27165324] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
There is substantial evidence in the literature that patients with cystic fibrosis (CF) have higher oxidative stress than patients with other diseases or healthy subjects. This results in an increase in reactive oxygen species (ROS) and in a deficit of antioxidant molecules and plays a fundamental role in the progression of chronic lung damage. Although it is known that recurrent infection–inflammation cycles in CF patients generate a highly oxidative environment, numerous clinical and preclinical studies suggest that the airways of a patient with CF present an inherently abnormal proinflammatory milieu due to elevated oxidative stress and abnormal lipid metabolism even before they become infected. This could be directly related to cystic fibrosis transmembrane conductance regulator (CFTR) deficiency, which appears to produce a redox imbalance in epithelial cells and extracellular fluids. This review aims to summarize the main mechanism by which CFTR deficiency is intrinsically responsible for the proinflammatory environment that characterizes the lung of a patient with CF.
Collapse
|
21
|
Chandler JD, Esther CR. Metabolomics of airways disease in cystic fibrosis. Curr Opin Pharmacol 2022; 65:102238. [PMID: 35649321 PMCID: PMC10068587 DOI: 10.1016/j.coph.2022.102238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/30/2022]
Abstract
While discovery metabolomic studies have identified many potential biomarkers of cystic fibrosis (CF) airways disease, relatively few have been validated. We review the recent literature to identify the most promising metabolomic findings as those repeatedly observed over multiple studies. Reproducible metabolomic findings include increased airway amino acids and small peptides in CF airways, as well as changes in phospholipids and sphingolipids. Other commonly altered pathways include adenosine metabolism, polyamine synthesis, and oxidative stress. These pathways represent potential biomarkers and therapeutic targets, though findings require reevaluation in the era of highly effective modulator therapies. Analysis of airway biomarkers in exhaled breath holds promise for non-invasive detection, though technical challenges will need to be overcome.
Collapse
Affiliation(s)
- Joshua D Chandler
- Pediatrics, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Charles R Esther
- Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Association of Nasopharyngeal and Serum Glutathione Metabolism with Bronchiolitis Severity and Asthma Risk: A Prospective Multicenter Cohort Study. Metabolites 2022; 12:metabo12080674. [PMID: 35893241 PMCID: PMC9394245 DOI: 10.3390/metabo12080674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Infants hospitalized for bronchiolitis are at high risk for asthma. Glutathione-related metabolites may antagonize oxidative stress, which induces airway injuries in respiratory infection and subsequent airway remodeling. However, little is known about the relationship of glutathione-related metabolites with bronchiolitis severity and the risk of asthma. In a multicenter prospective observational cohort study of infants hospitalized for bronchiolitis, we measured nasopharyngeal and serum glutathione-related metabolites by using liquid chromatography−tandem mass spectrometry. We then examined their association with bronchiolitis severity (defined by positive pressure ventilation (PPV) use). We also identified severity-related glutathione-related metabolite signatures and examined their association with asthma at age 6 years. In 1013 infants, we identified 12 nasopharyngeal and 10 serum glutathione-related metabolites. In the multivariable models, lower relative abundances of seven metabolites, e.g., substrates of glutathione, including cysteine (adjOR 0.21, 95%CI 0.06−0.76), glycine (adjOR 0.25, 95%CI 0.07−0.85), and glutamate (adjOR 0.25, 95%CI 0.07−0.88), were significantly associated with PPV use (all FDR < 0.05). These associations were consistent with serum glutathione-related metabolites. The nasopharyngeal glutathione-related metabolite signature was also associated with a significantly higher risk of asthma (adjOR 0.90, 95%CI 0.82−0.99, p = 0.04). In infants hospitalized for bronchiolitis, glutathione-related metabolites were associated with bronchiolitis severity and asthma risk.
Collapse
|
23
|
O’Malley Y, Coleman MC, Sun X, Lei J, Yao J, Pulliam CF, Kluz P, McCormick ML, Yi Y, Imai Y, Engelhardt JF, Norris AW, Spitz DR, Uc A. Oxidative stress and impaired insulin secretion in cystic fibrosis pig pancreas. ADVANCES IN REDOX RESEARCH 2022; 5:100040. [PMID: 35903252 PMCID: PMC9328447 DOI: 10.1016/j.arres.2022.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cystic fibrosis-related diabetes (CFRD) is one the most common comorbidities in cystic fibrosis (CF). Pancreatic oxidative stress has been postulated in the pathogenesis of CFRD, but no studies have been done to show an association. The main obstacle is the lack of suitable animal models and no immediate availability of pancreas tissue in humans. In the CF porcine model, we found increased pancreatic total glutathione (GSH), glutathione disulfide (GSSG), 3-nitrotyrosine- and 4-hydroxynonenal-modified proteins, and decreased copper zinc superoxide dismutase (CuZnSOD) activity, all indicative of oxidative stress. CF pig pancreas demonstrated increased DHE oxidation (as a surrogate marker of superoxide) in situ compared to non-CF and this was inhibited by a SOD-mimetic (GC4401). Catalase and glutathione peroxidase activities were not different between CF and non-CF pancreas. Isolated CF pig islets had significantly increased DHE oxidation, peroxide production, reduced insulin secretion in response to high glucose and diminished secretory index compared to non-CF islets. Acute treatment with apocynin or an SOD mimetic failed to restore insulin secretion. These results are consistent with the hypothesis that CF pig pancreas is under significant oxidative stress as a result of increased O2 ●- and peroxides combined with reduced antioxidant defenses against reactive oxygen species (ROS). We speculate that insulin secretory defects in CF may be due to oxidative stress.
Collapse
Affiliation(s)
- Yunxia O’Malley
- Stead Family Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
| | - Mitchell C. Coleman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Junying Lei
- Stead Family Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
| | - Jianrong Yao
- Stead Family Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
| | - Casey F. Pulliam
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Paige Kluz
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, Iowa 52242, USA
| | - Michael L. McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Yaling Yi
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Yumi Imai
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Andrew W. Norris
- Stead Family Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Aliye Uc
- Stead Family Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
24
|
Galiniak S, Mołoń M, Rachel M. Links between Disease Severity, Bacterial Infections and Oxidative Stress in Cystic Fibrosis. Antioxidants (Basel) 2022; 11:antiox11050887. [PMID: 35624751 PMCID: PMC9137818 DOI: 10.3390/antiox11050887] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Cystic fibrosis (CF) is one of the most common, yet fatal genetic diseases in Caucasians. The presence of a defective CF transmembrane conductance regulator and the massive neutrophils influx into the airways contribute to an imbalance in epithelial cell processes and extracellular fluids and lead to excessive production of reactive oxygen species and intensification of oxidative stress. The study included 16 controls and 42 participants with CF aged 10 to 38. The products of protein oxidation, total antioxidant capacity (TAC) and markers of lipid peroxidation were estimated in the serum of the subjects. Furthermore, we compared the level of oxidative stress in patients with CF according to the severity of disease and type of bacterial infection. Thiol groups and serum TAC decreased significantly in patients with CF (p < 0.05). Elevated levels of 3-nitrotyrosine, malondialdehyde and 8-isoprostane were observed in CF subjects (p < 0.05). Furthermore, as the severity of the disease increased, there was a decrease in the thiol groups and TAC levels, as well as an increase in the concentration of 3-nitrotyrosine and 8-isoprostane. CF participants infected with Pseudomonas aeruginosa had elevated 3-nitrotyrosine concentration levels (p < 0.05), while those infected with Staphylococcus aureus noted a decrease in thiol groups (p < 0.05). Elevated levels of oxidative stress markers were found in the serum of CF patients. Furthermore, oxidative stress progressively increased over the years and along with the severity of the disease. The presence of bacterial infection with P. aeruginosa or S. aureus had a slight effect on oxidative stress, while co-infection by two species did not affect the level of oxidative stress.
