1
|
Ning G, Li BN, Wu H, Shi RB, Peng AJ, Wang HY, Zhou X. Regulation of testosterone synthesis by circadian clock genes and its research progress in male diseases. Asian J Androl 2025:00129336-990000000-00298. [PMID: 40101130 DOI: 10.4103/aja20258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/20/2025] [Indexed: 03/20/2025] Open
Abstract
ABSTRACT The circadian clock is an important internal time regulatory system for a range of physiological and behavioral rhythms within living organisms. Testosterone, as one of the most critical sex hormones, is essential for the development of the reproductive system, maintenance of reproductive function, and the overall health of males. The secretion of testosterone in mammals is characterized by distinct circadian rhythms and is closely associated with the regulation of circadian clock genes. Here we review the central and peripheral regulatory mechanisms underlying the influence of circadian clock genes upon testosterone synthesis. We also examined the specific effects of these genes on the occurrence, development, and treatment of common male diseases, including late-onset hypogonadism, erectile dysfunction, male infertility, and prostate cancer.
Collapse
Affiliation(s)
- Gang Ning
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Bo-Nan Li
- Affiliated Changsha Hospital of Hunan Normal University, Changsha 410023, China
| | - Hui Wu
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ruo-Bing Shi
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - A-Jian Peng
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao-Yu Wang
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xing Zhou
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| |
Collapse
|
2
|
Xin M, Bi F, Wang C, Huang Y, Xu Y, Liang S, Cai T, Xu X, Dong L, Li T, Wang X, Fang Y, Xu Z, Wang M, Song X, Zheng Y, Sun W, Li L. The circadian rhythm: A new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system. J Adv Res 2025; 69:495-514. [PMID: 38631431 PMCID: PMC11954810 DOI: 10.1016/j.jare.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.
Collapse
Affiliation(s)
- Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China
| | - Fangjie Bi
- Heart Center, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuhong Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yujia Xu
- Department of Echocardiography, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueke Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053 China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| |
Collapse
|
3
|
Xing H, Song Y, Wu X, Chang Y, Shang Y, Yu L, Dai H. Diurnal variation of cerebral blood flow in healthy humans under normal entrained conditions. J Sleep Res 2024; 33:e14190. [PMID: 38453144 DOI: 10.1111/jsr.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
The presence of a circadian cycle of cerebral blood flow may have implications for the occurrence of daily variations in cerebrovascular events in humans, but how cerebral blood flow varies throughout the day and its mechanism are still unclear. The study aimed to explore the diurnal variation of cerebral blood flow in healthy humans and its possible mechanisms. Arterial spin labelling images were collected at six time-points (09:00 hours, 13:00 hours, 17:00 hours, 21:00 hours, 01:00 hours, 05:00 hours) from 18 healthy participants (22-39 years old; eight females) to analyse diurnal variations in cerebral blood flow. Resting heart rate and blood pressure at six time-points and blood indicators (20-hydroxyeicosatetraenoic acid, epoxyeicosatrienoic acids, prostaglandin E2, noradrenaline and nitric oxide) related to cerebral vascular tone at two time-points (09:00 hours and 21:00 hours) were collected to analyse possible influences on diurnal variations in cerebral blood flow. From 21:00 hours to 05:00 hours, parietal cortical relative cerebral blood flow tended to increase, while frontal cortical and cerebellar relative cerebral blood flow tended to decrease. There was a time-dependent negative correlation between parietal cortical relative cerebral blood flow and resting heart rate, whereas there was a time-dependent positive correlation between cerebellar relative cerebral blood flow and resting heart rate. The change of parietal cortical relative cerebral blood flow was positively correlated with the change of nitric oxide. There was also a time-dependent positive correlation between mean arterial pressure and mean whole-brain cerebral blood flow. The findings indicated that parietal cortical relative cerebral blood flow and frontal cortical/cerebellar relative cerebral blood flow showed roughly opposite trends throughout the day. The diurnal variations in relative cerebral blood flow were regional-specific. Diurnal variation of nitric oxide and neurogenic regulation may be potential mechanisms for diurnal variation in regional relative cerebral blood flow.
Collapse
Affiliation(s)
- Hanqi Xing
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthcare, Shanghai, China
| | - Xiaowei Wu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Chang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Shang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lefan Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Dai
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Medical Imaging, Soochow University, Suzhou, China
- Suzhou Key Laboratory of Intelligent Medicine and Equipment, Suzhou, China
| |
Collapse
|
4
|
Cincotta AH. Brain Dopamine-Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects. Int J Mol Sci 2023; 24:13255. [PMID: 37686060 PMCID: PMC10487918 DOI: 10.3390/ijms241713255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine-a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects.
