1
|
Du P, Zhang T, Wu Y, Yu Z, Liu C. Monitoring variations in mitochondrial hydrogen sulfide using two-photon cyclometalated iridium(III) complex probe: A new strategy for ischemia-reperfusion drug discovery and efficacy evaluation. Talanta 2025; 292:128021. [PMID: 40157194 DOI: 10.1016/j.talanta.2025.128021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is one of the main causes of liver insufficiency and failure after liver surgery. However, the effectiveness of current methods of treating HIRI is generally limited. Previous studies have shown that hydrogen sulfide (H2S) has a beneficial effect on HIRI, and an appropriate concentration of H2S can significantly reduce HIRI by protecting the mitochondria. Therefore, establishing an accurate imaging platform for monitoring variations in mitochondrial H2S is an effective strategy for anti-HIRI drug discovery and efficacy evaluation. To this end, a cyclometalated iridium(III) complex-based probe, Cym-Ir-EDB, was developed for detecting mitochondrial H2S in HIRI. Cym-Ir-EDB possesses good sensitivity, high selectivity, negligible cytotoxicity, and excellent mitochondrial-targeting ability, rendering it a promising imaging tool for analyzing variations in mitochondrial H2S in HIRI cells. Using Cym-Ir-EDB as a probe, anti-HIRI drugs were screened from isothiocyanates by monitoring variations in mitochondrial H2S in HIRI cells, for the first time. Moreover, the dynamics of mitochondrial H2S in HIRI cells were visualized and the response of HIRI to treatment with the screened erucin was monitored. The findings indicate that Cym-Ir-EDB can serve as a useful imaging platform for the precise imaging of mitochondrial H2S in HIRI, thereby contributing to anti-HIRI drug discovery and efficacy evaluation.
Collapse
Affiliation(s)
- Peng Du
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Tianao Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Ying Wu
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Education and Training Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Zongping Yu
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
2
|
Ma Y, Xu J, Ma Q, Mao G, Hou S, Lian Y, Cui N, Xia R. An endoplasmic reticulum-targeted and near-infrared fluorescent probe for determining hydrogen polysulfides derived from a naphthalimide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126033. [PMID: 40088842 DOI: 10.1016/j.saa.2025.126033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/02/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Hydrogen polysulfides (H2Sn, n > 1) was the oxidized form of H2S and plays significant roles in physiological and pathological processes. Abnormal levels of H2Sn is associated with a series of physiological diseases. The endoplasmic reticulum-targetable fluorescent probes are rare for determining H2Sn. Therefore, quantitative detection of H2Sn levels in the endoplasmic reticulum is extremely crucial. In this study, a naphthalimide-based near-infrared fluorescent probe was constructed for detecting H2Sn in the endoplasmic reticulum. 2-Fluoro-5-nitrobenzoate was chose as the H2Sn sensing element. Before the addition of H2Sn, the probe exhibited very weakly fluorescence at 700 nm. After adding H2Sn, the probe demonstrated intense red fluorescence at 700 nm. The probe responded rapidly and exhibited excellent selectivity and sensitivity. And the probe displayed negligible cytotoxicity and had been successfully utilized for near-infrared imaging of H2Sn within the endoplasmic reticulum of A549 cells. Additionally, the probe was also employed for imaging H2Sn in zebrafish and exhibited satisfied results.
Collapse
Affiliation(s)
- Yijie Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Junhong Xu
- Department of Dynamical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China.
| | - Qiujuan Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application, Zhengzhou 450046, PR China.
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Shuqi Hou
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yujie Lian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Ning Cui
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Ruxue Xia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| |
Collapse
|
3
|
Su C, Zhang R, Sun Y, Cao S, Sun X, Sun Q, Wu M, Niu N, Chen L, Ding L. "Light-Up" Near-Infrared Fluorescent Probe for Visualization of Hydrogen Sulfide Content and Abiotic Stress Response in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5614-5624. [PMID: 39977246 DOI: 10.1021/acs.jafc.4c11122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Hydrogen sulfide (H2S) plays a vital role in plant physiology and stress adaptation, but the detection of endogenous H2S remains a challenge. In this work, a near-infrared fluorescent probe (NIR-BOD-HS) was synthesized using boron-dipyrromethene (BODIPY) as the raw material, which showed a good linear relationship in the concentration range of 0.1-70 μM and a detection limit of 56 nM. The long-wavelength emission (712 nm) reduced the interference of plant autofluorescence and improved the imaging quality. The probe combined with fluorescence imaging technology nondestructively realized the spatiotemporal distribution signal of H2S in the deep tissues of plants. In addition, the dynamic changes of H2S content during seed germination and seedling growth under abiotic stress were also demonstrated through the changes in fluorescence signals. This study helps to understand the physiological response mechanism of plants under abiotic stress and provides a scientific basis for further research on plant imaging and agricultural production.
Collapse
Affiliation(s)
- Chenglin Su
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Renguo Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yining Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Shuang Cao
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xuejia Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Qijun Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Meng Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Lan Ding
- Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
4
|
Xie T, Liu L, Zhou W, Kang W, Wen L, Wang S, Li Z, Yang J, Ho HP, Jiang X, Xing X. Highly sensitive and selective carbon dot sensor for hydrogen sulfide based on dual quenching effect. OPTICS LETTERS 2025; 50:1164-1167. [PMID: 39951753 DOI: 10.1364/ol.547900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/10/2025] [Indexed: 02/16/2025]
Abstract
Due to the serious impact of hydrogen sulfide (H2S) on the environment and human health, a series of sensors have been increasingly used in industrial production and daily life. In this work, we introduce a novel, to the best of our knowledge, detection method for trace H2S in the liquid and gaseous phases based on the dual-quenching mechanism (DQE) of silver ion-doped nitrogen-sulfur co-doped carbon dots (N, S-CDs@Ag+). Ag+ could significantly enhance the fluorescence intensity and detection sensitivity. In the linear detection range of 10-120 nM H2S solution, the N, S-CDs@Ag+ sensor has a limit of detection (LoD) of 0.83 nM and a response time of 1 min. An enhanced fluorescent sensing film is prepared by assembling N, S-CDs@Ag+ on a silica microsphere (SM) microstructured substrate (N, S-CDs@Ag+/SM@PVA) using the layer-by-layer method. In the linear detection range of 1-50 ppm, the film sensor has the advantages of low detection limit (0.41 ppm), fast response time (5 min), stable performance, electromagnetic interference resistance, ease of integration, and in-field detection. It is expected to develop into a compact portable on-site H2S trace sensor.
Collapse
|
5
|
Koike S, Kimura H, Ogasawara Y. Polysulfide and persulfide-mediated activation of the PERK-eIF2α-ATF4 pathway increases Sestrin2 expression and reduces methylglyoxal toxicity. Redox Biol 2025; 79:103450. [PMID: 39667306 PMCID: PMC11697784 DOI: 10.1016/j.redox.2024.103450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024] Open
Abstract
Unfolded protein response (UPR) is activated in cells under endoplasmic reticulum (ER) stress. One sensor protein involved in this response is PERK, which is activated through its redox-dependent oligomerization. Prolonged UPR activation is associated with the development and progression of various diseases, making it essential to understanding the redox regulation of PERK. Sulfane sulfur, such as polysulfides and persulfides, can modify the cysteine residues and regulate the function of various proteins. However, the regulatory mechanism and physiological effects of sulfane sulfur on the PERK-eIF2α-ATF4 pathway remain poorly understood. This study focuses on the persulfidation of PERK to elucidate the effects of polysulfides on the PERK-eIF2α-ATF4 pathway and investigate its cytoprotective mechanism. Here, we demonstrated that polysulfide treatment promoted the oligomerization of PERK and PTP1B in neuronal cells using western blotting under nonreducing conditions. We also observed that l-cysteine, a biological source of sulfane sulfur, promoted the oligomerization of PERK and the knockdown of CBS and 3-MST, two sulfane sulfur-producing enzymes, and reduced PERK oligomerization induced by l-cysteine treatment. Furthermore, the band shift assay and LC-MS/MS studies revealed that polysulfides and persulfides induce PTP1B and PERK persulfidation. Additionally, polysulfides promoted eIF2α phosphorylation and ATF4 accumulation in the nucleus, suggesting that polysulfides activate the PERK-eIF2α-ATF4 pathway in neuronal cells. Moreover, polysulfides protected neuronal cells from methylglyoxal-induced toxicity, and this protective effect was reduced when the expression of Sestrin2, regulated by ATF4 activity, was suppressed. This study identified a novel mechanism for the activation of the PERK-eIF2α-ATF4 pathway through persulfidation by polysulfides and persulfides. Interestingly, activation of this pathway overcame the toxicity of methylglyoxal in dependence on Sestrin2 expression. These findings deepen our understanding of neuronal diseases involving ER stress and UPR disturbance and may inspire new therapeutic strategies.
Collapse
Affiliation(s)
- Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Hideo Kimura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Dori, Sanyo-Onoda 756-0884, Yamaguchi, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| |
Collapse
|
6
|
Iciek M, Bilska-Wilkosz A, Górny M, Bednarski M, Zygmunt M, Miller A, Nicosia N, Lombardo GP, Zammit P, Kotańska M. The Effect of Disulfiram and N-Acetylcysteine, Potential Compensators for Sulfur Disorders, on Lipopolysaccharide-Induced Neuroinflammation Leading to Memory Impairment and the Metabolism of L-Cysteine Disturbance. Molecules 2025; 30:578. [PMID: 39942681 PMCID: PMC11820383 DOI: 10.3390/molecules30030578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND The role of sulfur-containing drugs, disulfiram (DSF) and N-acetylcysteine (NAC), in alleviating neuroinflammation is poorly understood. The objective of this study was to examine the effect of DSF and NAC on memory and on the metabolism of L-cysteine and inflammation-related parameters in the cerebral cortex of rats in a model of neuroinflammation induced by the administration of lipopolysaccharide (LPS). METHODS All the treatments were administered intraperitoneally for 10 days (LPS at a dose of 0.5 mg/kg b.w., DSF at a dose of 100 mg/kg b.w, and NAC at a dose of 100 mg/kg b.w.). Behavior was evaluated by the novel object recognition (NOR) test and object location (OL) test, and the level of brain-derived neurotrophic factor (BDNF) was assayed to evaluate neuronal functioning. Cerebral cortex homogenates were tested for hydrogen sulfide (H2S), sulfane sulfur, sulfates, non-protein sulfhydryl groups (NPSH), nitric oxide (NO), and reactive oxygen species (ROS) by biochemical analysis. RESULTS Neither DSF nor NAC alleviated LPS-induced memory disorders estimated by the NOR test and OL test. The studied compounds also did not affect significantly the levels of BDNF, ROS, NO, H2S, and sulfane sulfur in the cerebral cortex. However, we observed an increase in sulfate concentration in brain tissues after LPS treatment, while DSF and NAC caused an additional increase in sulfate concentration. On the other hand, our study showed that the administration of DSF or NAC together with LPS significantly enhanced the cortical level of NPSH, of which glutathione is the main component. CONCLUSIONS Our study did not confirm the suggested potential of DSF and NAC to correct memory disorders; however, it corroborated the notion that they reduced oxidative stress induced by LPS by increasing the NPSH level. Additionally, our study showed an increase in sulfate concentration in the brain tissues after LPS treatment, which means the upregulation of sulfite and sulfate production in inflammatory conditions.