Collapse
Affiliation(s)
- Sabina Galiniak
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów University, Warzywna 1a, 35-310 Rzeszów, Poland
- Correspondence: (S.G.); (M.R.); Tel.: +48-17-851-68-38 (S.G.); +48-17-866-46-67 (M.R.)
| | - Mateusz Mołoń
- Department of Biology, Institute of Biology and Biotechnology, Rzeszów University, Zelwerowicza 4, 35-601 Rzeszów, Poland;
| | - Marta Rachel
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów University, Warzywna 1a, 35-310 Rzeszów, Poland
- Department of Allergology and Cystic Fibrosis, State Hospital 2 in Rzeszów, Lwowska 60, 35-301 Rzeszów, Poland
- Correspondence: (S.G.); (M.R.); Tel.: +48-17-851-68-38 (S.G.); +48-17-866-46-67 (M.R.)
| |
Collapse
|
25
|
Edwards TS, Dickerhof N, Magon NJ, Paton LN, Sly PD, Kettle AJ. Formation of Calprotectin-Derived Peptides in the Airways of Children with Cystic Fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:979-990. [PMID: 35046105 DOI: 10.4049/jimmunol.2001017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Calprotectin is released by activated neutrophils along with myeloperoxidase (MPO) and proteases. It plays numerous roles in inflammation and infection, and is used as an inflammatory biomarker. However, calprotectin is readily oxidized by MPO-derived hypohalous acids to form covalent dimers of its S100A8 and S100A9 subunits. The dimers are susceptible to degradation by proteases. We show that detection of human calprotectin by ELISA declines markedly because of its oxidation by hypochlorous acid and subsequent degradation. Also, proteolysis liberates specific peptides from oxidized calprotectin that is present at inflammatory sites. We identified six calprotectin-derived peptides by mass spectrometry and detected them in the bronchoalveolar lavage fluid of children with cystic fibrosis (CF). We assessed the peptides as biomarkers of neutrophilic inflammation and infection. The content of the calprotectin peptide ILVI was related to calprotectin (r = 0.72, p = 0.01, n = 10). Four of the peptides were correlated with the concentration of MPO (r > 0.7, p ≤ 0.01, n = 21), while three were higher (p < 0.05) in neutrophil elastase-positive (n = 14) than -negative samples (n = 7). Also, five of the peptides were higher (p < 0.05) in the bronchoalveolar lavage fluid from children with CF with infections (n = 21) than from non-CF children without infections (n = 6). The specific peptides liberated from calprotectin will signal uncontrolled activity of proteases and MPO during inflammation. They may prove useful in tracking inflammation in respiratory diseases dominated by neutrophils, including coronavirus disease 2019.
Collapse
Affiliation(s)
- Teagan S Edwards
- Department of Paediatrics, University of Otago Christchurch, Christchurch, New Zealand;
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand; and
| | - Nicholas J Magon
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand; and
| | - Louise N Paton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand; and
| | - Peter D Sly
- Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand; and
| |
Collapse
|
26
|
Kelk D, Logan J, Andersen I, Gutierrez Cardenas D, Bell SC, Wainwright CE, Sly PD, Fantino E. Neutrophil respiratory burst activity is not exaggerated in cystic fibrosis. J Cyst Fibros 2022; 21:707-712. [PMID: 34991978 DOI: 10.1016/j.jcf.2021.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/28/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Exaggerated neutrophil-dominated inflammation underlies progressive cystic fibrosis (CF) lung disease. Older studies reported a defective respiratory burst in CF, but more recent studies suggest neutrophil function is normal. METHODS We measured the amount and rate of reactive oxygen species (ROS) during PMA-stimulated respiratory burst activity in children [70 CF, 13 disease controls, 19 health controls] and adults [31 CF, 14 health controls] in neutrophils harvested from peripheral blood. Blood was collected from participants with CF when clinically stable (60 children, 9 adults) and on hospital admission (38 children, 24 adults) and discharge (18 children, 21 adults) for acute pulmonary exacerbations. RESULTS When clinically stable, children with CF had lower ROS production [median 318,633, 25% 136,810 - 75% 569,523 RLU] than disease controls [median 599,459, 25% 425,566 - 75% 730,527 RLU] and healthy controls [median 534,073, 25% 334,057 - 75% 738,593 RLU] (p = 0.008). The rate of ROS production was also lower (p = 0.029). In neither children nor adults with CF did ROS production increase on hospital admission for acute pulmonary exacerbation, nor fall prior to discharge. There were no associations between ROS production and high-sensitivity C-reactive protein (indicating systemic inflammation) in either children or adults with CF. CONCLUSIONS Our data do not support a role for exaggerated respiratory burst activity contributing to the exaggerated neutrophil-dominated inflammation seen with CF lung disease.
Collapse
Affiliation(s)
- Dean Kelk
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia
| | - Jayden Logan
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia; Child and Reproductive Health Research Group, Queensland University of Technology, South Brisbane, Qld Australia
| | - Isabella Andersen
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia
| | - Diana Gutierrez Cardenas
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia
| | - Scott C Bell
- Translational Research Institute, Brisbane, Qld, Australia; Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane
| | - Claire E Wainwright
- Department of Respiratory and Sleep Medicine, Children's Health Queensland, South Brisbane, Qld Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia; Department of Respiratory and Sleep Medicine, Children's Health Queensland, South Brisbane, Qld Australia.
| | - Emmanuelle Fantino
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia
| |
Collapse
|
27
|
Maniam P, Essilfie AT, Kalimutho M, Ling D, Frazer DM, Phipps S, Anderson GJ, Reid DW. Increased susceptibility of cystic fibrosis airway epithelial cells to ferroptosis. Biol Res 2021; 54:38. [PMID: 34903297 PMCID: PMC8670191 DOI: 10.1186/s40659-021-00361-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/28/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Defective chloride transport in airway epithelial cells (AECs) and the associated lung disease are the main causes of morbidity and early mortality in cystic fibrosis (CF). Abnormal airway iron homeostasis and the presence of lipid peroxidation products, indicative of oxidative stress, are features of CF lung disease. RESULTS Here, we report that CF AECs (IB3-1) are susceptible to ferroptosis, a type of cell death associated with iron accumulation and lipid peroxidation. Compared to isogenic CFTR corrected cells (C38), the IB3-1 cells showed increased susceptibility to cell death upon exposure to iron in the form of ferric ammonium citrate (FAC) and the ferroptosis inducer, erastin. This phenotype was accompanied by accumulation of intracellular ferrous iron and lipid peroxides and the extracellular release of malondialdehyde, all indicative of redox stress, and increased levels of lactate dehydrogenase in the culture supernatant, indicating enhanced cell injury. The ferric iron chelator deferoxamine (DFO) and the lipophilic antioxidant ferrostatin-1 inhibited FAC and erastin induced ferroptosis in IB3-1 cells. Glutathione peroxidase 4 (GPX4) expression was decreased in IB3-1 cells treated with FAC and erastin, but was unchanged in C38 AECs. Necroptosis appeared to be involved in the enhanced susceptibility of IB3-1 AECs to ferroptosis, as evidenced by partial cell death rescue with necroptosis inhibitors and enhanced mixed lineage kinase domain-like (MLKL) localisation to the plasma membrane. CONCLUSION These studies suggest that the increased susceptibility of CF AECs to ferroptosis is linked to abnormal intracellular ferrous iron accumulation and reduced antioxidant defences. In addition, the process of ferroptotic cell death in CF AECs does not appear to be a single entity and for the first time we describe necroptosis as a potential contributory factor. Iron chelation and antioxidant treatments may be promising therapeutic interventions in cystic fibrosis.
Collapse
Affiliation(s)
- Pramila Maniam
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ama-Tawiah Essilfie
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Murugan Kalimutho
- Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Dora Ling
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - David M Frazer
- Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Simon Phipps
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Gregory J Anderson
- Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Chemistry and Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - David W Reid
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, Australia.