Collapse
|
5
|
Richardson RB, Mailloux RJ. Mitochondria Need Their Sleep: Redox, Bioenergetics, and Temperature Regulation of Circadian Rhythms and the Role of Cysteine-Mediated Redox Signaling, Uncoupling Proteins, and Substrate Cycles. Antioxidants (Basel) 2023; 12:antiox12030674. [PMID: 36978924 PMCID: PMC10045244 DOI: 10.3390/antiox12030674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Although circadian biorhythms of mitochondria and cells are highly conserved and crucial for the well-being of complex animals, there is a paucity of studies on the reciprocal interactions between oxidative stress, redox modifications, metabolism, thermoregulation, and other major oscillatory physiological processes. To address this limitation, we hypothesize that circadian/ultradian interaction of the redoxome, bioenergetics, and temperature signaling strongly determine the differential activities of the sleep–wake cycling of mammalians and birds. Posttranslational modifications of proteins by reversible cysteine oxoforms, S-glutathionylation and S-nitrosylation are shown to play a major role in regulating mitochondrial reactive oxygen species production, protein activity, respiration, and metabolomics. Nuclear DNA repair and cellular protein synthesis are maximized during the wake phase, whereas the redoxome is restored and mitochondrial remodeling is maximized during sleep. Hence, our analysis reveals that wakefulness is more protective and restorative to the nucleus (nucleorestorative), whereas sleep is more protective and restorative to mitochondria (mitorestorative). The “redox–bioenergetics–temperature and differential mitochondrial–nuclear regulatory hypothesis” adds to the understanding of mitochondrial respiratory uncoupling, substrate cycling control and hibernation. Similarly, this hypothesis explains how the oscillatory redox–bioenergetics–temperature–regulated sleep–wake states, when perturbed by mitochondrial interactome disturbances, influence the pathogenesis of aging, cancer, spaceflight health effects, sudden infant death syndrome, and diseases of the metabolism and nervous system.
Collapse
Affiliation(s)
- Richard B. Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- McGill Medical Physics Unit, Cedars Cancer Centre—Glen Site, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence: or
| | - Ryan J. Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
6
|
Richardson RB, Mailloux RJ. WITHDRAWN: Mitochondria need their sleep: Sleep-wake cycling and the role of redox, bioenergetics, and temperature regulation, involving cysteine-mediated redox signaling, uncoupling proteins, and substrate cycles. Free Radic Biol Med 2022:S0891-5849(22)01013-9. [PMID: 36462628 DOI: 10.1016/j.freeradbiomed.2022.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Richard B Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River Laboratories, Chalk River, Ontario, K0J 1J0, Canada; McGill Medical Physics Unit, McGill University, Cedars Cancer Centre - Glen Site, Montreal, Quebec QC, H4A 3J1, Canada.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
7
|
Torres‐Fuentes C, Suárez M, Aragonès G, Mulero M, Ávila‐Román J, Arola‐Arnal A, Salvadó MJ, Arola L, Bravo FI, Muguerza B. Cardioprotective Properties of Phenolic Compounds: A Role for Biological Rhythms. Mol Nutr Food Res 2022; 66:e2100990. [PMID: 35279936 PMCID: PMC9786928 DOI: 10.1002/mnfr.202100990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/25/2022] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of deaths worldwide and their prevalence is continuously increasing. Available treatments may present several side effects and therefore the development of new safer therapeutics is of interest. Phenolic compounds have shown several cardioprotective properties helpful in reducing different CVD risk factors such as inflammation, elevated blood pressure, hyperlipidemia, or endothelial dysfunction. These factors are significantly influenced by biological rhythms which are in fact emerging as key modulators of important metabolic and physiological processes. Thus, increased events of CVD have been observed under circadian rhythm disruption or in winter versus other seasons. These rhythms can also affect the functionality of phenolic compounds. Indeed, different effects have been observed depending on the administration time or under different photoperiods. Therefore, in this review the focus will be on the potential of phenolic compounds as therapeutics to prevent CVD via biological rhythm modulation.
Collapse
Affiliation(s)
- Cristina Torres‐Fuentes
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Manuel Suárez
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Gerard Aragonès
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Miquel Mulero
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Javier Ávila‐Román
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Anna Arola‐Arnal
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Maria Josepa Salvadó
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Lluís Arola
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Begoña Muguerza
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| |
Collapse
|
8
|
Daiber A, Frenis K, Kuntic M, Li H, Wolf E, Kilgallen AB, Lecour S, Van Laake LW, Schulz R, Hahad O, Münzel T. Redox Regulatory Changes of Circadian Rhythm by the Environmental Risk Factors Traffic Noise and Air Pollution. Antioxid Redox Signal 2022; 37:679-703. [PMID: 35088601 PMCID: PMC9618394 DOI: 10.1089/ars.2021.0272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022]
Abstract
Significance: Risk factors in the environment such as air pollution and traffic noise contribute to the development of chronic noncommunicable diseases. Recent Advances: Epidemiological data suggest that air pollution and traffic noise are associated with a higher risk for cardiovascular, metabolic, and mental disease, including hypertension, heart failure, myocardial infarction, diabetes, arrhythmia, stroke, neurodegeneration, depression, and anxiety disorders, mainly by activation of stress hormone signaling, inflammation, and oxidative stress. Critical Issues: We here provide an in-depth review on the impact of the environmental risk factors air pollution and traffic noise exposure (components of the external exposome) on cardiovascular health, with special emphasis on the role of environmentally triggered oxidative stress and dysregulation of the circadian clock. Also, a general introduction on the contribution of circadian rhythms to cardiovascular health and disease as well as a detailed mechanistic discussion of redox regulatory pathways of the circadian clock system is provided. Future Directions: Finally, we discuss the potential of preventive strategies or "chrono" therapy for cardioprotection. Antioxid. Redox Signal. 37, 679-703.