Collapse
Affiliation(s)
- Małgorzata Iciek
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, PL 31-034 Cracow, Poland; (M.I.); (A.B.-W.); (M.G.)
| | - Anna Bilska-Wilkosz
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, PL 31-034 Cracow, Poland; (M.I.); (A.B.-W.); (M.G.)
| | - Magdalena Górny
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, PL 31-034 Cracow, Poland; (M.I.); (A.B.-W.); (M.G.)
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland; (M.B.); (M.Z.); (A.M.); (P.Z.)
| | - Małgorzata Zygmunt
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland; (M.B.); (M.Z.); (A.M.); (P.Z.)
| | - Anthea Miller
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland; (M.B.); (M.Z.); (A.M.); (P.Z.)
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Noemi Nicosia
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giorgia Pia Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Paula Zammit
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland; (M.B.); (M.Z.); (A.M.); (P.Z.)
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland; (M.B.); (M.Z.); (A.M.); (P.Z.)
| |
Collapse
|
7
|
Lu W, Wen J. The relationship among H 2S, neuroinflammation and MMP-9 in BBB injury following ischemic stroke. Int Immunopharmacol 2025; 146:113902. [PMID: 39724730 DOI: 10.1016/j.intimp.2024.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Blood-brain barrier (BBB) is located at the interface between the central nervous system (CNS) and the circulatory system, which maintains the microenvironmental homeostasis of the CNS. BBB damage is a result of CNS diseases, including ischemic stroke, and is a cause of CNS deterioration. Cerebral ischemia unleashes a profound inflammatory response to remove the damaged tissue in the CNS and prepare the brain for repair. However, the excessive neuroinflammation following stroke onset is associated with BBB breakdown, resulting in neuronal injury and worse neurological outcomes. Additionally, matrix metalloproteinases (MMPs) are likewise responsible for the BBB injury and participate in the pathological processes of neuroinflammation following ischemic stroke. Hydrogen sulfide (H2S) is one of gaseous signaling and freely diffusing molecules. Low concentration of H2S yields the neuroprotection against BBB damage following stroke. This review discussed the current knowledge about the detrimental roles of neuroinflammation and MMPs in BBB injury following ischemic stroke. Specifically, we provided an updated overview of H2S in protecting against BBB injury following ischemic stroke via anti-neuroinflammation and inhibiting MMP-9.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Medical Branch, Hefei Technology College, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Mao G, Zeng Y, Qiu C, Ding G, Li L, Ma L, Dai J, Yin W, Ma Y. Ratiometric fluorescent paper chip for monitoring the freshness of high protein foods. Anal Chim Acta 2025; 1334:343418. [PMID: 39638471 DOI: 10.1016/j.aca.2024.343418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Accurately monitoring the freshness of high-protein foods has significant implications for both food safety and public welfare. Since a large amount of hydrogen sulfide (H2S) is produced during spoilage-related processes, abnormal H2S levels are often considered an important indicator of food spoilage. Therefore, we synthesized novel nanoparticles (NPs) containing Silicon (Si) dots and CdTe quantum dots to accurately assess the amount of sulfide ions (S2-) and thus the quality of high-protein foods in the early stage of storage. As the concentration of S2- increased, the fluorescence intensity of Si/CdTe NPs at λem = 488 nm increased, while the fluorescence intensity at λem = 620 nm was quenched. The fluorescence intensity ratio (F620/F488) was negatively linearly correlated to S2- concentrations in the range of 1-20 μM, with a detection limit of 0.3 μM. Furthermore, to achieve portable detection, we mixed Si/CdTe NPs with sodium carboxymethyl cellulose to prepare effective visual fluorescent sensing paper chips, which exhibited ideal porous structure, good particle dispersion, and excellent fluorescence properties. Incubating the paper chips with high-protein foods allowed for accurate monitoring of food freshness during storage. Therefore, this approach provided a reliable and portable method to determine H2S concentration using a novel concept to ensure the freshness and safety of high-protein foods.
Collapse
Affiliation(s)
- Guobin Mao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuan Zeng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Life Sciences, Henan University, Kaifeng, 475004, China; Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Chunmin Qiu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guangmiao Ding
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Leyao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China; Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Junbiao Dai
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Wen Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Yingxin Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Ma Q, Hu Y, Li L, Wang B, Mao G, Liu S, Wang G. A lysosome-located and rhodamine-based fluorescence probe for recognizing hydrogen polysulfide. J Pharm Biomed Anal 2024; 250:116411. [PMID: 39141978 DOI: 10.1016/j.jpba.2024.116411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Hydrogen polysulfide (H2Sn, n≥2), as a kind of active sulfur species (RSS), has become a hot topic in RSS. It can regulate the biological activity of many proteins through S-sulfhydrylation of cysteine residues (protein Cys-SSH), and has a protective effect on cells. Although there have been some studies on hydrogen polysulfide, its production, degradation pathway and regulation mechanism still need further be researched. In presented study, an original lysosome-localized fluorescent probe for determining H2Sn was developed utilizing rhodamine as the fluorogen. The probe used morpholine as the locating unit of lysosomes and chose 2-fluoro-5-nitrobenzoate as the recognizing group. Before adding H2Sn, the proposed probe displayed a spironolactone structure and emitted very weak fluorescence. After adding H2Sn, a conjugated xanthene was formed and the probe demonstrated green fluorescence. When the H2Sn concentration was varied from 6.0×10-7 mol·L-1 to 10.0×10-5 mol·L-1, the fluorescence intensity of the probe was linearly dependent on the H2Sn concentration. And the detection limit was 1.5×10-7 mol·L-1. The presented probe owned a fast response speed, good selectivity, excellent sensitivity and broad pH work scope. In addition, the probe had been well utilized to sense endogenic and exogenic H2Sn in lysosomes.
Collapse
Affiliation(s)
- Qiujuan Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application, Zhengzhou 450046, PR China.
| | - Yanan Hu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Linke Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Baiyan Wang
- Key Discipline Laboratory of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Shuangyu Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Gege Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| |
Collapse
|
10
|
Sun G, Zhang RWY, Chen XY, Chen YH, Zou LH, Zhang J, Li PG, Wang K, Hu ZG. Analysis of optical properties and response mechanism of H 2S fluorescent probe based on rhodamine derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124745. [PMID: 38955071 DOI: 10.1016/j.saa.2024.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
H2S plays a crucial role in numerous physiological and pathological processes. In this project, a new fluorescent probe, SG-H2S, for the detection of H2S, was developed by introducing the recognition group 2,4-dinitrophenyl ether. The combination of rhodamine derivatives can produce both colorimetric reactions and fluorescence reactions. Compared with the current H2S probes, the main advantages of SG-H2S are its wide pH range (5-9), fast response (30 min), and high selectivity in competitive species (including biological mercaptan). The probe SG-H2S has low cytotoxicity and has been successfully applied to imaging in MCF-7 cells, HeLa cells, and BALB/c nude mice. We hope that SG-H2S will provide a vital method for the field of biology.
Collapse
Affiliation(s)
- Guo Sun
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China
| | - Ren-Wei-Yang Zhang
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China
| | - Xu-Yang Chen
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China
| | - Yu-Hua Chen
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China
| | - Liang-Hua Zou
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Jian Zhang
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China.
| | - Ping-Gui Li
- School of Environmental Engineering, Wuxi Univerisity, Jiangsu 214105, China.
| | - Kai Wang
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China.
| | - Zhi-Gang Hu
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China.
| |
Collapse
|
11
|
Tong X, Chen J, Wang M, Liu J, Li J, Wang X, Zuo Y, Xu X, Wang Y, Wang B, Guo W, Zheng Y. Development of a Bioorthogonal Click-to-Release Reaction for Hydrogen Polysulfide (H 2S n) Detection. Anal Chem 2024; 96:15631-15639. [PMID: 39287125 DOI: 10.1021/acs.analchem.4c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this study, we present an innovative "click-to-release" strategy for the design of highly specific H2Sn bioorthogonal probes that undergo a specific click reaction with H2Sn and release fluorophores by a following rearrangement. A library of cyclooctyne derivatives was established and successfully demonstrated the availability of the release strategy. Then, a model probe CM-CT was synthesized, which can achieve effective fluorophore release (>80%) in the presence of a H2Sn donor. To further validate the application of this class of probes, a new probe QN-RHO-CT based on Rhodamine 110 was developed. This probe showed good water solubility (>160 μM) and fast release kinetics and can achieve selective H2Sn detection in living cells. We used this probe to study the process of H2S-mediated protein S-persulfidation and demonstrated that excess H2S would directly react with protein persulfides to generate H2S2 and reduce the persulfides to thiols. Additionally, we elucidated the click-to-release mechanism in our design through a detailed mechanistic study, confirming the generation of the key intermediate α, β-unsaturated cyclooctanethione. This bioorthogonal click-to-release reaction provides a useful tool for investigating the function of H2Sn and paves the way for biological studies on H2Sn.