- Lung Inflammation and Infection Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4003, Australia.
| |
Collapse
|
28
|
Do Redox Balance and Inflammatory Events Take Place in Mild Bronchiectasis? A Hint to Clinical Implications. J Clin Med 2021; 10:jcm10194534. [PMID: 34640555 PMCID: PMC8509750 DOI: 10.3390/jcm10194534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
We hypothesized that in mild bronchiectasis patients, increased systemic inflammation and redox imbalance may take place and correlate with clinical parameters. In plasma samples from patients with very mild bronchiectasis, inflammatory cells and molecules and redox balance parameters were analyzed. In the patients, lung function and exercise capacity, nutritional status, bacterial colonization, and radiological extension were assessed. Correlations between biological and clinical variables were determined. Compared to healthy controls, levels of acute phase reactants, neutrophils, IgG, IgA, myeloperoxidase, protein oxidation, and GSH increased and lung function and exercise capacity were mildly reduced. GSH levels were even greater in ex-smoker and Pseudomona-colonized patients. Furthermore, radiological extension inversely correlated with airway obstruction and, disease severity, and positively correlated with neutrophil numbers in mild bronchiectasis patients with no nutritional abnormalities. In stable patients with mild bronchiectasis, several important inflammatory and oxidative stress events take place in plasma. These findings suggest that the extension of bronchiectasis probably plays a role in the development of redox imbalance and systemic inflammation in patients with mild bronchiectasis. These results have therapeutic implications in the management of bronchiectasis patients.
Collapse
|
29
|
Soares VEM, do Carmo TIT, Dos Anjos F, Wruck J, de Oliveira Maciel SFV, Bagatini MD, de Resende E Silva DT. Role of inflammation and oxidative stress in tissue damage associated with cystic fibrosis: CAPE as a future therapeutic strategy. Mol Cell Biochem 2021; 477:39-51. [PMID: 34529223 DOI: 10.1007/s11010-021-04263-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, responsible for the synthesis of the CFTR protein, a chloride channel. The gene has approximately 2000 known mutations and all of them affect in some degree the protein function, which makes the pathophysiological manifestations to be multisystemic, mainly affecting the respiratory, gastrointestinal, endocrine, and reproductive tracts. Currently, the treatment of the disease is restricted to controlling symptoms and, more recently, a group of drugs that act directly on the defective protein, known as CFTR modulators, was developed. However, their high cost and difficult access mean that their use is still very restricted. It is important to search for safe and low-cost alternative therapies for CF and, in this context, natural compounds and, mainly, caffeic acid phenethyl ester (CAPE) appear as promising strategies to assist in the treatment of the disease. CAPE is a compound derived from propolis extracts that has antioxidant and anti-inflammatory activities, covering important aspects of the pathophysiology of CF, which points to the possible benefit of its use in the disease treatment. To date, no studies have effectively tested CAPE for CF and, therefore, we intend with this review to elucidate the role of inflammation and oxidative stress for tissue damage seen in CF, associating them with CAPE actions and its pharmacologically active derivatives. In this way, we offer a theoretical basis for conducting preclinical and clinical studies relating the use of this molecule to CF.
Collapse
Affiliation(s)
- Victor Emanuel Miranda Soares
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | | | - Fernanda Dos Anjos
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Jonatha Wruck
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | | | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Débora Tavares de Resende E Silva
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
30
|
Prentice BJ, Jaffe A, Hameed S, Verge CF, Waters S, Widger J. Cystic fibrosis-related diabetes and lung disease: an update. Eur Respir Rev 2021; 30:30/159/200293. [PMID: 33597125 PMCID: PMC9488640 DOI: 10.1183/16000617.0293-2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
The development of cystic fibrosis-related diabetes (CFRD) often leads to poorer outcomes in patients with cystic fibrosis including increases in pulmonary exacerbations, poorer lung function and early mortality. This review highlights the many factors contributing to the clinical decline seen in patients diagnosed with CFRD, highlighting the important role of nutrition, the direct effect of hyperglycaemia on the lungs, the immunomodulatory effects of high glucose levels and the potential role of genetic modifiers in CFRD.
Collapse
Affiliation(s)
- Bernadette J Prentice
- Dept of Respiratory Medicine, Sydney Children's Hospital, Randwick, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, Randwick, Australia
| | - Adam Jaffe
- Dept of Respiratory Medicine, Sydney Children's Hospital, Randwick, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, Randwick, Australia
| | - Shihab Hameed
- School of Women's and Children's Health, University of New South Wales, Sydney, Randwick, Australia
- Faculty of Medicine, University of Sydney, Sydney, Australia
- Dept of Endocrinology, Sydney Children's Hospital, Randwick, Australia
| | - Charles F Verge
- School of Women's and Children's Health, University of New South Wales, Sydney, Randwick, Australia
- Dept of Endocrinology, Sydney Children's Hospital, Randwick, Australia
| | - Shafagh Waters
- School of Women's and Children's Health, University of New South Wales, Sydney, Randwick, Australia
- MiCF Research Centre, Sydney, Australia
| | - John Widger
- Dept of Respiratory Medicine, Sydney Children's Hospital, Randwick, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, Randwick, Australia
| |
Collapse
|
31
|
Veltman M, De Sanctis JB, Stolarczyk M, Klymiuk N, Bähr A, Brouwer RW, Oole E, Shah J, Ozdian T, Liao J, Martini C, Radzioch D, Hanrahan JW, Scholte BJ. CFTR Correctors and Antioxidants Partially Normalize Lipid Imbalance but not Abnormal Basal Inflammatory Cytokine Profile in CF Bronchial Epithelial Cells. Front Physiol 2021; 12:619442. [PMID: 33613309 PMCID: PMC7891400 DOI: 10.3389/fphys.2021.619442] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/07/2021] [Indexed: 12/20/2022] Open
Abstract
A deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) function in CF leads to chronic lung disease. CF is associated with abnormalities in fatty acids, ceramides, and cholesterol, their relationship with CF lung pathology is not completely understood. Therefore, we examined the impact of CFTR deficiency on lipid metabolism and pro-inflammatory signaling in airway epithelium using mass spectrometric, protein array. We observed a striking imbalance in fatty acid and ceramide metabolism, associated with chronic oxidative stress under basal conditions in CF mouse lung and well-differentiated bronchial epithelial cell cultures of CFTR knock out pig and CF patients. Cell-autonomous features of all three CF models included high ratios of ω-6- to ω-3-polyunsaturated fatty acids and of long- to very long-chain ceramide species (LCC/VLCC), reduced levels of total ceramides and ceramide precursors. In addition to the retinoic acid analog fenretinide, the anti-oxidants glutathione (GSH) and deferoxamine partially corrected the lipid profile indicating that oxidative stress may promote the lipid abnormalities. CFTR-targeted modulators reduced the lipid imbalance and oxidative stress, confirming the CFTR dependence of lipid ratios. However, despite functional correction of CF cells up to 60% of non-CF in Ussing chamber experiments, a 72-h triple compound treatment (elexacaftor/tezacaftor/ivacaftor surrogate) did not completely normalize lipid imbalance or oxidative stress. Protein array analysis revealed differential expression and shedding of cytokines and growth factors from CF epithelial cells compared to non-CF cells, consistent with sterile inflammation and tissue remodeling under basal conditions, including enhanced secretion of the neutrophil activator CXCL5, and the T-cell activator CCL17. However, treatment with antioxidants or CFTR modulators that mimic the approved combination therapies, ivacaftor/lumacaftor and ivacaftor/tezacaftor/elexacaftor, did not effectively suppress the inflammatory phenotype. We propose that CFTR deficiency causes oxidative stress in CF airway epithelium, affecting multiple bioactive lipid metabolic pathways, which likely play a role in CF lung disease progression. A combination of anti-oxidant, anti-inflammatory and CFTR targeted therapeutics may be required for full correction of the CF phenotype.