Collapse
Affiliation(s)
- Andreas Daiber
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Katie Frenis
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marin Kuntic
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eva Wolf
- Structural Chronobiology, Institute of Molecular Physiology, Johannes Gutenberg University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Aoife B. Kilgallen
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Linda W. Van Laake
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Omar Hahad
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
9
|
Liu Z, Andraska E, Akinbode D, Mars W, Alvidrez RIM. LRP1 in the Vascular Wall. CURRENT PATHOBIOLOGY REPORTS 2022. [DOI: 10.1007/s40139-022-00231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Ibarz-Blanch N, Morales D, Calvo E, Ros-Medina L, Muguerza B, Bravo FI, Suárez M. Role of Chrononutrition in the Antihypertensive Effects of Natural Bioactive Compounds. Nutrients 2022; 14:nu14091920. [PMID: 35565887 PMCID: PMC9103085 DOI: 10.3390/nu14091920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Hypertension (HTN) is one of the main cardiovascular risk factors and is considered a major public health problem. Numerous approaches have been developed to lower blood pressure (BP) in hypertensive patients, most of them involving pharmacological treatments. Within this context, natural bioactive compounds have emerged as a promising alternative to drugs in HTN prevention. This work reviews not only the mechanisms of BP regulation by these antihypertensive compounds, but also their efficacy depending on consumption time. Although a plethora of studies has investigated food-derived compounds, such as phenolic compounds or peptides and their impact on BP, only a few addressed the relevance of time consumption. However, it is known that BP and its main regulatory mechanisms show a 24-h oscillation. Moreover, evidence shows that phenolic compounds can interact with clock genes, which regulate the biological rhythm followed by many physiological processes. Therefore, further research might be carried out to completely elucidate the interactions along the time–nutrition–hypertension axis within the framework of chrononutrition.
Collapse
Affiliation(s)
| | | | - Enrique Calvo
- Correspondence: (E.C.); (F.I.B.); Tel.: +34-977558837 (E.C.)
| | | | | | | | | |
Collapse
|
11
|
Luan J, Yang K, Ding Y, Zhang X, Wang Y, Cui H, Zhou D, Chen L, Ma Z, Wang W, Zhang W, Liu X. Valsartan-mediated chronotherapy in spontaneously hypertensive rats via targeting clock gene expression in vascular smooth muscle cells. Arch Physiol Biochem 2022; 128:490-500. [PMID: 31794282 DOI: 10.1080/13813455.2019.1695840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE This study was to investigate the underlying mechanisms of valsartan chronotherapy in regulating blood pressure variability. METHODS RT-PCR was used to assay clock genes expression rhythm in the hypothalamus, aortic vessels, and target organs after valsartan chronotherapy. WB was used to measure Period 1 (Per1), Period 2 (Per2) protein expression in aortic vessels, as well as to measure phosphorylation of 20-kDa regulatory myosin light chain (MLC20) in VSMCs. RESULTS Specific clock genes in the hypothalamus, and Per1 and Per2 in aorta abdominalis, exhibited disordered circadian expression in vivo. Valsartan asleep time administration (VSA) restored circadian clock gene expression in a tissue- and gene-specific manner. In vitro, VSA was more efficient in blocking angiotensin II relative to VWA, which led to differential circadian rhythms of Per1 and Per2, ultimately corrected MLC20 phosphorylation. CONCLUSION VSA may be efficacious in regulating circadian clock genes rhythm, then concomitantly correct circadian blood pressure rhythms.