Collapse
Affiliation(s)
- Xidan Tong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jiaxuan Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Maolin Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jianru Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xin Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yifei Zuo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xiaowei Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yichen Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Weiwei Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yueqin Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
12
|
Huang H, Zhou G, Meng Z, Wang X, Wang Z, Yang Y. A novel dialdehyde cellulose-based colorimetric and turn-on fluorescent probe for H 2S detection and its application in red wine. Int J Biol Macromol 2024; 280:136018. [PMID: 39326599 DOI: 10.1016/j.ijbiomac.2024.136018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Hydrogen sulfide (H2S) is considered one of the most important gaseous transmitters in the metabolic system, and the abnormal concentration of H2S is associated with a variety of diseases. Up to now, it is still a challenge to develop a portable assay for H2S even though the research about the detection of H2S is booming. Herein, a novel bifunctional dialdehyde-cellulose fluorescent probe DAC-DPD was prepared with high selectivity and sensitivity to H2S with colorimetric and fluorescent "turn-on" characteristics, and the limit of detection (LOD) of DAC-DPD for H2S was 0.831 μM. The sensing mechanism of DAC-DPD's to H2S was a Michael addition reaction confirmed by HRMS, 1H NMR and density-functional theory (DFT) calculations. DAC-DPD can be used to detect H2S in red wine samples. In Addition, the prepared DAC-DPD embedded fluorescent membrane can be used as a reliable sensing platform for rapid detection of H2S. It provided a convenient and rapid detection material, simplifying the detection process of H2S, which is of great significance for the development of cellulose-based fluorescent smart material.
Collapse
Affiliation(s)
- Huan Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guocheng Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyuan Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Wang S, Ao J, Ding S, Cheng Q, Hu M, Shu T. A hydrogen sulfide photoelectrochemical sensor based on BiVO 4/Fe 2O 3 heterojunction. Mikrochim Acta 2024; 191:509. [PMID: 39101972 DOI: 10.1007/s00604-024-06597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
A BiVO4/Fe2O3 heterojunction for non-enzymatic photoelectrochemical (PEC) determination of hydrogen sulfide (H2S) is reported. The BiVO4/Fe2O3 heterojunction promoted the separation of photo-generated carriers, reduced electron-hole recombination, and thus improved electron collection and photocurrent. The proposed BiVO4/Fe2O3/FTO sensor exhibited a linear range of 1-500 μM and a detection limit of 0.51 nM H2S. In addition, high selectivity, good reproducibility, and stability were obtained for H2S sensing. The detection of H2S in water and serum samples demonstrated its feasibility. This work provides a new strategy to detect and understand the bio-function of H2S in the biological environment.
Collapse
Affiliation(s)
- Shi Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Jialin Ao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Saiwen Ding
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Qiqing Cheng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Mingli Hu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Ting Shu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, 437100, People's Republic of China.
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| |
Collapse
|
14
|
Göntér K, Dombi Á, Kormos V, Pintér E, Pozsgai G. Examination of the Effect of Dimethyl Trisulfide in Acute Stress Mouse Model with the Potential Involvement of the TRPA1 Ion Channel. Int J Mol Sci 2024; 25:7701. [PMID: 39062944 PMCID: PMC11277546 DOI: 10.3390/ijms25147701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Polysulfides are endogenously produced in mammals and generally associated with protective functions. Our aim was to investigate the effect of dimethyl trisulfide (DMTS) in a mouse model of acute stress. DMTS activates transient receptor potential ankyrin 1 (TRPA1) channels and leads to neuropeptide release, potentially that of substance P (SP). We hypothesize that DMTS might inhibit the degrading enzymes of endocannabinoids, so this system was also investigated as another possible pathway for mediating the effects of DMTS. Trpa1 gene wild-type (WT) and knockout (KO) mice were used to confirm the role of the TRPA1 ion channel in mediating the effects of DMTS. C57BL/6J, NK1 gene KO, and Tac1 gene KO mice were used to evaluate the effect of DMTS on the release and expression of SP. Some C57BL/6J animals were treated with AM251, an inhibitor of the cannabinoid CB1 receptor, to elucidate the role of the endocannabinoid system in these processes. Open field test (OFT) and forced swim test (FST) were performed in each mouse strain. A tail suspension test (TST) was performed in Trpa1 WT and KO animals. C-FOS immunohistochemistry was carried out on Trpa1 WT and KO animals. The DMTS treatment increased the number of highly active periods and decreased immobility time in the FST in WT animals, but had no effect on the Trpa1 KO mice. The DMTS administration induced neuronal activation in the Trpa1 WT mice in the stress-related brain areas, such as the locus coeruleus, dorsal raphe nucleus, lateral septum, paraventricular nucleus of the thalamus, and paraventricular nucleus of the hypothalamus. DMTS may have a potential role in the regulation of stress-related processes, and the TRPA1 ion channel may also be involved in mediating the effects of DMTS. DMTS can be an ideal candidate for further study as a potential remedy for stress-related disorders.
Collapse
Affiliation(s)
- Kitti Göntér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (K.G.); (V.K.); (E.P.)
| | - Ágnes Dombi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary;
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (K.G.); (V.K.); (E.P.)
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (K.G.); (V.K.); (E.P.)
| | - Gábor Pozsgai
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary;
| |
Collapse
|
15
|
Huang JY, Li HJ, Li LX, Chen R, Liu F, Wu L, Feng ZM, Yin YL, Cao Z, Yu D. Sensitive detection of H 2S based on Ce doped ZnCo 2O 4 hollow microspheres at low working temperature. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4644-4652. [PMID: 38946403 DOI: 10.1039/d4ay00567h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In order to develop a highly efficient H2S gas sensor at low working temperature, in this work, a kind of novel Ce-doped ZnCo2O4 hollow microspheres (Ce/ZnCo2O4 HMSs) were successfully synthesized using a template-free one-pot method, showing a sensitive response toward H2S. The microstructure and morphology of the material were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The gas-sensing performance of the composite was investigated, showing that the ZnCo2O4 doped with 6 mol% Ce had the highest response to 20 ppm H2S at a low operating temperature of 160 °C with a response value of 67.42, which was about 2 times higher than that of original ZnCo2O4. The prepared Ce/ZnCo2O4 HMS sensor in response to H2S exhibited a linear range of 0.1-200 ppm with a low detection limit of 0.1 ppm under the conditions of ambient humidity of 45% and ambient temperature of 20 °C. Meanwhile, it also possessed good selectivity, repeatability and reproducibility. The response value of the sensor decreased by 5.32% after 7 months of continuous monitoring of H2S in an atmospheric environment of a pig farm, indicating that the sensor had a long-term stability and continuous service life with important application prospects.
Collapse
Affiliation(s)
- Jia-Ying Huang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Hao-Jun Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Lin-Xuan Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Rong Chen
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Fang Liu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Ling Wu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Ze-Meng Feng
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yu-Long Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, East, Denmark.
| |
Collapse
|
16
|
Koike S, Ogasawara Y. Analysis and characterization of sulfane sulfur. Anal Biochem 2024; 687:115458. [PMID: 38182032 DOI: 10.1016/j.ab.2024.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
In the late 1970s, sulfane sulfur was defined as sulfur atoms covalently bound only to sulfur atoms. However, this definition was not generally accepted, as it was slightly vague and difficult to comprehend. Thus, in the early 1990s, it was defined as "bound sulfur," which easily converts to hydrogen sulfide upon reduction with a thiol-reducing agent. H2S-related bound sulfur species include persulfides (R-SSH), polysulfides (H2Sn, n ≥ 2 or R-S(S)nS-R, n ≥ 1), and protein-bound elemental sulfur (S0). Many of the biological effects currently associated with H2S may be attributed to persulfides and polysulfides. In the 20th century, quantitative determination of "sulfane sulfur" was conventionally performed using a reaction called cyanolysis. Several methods have been developed over the past 30 years. Current methods used for the detection of H2S and polysulfides include colorimetric assays for methylene blue formation, sulfide ion-selective or polarographic electrodes, gas chromatography with flame photometric or sulfur chemiluminescence detection, high-performance liquid chromatography analysis with fluorescent derivatization of sulfides, liquid chromatography with tandem mass spectrometry, the biotin switch technique, and the use of sulfide or polysulfide-sensitive fluorescent probes. In this review, we discuss the methods reported to date for measuring sulfane sulfur and the results obtained using these methods.
Collapse
Affiliation(s)
- Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| |
Collapse
|
17
|
Okolie A, Nigro MR, Polk S, Stubbs K, Chelliah S, Ohia SE, Liang D, Mbye YFN. Development and application of LC-MS/MS method for the quantification of hydrogen sulfide in the eye. Anal Biochem 2024; 687:115448. [PMID: 38158106 PMCID: PMC11359680 DOI: 10.1016/j.ab.2023.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
There are limited studies that report the physiological levels of H2S in the eye. The currently available UV/Vis methods lack the required sensitivity and precision. Hence, the purpose of this study was to develop and validate a sensitive and robust pre-column derivatization LC-MS/MS method to measure changes in H2S levels in tissues from isolated porcine eyes. H2S was derivatized and an LC-MS/MS method was developed to monitor the derivatized product, Sulfide-dibimane (Sdb) using a reverse phase Waters Acquity BEH C18 column (1.7 μm, 2.1 × 100 mm). H2S quantification was performed using multiple-ion reaction monitoring (MRM) in positive mode, with the transitions of m/z 415.0 → m/z 223.0 for Sdb and m/z 353.0 → m/z 285.0 for internal standard (griseofulvin). This method provided a suitable way to quantify H2S and was then successfully adapted to measure H2S levels in isolated porcine iris-ciliary body tissues previously treated in the presence or absence of varying concentrations of lipopolysaccharide (LPS, 5-100 ng/ml), a pro-inflammatory agent. Isolated iris-ciliary bodies (ICB) from porcine eyes were cut into quadrants of approximately 50 mg and homogenized using a 1:3 volume of homogenizing buffer. H2S in the supernatant was then derivatized with monobromobimane and quantified.