Collapse
Affiliation(s)
- Mieke Veltman
- Cell Biology Department, Erasmus Medical Center, Rotterdam, Netherlands.,Pediatric Pulmonology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| | - Juan B De Sanctis
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University, Olomouc, Czechia
| | - Marta Stolarczyk
- Cell Biology Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nikolai Klymiuk
- Large Animal Models for Cardiovascular Research, TU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Andrea Bähr
- Large Animal Models for Cardiovascular Research, TU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Rutger W Brouwer
- Cell Biology Department, Erasmus Medical Center, Rotterdam, Netherlands.,Center for Biomics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Edwin Oole
- Cell Biology Department, Erasmus Medical Center, Rotterdam, Netherlands.,Center for Biomics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Juhi Shah
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Tomas Ozdian
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University, Olomouc, Czechia
| | - Jie Liao
- Department of Physiology, CF Translational Research Centre, McGill University, Montreal, QC, Canada
| | - Carolina Martini
- Department of Physiology, CF Translational Research Centre, McGill University, Montreal, QC, Canada
| | - Danuta Radzioch
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - John W Hanrahan
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.,Department of Physiology, CF Translational Research Centre, McGill University, Montreal, QC, Canada
| | - Bob J Scholte
- Cell Biology Department, Erasmus Medical Center, Rotterdam, Netherlands.,Pediatric Pulmonology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
32
|
Lin CY, Wu CH, Hsu CY, Chen TH, Lin MS, Lin YS, Su YJ. Reduced Mortality Associated With the Use of Metformin Among Patients With Autoimmune Diseases. Front Endocrinol (Lausanne) 2021; 12:641635. [PMID: 33967957 PMCID: PMC8104028 DOI: 10.3389/fendo.2021.641635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Metformin has been linked to anti-proliferative and anti-inflammatory mechanisms. In this study, we aimed to examine the long-term impact of metformin on mortality and organ damage in patients with autoimmune diseases and type 2 diabetes mellitus (T2DM). METHODS We conducted a cohort study using the National Health Insurance Research Database in Taiwan between 1997 and 2013. Based on metformin and other anti-diabetic agent prescriptions, we categorized all patients with autoimmune diseases into either the metformin group (metformin administration for at least 28 days) or the non-metformin group. The primary outcomes were all-cause mortality and annual admission rate, while the secondary outcome was target organ damage. We followed patients from the index date to the date on which the event of interest occurred, death, or the end of this study. RESULTS Our cohort study included 3,359 subjects for analysis. During a mean follow up of 5.2 ± 3.8 years, the event rate of all-cause mortality was 228 (33.6%) in the metformin group and 125 (36.9%) in the non-metformin group. The risk of both all-cause mortality and annual number of admissions for autoimmune diseases was significantly lower in the metformin group than in the non-metformin group [hazard ratio (HR) 0.77; 95% CI 0.62-0.96 and risk ratio (RR) 0.81; 95% CI 0.73-0.90, respectively]. CONCLUSION Metformin may add benefits beyond T2DM control with regard to reducing all-cause mortality and admission rate, as well as minimizing end-organ injury in lungs and kidneys among patients with autoimmune diseases.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Division of Rheumatology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hsin Wu
- Division of Rheumatology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Yuan Hsu
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tien-Hsing Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ming-Shyan Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiology, Chang Gung Memorial Hospital, Yunlin, Taiwan
| | - Yu-Sheng Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Jih Su
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- *Correspondence: Yu-Jih Su,
| |
Collapse
|
33
|
Biermann AR, Demers EG, Hogan DA. Mrr1 regulation of methylglyoxal catabolism and methylglyoxal-induced fluconazole resistance in Candida lusitaniae. Mol Microbiol 2020; 115:116-130. [PMID: 33319423 DOI: 10.1111/mmi.14604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 09/05/2020] [Indexed: 12/11/2022]
Abstract
Transcription factor Mrr1, best known for its regulation of Candida azole resistance genes such as MDR1, regulates other genes that are poorly characterized. Among the other Mrr1-regulated genes are putative methylglyoxal reductases. Methylglyoxal (MG) is a toxic metabolite that is elevated in diabetes, uremia, and sepsis, which are diseases that increase the risk for candidiasis, and MG serves as a regulatory signal in diverse organisms. Our studies in Clavispora lusitaniae, also known as Candida lusitaniae, showed that Mrr1 regulates expression of two paralogous MG reductases, MGD1 and MGD2, and that both participate in MG resistance and MG catabolism. Exogenous MG increased Mrr1-dependent expression of MGD1 and MGD2 as well as expression of MDR1, which encodes an efflux pump that exports fluconazole. MG improved growth in the presence of fluconazole and this was largely Mrr1-dependent with contributions from a secondary transcription factor, Cap1. Increased fluconazole resistance was also observed in mutants lacking Glo1, a Mrr1-independent MG catabolic enzyme. Isolates from other Candida species displayed heterogeneity in MG resistance and MG stimulation of azole resistance. We propose endogenous and host-derived MG can induce MDR1 and other Mrr1-regulated genes causing increased drug resistance, which may contribute to some instances of fungal treatment failure.
Collapse
Affiliation(s)
- Amy R Biermann
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Elora G Demers
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
34
|
Hu WY, Li XX, Diao YF, Qi JJ, Wang DL, Zhang JB, Sun BX, Liang S. Asiatic acid protects oocytes against in vitro aging-induced deterioration and improves subsequent embryonic development in pigs. Aging (Albany NY) 2020; 13:3353-3367. [PMID: 33281118 PMCID: PMC7906213 DOI: 10.18632/aging.202184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
As a pentacyclic triterpene in Centella asiatica, asiatic acid (AA) is a powerful antioxidant with many bioactivities. In the present research, we investigated whether AA has the potential to rescue the decrease in porcine oocyte quality that occurs during in vitro aging (IVA). Mature porcine oocytes were collected and then continuously cultured for an additional 24 h or 48 h with or without AA in maturation medium as an IVA model. The results revealed that AA supplementation reduced the percentage of abnormal aged porcine oocytes during IVA. Furthermore, AA supplementation effectively maintained aged porcine oocyte developmental competence, both parthenogenetic activation and in vitro fertilization. The number of sperm that bound to the zona pellucida on aged porcine oocytes was higher in the AA-supplemented group than in the non-supplemented group. Moreover, AA supplementation not only blocked IVA-induced oxidative stress but also maintained intracellular GSH levels and reduced the percentage of early apoptosis aged porcine oocytes. Mitochondrial functions were disordered during the IVA process. The intracellular ATP levels and mitochondrial membrane potential in aged porcine oocytes were dramatically increased by AA supplementation. Therefore, AA has beneficial effects on porcine oocyte quality and developmental potential maintenance during IVA.