Collapse
Affiliation(s)
- Jiajie Luan
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Kui Yang
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Yanyun Ding
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Xiaotong Zhang
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Yaqin Wang
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Haiju Cui
- Department of Pharmacy, XuanCheng Vocational and Technical college, XuanCheng, Anhui, P.R. China
| | - Deixi Zhou
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Lu Chen
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Zhangqing Ma
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Wusan Wang
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Wen Zhang
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Xiaoyun Liu
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| |
Collapse
|
12
|
Gu W, Wu H, Hu C, Xu J, Jiang H, Long Y, Han T, Yang X, Wei W, Jiang W. The Association of Dietary Vitamin Intake Time Across a Day With Cardiovascular Disease and All-Cause Mortality. Front Cardiovasc Med 2022; 9:822209. [PMID: 35402523 PMCID: PMC8984283 DOI: 10.3389/fcvm.2022.822209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background Chrono-nutrition emphasized the importance of the intake time; however, less is known about the impact of dietary vitamin intake time on health. This study aimed to examine our hypothesis about which vitamin intake time could influence the natural course of cardiovascular disease (CVD). Methods A total of 27,455 adults enrolled in the National Health and Nutrition Examination Survey (NHANES) during 2003–2014 were recruited. The 12 dietary vitamin intakes in the morning, afternoon, and evening were categorized into tertiles or quartiles. Cox-proportional hazard regression models were developed to evaluate the association of vitamin intake time with CVD and all-cause mortalities. Results Compared with participants in the lowest quartile, participants in the highest quartile of dietary VB2 intake in the morning had significantly lowest mortality risk of CVD [hazard ratio (HR)VB2 = 0.75, 95% CI: 0.60–0.94, p = 0.017]; whereas, participants in the highest quartile of dietary-vitamin B6 (VB6), vitamin C (VC), vitamin E (VE), and folate-equivalent consumed in the evening showed the lowest risks of CVD (HRVB6 = 0.77, 95% CI: 0.60–0.99, p = 0.103; HRVC = 0.80, 95% CI: 0.65–0.98, p = 0.050; HRVE = 0.75, 95% CI: 0.56–0.99, p = 0.032; HRfolate–equivalent = 0.78, 95% CI: 0.63–0.97, p = 0.116) and all-cause mortalities (HRVB6 = 0.81, 95% CI: 0.71–0.93, p = 0.006; HRVC = 0.85, 95% CI: 0.76–0.95, p = 0.004; HRVE = 0.84, 95% CI: 0.72–0.97, p = 0.011; HRfolate–equivalent = 0.80, 95% CI: 0.71–0.90, p = 0.001). Moreover, equivalently replacing 10% intake of dietary VB6, VC, VE, and folate-equivalent in the morning with evening were associated with 4% (HRVB6 = 0.96, 95% CI: 0.92–0.99), 5% (HRVC = 0.95, 95% CI: 0.92–0.99), 4% (HRVE = 0.96, 95% CI: 0.91–0.99), and 5% (HRfolate–equivalent = 0.95, 95% CI: 0.92–0.99) lower risk of CVD mortality. Conclusion This study found that the optimal intake time of dietary VB2 was in the morning, and the optimal intake times of dietary VB6, VC, VE, and folate-equivalent were in the evening.
Collapse
|
13
|
Mastrullo V, van der Veen DR, Gupta P, Matos RS, Johnston JD, McVey JH, Madeddu P, Velliou EG, Campagnolo P. Pericytes' Circadian Clock Affects Endothelial Cells' Synchronization and Angiogenesis in a 3D Tissue Engineered Scaffold. Front Pharmacol 2022; 13:867070. [PMID: 35387328 PMCID: PMC8977840 DOI: 10.3389/fphar.2022.867070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 01/02/2023] Open
Abstract
Angiogenesis, the formation of new capillaries from existing ones, is a fundamental process in regenerative medicine and tissue engineering. While it is known to be affected by circadian rhythms in vivo, its peripheral regulation within the vasculature and the role it performs in regulating the interplay between vascular cells have not yet been investigated. Peripheral clocks within the vasculature have been described in the endothelium and in smooth muscle cells. However, to date, scarce evidence has been presented regarding pericytes, a perivascular cell population deeply involved in the regulation of angiogenesis and vessel maturation, as well as endothelial function and homeostasis. More crucially, pericytes are also a promising source of cells for cell therapy and tissue engineering. Here, we established that human primary pericytes express key circadian genes and proteins in a rhythmic fashion upon synchronization. Conversely, we did not detect the same patterns in cultured endothelial cells. In line with these results, pericytes' viability was disproportionately affected by circadian cycle disruption, as compared to endothelial cells. Interestingly, endothelial cells' rhythm could be induced following exposure to synchronized pericytes in a contact co-culture. We propose that this mechanism could be linked to the altered release/uptake pattern of lactate, a known mediator of cell-cell interaction which was specifically altered in pericytes by the knockout of the key circadian regulator Bmal1. In an angiogenesis assay, the maturation of vessel-like structures was affected only when both endothelial cells and pericytes did not express Bmal1, indicating a compensation system. In a 3D tissue engineering scaffold, a synchronized clock supported a more structured organization of cells around the scaffold pores, and a maturation of vascular structures. Our results demonstrate that pericytes play a critical role in regulating the circadian rhythms in endothelial cells, and that silencing this system disproportionately affects their pro-angiogenic function. Particularly, in the context of tissue engineering and regenerative medicine, considering the effect of circadian rhythms may be critical for the development of mature vascular structures and to obtain the maximal reparative effect.