Collapse
Affiliation(s)
- Anthonia Okolie
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Maria Rincon Nigro
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA; Karuna Therapeutics, Inc., Boston, 02110, USA
| | - Sharhazad Polk
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Keyona Stubbs
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Selvam Chelliah
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Sunny E Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Dong Liang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA.
| | - Ya Fatou Njie Mbye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA.
| |
Collapse
|
18
|
Wang X, Jin Y, Ai W, Wang S, Zhang Z, Zhou T, Wang F, Zhang G. Dual-mode fluorescence and colorimetric sensing of sulfide anion in natural water based on near-infrared Ag 2S quantum dots and MnO 2 nanosheets complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123626. [PMID: 37952425 DOI: 10.1016/j.saa.2023.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Near infrared (NIR) emission Ag2S quantum dots (QDs) are of great value for biochemical sensing with strong anti-interference and low toxicity. Herein, NIR fluorescence Ag2S QDs were synthesized successfully. Combined with the excellent oxidase-like characteristics of manganese dioxide (MnO2) nanosheets, a fluorescence and colorimetric dual-mode sensor for sulfide anion was developed. MnO2 nanosheets could effectively catalyze the oxidation of TMB to produce blue TMB oxide (ox TMB), at the same time, the fluorescence of Ag2S QDs could be effectively quenched by fluorescence internal filtration effect (IFE) and dynamic quenching effect. The enzyme-like activity was weakened and the NIR fluorescence of Ag2S QDs was restored when sulfide anion (S2-) was added, due to the reduction of MnO2 to Mn2+.The linear ranges for fluorescence and colorimetric analysis of S2- were 2-250 μM and 0.3-50 μM, with detection limits of 0.6 and 0.215 μM, correspondingly. The dual-mode sensor had a wider detection range, higher sensitivity and shorter reaction time, which could be used for highly selective detection of S2- in different concentration ranges. In addition, it had been successfully applied to the determination of sulfide in water samples with satisfactory accuracy and sensitivity.
Collapse
Affiliation(s)
- Xiufeng Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Yao Jin
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenhui Ai
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Siqi Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhiqing Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Ting Zhou
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guodong Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
19
|
Kimura H. Hydrogen Sulfide (H 2S)/Polysulfides (H 2S n) Signalling and TRPA1 Channels Modification on Sulfur Metabolism. Biomolecules 2024; 14:129. [PMID: 38275758 PMCID: PMC10813152 DOI: 10.3390/biom14010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Hydrogen sulfide (H2S) and polysulfides (H2Sn, n ≥ 2) produced by enzymes play a role as signalling molecules regulating neurotransmission, vascular tone, cytoprotection, inflammation, oxygen sensing, and energy formation. H2Sn, which have additional sulfur atoms to H2S, and other S-sulfurated molecules such as cysteine persulfide and S-sulfurated cysteine residues of proteins, are produced by enzymes including 3-mercaptopyruvate sulfurtransferase (3MST). H2Sn are also generated by the chemical interaction of H2S with NO, or to a lesser extent with H2O2. S-sulfuration (S-sulfhydration) has been proposed as a mode of action of H2S and H2Sn to regulate the activity of target molecules. Recently, we found that H2S/H2S2 regulate the release of neurotransmitters, such as GABA, glutamate, and D-serine, a co-agonist of N-methyl-D-aspartate (NMDA) receptors. H2S facilitates the induction of hippocampal long-term potentiation, a synaptic model of memory formation, by enhancing the activity of NMDA receptors, while H2S2 achieves this by activating transient receptor potential ankyrin 1 (TRPA1) channels in astrocytes, potentially leading to the activation of nearby neurons. The recent findings show the other aspects of TRPA1 channels-that is, the regulation of the levels of sulfur-containing molecules and their metabolizing enzymes. Disturbance of the signalling by H2S/H2Sn has been demonstrated to be involved in various diseases, including cognitive and psychiatric diseases. The physiological and pathophysiological roles of these molecules will be discussed.
Collapse
Affiliation(s)
- Hideo Kimura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Dori, Sanyo-Onoda 756-0884, Yamaguchi, Japan
| |
Collapse
|
20
|
Liu S, Zhao X, Ma Q, Wang G, Hou S, Ma Y, Lian Y. An ICT-FRET-based ratiometric fluorescent probe for hydrogen polysulfide based on a coumarin-naphthalimide derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123041. [PMID: 37354859 DOI: 10.1016/j.saa.2023.123041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/28/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Hydrogen polysulfide (H2Sn, n > 1), as one of the important members of reactive sulfur species (RSS), plays a vital part in the processes of both their physiology and pathology. In this work, a ratiometric fluorescent probe for H2Sn had been designed and prepared based on the combination mechanism of intramolecular charge transfer (ICT) and fluorescence resonance energy transfer (FRET). The probe chose a coumarin derivative as the energy donor, a naphthalimide derivative as the energy acceptor and 2-fluoro-5-nitrobenzoate as the H2Sn recognition group. When H2Sn was not present in the system, the ICT process of the naphthalimide acceptor was inhibited and the FRET process from the coumarin donor to the naphthalimide acceptor was turned off. When H2Sn was added, both ICT and FRET occurred due to the nucleophilic substitution-cyclization reactions between the probe and hydrogen polysulfide. In addition, the ratio value of the emission intensities at 550 nm and 473 nm (I550 nm/I473 nm) of this probe had a good linear relationship with H2Sn concentration in the range of 6.0 × 10-7-5.0 × 10-5 mol·L-1, and a detection limit of 1.8 × 10-7 mol·L-1 was obtained. The developed probe had high selectivity and sensitivity, as well as good biocompatibility. Additionally, the probe had been used to successfully image both indigenous and exogenous hydrogen polysulfide in A549 cells using confocal microscope.
Collapse
Affiliation(s)
- Shuangyu Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xuan Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Qiujuan Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application, Zhengzhou 450046, China.
| | - Gege Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shuqi Hou
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yijie Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yujie Lian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
21
|
Furuie H, Kimura Y, Akaishi T, Yamada M, Miyasaka Y, Saitoh A, Shibuya N, Watanabe A, Kusunose N, Mashimo T, Yoshikawa T, Yamada M, Abe K, Kimura H. Hydrogen sulfide and polysulfides induce GABA/glutamate/D-serine release, facilitate hippocampal LTP, and regulate behavioral hyperactivity. Sci Rep 2023; 13:17663. [PMID: 37907526 PMCID: PMC10618189 DOI: 10.1038/s41598-023-44877-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Hydrogen sulfide (H2S) and polysulfides (H2Sn, n ≥ 2) are signaling molecules produced by 3-mercaptopyruvate sulfurtransferase (3MST) that play various physiological roles, including the induction of hippocampal long-term potentiation (LTP), a synaptic model of memory formation, by enhancing N-methyl-D-aspartate (NMDA) receptor activity. However, the presynaptic action of H2S/H2Sn on neurotransmitter release, regulation of LTP induction, and animal behavior are poorly understood. Here, we showed that H2S/H2S2 applied to the rat hippocampus by in vivo microdialysis induces the release of GABA, glutamate, and D-serine, a co-agonist of NMDA receptors. Animals with genetically knocked-out 3MST and the target of H2S2, transient receptor potential ankyrin 1 (TRPA1) channels, revealed that H2S/H2S2, 3MST, and TRPA1 activation play a critical role in LTP induction, and the lack of 3MST causes behavioral hypersensitivity to NMDA receptor antagonism, as in schizophrenia. H2S/H2Sn, 3MST, and TRPA1 channels have therapeutic potential for psychiatric diseases and cognitive deficits.
Collapse
Affiliation(s)
- Hiroki Furuie
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuka Kimura
- Department of Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Tatsuhiro Akaishi
- Laboratory of Pharmacology, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Nishi-Tokyo, Tokyo, Japan
| | - Misa Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yoshiki Miyasaka
- Departement of Medicine, Institute of Experimental Animal Sciences, Osaka University, Suita, Osaka, Japan
| | - Akiyoshi Saitoh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Norihiro Shibuya
- Department of Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Akiko Watanabe
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Naoki Kusunose
- School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka, Miyazaki, Japan
| | - Tomoji Mashimo
- Departement of Medicine, Institute of Experimental Animal Sciences, Osaka University, Suita, Osaka, Japan
- Division of Animal Genetics, Laboratiry Animal Research Center, Institute of Medical Science, The Universtiry of Tokyo, Tokyo, Japan
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Pathophysiology, Faculty of Human Nutrition, Tokyo Kasei Gakuin University, Chiyoda-ku, Tokyo, Japan
| | - Kazuho Abe
- Laboratory of Pharmacology, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Nishi-Tokyo, Tokyo, Japan
| | - Hideo Kimura
- Department of Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan.
| |
Collapse
|
22
|
Córdova JA, Palermo JC, Estrin DA, Bari SE, Capece L. Binding mechanism of disulfide species to ferric hemeproteins: The case of metmyoglobin. J Inorg Biochem 2023; 247:112313. [PMID: 37467661 DOI: 10.1016/j.jinorgbio.2023.112313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
The interactions of the heme iron of hemeproteins with sulfide and disulfide compounds are of potential interest as physiological signaling processes. While the interaction with hydrogen sulfide has been described computationally and experimentally, the reaction with disulfide, and specifically the molecular mechanism for ligand binding has not been studied in detail. In this work, we study the association process for disulfane and its conjugate base disulfanide at different pH conditions. Additionally, by means of advanced sampling techniques based on multiple steered molecular dynamics, we provide free energy profiles for ligand migration for both acid/base species, showing a similar behavior to the previously reported for the related H2S/HS¯ pair. Finally, we studied the ligand interchange reaction (H2O/H2S, HS¯ and H2O/HSSH, HSS¯) by means of hybrid quantum mechanics-molecular mechanics calculations. We show that the anionic species are able to displace more efficiently the H2O bound to the iron, and that the H-bond network in the distal cavity can help the neutral species to perform the reaction. Altogether, we provide a molecular explanation for the experimental information and show that the global association process depends on a fine balance between the migration towards the active site and the ligand interchange reaction.
Collapse
Affiliation(s)
- Jonathan Alexis Córdova
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Juan Cruz Palermo
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Darío A Estrin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Sara E Bari
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina..
| | - Luciana Capece
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina..
| |
Collapse
|
23
|
Feng Q, Song Y, Ma Y, Deng Y, Xu P, Sheng K, Zhang Y, Li J, Wu S. Molecular engineering of benzenesulfonyl analogs for visual hydrogen polysulfide fluorescent probes based on Nile red skeleton. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122658. [PMID: 36989690 DOI: 10.1016/j.saa.2023.122658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Hydrogen polysulfide (H2Sn, n > 1) has a valuable function in various aspects of biological regulation. Therefore, it is of great significance to realize the visual monitoring of H2Sn levels in vivo. Herein, a series of fluorescent probes NR-BS were constructed by changing types and positions of substituents on the benzene ring of benzenesulfonyl. Among them, probe NR-BS4 was optimized due to its wide linear range (0 ∼ 350 μM) and little interference from biothiols. In addition, NR-BS4 has a broad pH tolerance range (pH = 4 ∼ 10) and high sensitivity (0.140 μM). In addition, the PET mechanism of probe NR-BS4 and H2Sn was demonstrated by DFT calculations and LC-MS. The intracellular imaging studies indicate that NR-BS4 can be successfully devoted to monitor the levels of exogenous and endogenous H2Sn in vivo.