Collapse
Affiliation(s)
- Wei-Yi Hu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiao Xia Li
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Changchun, China.,Jilin Province Key Laboratory of Preventive Veterinary Medicine, Jilin Agriculture Science and Technology University, Changchun, China
| | - Yun Fei Diao
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Changchun, China.,Jilin Province Key Laboratory of Preventive Veterinary Medicine, Jilin Agriculture Science and Technology University, Changchun, China
| | - Jia-Jia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Da-Li Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jia-Bao Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Bo-Xing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
35
|
Jain SK, Parsanathan R, Levine SN, Bocchini JA, Holick MF, Vanchiere JA. The potential link between inherited G6PD deficiency, oxidative stress, and vitamin D deficiency and the racial inequities in mortality associated with COVID-19. Free Radic Biol Med 2020; 161:84-91. [PMID: 33038530 PMCID: PMC7539020 DOI: 10.1016/j.freeradbiomed.2020.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/08/2023]
Abstract
There is a marked variation in mortality risk associated with COVID-19 infection in the general population. Low socioeconomic status and other social determinants have been discussed as possible causes for the higher burden in African American communities compared with white communities. Beyond the social determinants, the biochemical mechanism that predisposes individual subjects or communities to the development of excess and serious complications associated with COVID-19 infection is not clear. Virus infection triggers massive ROS production and oxidative damage. Glutathione (GSH) is essential and protects the body from the harmful effects of oxidative damage from excess reactive oxygen radicals. GSH is also required to maintain the VD-metabolism genes and circulating levels of 25-hydroxyvitamin D (25(OH)VD). Glucose-6-phosphate dehydrogenase (G6PD) is necessary to prevent the exhaustion and depletion of cellular GSH. X-linked genetic G6PD deficiency is common in the AA population and predominantly in males. Acquired deficiency of G6PD has been widely reported in subjects with conditions of obesity and diabetes. This suggests that individuals with G6PD deficiency are vulnerable to excess oxidative stress and at a higher risk for inadequacy or deficiency of 25(OH)VD, leaving the body unable to protect its 'oxidative immune-metabolic' physiological functions from the insults of COVID-19. An association between subclinical interstitial lung disease with 25(OH)VD deficiencies and GSH deficiencies has been previously reported. We hypothesize that the overproduction of ROS and excess oxidative damage is responsible for the impaired immunity, secretion of the cytokine storm, and onset of pulmonary dysfunction in response to the COVID-19 infection. The co-optimization of impaired glutathione redox status and excess 25(OH)VD deficiencies has the potential to reduce oxidative stress, boost immunity, and reduce the adverse clinical effects of COVID-19 infection in the AA population.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | - Rajesh Parsanathan
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Steve N Levine
- School of Medicine, Section of Endocrinology & Metabolism, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Joseph A Bocchini
- Department of Pediatrics, Tulane University, 2508 Bert Kouns Industrial Loop, Suite 103, Shreveport, LA 71118, USA
| | - Michael F Holick
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Vitamin D, Skin, and Bone Research Laboratory, Boston University School of Medicine, Boston, MA, USA
| | - John A Vanchiere
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
36
|
Novel Antioxidant Therapy with the Immediate Precursor to Glutathione, γ-Glutamylcysteine (GGC), Ameliorates LPS-Induced Cellular Stress in In Vitro 3D-Differentiated Airway Model from Primary Cystic Fibrosis Human Bronchial Cells. Antioxidants (Basel) 2020; 9:antiox9121204. [PMID: 33266084 PMCID: PMC7760366 DOI: 10.3390/antiox9121204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 01/21/2023] Open
Abstract
Systemic glutathione deficiency, inflammation, and oxidative stress are hallmarks of cystic fibrosis (CF), an inherited disease that causes persistent lung infections and severe damage to the respiratory system and many of the body organs. Improvements to current antioxidant therapeutic strategies are needed. The dietary supplement, γ-glutamylcysteine (GGC), which is the immediate precursor to glutathione, rapidly boosts cellular glutathione levels following a single dose in healthy individuals. Efficacy of GGC against oxidative stress induced by Pseudomonas aeruginosa, which is a common and chronic pathogen infecting lungs of CF patients, remains unassessed. Primary mucocilliary differentiated airway (bronchial and/or nasal) epithelial cells were created from four individuals with CF. Airway oxidative stress and inflammation was induced by P. aeruginosa lipopolysaccharide (LPS). Parameters including global proteomics alterations, cell redox state (glutathione, oxidative stress), pro-inflammatory mediators (IL-8, IDO-1), and cellular health (membrane integrity, stress granule formation, cell metabolic viability) were assayed under six experimental conditions: (1) Mock, (2) LPS-challenged (3) therapeutic, (4) prophylactic (5) therapeutic and prophylactic and (6) GGC alone. Proteomic analysis identified perturbation of several pathways related to cellular respiration and stress responses upon LPS challenge. Most of these were resolved when cells were treated with GGC. While GGC did not resolve LPS-induced IL-8 and IDO-1 activity, it effectively attenuated LPS-induced oxidative stress and stress granule formation, while significantly increasing total intracellular glutathione levels, metabolic viability and improving epithelial cell barrier integrity. Both therapeutic and prophylactic treatments were successful. Together, these findings indicate that GGC has therapeutic potential for treatment and prevention of oxidative stress-related damage to airways in cystic fibrosis.
Collapse
|
37
|
Cabrini G, Rimessi A, Borgatti M, Lampronti I, Finotti A, Pinton P, Gambari R. Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Front Immunol 2020; 11:1438. [PMID: 32849500 PMCID: PMC7427443 DOI: 10.3389/fimmu.2020.01438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cystic fibrosis (CF) chronic respiratory disease is an extensive neutrophil infiltrate in the mucosa filling the bronchial lumen, starting early in life for CF infants. The genetic defect of the CF Transmembrane conductance Regulator (CFTR) ion channel promotes dehydration of the airway surface liquid, alters mucus properties, and decreases mucociliary clearance, favoring the onset of recurrent and, ultimately, chronic bacterial infection. Neutrophil infiltrates are unable to clear bacterial infection and, as an adverse effect, contribute to mucosal tissue damage by releasing proteases and reactive oxygen species. Moreover, the rapid cellular turnover of lumenal neutrophils releases nucleic acids that further alter the mucus viscosity. A prominent role in the recruitment of neutrophil in bronchial mucosa is played by CF bronchial epithelial cells carrying the defective CFTR protein and are exposed to whole bacteria and bacterial products, making pharmacological approaches to regulate the exaggerated neutrophil chemotaxis in CF a relevant therapeutic target. Here we revise: (a) the major receptors, kinases, and transcription factors leading to the expression, and release of neutrophil chemokines in bronchial epithelial cells; (b) the role of intracellular calcium homeostasis and, in particular, the calcium crosstalk between endoplasmic reticulum and mitochondria; (c) the epigenetic regulation of the key chemokines; (d) the role of mutant CFTR protein as a co-regulator of chemokines together with the host-pathogen interactions; and (e) different pharmacological strategies to regulate the expression of chemokines in CF bronchial epithelial cells through novel drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Giulio Cabrini
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Alessandro Rimessi
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
38
|
Dickerhof N, Huang J, Min E, Michaëlsson E, Lindstedt EL, Pearson JF, Kettle AJ, Day BJ. Myeloperoxidase inhibition decreases morbidity and oxidative stress in mice with cystic fibrosis-like lung inflammation. Free Radic Biol Med 2020; 152:91-99. [PMID: 32142878 DOI: 10.1016/j.freeradbiomed.2020.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/23/2020] [Accepted: 03/02/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) lung disease is characterized by severe bacterial infections, excessive neutrophilic inflammation and oxidative stress. The neutrophil enzyme myeloperoxidase (MPO), which produces hypochlorous acid, is associated with worse disease outcomes. Therefore, pharmacological inhibition of MPO in the airways has therapeutic potential. We investigated whether treating mice with an MPO inhibitor during pulmonary infection decreases oxidative stress and improves infection outcomes in mice with CF-like lung inflammation without impacting on bacterial clearance. METHODS Transgenic β-epithelial sodium channel (βENaC)-overexpressing mice (n = 10) were infected with Burkholderia multivorans and treated twice daily with the MPO inhibitor AZM198 (125 μmol/kg) or vehicle administered by oral gavage for two days. Bodyweight was recorded daily. MPO activity, markers of oxidative stress, inflammatory cytokines and leukocytes numbers were measured in bronchoalveolar lavage fluid (BALF). Bacterial burden was determined in lung tissue homogenates. RESULTS During the course of infection, mice treated with AZM198 lost less weight than vehicle-treated mice (p < 0.01). MPO activity and glutathione sulfonamide, a hypochlorous acid-specific glutathione oxidation product, were significantly lower in BALF from AZM198-treated mice (p < 0.05). The inflammatory cytokines CXCL1 and TNF-α in BALF and bacterial burden in the lung were not significantly different between treated and control mice. CONCLUSIONS Orally administered AZM198 inhibits MPO activity in epithelial lining fluid. Blocking hypochlorous acid production in epithelial lining fluid during pulmonary infections through inhibition of MPO improves morbidity in mice with CF-like lung inflammation without interfering with clearance of bacteria. Pharmacological inhibition of MPO is an approach to limit destructive oxidative stress in cystic fibrosis lung disease in humans.