Collapse
Affiliation(s)
- Valeria Mastrullo
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
- Chronobiology Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| | - Daan R. van der Veen
- Chronobiology Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| | - Rolando S. Matos
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jonathan D. Johnston
- Chronobiology Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - John H. McVey
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine, University of Bristol, Bristol Heart Institute, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Eirini G. Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| | - Paola Campagnolo
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
14
|
Li T, Bai Y, Jiang Y, Jiang K, Tian Y, Wang Z, Ban Y, Liang X, Luo G, Sun F. Potential Effect of the Circadian Clock on Erectile Dysfunction. Aging Dis 2022; 13:8-23. [PMID: 35111358 PMCID: PMC8782551 DOI: 10.14336/ad.2021.0728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/28/2021] [Indexed: 12/03/2022] Open
Abstract
The circadian rhythm is an internal timing system, which is generated by circadian clock genes. Because the circadian rhythm regulates numerous cellular, behavioral, and physiological processes, organisms have evolved with intrinsic biological rhythms to adapt the daily environmental changes. A variety of pathological events occur at specific times, while disturbed rhythms can lead to metabolic syndrome, vascular dysfunction, inflammatory disorders, and cancer. Therefore, the circadian clock is considered closely related to various diseases. Recently, accumulated data have shown that the penis is regulated by the circadian clock, while erectile function is impaired by an altered sleep-wake cycle. The circadian rhythm appears to be a novel therapeutic target for preventing and managing erectile dysfunction (ED), although research is still progressing. In this review, we briefly summarize the superficial interactions between the circadian clock and erectile function, while focusing on how disturbed rhythms contribute to risk factors of ED. These risk factors include NO/cGMP pathway, atherosclerosis, diabetes mellitus, lipid abnormalities, testosterone deficiency, as well as dysfunction of endothelial and smooth muscle cells. On the basis of recent findings, we discuss the potential role of the circadian clock for future therapeutic strategies on ED, although further relevant research needs to be performed.
Collapse
Affiliation(s)
- Tao Li
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Yunjin Bai
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yiting Jiang
- Department of Otorhinolaryngology, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Ye Tian
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Zhen Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Yong Ban
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Xiangyi Liang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Guangheng Luo
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
- Correspondence should be addressed to: Dr. Fa Sun, Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China. .
| | - Fa Sun
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
- Correspondence should be addressed to: Dr. Fa Sun, Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China. .
| |
Collapse
|
15
|
Crislip GR, Johnston JG, Douma LG, Costello HM, Juffre A, Boyd K, Li W, Maugans CC, Gutierrez-Monreal M, Esser KA, Bryant AJ, Liu AC, Gumz ML. Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems. Compr Physiol 2021; 12:2769-2798. [PMID: 34964116 PMCID: PMC11514412 DOI: 10.1002/cphy.c210011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nearly every system within the body contains an intrinsic cellular circadian clock. The circadian clock contributes to the regulation of a variety of homeostatic processes in mammals through the regulation of gene expression. Circadian disruption of physiological systems is associated with pathophysiological disorders. Here, we review the current understanding of the molecular mechanisms contributing to the known circadian rhythms in physiological function. This article focuses on what is known in humans, along with discoveries made with cell and rodent models. In particular, the impact of circadian clock components in metabolic, cardiovascular, endocrine, musculoskeletal, immune, and central nervous systems are discussed. © 2021 American Physiological Society. Compr Physiol 11:1-30, 2021.