Collapse
Affiliation(s)
- Qian Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an 710069, PR China
| | - Yiming Song
- School of Chemical Engineering, Northwest University, 229 Taibai Road, Xi'an, Shaanxi 710069, PR China.
| | - Yixuan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an 710069, PR China
| | - Yan Deng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an 710069, PR China
| | - Pengyue Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an 710069, PR China
| | - Kangjia Sheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an 710069, PR China
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, PR China
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
24
|
Palermo JC, Colombo MC, Scocozza MF, Murgida DH, Estrin DA, Bari SE. Reduction of metmyoglobin by inorganic disulfide species. J Inorg Biochem 2023; 245:112256. [PMID: 37244768 DOI: 10.1016/j.jinorgbio.2023.112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
The mechanism of the metal centered reduction of metmyoglobin (MbFeIII) by inorganic disulfide species has been studied by combined spectroscopic and kinetic analyses, under argon atmosphere. The process is kinetically characterized by biexponential time traces, for variable ratios of excess disulfide to protein, in the pH interval 6.6-8.0. Using UV-vis and resonance Raman spectroscopies, we observed that MbFeIII is converted into a low spin hexacoordinated ferric complex, tentatively assigned as MbFeIII(HSS-)/MbFeIII(SS2-), in an initial fast step. The complex is slowly converted into a pentacoordinated ferrous form, assigned as MbFeII according to the resonance Raman records. The reduction is a pH-dependent process, but independent of the initial disulfide concentration, suggesting the unimolecular decomposition of the intermediate complex following a reductive homolysis. We estimated the rate of the fast formation of the complex at pH 7.4 (kon = 3.7 × 103 M-1 s-1), and a pKa2 = 7.5 for the equilibrium MbFeIII(HSS-)/MbFeIII(SS2-). Also, we estimated the rate for the slow reduction at the same pH (kred = 10-2 s-1). A reaction mechanism compliant with the experimental results is proposed. This mechanistic study provides a differential kinetic signature for the reactions of disulfide compared to sulfide species on metmyoglobin, which may be considered in other hemeprotein systems.
Collapse
Affiliation(s)
- Juan Cruz Palermo
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Melisa Carllinni Colombo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Magalí F Scocozza
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Daniel H Murgida
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Darío A Estrin
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Sara E Bari
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina.
| |
Collapse
|
25
|
He B, Zhang Z, Huang Z, Duan X, Wang Y, Cao J, Li L, He K, Nice EC, He W, Gao W, Shen Z. Protein persulfidation: Rewiring the hydrogen sulfide signaling in cell stress response. Biochem Pharmacol 2023; 209:115444. [PMID: 36736962 DOI: 10.1016/j.bcp.2023.115444] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The past few decades have witnessed significant progress in the discovery of hydrogen sulfide (H2S) as a ubiquitous gaseous signaling molecule in mammalian physiology, akin to nitric oxide and carbon monoxide. As the third gasotransmitter, H2S is now known to exert a wide range of physiological and cytoprotective functions in the biological systems. However, endogenous H2S concentrations are usually low, and its potential biologic mechanisms responsible have not yet been fully clarified. Recently, a growing body of evidence has demonstrated that protein persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH) elicited by H2S, is a fundamental mechanism of H2S-mediated signaling pathways. Persulfidation, as a biological switch for protein function, plays an important role in the maintenance of cell homeostasis in response to various internal and external stress stimuli and is also implicated in numerous diseases, such as cardiovascular and neurodegenerative diseases and cancer. In this review, the biological significance of protein persulfidation by H2S in cell stress response is reviewed providing a framework for understanding the multifaceted roles of H2S. A mechanism-guided perspective can help open novel avenues for the exploitation of therapeutics based on H2S-induced persulfidation in the context of diseases.
Collapse
Affiliation(s)
- Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhe Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiangjun Cao
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kai He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing 400038, China.
| | - Wei Gao
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China.
| |
Collapse
|
26
|
Cheng S, Zhang S, Liu R, Zeng H, Yin Y, Zhang M. Potentiometric nanosensor for real-time measurement of hydrogen sulfide in single cell. Chem Commun (Camb) 2023; 59:1959-1962. [PMID: 36722985 DOI: 10.1039/d2cc06557f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One potentiometric nanosensor for monitoring intracellular hydrogen sulfide (H2S) with fast potential response, high selectivity and excellent antifouling properties was developed. This study constructs a powerful tool to real-time track the changes of intracellular H2S in situ, promoting the future studies of physiologically relevant processes.
Collapse
Affiliation(s)
- Shuwen Cheng
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Shuai Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Rantong Liu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Hui Zeng
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Yongyue Yin
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
27
|
Shang H, Ding M, Zhang X, Zhang W. Dual-mode biosensing platform for sensitive and portable detection of hydrogen sulfide based on cuprous oxide/gold/copper metal organic framework heterojunction. J Colloid Interface Sci 2023; 629:796-804. [PMID: 36195019 DOI: 10.1016/j.jcis.2022.09.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/01/2023]
Abstract
Hydrogen sulfide (H2S) can not only be regarded as a critical gas signal transduction substance, but also its excess levels can lead to a range of diseases. Currently, the accurate analysis combined with electrochemical (EC) or photothermal (PT) technology for H2S in a complex biological system remains a significant challenge. Herein, an endogenous H2S-triggered heterojunction cuprous oxide/gold/copper metal organic framework (Cu2O/Au/HKUST-1) nanoprobe is designed for dual-mode EC- second near-infrared (NIR-II)/PT analysis in tumor cells with high sensitivity and simplicity. Dual-mode EC quantification - PT is achieved through "off-on" mode of EC and PT signals based on electronic transfer and biosynthesis via an in situ sulfuration reaction. Under the optimum conditions, the EC quantification mode for trace H2S exhibits a wide linear range and an excellent limit of detection of 0.1 μM. More importantly, the dual-mode can display the selective detection of trace H2S in living tumor cells because of the specific interaction between copper ion and H2S. These results provide a new EC-PT promising biosensing platform for noninvasive intelligent detection of H2S in living tumor cells.
Collapse
Affiliation(s)
- Hongyuan Shang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China.
| | - Meili Ding
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xiaofei Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Wen Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| |
Collapse
|
28
|
Shi J, Zhang D, Li M, Wang Y, Liu L, Wang T, Guo F, Wu X. A new fluorescent probe for hydrogen sulfide based on naphthalimide derivatives and its biological application. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Alizadeh N, Salimi A. Facile Synthesis of Fe-Doped Hydroxyapatite Nanoparticles from Waste Coal Ash: Fabrication of a Portable Sensor for the Sensitive and Selective Colorimetric Detection of Hydrogen Sulfide. ACS OMEGA 2022; 7:42865-42871. [PMID: 36467963 PMCID: PMC9713890 DOI: 10.1021/acsomega.2c04905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
In this work, a new strategy has been reported for the portable detection of H2S based on Fe-doped hydroxyapatite nanoparticles (Fe-HA) using a colorimetric paper test strip integrated with a smartphone platform. Fe-HA NPs were fabricated successfully via recycling waste coal ash. The obtained probe response toward H2S was through a distinct visual color change. The sensing mechanism is based on the displacement reaction, in which PO4 3- is replaced by S2-. The prepared test strip shows high selectivity, and the other compounds containing thiol and sulfur anion have a negligible effect on the detection of H2S. The designed scheme is applied for H2S detection in the concentration range of 0.5-130 ppm with a limit of detection of 70 ppb. Furthermore, such a disposable sensor was used as a practical system for monitoring H2S in actual water samples, suggesting the promising potential of this platform for suitable analysis of H2S in an aqueous environment.
Collapse
Affiliation(s)
- Negar Alizadeh
- Department
of Chemistry, University of Kurdistan, Sanandaj66177-15175, Iran
| | - Abdollah Salimi
- Department
of Chemistry, University of Kurdistan, Sanandaj66177-15175, Iran
- Research
Center for Nanotechnology, University of
Kurdistan, Sanandaj66177-15175, Iran
| |
Collapse
|
30
|
Tang Y, Huang Y, Zou HY, Wu L, Xiao ZL, Zeng JL, Sun LX, Yu D, Cao Z. ZnO@CuO hollow nanosphere-based composites used for the sensitive detection of hydrogen sulfide with long-term stability. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2866-2875. [PMID: 35856488 DOI: 10.1039/d2ay00847e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, zinc oxide@cupric oxide hollow nanospheres (ZnO@CuO HNS, 330 nm in diameter) were successfully prepared by a hard-template method using amino-phenolformaldehyde resin spheres (APF) as the templates. A new type of thin-film gas sensor toward hydrogen sulfide (H2S) was fabricated by means of drop-coating on the gold electrode of an alumina ceramic tube. The microstructure and morphology of the nanosphere composites were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the gas-sensing performance of the composites toward the detection of H2S were investigated. The ZnO@CuO nanocomposite with a hollow structure exhibited good gas-sensing properties. Under the optimum operating temperature of 260 °C, ambient temperature of 30 °C, and ambient humidity of 70%, the linear response of the sensor to H2S was in the concentration range of 0.1-100 ppm, and its detection limit reached 0.0611 ppm, with a quick response time of 78 s. Also, the sensor possessed good repeatability, selectivity, and stability. The long-term stability and run duration of such sensors were pronounced, with only a 1.9% reduction in the signal after the continuous monitoring of H2S gas in a pig farm for 18 months using Alibaba's cloud remote transmission system, which presents an important practical application prospect in atmosphere environment monitoring on livestock-raising fields.