Collapse
Affiliation(s)
- Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.
| | - Jie Huang
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Elysia Min
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Erik Michaëlsson
- Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eva-Lotte Lindstedt
- Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - John F Pearson
- Biostatistics and Computational Biology Unit, University of Otago Christchurch, Christchurch, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Brian J Day
- Department of Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
39
|
Giacalone VD, Dobosh BS, Gaggar A, Tirouvanziam R, Margaroli C. Immunomodulation in Cystic Fibrosis: Why and How? Int J Mol Sci 2020; 21:ijms21093331. [PMID: 32397175 PMCID: PMC7247557 DOI: 10.3390/ijms21093331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by unconventional mechanisms of inflammation, implicating a chronic immune response dominated by innate immune cells. Historically, therapeutic development has focused on the mutated cystic fibrosis transmembrane conductance regulator (CFTR), leading to the discovery of small molecules aiming at modulating and potentiating the presence and activity of CFTR at the plasma membrane. However, treatment burden sustained by CF patients, side effects of current medications, and recent advances in other therapeutic areas have highlighted the need to develop novel disease targeting of the inflammatory component driving CF lung damage. Furthermore, current issues with standard treatment emphasize the need for directed lung therapies that could minimize systemic side effects. Here, we summarize current treatment used to target immune cells in the lungs, and highlight potential benefits and caveats of novel therapeutic strategies.
Collapse
Affiliation(s)
- Vincent D. Giacalone
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Brian S. Dobosh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.G.); (C.M.)
- Pulmonary Section, Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Correspondence:
| | - Camilla Margaroli
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.G.); (C.M.)
| |
Collapse
|
40
|
Neutrophil Adaptations upon Recruitment to the Lung: New Concepts and Implications for Homeostasis and Disease. Int J Mol Sci 2020; 21:ijms21030851. [PMID: 32013006 PMCID: PMC7038180 DOI: 10.3390/ijms21030851] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Neutrophils have a prominent role in all human immune responses against any type of pathogen or stimulus. The lungs are a major neutrophil reservoir and neutrophilic inflammation is a primary response to both infectious and non-infectious challenges. While neutrophils are well known for their essential role in clearance of bacteria, they are also equipped with specific mechanisms to counter viruses and fungi. When these defense mechanisms become aberrantly activated in the absence of infection, this commonly results in debilitating chronic lung inflammation. Clearance of bacteria by phagocytosis is the hallmark role of neutrophils and has been studied extensively. New studies on neutrophil biology have revealed that this leukocyte subset is highly adaptable and fulfills diverse roles. Of special interest is how these adaptations can impact the outcome of an immune response in the lungs due to their potent capacity for clearing infection and causing damage to host tissue. The adaptability of neutrophils and their propensity to influence the outcome of immune responses implicates them as a much-needed target of future immunomodulatory therapies. This review highlights the recent advances elucidating the mechanisms of neutrophilic inflammation, with a focus on the lung environment due to the immense and growing public health burden of chronic lung diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), and acute lung inflammatory diseases such as transfusion-related acute lung injury (TRALI).
Collapse
|
41
|
Inflammation in CF: Key Characteristics and Therapeutic Discovery. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Rapid and reliable HILIC-MS/MS method for monitoring allantoin as a biomarker of oxidative stress. Anal Biochem 2020; 589:113509. [DOI: 10.1016/j.ab.2019.113509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
|
43
|
Morrison CB, Markovetz MR, Ehre C. Mucus, mucins, and cystic fibrosis. Pediatr Pulmonol 2019; 54 Suppl 3:S84-S96. [PMID: 31715083 PMCID: PMC6853602 DOI: 10.1002/ppul.24530] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
Cystic fibrosis (CF) is both the most common and most lethal genetic disease in the Caucasian population. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and is characterized by the accumulation of thick, adherent mucus plaques in multiple organs, of which the lungs, gastrointestinal tract and pancreatic ducts are the most commonly affected. A similar pathogenesis cascade is observed in all of these organs: loss of CFTR function leads to altered ion transport, consisting of decreased chloride and bicarbonate secretion via the CFTR channel and increased sodium absorption via epithelial sodium channel upregulation. Mucosa exposed to changes in ionic concentrations sustain severe pathophysiological consequences. Altered mucus biophysical properties and weakened innate defense mechanisms ensue, furthering the progression of the disease. Mucins, the high-molecular-weight glycoproteins responsible for the viscoelastic properties of the mucus, play a key role in the disease but the actual mechanism of mucus accumulation is still undetermined. Multiple hypotheses regarding the impact of CFTR malfunction on mucus have been proposed and are reviewed here. (a) Dehydration increases mucin monomer entanglement, (b) defective Ca2+ chelation compromises mucin expansion, (c) ionic changes alter mucin interactions, and (d) reactive oxygen species increase mucin crosslinking. Although one biochemical change may dominate, it is likely that all of these mechanisms play some role in the progression of CF disease. This article discusses recent findings on the initial cause(s) of aberrant mucus properties in CF and examines therapeutic approaches aimed at correcting mucus properties.
Collapse
Affiliation(s)
- Cameron Bradley Morrison
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew Raymond Markovetz
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Camille Ehre
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
44
|
Abstract
Significance: Redox homeostasis is finely tuned and governed by distinct intracellular mechanisms. The dysregulation of this either by external or internal events is a fundamental pathophysiologic base for many pulmonary diseases. Recent Advances: Based on recent discoveries, it is increasingly clear that cellular redox state and oxidation of signaling molecules are critical modulators of lung disease and represent a final common pathway that leads to poor respiratory outcomes. Critical Issues: Based on the wide variety of stimuli that alter specific redox signaling pathways, improved understanding of the disease and patient-specific alterations are needed for the development of therapeutic targets. Further Directions: For the full comprehension of redox signaling in pulmonary disease, it is essential to recognize the role of reactive oxygen intermediates in modulating biological responses. This review summarizes current knowledge of redox signaling in pulmonary development and pulmonary vascular disease.
Collapse
Affiliation(s)
- Gaston Ofman
- Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Trent E Tipple
- Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
45
|
Ciofu O, Smith S, Lykkesfeldt J. Antioxidant supplementation for lung disease in cystic fibrosis. Cochrane Database Syst Rev 2019; 10:CD007020. [PMID: 31580490 PMCID: PMC6777741 DOI: 10.1002/14651858.cd007020.pub4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Airway infection leads to progressive damage of the lungs in cystic fibrosis (CF) and oxidative stress has been implicated in the etiology. Supplementation of antioxidant micronutrients (vitamin E, vitamin C, beta-carotene and selenium) or N-acetylcysteine (NAC) as a source of glutathione, may therefore potentially help maintain an oxidant-antioxidant balance. Glutathione or NAC can also be inhaled and if administered in this way can also have a mucolytic effect besides the antioxidant effect. Current literature suggests a relationship between oxidative status and lung function. This is an update of a previously published review. OBJECTIVES To synthesise existing knowledge on the effect of antioxidants such as vitamin C, vitamin E, beta-carotene, selenium and glutathione (or NAC as precursor of glutathione) on lung function through inflammatory and oxidative stress markers in people with CF. SEARCH METHODS The Cochrane Cystic Fibrosis and Genetic Disorders Group's Cystic Fibrosis Trials Register and PubMed were searched using detailed search strategies. We contacted authors of included studies and checked reference lists of these studies for additional, potentially relevant studies. We also searched online trials registries.Last search of Cystic Fibrosis Trials Register: 08 January 2019. SELECTION CRITERIA Randomised and quasi-randomised controlled studies comparing antioxidants as listed above (individually or in combination) in more than a single administration to placebo or standard care in people with CF. DATA COLLECTION AND ANALYSIS Two authors independently selected studies, extracted data and assessed the risk of bias in the included studies. We contacted study investigators to obtain missing information. If meta-analysed, studies were subgrouped according to supplement, method of administration and