Collapse
Affiliation(s)
- G. Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | - Jermaine G. Johnston
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Hannah M. Costello
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Kyla Boyd
- Department of Biochemistry and Molecular Biology
| | - Wendy Li
- Department of Biochemistry and Molecular Biology
| | | | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics
- Myology Institute
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics
- Myology Institute
| | - Michelle L. Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
- Department of Biochemistry and Molecular Biology
- Department of Physiology and Functional Genomics
- Center for Integrative Cardiovascular and Metabolic Disease
| |
Collapse
|
16
|
Aging disrupts the temporal organization of antioxidant defenses in the heart of male rats and phase shifts circadian rhythms of systolic blood pressure. Biogerontology 2021; 22:603-621. [PMID: 34554336 DOI: 10.1007/s10522-021-09938-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022]
Abstract
Aging is one of the main risk factors for cardiovascular diseases, and oxidative stress is a key element responsible for the development of age-related pathologies. In addition, the alteration of circadian rhythms also contributes to cardiovascular pathology, but the underlying mechanisms are not well defined. We investigated the aging consequences on the temporal patterns of antioxidant defenses, the molecular clock machinery, and the blood pressure, in the heart of male rats maintained under constant darkness (free running) conditions. Male Holtzman rats from young adult (3-month-old) and older (22-month-old) groups were maintained under constant darkness (12-h dark:12-h dark, DD) condition during fifteen days before the experiment. After the DD period, heart ventricle samples were isolated every 4-h throughout a 24-h period. We observed circadian rhythms of catalase (CAT) and glutathione peroxidase (GPx) mRNA expression, as well as ultradian rhythms of Nrf2 mRNA levels, in the heart of young adult rats. We also found circadian oscillations of CAT and GPx enzymatic activities, reduced glutathione (GSH) and BMAL1 protein in the same group. Interestingly, aging abolished the rhythms of CAT and GPx enzymatic activities, phase-shifted the rhythm's acrophases of GSH and BMAL1 protein levels and turned circadian the ultradian oscillation of Nrf2 expression. Moreover, aging phase-shifted the circadian pattern of systolic blood pressure. In conclusion, aging modifies the temporal organization of antioxidant defenses and blood pressure, probably, as a consequence of a disruption in the circadian rhythm of the clock's transcriptional regulator, BMAL1, in heart.
Collapse
|
17
|
Han Q, Bagi Z, Rudic RD. Review: Circadian clocks and rhythms in the vascular tree. Curr Opin Pharmacol 2021; 59:52-60. [PMID: 34111736 DOI: 10.1016/j.coph.2021.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
The progression of vascular disease is influenced by many factors including aging, gender, diet, hypertension, and poor sleep. The intrinsic vascular circadian clock and the timing it imparts on the vasculature both conditions and is conditioned by all these variables. Circadian rhythms and their molecular components are rhythmically cycling in each endothelial cell, smooth muscle cell, in each artery, arteriole, vein, venule, and capillary. New research continues to tackle how circadian clocks act in the vasculature, describing influences in experimental and human disease, identifying potential target genes, compensatory molecules, that ultimately reveal a complexity that is vascular-bed-specific, cell-type-specific, and even single-cell-specific. Though we are yet to achieve a complete understanding, here we survey recent observations that are shedding more light on the nature of the interaction between circadian rhythms and the vascular system with implications for blood vessel disease.
Collapse
Affiliation(s)
- Qimei Han
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raducu Daniel Rudic
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
18
|
Lo EH, Albers GW, Dichgans M, Donnan G, Esposito E, Foster R, Howells DW, Huang YG, Ji X, Klerman EB, Lee S, Li W, Liebeskind DS, Lizasoain I, Mandeville ET, Moro MA, Ning M, Ray D, Sakadžić S, Saver JL, Scheer FAJL, Selim M, Tiedt S, Zhang F, Buchan AM. Circadian Biology and Stroke. Stroke 2021; 52:2180-2190. [PMID: 33940951 DOI: 10.1161/strokeaha.120.031742] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian biology modulates almost all aspects of mammalian physiology, disease, and response to therapies. Emerging data suggest that circadian biology may significantly affect the mechanisms of susceptibility, injury, recovery, and the response to therapy in stroke. In this review/perspective, we survey the accumulating literature and attempt to connect molecular, cellular, and physiological pathways in circadian biology to clinical consequences in stroke. Accounting for the complex and multifactorial effects of circadian rhythm may improve translational opportunities for stroke diagnostics and therapeutics.
Collapse
Affiliation(s)
- Eng H Lo
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Gregory W Albers
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Stanford Stroke Center, Stanford University, Palo Alto (G.W.A., S.L.)
| | - Martin Dichgans
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,German Center for Neurodegenerative Diseases (DZNE, Munich) and Munich Cluster for Systems Neurology (SyNergy), Germany (M.D.).,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany (M.D., S.T.)
| | - Geoffrey Donnan
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne, Australia (G.D.)
| | - Elga Esposito
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Russell Foster
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences (R.F.), University of Oxford, United Kingdom
| | - David W Howells
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Tasmanian School of Medicine, University of Tasmania, Australia (D.W.H.)
| | - Yi-Ge Huang
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Stroke Medicine (Y.H., A.M.B.), University of Oxford, United Kingdom
| | - Xunming Ji
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Beijing Institute for Brain Disorders, China (X.J.)
| | - Elizabeth B Klerman
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Neurology (E.B.K., M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Sarah Lee
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Stanford Stroke Center, Stanford University, Palo Alto (G.W.A., S.L.)
| | - Wenlu Li
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - David S Liebeskind
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Geffen School of Medicine, University of California Los Angeles (J.L.S., D.S.L.)
| | - Ignacio Lizasoain
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Pharmacology and Toxicology, Complutense Medical School, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain (I.L.)
| | - Emiri T Mandeville
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maria A Moro
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain (M.A.M.)