Collapse
Affiliation(s)
- Yi Tang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Ying Huang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Hao-Yun Zou
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Ling Wu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Zhong-Liang Xiao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Ju-Lan Zeng
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Li-Xian Sun
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg East, Denmark
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| |
Collapse
|
31
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
32
|
Tian M, Xu J, Ma Q, Li L, Yuan H, Sun J, Zhu N, Liu S. A novel lysosome-located fluorescent probe for highly selective determination of hydrogen polysulfides based on a naphthalimide derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120708. [PMID: 34915231 DOI: 10.1016/j.saa.2021.120708] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Hydrogen polysulfides (H2Sn, n > 1) belongs to sulfane sulfur in the reactive sulfur species (RSS) family and plays a significant regulatory role in organisms. Highly selective and lysosome-located probes for detecting hydrogen polysulfides are rare. Thus, it is important to develop a technique to detect the changes of H2Sn level in lysosomes. In this work, a lysosome-targeting fluorescent probe for H2Sn was designed and developed based on a naphthalimide derivative. 4-Hydroxynaphthalimide was selected as the fluorescent group and 2-chloro-5-nitrobenzoate group was used as a specific recognition unit for H2Sn. A morpholine unit was chosen as a lysosome-located group. In the absence of H2Sn, the fluorescent probe exhibited almost no fluorescence. In the presence of H2Sn, the fluorescent probe showed strong fluorescence owing to H2Sn-mediated aromatic substitution-cyclization reactions. The fluorescence emission intensity at 548 nm of the probe showed a good linear relationship toward H2Sn in the range of 2.0 × 10-7 - 9.0 × 10-5 mol·L-1, and the detection limit was found to be 1.5 × 10-7 mol·L-1. The probe possessed a wide work range of pH, including the pH of physiological environment, and high selectivity for H2Sn. There are almost no cytotoxicity and the ability of detecting endogenous and exogenous H2Sn in lysosomes. These results indicate that the fluorescent probe can provide a good tool for intracellular and extracellular detection of H2Sn.
Collapse
Affiliation(s)
- Meiju Tian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Junhong Xu
- Department of Dynamical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Qiujuan Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Linke Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Hongmei Yuan
- Department of food and chemical goods, Guangdong Dongguan Quality Supervision Testing Center, Dongguan 523808, PR China.
| | - Jingguo Sun
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Nannan Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Shuzhen Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| |
Collapse
|
33
|
Liu T, Peng Q, Wang J, Yu C, Huang X, Luo Q, Zeng Y, Hou Y, Zhang Y, Luo A, Zou Z, Chen M, Peng Y. A FRET-based ratiometric fluorescent probe for hydrogen polysulfide detection in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120524. [PMID: 34739897 DOI: 10.1016/j.saa.2021.120524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen polysulfide (H2Sn, n > 1) is an important active sulfur molecule (RSS) in organisms, which have been considered to be involved in redox signaling and cytoprotective processes. In this work, in order to quickly and accurately detect H2Sn in biosystems, 2-fluoro-5-nitrobenzoic ester was used as the response moiety for H2Sn, and the FRET strategy was adopted to effectively connect the donor (6-hydroxy-2-naphthoic acid) and acceptor (4-substituted-1,8-naphthalimide) to construct a new ratiometric H2Sn fluorescent probe NPNA-H2Sn. NPNA-H2Sn exhibited a more than ∼ 8.0-fold ratio enhancement towards H2Sn at I450/I526 and a very high sensitivity with a very low detection limit of 40.3 nM. Impressive, NPNA-H2Sn was further used for fluorescence imaging of H2Sn in living cells and zebrafish, which showed high-clear ratiometric images. Therefore, we have demonstrated that NPNA-H2Sn could be applied for ratiometric images of endogenous H2Sn in living biosystems and provide a powerful molecular tool for evaluating the physiological and pathological functions of H2Sn.
Collapse
Affiliation(s)
- Teng Liu
- Department of New Pediatrics, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Qiyao Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, PR China; Department of New Pediatrics, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Junyi Wang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Chao Yu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuekuan Huang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Quan Luo
- Department of Rehabilitation, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410000, PR China
| | - Yajun Zeng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yi Hou
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yuan Zhang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Aiming Luo
- Hunan Kaiyoukang Health Technology Co., Ltd, Changsha 410008, PR China
| | - Zhaoxia Zou
- Hunan Kaiyoukang Health Technology Co., Ltd, Changsha 410008, PR China
| | - Meizi Chen
- Department of General Internal Medicine, the First People's Hospital of Chenzhou, Chenzhou 423000, PR China
| | - Yongbo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
34
|
Progress on the reaction-based methods for detection of endogenous hydrogen sulfide. Anal Bioanal Chem 2021; 414:2809-2839. [PMID: 34825272 DOI: 10.1007/s00216-021-03777-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022]
Abstract
Hydrogen sulfide (H2S) is a biologically signaling molecule that mediates a wide range of physiological functions, which is frequently misregulated in numerous pathological processes. As such, measurement of H2S holds great attention due to its unique physiological and pathophysiological roles. Currently, a variety of methods based on the H2S-involved reactions have been reported for detection of endogenous H2S, bearing the advantages of good specificity and high sensitivity. This review describes in detail the types of reactions, their mechanisms, and their applications in biological research, thus hopefully providing some guidelines to the researchers in this field for further investigation.
Collapse
|
35
|
Kuschman HP, Palczewski MB, Thomas DD. Nitric oxide and hydrogen sulfide: Sibling rivalry in the family of epigenetic regulators. Free Radic Biol Med 2021; 170:34-43. [PMID: 33482335 DOI: 10.1016/j.freeradbiomed.2021.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 01/12/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) were previously only known for their toxic properties. Now they are regarded as potent gaseous messenger molecules (gasotransmitters) that rapidly transverse cell membranes and transduce cellular signals through their chemical reactions and modifications to protein targets. Both are known to regulate numerous physiological functions including angiogenesis, vascular tone, and immune response, to name a few. NO and H2S often work synergistically and in competition to regulate each other's synthesis, target protein activity via posttranslational modifications (PTMs), and chemical interactions. In addition to their canonical modes of action, increasing evidence has demonstrated that NO and H2S share another signaling mechanism: epigenetic regulation. This review will compare and contrast biosynthesis and metabolism of NO and H2S, their individual and shared interactions, and the growing body of evidence for their roles as endogenous epigenetic regulatory molecules.
Collapse
Affiliation(s)
- Hannah Petraitis Kuschman
- University of Illinois at Chicago, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Marianne B Palczewski
- University of Illinois at Chicago, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Douglas D Thomas
- University of Illinois at Chicago, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, United States.
| |
Collapse
|
36
|
Hydrogen Sulfide (H 2S) and Polysulfide (H 2S n) Signaling: The First 25 Years. Biomolecules 2021; 11:biom11060896. [PMID: 34208749 PMCID: PMC8235506 DOI: 10.3390/biom11060896] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Since the first description of hydrogen sulfide (H2S) as a toxic gas in 1713 by Bernardino Ramazzini, most studies on H2S have concentrated on its toxicity. In 1989, Warenycia et al. demonstrated the existence of endogenous H2S in the brain, suggesting that H2S may have physiological roles. In 1996, we demonstrated that hydrogen sulfide (H2S) is a potential signaling molecule, which can be produced by cystathionine β-synthase (CBS) to modify neurotransmission in the brain. Subsequently, we showed that H2S relaxes vascular smooth muscle in synergy with nitric oxide (NO) and that cystathionine γ-lyase (CSE) is another producing enzyme. This study also opened up a new research area of a crosstalk between H2S and NO. The cytoprotective effect, anti-inflammatory activity, energy formation, and oxygen sensing by H2S have been subsequently demonstrated. Two additional pathways for the production of H2S with 3-mercaptopyruvate sulfurtransferase (3MST) from l- and d-cysteine have been identified. We also discovered that hydrogen polysulfides (H2Sn, n ≥ 2) are potential signaling molecules produced by 3MST. H2Sn regulate the activity of ion channels and enzymes, as well as even the growth of tumors. S-Sulfuration (S-sulfhydration) proposed by Snyder is the main mechanism for H2S/H2Sn underlying regulation of the activity of target proteins. This mini review focuses on the key findings on H2S/H2Sn signaling during the first 25 years.
Collapse
|
37
|
Wang W, Ren S, Lu Y, Chen X, Qu J, Ma X, Deng Q, Hu Z, Jin Y, Zhou Z, Ge W, Zhu Y, Yang N, Li Q, Pu J, Chen G, Ye C, Wang H, Zhao X, Liu Z, Zhu S. Inhibition of Syk promotes chemical reprogramming of fibroblasts via metabolic rewiring and H 2 S production. EMBO J 2021; 40:e106771. [PMID: 33909912 DOI: 10.15252/embj.2020106771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
Chemical compounds have recently been introduced as alternative and non-integrating inducers of pluripotent stem cell fate. However, chemical reprogramming is hampered by low efficiency and the molecular mechanisms remain poorly characterized. Here, we show that inhibition of spleen tyrosine kinase (Syk) by R406 significantly promotes mouse chemical reprogramming. Mechanistically, R406 alleviates Syk / calcineurin (Cn) / nuclear factor of activated T cells (NFAT) signaling-mediated suppression of glycine, serine, and threonine metabolic genes and dependent metabolites. Syk inhibition upregulates glycine level and downstream transsulfuration cysteine biosynthesis, promoting cysteine metabolism and cellular hydrogen sulfide (H2 S) production. This metabolic rewiring decreased oxidative phosphorylation and ROS levels, enhancing chemical reprogramming. In sum, our study identifies Syk-Cn-NFAT signaling axis as a new barrier of chemical reprogramming and suggests metabolic rewiring and redox homeostasis as important opportunities for controlling cell fates.