the duration of supplementation. We assessed the quality of the evidence using GRADE. MAIN RESULTS One quasi-randomised and 19 randomised controlled studies (924 children and adults) were included; 16 studies (n = 639) analysed oral antioxidant supplementation and four analysed inhaled supplements (n = 285). Only one of the 20 included studies was judged to be free of bias.Oral supplements versus controlThe change from baseline in forced expiratory volume in one second (FEV1) % predicted at three months and six months was only reported for the comparison of NAC to control. Four studies (125 participants) reported at three months; we are uncertain whether NAC improved FEV1 % predicted as the quality of the evidence was very low, mean difference (MD) 2.83% (95% confidence interval (CI) -2.16 to 7.83). However, at six months two studies (109 participants) showed that NAC probably increased FEV1 % predicted from baseline (moderate-quality evidence), MD 4.38% (95% CI 0.89 to 7.87). A study of a combined vitamin and selenium supplement (46 participants) reported a greater change from baseline in FEV1 % predicted in the control group at two months, MD -4.30% (95% CI -5.64 to -2.96). One study (61 participants) found that NAC probably makes little or no difference in the change from baseline in quality of life (QoL) at six months (moderate-quality evidence), standardised mean difference (SMD) -0.03 (95% CI -0.53 to 0.47), but the two-month combined vitamin and selenium study reported a small difference in QoL in favour of the control group, SMD -0.66 (95% CI -1.26 to -0.07). The NAC study reported on the change from baseline in body mass index (BMI) (62 participants) and similarly found that NAC probably made no difference between groups (moderate-quality evidence). One study (69 participants) found that a mixed vitamin and mineral supplement may lead to a slightly lower risk of pulmonary exacerbation at six months than a multivitamin supplement (low-quality evidence). Nine studies (366 participants) provided information on adverse events, but did not find any clear and consistent evidence of differences between treatment or control groups with the quality of the evidence ranging from low to moderate. Studies of β-carotene and vitamin E consistently reported greater plasma levels of the respective antioxidants.Inhaled supplements versus controlTwo studies (258 participants) showed inhaled glutathione probably improves FEV1 % predicted at three months, MD 3.50% (95% CI 1.38 to 5.62), but not at six months compared to placebo, MD 2.30% (95% CI -0.12 to 4.71) (moderate-quality evidence). The same studies additionally reported an improvement in FEV1 L in the treated group compared to placebo at both three and six months. One study (153 participants) reported inhaled glutathione probably made little or no difference to the change in QoL from baseline, MD 0.80 (95% CI -1.63 to 3.23) (moderate-quality evidence). No study reported on the change from baseline in BMI at six months, but one study (16 participants) reported at two months and a further study (105 participants) at 12 months; neither study found any difference at either time point. One study (153 participants) reported no difference in the time to the first pulmonary exacerbation at six months. Two studies (223 participants) reported treatment may make little or no difference in adverse events (low-quality evidence), a further study (153 participants) reported that the number of serious adverse events were similar across groups. AUTHORS' CONCLUSIONS With regards to micronutrients, there does not appear to be a positive treatment effect of antioxidant micronutrients on clinical end-points; however, oral supplementation with glutathione showed some benefit to lung function and nutritional status. Based on the available evidence, inhaled and oral glutathione appear to improve lung function, while oral administration decreases oxidative stress; however, due to the very intensive antibiotic treatment and other concurrent treatments that people with CF take, the beneficial effect of antioxidants remains difficult to assess in those with chronic infection without a very large population sample and a long-term study period. Further studies, especially in very young children, using outcome measures such as lung clearance index and the bronchiectasis scores derived from chest scans, with improved focus on study design variables (such as dose levels and timing), and elucidating clear biological pathways by which oxidative stress is involved in CF, are necessary before a firm conclusion regarding effects of antioxidants supplementation can be drawn. The benefit of antioxidants in people with CF who receive CFTR modulators therapies should also be assessed in the future.
Collapse
Affiliation(s)
- Oana Ciofu
- University of CopenhagenDepartment of International Health, Immunology and MicrobiologyBlegdamsvej 3CopenhagenDenmark2200
| | - Sherie Smith
- University of NottinghamDivision of Child Health, Obstetrics & Gynaecology (COG), School of Medicine1701 E FloorEast Block Queens Medical CentreNottinghamNG7 2UHUK
| | - Jens Lykkesfeldt
- University of CopenhagenDepartment of Veterinary Disease Biology, Experimental Animal ModelsRidebanevej 9CopenhagenDenmark1870 Frb.
| | | |
Collapse
|
46
|
Dickerhof N, Isles V, Pattemore P, Hampton MB, Kettle AJ. Exposure of Pseudomonas aeruginosa to bactericidal hypochlorous acid during neutrophil phagocytosis is compromised in cystic fibrosis. J Biol Chem 2019; 294:13502-13514. [PMID: 31341024 DOI: 10.1074/jbc.ra119.009934] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/21/2019] [Indexed: 12/11/2022] Open
Abstract
Myeloperoxidase is a major neutrophil antimicrobial protein, but its role in immunity is often overlooked because individuals deficient in this enzyme are usually in good health. Within neutrophil phagosomes, myeloperoxidase uses superoxide generated by the NADPH oxidase to oxidize chloride to the potent bactericidal oxidant hypochlorous acid (HOCl). In this study, using phagocytosis assays and LC-MS analyses, we monitored GSH oxidation in Pseudomonas aeruginosa to gauge their exposure to HOCl inside phagosomes. Doses of reagent HOCl that killed most of the bacteria oxidized half the cells' GSH, producing mainly glutathione disulfide (GSSG) and other low-molecular-weight disulfides. Glutathione sulfonamide (GSA), a HOCl-specific product, was also formed. When neutrophils phagocytosed P. aeruginosa, half of the bacterial GSH was lost. Bacterial GSA production indicated that HOCl had reacted with the bacterial cells, oxidized their GSH, and was sufficient to be solely responsible for bacterial killing. Inhibition of NADPH oxidase and myeloperoxidase lowered GSA formation in the bacterial cells, but the bacteria were still killed, presumably by compensatory nonoxidative mechanisms. Of note, bacterial GSA formation in neutrophils from patients with cystic fibrosis (CF) was normal during early phagocytosis, but it was diminished at later time points, which was mirrored by a small decrease in bacterial killing. In conclusion, myeloperoxidase generates sufficient HOCl within neutrophil phagosomes to kill ingested bacteria. The unusual kinetics of phagosomal HOCl production in CF neutrophils confirm a role for the cystic fibrosis transmembrane conductance regulator in maintaining HOCl production in neutrophil phagosomes.
Collapse
Affiliation(s)
- Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand.
| | - Vivienne Isles
- Children's Outreach Nursing Service, Christchurch Hospital, Christchurch 8011, New Zealand
| | - Philip Pattemore
- Department of Paediatrics, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand
| |
Collapse
|
47
|
Scholte BJ, Horati H, Veltman M, Vreeken RJ, Garratt LW, Tiddens HAWM, Janssens HM, Stick SM. Oxidative stress and abnormal bioactive lipids in early cystic fibrosis lung disease. J Cyst Fibros 2019; 18:781-789. [PMID: 31031161 DOI: 10.1016/j.jcf.2019.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Clinical data indicate that airway inflammation in children with cystic fibrosis (CF) arises early, is associated with structural lung damage, and predicts progression. In bronchoalveolar lavage fluid (BALF) from CFTR mutant mice, several aspects of lipid metabolism are abnormal that contributes to lung disease. We aimed to determine whether lipid pathway dysregulation is also observed in BALF from children with CF, to identify biomarkers of early lung disease and potential therapeutic targets. METHODS A comprehensive panel of lipids that included Sphingolipids, oxylipins, isoprostanes and lysolipids, all bioactive lipid species known to be involved in inflammation and tissue remodeling, were measured in BALF from children with CF (1-6 years, N = 33) and age-matched non-CF patients with unexplained inflammatory disease (N = 16) by HPLC-MS/MS. Lipid data were correlated with chest CT scores and BALF inflammation biomarkers. RESULTS The ratio of long chain to very long chain ceramide species (LCC/VLCC) and lysolipid levels were enhanced in CF compared to non-CF patients, despite comparable neutrophil counts and bacterial load. In CF patients both LCC/VLCC and lysolipid levels correlated with inflammation and chest CT scores. The ceramide precursors Sphingosine, Sphinganine, Sphingomyelin, correlated with inflammation, whilst the oxidative stress marker isoprostane correlated with inflammation and chest CT scores. No correlation between lipids and current bacterial infection in CF (N = 5) was observed. CONCLUSIONS Several lipid biomarkers of early CF lung disease were identified, which point toward potential disease monitoring and therapeutic approaches that can be used to complement CFTR modulators.