| | - MingMing Ning
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Neurology (E.B.K., M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - David Ray
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, and Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, United Kingdom (D.R.)
| | - Sava Sakadžić
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jeffrey L Saver
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Geffen School of Medicine, University of California Los Angeles (J.L.S., D.S.L.)
| | - Frank A J L Scheer
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Medicine and Neurology, Brigham & Women's Hospital (F.A.J.L.S.), Harvard Medical School, Boston
| | - Magdy Selim
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Beth Israel Deaconess Medical Center (M.S.), Harvard Medical School, Boston
| | - Steffen Tiedt
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany (M.D., S.T.)
| | - Fang Zhang
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Alastair M Buchan
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Stroke Medicine (Y.H., A.M.B.), University of Oxford, United Kingdom
| |
Collapse
|
19
|
Circadian variations of vasoconstriction and blood pressure in physiology and diabetes. Curr Opin Pharmacol 2021; 57:125-131. [PMID: 33721615 DOI: 10.1016/j.coph.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/14/2023]
Abstract
The intrinsic vascular smooth muscle contraction and vasoconstriction show time-of-day variations, contributing to the blood pressure circadian rhythm, which is essential for cardiovascular health. This brief review provides an overview of our current understanding of the mechanisms underlying the time-of-day variations of vascular smooth muscle contraction. We discuss the potential contribution of the time-of-day variations of vasoconstriction to the physiological blood pressure circadian rhythm. Finally, we survey the data obtained in the type 2 diabetic db/db mouse model that demonstrate the alterations of the time-of-day variations of vasoconstriction and the nondipping blood pressure in diabetes.
Collapse
|
20
|
Tomasova L, Grman M, Misak A, Kurakova L, Ondriasova E, Ondrias K. Cardiovascular "Patterns" of H 2S and SSNO --Mix Evaluated from 35 Rat Hemodynamic Parameters. Biomolecules 2021; 11:biom11020293. [PMID: 33669309 PMCID: PMC7920056 DOI: 10.3390/biom11020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/18/2022] Open
Abstract
This work is based on the hypothesis that it is possible to characterize the cardiovascular system just from the detailed shape of the arterial pulse waveform (APW). Since H2S, NO donor S-nitrosoglutathione (GSNO) and their H2S/GSNO products (SSNO−-mix) have numerous biological actions, we aimed to compare their effects on APW and to find characteristic “patterns” of their actions. The right jugular vein of anesthetized rats was cannulated for i.v. administration of the compounds. The left carotid artery was cannulated to detect APW. From APW, 35 hemodynamic parameters (HPs) were evaluated. H2S transiently influenced all 35 HPs and from their cross-relationships to systolic blood pressure “patterns” and direct/indirect signaling pathways of the H2S effect were proposed. The observed “patterns” were mostly different from the published ones for GSNO. Effect of SSNO−-mix (≤32 nmol kg−1) on blood pressure in the presence or absence of a nitric oxide synthase inhibitor (L-NAME) was minor in comparison to GSNO, suggesting that the formation of SSNO−-mix in blood diminished the hemodynamic effect of NO. The observed time-dependent changes of 35 HPs, their cross-relationships and non-hysteresis/hysteresis profiles may serve as “patterns” for the conditions of a transient decrease/increase of blood pressure caused by H2S.
Collapse
Affiliation(s)
- Lenka Tomasova
- Biomedical Research Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, 811 04 Bratislava, Slovakia; (L.T.); (M.G.); (A.M.)
| | - Marian Grman
- Biomedical Research Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, 811 04 Bratislava, Slovakia; (L.T.); (M.G.); (A.M.)
| | - Anton Misak
- Biomedical Research Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, 811 04 Bratislava, Slovakia; (L.T.); (M.G.); (A.M.)
| | - Lucia Kurakova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 814 99 Bratislava, Slovakia; (L.K.); (E.O.)
| | - Elena Ondriasova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 814 99 Bratislava, Slovakia; (L.K.); (E.O.)
| | - Karol Ondrias
- Biomedical Research Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, 811 04 Bratislava, Slovakia; (L.T.); (M.G.); (A.M.)
- Correspondence: ; Tel.: +421-908577943
| |
Collapse
|
21
|
Chen Z, Xiong ZF, Liu X. Research progress on the interaction between circadian clock and early vascular aging. Exp Gerontol 2021; 146:111241. [PMID: 33453324 DOI: 10.1016/j.exger.2021.111241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Considerable researches implicate that the circadian clock regulates the responsive rhythms of organs and sets the orderly aging process of cells indirectly. It influences an array of diverse biological process including intestinal flora, peripheral inflammatory responses, and redox homeostasis. People with sleep disoders and other kinds of circadian disruptions are prone to have vascular aging earlier. Meanwhile, those people are always faced with chronic vascular inflammation. It has not been elucidated that the specific mechanism of the interaction between the circadian system and early vascular aging. To explore the biphasic relationship between vascular aging and the circadian system, we summarize what is linking circadian clock with early vascular aging through four major prospect: inflammatory process, oxidative stress response, intestinal flora, and cellular senescence. Meanwhile, we discuss the hypothesis that the deterioration of circadian rhythms may exacerbate the process of early vascular aging, leading to the cardiovascular diseases. It will help us to provide new ideas for understanding the process of vascular aging and exploring the possible ways to design personalized chronotherapies.