Collapse
Affiliation(s)
- Weiyun Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunkun Lu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xi Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Juanjuan Qu
- College of Life Science, Shanxi University, Taiyuan, China
| | - Xiaojie Ma
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qian Deng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhensheng Hu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yan Jin
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ziyu Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Wenyan Ge
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yibing Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Nannan Yang
- Prenatal Diagnosis Center, Hangzhou Women's Hospital, Hangzhou, China
| | - Qin Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiaqi Pu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Guo Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Prenatal Diagnosis Center, Hangzhou Women's Hospital, Hangzhou, China.,Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhiqiang Liu
- College of Life Science, Shanxi University, Taiyuan, China
| | - Saiyong Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Renieris G, Droggiti DE, Katrini K, Koufargyris P, Gkavogianni T, Karakike E, Antonakos N, Damoraki G, Karageorgos A, Sabracos L, Katsouda A, Jentho E, Weis S, Wang R, Bauer M, Szabo C, Platoni K, Kouloulias V, Papapetropoulos A, Giamarellos-Bourboulis EJ. Host cystathionine-γ lyase derived hydrogen sulfide protects against Pseudomonas aeruginosa sepsis. PLoS Pathog 2021; 17:e1009473. [PMID: 33770141 PMCID: PMC8051778 DOI: 10.1371/journal.ppat.1009473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/16/2021] [Accepted: 03/12/2021] [Indexed: 11/18/2022] Open
Abstract
Hydrogen sulfide (H2S) has recently been recognized as a novel gaseous transmitter with several anti-inflammatory properties. The role of host- derived H2S in infections by Pseudomonas aeruginosa was investigated in clinical and mouse models. H2S concentrations and survival was assessed in septic patients with lung infection. Animal experiments using a model of severe systemic multidrug-resistant P. aeruginosa infection were performed using mice with a constitutive knock-out of cystathionine-γ lyase (Cse) gene (Cse-/-) and wild-type mice with a physiological expression (Cse+/+). Experiments were repeated in mice after a) treatment with cyclophosphamide; b) bone marrow transplantation (BMT) from a Cse+/+ donor; c) treatment with H2S synthesis inhibitor aminooxyacetic acid (ΑΟΑΑ) or propargylglycine (PAG) and d) H2S donor sodium thiosulfate (STS) or GYY3147. Bacterial loads and myeloperoxidase activity were measured in tissue samples. The expression of quorum sensing genes (QS) was determined in vivo and in vitro. Cytokine concentration was measured in serum and incubated splenocytes. Patients survivors at day 28 had significantly higher serum H2S compared to non-survivors. A cut- off point of 5.3 μΜ discriminated survivors with sensitivity 92.3%. Mortality after 28 days was 30.9% and 93.7% in patients with H2S higher and less than 5.3 μΜ (p = 7 x 10-6). In mice expression of Cse and application of STS afforded protection against infection with multidrug-resistant P. aeruginosa. Cyclophosphamide pretreatment eliminated the survival benefit of Cse+/+ mice, whereas BMT increased the survival of Cse-/- mice. Cse-/- mice had increased pathogen loads compared to Cse+/+ mice. Phagocytic activity of leukocytes from Cse-/- mice was reduced but was restored after H2S supplementation. An H2S dependent down- regulation of quorum sensing genes of P.aeruginosa could be demonstrated in vivo and in vitro. Endogenous H2S is a potential independent parameter correlating with the outcome of P. aeruginosa. H2S provides resistance to infection by MDR bacterial pathogens.
Collapse
Affiliation(s)
- Georgios Renieris
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dionysia-Eirini Droggiti
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Konstantina Katrini
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Panagiotis Koufargyris
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Theologia Gkavogianni
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Eleni Karakike
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Nikolaos Antonakos
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Georgia Damoraki
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Athanasios Karageorgos
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Labros Sabracos
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Antonia Katsouda
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Elisa Jentho
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Jena, Germany
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Jena, Germany
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Rui Wang
- Department of Biology, York University, Toronto, Canada
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Jena, Germany
| | - Csaba Szabo
- Department of Anaesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Kalliopi Platoni
- 2 Department of Radiology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Vasilios Kouloulias
- 2 Department of Radiology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Andreas Papapetropoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | |
Collapse
|
39
|
Investigating Different Forms of Hydrogen Sulfide in Cerebrospinal Fluid of Various Neurological Disorders. Metabolites 2021; 11:metabo11030152. [PMID: 33800163 PMCID: PMC7998212 DOI: 10.3390/metabo11030152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 01/09/2023] Open
Abstract
Over the past 30 years a considerable amount of data has accumulated on the multifaceted role of hydrogen sulfide (H2S) in the central nervous system. Depending on its concentrations, H2S has opposite actions, ranging from neuromodulator to neurotoxic. Nowadays, accurate determination of H2S is still an important challenge to understand its biochemistry and functions. In this perspective, this study aims to explore H2S levels in cerebrospinal fluid (CSF), key biofluid for neurological studies, and to assess alleged correlations with neuroinflammatory and neurodegenerative mechanisms. A validated analytical determination combining selective electrochemical detection with ion chromatography was developed to measure free and bound sulfur forms of H2S. A first cohort of CSF samples (n = 134) was analyzed from patients with inflammatory and demyelinating disorders (acute disseminated encephalomyelitis; multiple sclerosis), chronic neurodegenerative diseases (Alzheimer disease; Parkinson disease), and motor neuron disease (Amyotrophic lateral sclerosis). Given its analytical features, the chromatographic method resulted sensitive, reproducible and robust. We also explored low molecular weight-proteome linked to sulphydration by proteomics analysis on matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). This study is a first clinical report on CSF H2S concentrations from neurological diseases and opens up new perspectives on the potential clinical relevance of H2S and its potential therapeutic application.
Collapse
|
40
|
Peng Z, Kellenberger S. Hydrogen Sulfide Upregulates Acid-sensing Ion Channels via the MAPK-Erk1/2 Signaling Pathway. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab007. [PMID: 35330812 PMCID: PMC8833866 DOI: 10.1093/function/zqab007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) emerged recently as a new gasotransmitter and was shown to exert cellular effects by interacting with proteins, among them many ion channels. Acid-sensing ion channels (ASICs) are neuronal voltage-insensitive Na+ channels activated by extracellular protons. ASICs are involved in many physiological and pathological processes, such as fear conditioning, pain sensation, and seizures. We characterize here the regulation of ASICs by H2S. In transfected mammalian cells, the H2S donor NaHS increased the acid-induced ASIC1a peak currents in a time- and concentration-dependent manner. Similarly, NaHS potentiated also the acid-induced currents of ASIC1b, ASIC2a, and ASIC3. An upregulation induced by the H2S donors NaHS and GYY4137 was also observed with the endogenous ASIC currents of cultured hypothalamus neurons. In parallel with the effect on function, the total and plasma membrane expression of ASIC1a was increased by GYY4137, as determined in cultured cortical neurons. H2S also enhanced the phosphorylation of the extracellular signal-regulated kinase (pErk1/2), which belongs to the family of mitogen-activated protein kinases (MAPKs). Pharmacological blockade of the MAPK signaling pathway prevented the GYY4137-induced increase of ASIC function and expression, indicating that this pathway is required for ASIC regulation by H2S. Our study demonstrates that H2S regulates ASIC expression and function, and identifies the involved signaling mechanism. Since H2S shares several roles with ASICs, as for example facilitation of learning and memory, protection during seizure activity, and modulation of nociception, it may be possible that H2S exerts some of these effects via a regulation of ASIC function.
Collapse
Affiliation(s)
- Zhong Peng
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland,Address correspondence to S.K. (e-mail: )
| |
Collapse
|
41
|
Zhang L, Liu H, Wu C, Zheng Y, Kai X, Xue Y. A near-infrared fluorescent probe that can image endogenous hydrogen polysulfides in vivo in tumour-bearing mice. Org Biomol Chem 2021; 19:911-919. [PMID: 33416067 DOI: 10.1039/d0ob02253e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hydrogen polysulfides (H2Sn, n > 1), which are important reactive sulfur species, play crucial roles in H2S-related bioactivities, including antioxidation, cytoprotection, activation of ion channels, transcription factor functions and tumour suppression. Monitoring H2Snin vivo is of significant interest for exploring the physiological roles of H2Sn and the exact mechanisms of H2Sn-related diseases. Herein, we conceive a novel near-infrared fluorescent probe, NIR-CPS, that is used to detect H2Sn in living cells and in vivo. With the advantages of high sensitivity, good selectivity and a remarkably large Stokes shift (100 nm), NIR-CPS was successfully applied in visualizing H2Sn in living cells and mice. More importantly, NIR-CPS monitored H2Sn stimulated by lipopolysaccharide in tumour-bearing mice. These results demonstrate that the NIR-CPS probe is a potentially powerful tool for the detection of H2Snin vivo, thus providing a valuable approach in H2Sn-related medical research.
Collapse
Affiliation(s)
- Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, P. R. China. and NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, P. R. China
| | - Huizhen Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, P. R. China.
| | - Chunli Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, P. R. China.
| | - Youguang Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, P. R. China.
| | - Xiaoning Kai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, P. R. China.
| | - Yunsheng Xue
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, P. R. China.
| |
Collapse
|
42
|
Zhang X, Jin X, Zhang C, Zhong H, Zhu H. A fluorescence turn-on probe for hydrogen sulfide and biothiols based on PET & TICT and its imaging in HeLa cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118839. [PMID: 32882655 DOI: 10.1016/j.saa.2020.118839] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a photoinduced electron transfer (PET)& twisted intramolecular charge transfer (TICT)-based fluorescent probe (1) for detecting biothiols (GSH/Cys/Hcy) and hydrogen sulfide with fluorescence turn on was developed. The probe could recognize hydrogen sulfide over primary ions and selectively detect GSH/Cys/Hcy over other amino acids with fluorescence turn-on (an ESIPT process). H2S can be distinguished from GSH/Cys/Hcy with wavelength shift by UV-Vis spectra. In addition, detection limits for H2S/GSH/Cys/Hcy of probe 1 were 1.42 μM (0-100 μM), 0.13 μM (0-40 μM), 0.27 (0-30 μM), 0.22 μM (0-40 μM), respectively. The proposed thiolysis of the 2,4-dinitrochlorophenyl ether reaction in identification process was verified by the characteristic peak in 1H NMR and HRMS spectra. Finally, the biological imaging experiments and low cytotoxicity investigations in HeLa cells demonstrated that probe 1 could provide a promising method for the determination of H2S and biothiols in aqueous solution and living cells.
Collapse
Affiliation(s)
- Xueqiong Zhang
- Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaodong Jin
- Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; Department of Criminal Science and Technology, Jiangsu Police Institute, Nanjing, Jiangsu 210031, China
| | - Caiting Zhang
- Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hui Zhong
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China.
| | - Hongjun Zhu
- Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
43
|
Hydrogen sulfide (H 2S) signaling in plant development and stress responses. ABIOTECH 2021; 2:32-63. [PMID: 34377579 PMCID: PMC7917380 DOI: 10.1007/s42994-021-00035-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT Hydrogen sulfide (H2S) was initially recognized as a toxic gas and its biological functions in mammalian cells have been gradually discovered during the past decades. In the latest decade, numerous studies have revealed that H2S has versatile functions in plants as well. In this review, we summarize H2S-mediated sulfur metabolic pathways, as well as the progress in the recognition of its biological functions in plant growth and development, particularly its physiological functions in biotic and abiotic stress responses. Besides direct chemical reactions, nitric oxide (NO) and hydrogen peroxide (H2O2) have complex relationships with H2S in plant signaling, both of which mediate protein post-translational modification (PTM) to attack the cysteine residues. We also discuss recent progress in the research on the three types of PTMs and their biological functions in plants. Finally, we propose the relevant issues that need to be addressed in the future research. GRAPHIC ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42994-021-00035-4.