Collapse
Affiliation(s)
- Bob J Scholte
- Erasmus MC, Rotterdam, the Netherlands, Cell Biology; Erasmus MC, Sophia Children Hospital, Pediatric Pulmonology, the Netherlands.
| | - Hamed Horati
- Erasmus MC, Sophia Children Hospital, Pediatric Pulmonology, the Netherlands
| | - Mieke Veltman
- Erasmus MC, Rotterdam, the Netherlands, Cell Biology; Erasmus MC, Sophia Children Hospital, Pediatric Pulmonology, the Netherlands
| | - Rob J Vreeken
- Netherlands Metabolomics Centre, LACDR, Leiden, the Netherlands
| | - Luke W Garratt
- Telethon Kids Institute, University of Western Australia, Subiaco, 6008, Western Australia, Australia
| | - Harm A W M Tiddens
- Erasmus MC, Sophia Children Hospital, Pediatric Pulmonology, the Netherlands
| | - Hettie M Janssens
- Erasmus MC, Sophia Children Hospital, Pediatric Pulmonology, the Netherlands
| | - Stephen M Stick
- Telethon Kids Institute, University of Western Australia, Subiaco, 6008, Western Australia, Australia; Division of Paediatrics and Child Health, University of Western Australia, Nedlands, 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | | |
Collapse
|
48
|
Hoskin TS, Crowther JM, Cheung J, Epton MJ, Sly PD, Elder PA, Dobson RCJ, Kettle AJ, Dickerhof N. Oxidative cross-linking of calprotectin occurs in vivo, altering its structure and susceptibility to proteolysis. Redox Biol 2019; 24:101202. [PMID: 31015146 PMCID: PMC6477633 DOI: 10.1016/j.redox.2019.101202] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 01/27/2023] Open
Abstract
Calprotectin, the major neutrophil protein, is a critical alarmin that modulates inflammation and plays a role in host immunity by strongly binding trace metals essential for bacterial growth. It has two cysteine residues favourably positioned to act as a redox switch. Whether their oxidation occurs in vivo and affects the function of calprotectin has received little attention. Here we show that in saliva from healthy adults, and in lavage fluid from the lungs of patients with respiratory diseases, a substantial proportion of calprotectin was cross-linked via disulfide bonds between the cysteine residues on its S100A8 and S100A9 subunits. Stimulated human neutrophils released calprotectin and subsequently cross-linked it by myeloperoxidase-dependent production of hypochlorous acid. The myeloperoxidase-derived oxidants hypochlorous acid, taurine chloramine, hypobromous acid, and hypothiocyanous acid, all at 10 μM, cross-linked calprotectin (5 μM) via reversible disulfide bonds. Hypochlorous acid generated A9-A9 and A8-A9 cross links. Hydrogen peroxide (10 μM) did not cross-link the protein. Purified neutrophil calprotectin existed as a non-covalent heterodimer of A8/A9 which was converted to a heterotetramer - (A8/A9)2 - with excess calcium ions. Low level oxidation of calprotectin with hypochlorous acid produced substantial proportions of high order oligomers, whether oxidation occurred before or after addition of calcium ions. At high levels of oxidation the heterodimer could not form tetramers with calcium ions, but prior addition of calcium ions afforded some protection for the heterotetramer. Oxidation and formation of the A8-A9 disulfide cross link enhanced calprotectin's susceptibility to proteolysis by neutrophil proteases. We propose that reversible disulfide cross-linking of calprotectin occurs during inflammation and affects its structure and function. Its increased susceptibility to proteolysis will ultimately result in a loss of function.
Collapse
Affiliation(s)
- Teagan S Hoskin
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.
| | - Jennifer M Crowther
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jeanette Cheung
- Canterbury Respiratory Research Group, Respiratory Services, Christchurch Hospital, Canterbury District Health Board, New Zealand
| | - Michael J Epton
- Canterbury Respiratory Research Group, Respiratory Services, Christchurch Hospital, Canterbury District Health Board, New Zealand
| | - Peter D Sly
- Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Peter A Elder
- Endocrinology and Steroid Laboratory, Canterbury Health Laboratories, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
49
|
Silpcharu K, Sukwattanasinitt M, Rashatasakhon P. Novel sulfonamidospirobifluorenes as fluorescent sensors for mercury(ii) ion and glutathione. RSC Adv 2019; 9:11451-11458. [PMID: 35520214 PMCID: PMC9063287 DOI: 10.1039/c9ra00004f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/05/2019] [Indexed: 12/14/2022] Open
Abstract
Novel spirobifluorene derivatives containing two and four sulfonamide groups are successfully synthesized from the commercially available bromo-9,9'-spirobifluorene by Sonogashira couplings. These compounds exhibit an excellent selective fluorescence quenching by Hg(ii) in DMSO/HEPES buffer mixture with three-times-noise detection limits of 10.4 to 103.8 nM. A static aggregation induced quenching mechanism is proposed based on the data from 1H-NMR and UV-Vis spectroscopy, as well as the observation of the Tyndall effect. Quantifications of Hg(ii) using these sensors are in good agreement with those obtained from ICP-OES. The reversibility of these sensors is demonstrated by a complete fluorescence restoration upon addition of EDTA or l-glutathione. The application as a turn-on sensor for l-glutathione is demonstrated in a quantitative analysis of three samples of l-glutathione supplement drinks.
Collapse
Affiliation(s)
- Komthep Silpcharu
- Department of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| | - Mongkol Sukwattanasinitt
- Department of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand +66 (2) 2187598 +66 (2) 2187633
| | - Paitoon Rashatasakhon
- Department of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand +66 (2) 2187598 +66 (2) 2187633
| |
Collapse
|
50
|
Keir HR, Fong CJ, Crichton ML, Barth P, Chevalier E, Brady G, Kennedy G, Zimmermann J, Bruijnzeel PLB, Dicker AJ, Chalmers JD. Personalised anti-inflammatory therapy for bronchiectasis and cystic fibrosis: selecting patients for controlled trials of neutrophil elastase inhibition. ERJ Open Res 2019; 5:00252-2018. [PMID: 30918898 PMCID: PMC6431753 DOI: 10.1183/23120541.00252-2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/25/2019] [Indexed: 11/05/2022] Open
Abstract
Background Neutrophil elastase (NE) has been linked to lung neutrophil dysfunction in bronchiectasis and cystic fibrosis (CF), making NE inhibition a potential therapeutic target. NE inhibitor trials have given mixed result perhaps because not all patients have elevated airway NE activity. Methods We tested whether a single baseline sputum NE measurement or a combination of clinical parameters could enrich patient populations with elevated NE activity for "personalised medicine". Intra- and interindividual variations of total and active NE levels in induced sputum from patients with CF or bronchiectasis were monitored over 14 days. Patients with established CF and bronchiectasis (n=5 per group) were recruited. NE was measured using three different methods: one total and two active NE assays. Subsequently, we analysed the association between clinical parameters and NE from a large bronchiectasis cohort study (n=381). Results All three assays showed a high degree of day-to-day variability (0-233% over 14 days). There were strong correlations found between all assays (p<0.0001). Despite high day-to-day variability, patients could be stratified into "high" or "low" groups based on moderate cut-off levels. In the bronchiectasis cohort study, factors most associated with high sputum NE levels were: Pseudomonas aeruginosa infection (β-estimate 11.5, 95% CI -6.0-29.0), sputum colour (β-estimate 10.4, 95% CI 4.3-16.6), Medical Research Council dyspnoea score (β-estimate 6.4, 95% CI 1.4-11.4) and exacerbation history (β-estimate 3.4, 95% CI 1.4-5.3). Collectively, P. aeruginosa infection, sputum colour and exacerbation frequency provided the greatest specificity for "high" NE (98.7%, 95% CI 7.0-99.6%). Conclusion These results show that patients with bronchiectasis and CF can be effectively divided into "high" or "low" groups, based on sputum NE assays or clinical inclusion criteria.
Collapse
Affiliation(s)
- Holly R Keir
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Christopher J Fong
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Megan L Crichton
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | | | | | - Gill Brady
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Gwen Kennedy
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | | | | | - Alison J Dicker
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| |
Collapse
|