Collapse
|
44
|
Ali A, Wang Y, Wu L, Yang G. Gasotransmitter signaling in energy homeostasis and metabolic disorders. Free Radic Res 2020; 55:83-105. [PMID: 33297784 DOI: 10.1080/10715762.2020.1862827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gasotransmitters are small molecules of gases, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). These three gasotransmitters can be endogenously produced and regulate a wide range of pathophysiological processes by interacting with specific targets upon diffusion in the biological media. By redox and epigenetic regulation of various physiological functions, NO, H2S, and CO are critical for the maintenance of intracellular energy homeostasis. Accumulated evidence has shown that these three gasotransmitters control ATP generation, mitochondrial biogenesis, glucose metabolism, insulin sensitivity, lipid metabolism, and thermogenesis, etc. Abnormal generation and metabolism of NO, H2S, and/or CO are involved in various abnormal metabolic diseases, including obesity, diabetes, and dyslipidemia. In this review, we summarized the roles of NO, H2S, and CO in the regulation of energy homeostasis as well as their involvements in the metabolism of dysfunction-related diseases. Understanding the interaction among these gasotransmitters and their specific molecular targets are very important for therapeutic applications.
Collapse
Affiliation(s)
- Amr Ali
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.,School of Human Kinetics, Laurentian University, Sudbury, Canada.,Health Science North Research Institute, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| |
Collapse
|
45
|
Abstract
Significance: Oxidative stress in moderation positively affects homeostasis through signaling, while in excess it is associated with adverse health outcomes. Both activities are generally attributed to reactive oxygen species (ROS); hydrogen peroxide as the signal, and cysteines on regulatory proteins as the target. However, using antioxidants to affect signaling or benefit health has not consistently translated into expected outcomes, or when it does, the mechanism is often unclear. Recent Advances: Reactive sulfur species (RSS) were integral in the origin of life and throughout much of evolution. Sophisticated metabolic pathways that evolved to regulate RSS were easily "tweaked" to deal with ROS due to the remarkable similarities between the two. However, unlike ROS, RSS are stored, recycled, and chemically more versatile. Despite these observations, the relevance and regulatory functions of RSS in extant organisms are generally underappreciated. Critical Issues: A number of factors bias observations in favor of ROS over RSS. Research conducted in room air is hyperoxic to cells, and promotes ROS production and RSS oxidation. Metabolic rates of rodent models greatly exceed those of humans; does this favor ROS? Analytical methods designed to detect ROS also respond to RSS. Do these disguise the contributions of RSS? Future Directions: Resolving the ROS/RSS issue is vital to understand biology in general and human health in particular. Improvements in experimental design and analytical methods are crucial. Perhaps the most important is an appreciation of all the attributes of RSS and keeping an open mind.
Collapse
Affiliation(s)
- Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend, South Bend, Indiana, USA
| |
Collapse
|
46
|
The role of glutamate oxaloacetate transaminases in sulfite biosynthesis and H 2S metabolism. Redox Biol 2020; 38:101800. [PMID: 33271457 PMCID: PMC7711302 DOI: 10.1016/j.redox.2020.101800] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 01/24/2023] Open
Abstract
Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency are two rare genetic disorders that are caused by impairment of the mitochondrial enzyme sulfite oxidase. Sulfite oxidase is catalyzing the terminal reaction of cellular cysteine catabolism, the oxidation of sulfite to sulfate. Absence of sulfite oxidase leads to the accumulation of sulfite, which has been identified as a cellular toxin. However, the molecular pathways leading to the production of sulfite are still not completely understood. In order to identify novel treatment options for both disorders, the understanding of cellular cysteine catabolism – and its alterations upon loss of sulfite oxidase – is of utmost importance. Here we applied a new detection method of sulfite in cellular extracts to dissect the contribution of cytosolic and mitochondrial glutamate oxaloacetate transaminase (GOT) in the transformation of cysteine sulfinic acid to sulfite and pyruvate. We found that the cytosolic isoform GOT1 is primarily responsible for the production of sulfite. Moreover, loss of sulfite oxidase activity results in the accumulation of sulfite, H2S and persulfidated cysteine and glutathione, which is consistent with an increase of SQR protein levels. Surprisingly, none of the known H2S-producing pathways were found to be upregulated under conditions of sulfite toxicity suggesting an alternative route of sulfite-induced shift from oxidative to H2S dependent cysteine catabolism. Cellular sulfite detection enables investigation of cysteine catabolism in cell extracts. Cytosolic glutamate oxaloacetate transaminase 1 is the primary source for cellular sulfite. Deficiency of sulfite oxidase leads to accumulation of H2S and persulfidated small molecules. Sulfite oxidase deficiency results in a downregulation of H2S synthesis and increased SQR expression.
Collapse
|
47
|
Sun J, Bai Y, Ma Q, Zhang H, Wu M, Wang C, Tian M. A FRET-based ratiometric fluorescent probe for highly selective detection of hydrogen polysulfides based on a coumarin-rhodol derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118650. [PMID: 32629399 DOI: 10.1016/j.saa.2020.118650] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 05/28/2023]
Abstract
In modern biology, hydrogen polysulfides (H2Sn, n > 1) are members of reactive sulfur species (RSS), with anti-oxidation, cell protection and redox signals in tissues and organs. Therefore, it is crucial to develop a method to monitor the changes of H2Sn level in organisms. We designed and synthesized a ratiometric fluorescent probe for highly selective detection of H2Sn based on the fluorescence resonance energy transfer (FRET) process. In this work, a coumarin derivative was chosen as an energy donor, a rhodol derivative was used as an energy acceptor and a 2-fluoro-5-nitrobenzoate group was applied as a recognition unit for H2Sn. In the absence of H2Sn, the rhodol receptor existed in the non-fluorescent spirolactone state and FRET process was disabled. In the presence of H2Sn, the closed spirolactone form was converted to a conjugated fluorescent xanthenes form to invoke the occurrence of FRET which resulted in a 77 nm red-shift of fluorescence emission from 460 nm to 537 nm. The ratio value of the fluorescence intensity between 537 nm and 460 nm (I537nm/I460nm) of the probe exhibited a good linear relationship toward H2Sn in the range of 3.0 × 10-6-1.0 × 10-4 mol·L-1, and the detection limit was estimated to be 8.0 × 10-7 mol·L-1. In addition, the ratiometric fluorescent probe showed high specificity for H2Sn over other biologically related species. Moreover, the probe displayed little cell toxicity and had been successfully used to the confocal imaging of H2Sn in HepG2 cells by dual emission channels.
Collapse
Affiliation(s)
- Jingguo Sun
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yu Bai
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Qiujuan Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Hongtao Zhang
- Department of Dynamical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China.
| | - Mingxia Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Chunyan Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Meiju Tian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| |
Collapse
|
48
|
Abstract
BACKGROUND The pneumonia of COVID-19 illness has often a subtle initial presentation making mandatory the use of biomarkers for evaluation of severity and prediction of final patient disposition. We evaluated the use of hydrogen sulfide (H2S) for the outcome of COVID-19 pneumonia. PATIENTS AND METHODS We studied 74 patients with COVID-19. Clinical data were collected, and survival predictors were calculated. Blood was collected within 24 h after admission (day 1) and on day 7. H2S was measured in sera by monobromobimane derivation followed by high-performance liquid chromatography and correlated to other markers like procalcitonin and C-reactive protein (CRP). Tumor necrosis factor alpha and interleukin (IL)-6 were also measured in serum. RESULTS Survivors had significantly higher H2S levels on days 1 and 7 after admission. A cut-off point of 150.44 μM could discriminate survivors from non-survivors with 80% sensitivity, 73.4% specificity, and negative predictive value 95.9%. Mortality after 28 days was 32% with admission levels lower than or equal to 150.44 μM and 4.1% with levels above 150.44 μM (P: 0.0008). Mortality was significantly greater among patients with a decrease of H2S levels from day 1 to day 7 greater than or equal to 36% (p: 0.0005). Serum H2S on day 1 was negatively correlated with IL-6 and CRP and positively correlated with the absolute lymphocyte count in peripheral blood. CONCLUSION It is concluded that H2S is a potential marker for severity and final outcome of pneumonia by the SARS-CoV-2 coronavirus. Its correlation with IL-6 suggests anti-inflammatory properties.
Collapse
|
49
|
Kimura H. Hydrogen sulfide signalling in the CNS - Comparison with NO. Br J Pharmacol 2020; 177:5031-5045. [PMID: 32860641 DOI: 10.1111/bph.15246] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/19/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2 S) together with polysulfides (H2 Sn , n > 2) are signalling molecules like NO with various physiological roles including regulation of neuronal transmission, vascular tone, inflammation and oxygen sensing. H2 S and H2 Sn diffuse to the target proteins for S-sulfurating their cysteine residues that induces the conformational changes to alter the activity. On the other hand, 3-mercaptopyruvate sulfurtransferase transfers sulfur from a substrate 3-mercaptopyruvate to the cysteine residues of acceptor proteins. A similar mechanism has also been identified in S-nitrosylation. S-sulfuration and S-nitrosylation by enzymes proceed only inside the cell, while reactions induced by H2 S, H2 Sn and NO even extend to the surrounding cells. Disturbance of signalling by these molecules as well as S-sulfuration and S-nitrosylation causes many nervous system diseases. This review focuses on the signalling by H2 S and H2 Sn with S-sulfuration comparing to that of NO with S-nitrosylation and discusses on their roles in physiology and pathophysiology.
Collapse
Affiliation(s)
- Hideo Kimura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Japan
| |
Collapse
|
50
|
Lan LA, Wu SY, Meng XG, Jiang JJ, Zheng MY, Fan GR. A simple liquid chromatography tandem mass spectrometric method for fast detection of hydrogen sulfide based on thiolysis of 7-nitro-2, 1, 3-benzoxadiazole ether. J Chromatogr A 2020; 1625:461243. [DOI: 10.1016/j.chroma.2020.461243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
|