Collapse
Affiliation(s)
- Zhuoying Chen
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Zhi-Fan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| |
Collapse
|
22
|
Reitz CJ, Alibhai FJ, de Lima-Seolin BG, Nemec-Bakk A, Khaper N, Martino TA. Circadian mutant mice with obesity and metabolic syndrome are resilient to cardiovascular disease. Am J Physiol Heart Circ Physiol 2020; 319:H1097-H1111. [PMID: 32986958 DOI: 10.1152/ajpheart.00462.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Obesity and metabolic syndrome commonly underlie cardiovascular disease. ClockΔ19/Δ19 mice fed a normal diet develop obesity and metabolic syndrome; however, it is not known whether they develop or are resilient to cardiovascular disease. We found that ClockΔ19/Δ19 mice do not develop cardiac dysfunction, despite their underlying conditions. Moreover, in contrast to wild-type controls fed a high-fat diet (HFD), ClockΔ19/Δ19 HFD mice still do not develop cardiovascular disease. Indeed, ClockΔ19/Δ19 HFD mice have preserved heart weight despite their obesity, no cardiomyocyte hypertrophy, and preserved heart structure and function, even after 24 wk of a HFD. To determine why ClockΔ19/Δ19 mice are resilient to cardiac dysfunction despite their underlying obesity and metabolic conditions, we examined global cardiac gene expression profiles by microarray and bioinformatics analyses, revealing that oxidative stress pathways were involved. We examined the pathways in further detail and found that 1) SIRT-dependent oxidative stress pathways were not directly involved in resilience; 2) 4-hydroxynonenal (4-HNE) increased in wild-type HFD but not ClockΔ19/Δ19 mice, suggesting less reactive oxygen species in ClockΔ19/Δ19 mice; 3) cardiac catalase (CAT) and glutathione peroxidase (GPx) increased, suggesting strong antioxidant defenses in the hearts of ClockΔ19/Δ19 mice; and 4) Pparγ was upregulated in the hearts of ClockΔ19/Δ19 mice; this circadian-regulated gene drives transcription of CAT and GPx, providing a molecular basis for resilience in the ClockΔ19/Δ19 mice. These findings shed new light on the circadian regulation of oxidative stress and demonstrate an important role for the circadian mechanism in resilience to cardiovascular disease.NEW & NOTEWORTHY We examined whether obesity and metabolic syndrome underlie the development of cardiac dysfunction in circadian mutant ClockΔ19/Δ19 mice. Surprisingly, we demonstrate that although ClockΔ19/Δ19 mice develop metabolic dysfunction, they are protected from cardiac hypertrophy, left ventricular remodeling, and diastolic dysfunction, in contrast to wild-type controls, even when challenged with a chronic high-fat diet. These findings shed new light on the circadian regulation of oxidative stress pathways, which can mediate resilience to cardiovascular disease.
Collapse
Affiliation(s)
- Cristine J Reitz
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Faisal J Alibhai
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Bruna Gazzi de Lima-Seolin
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada
| | - Ashley Nemec-Bakk
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada
| | - Neelam Khaper
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada
| | - Tami A Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
23
|
Huang H, Li Z, Ruan Y, Feng W, Chen J, Li X, Ouyang L, Huang H. Circadian rhythm disorder: a potential inducer of vascular calcification? J Physiol Biochem 2020; 76:513-524. [PMID: 32945991 DOI: 10.1007/s13105-020-00767-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
Over the past decades, circadian rhythm has drawn a great attention in cardiovascular diseases. The expressions of rhythm genes fluctuate in accordance with the diurnal changes of vascular physiology, which highlights the pivotal effect of vascular clock. Recent researches show that the circadian clock can directly regulate the synthetic and secretory function of endothelial cells and phenotypic switch of vascular smooth muscle cells to adjust vascular relaxation and contraction. Importantly, dysfunction of vascular cells is involved in vascular calcification. Secretion of osteogenic cytokines and calcified vesicles in the vessel, osteogenic phenotype switch of vascular smooth muscle cells are all implicated in the calcification process. Moreover, circadian rhythm disorder can lead to abnormal hormone secretion, oxidative stress, inflammatory reaction, and autophagy, all of which should not be ignored in vascular calcification. Vascular senescence is another pathogenetic mechanism in vascular calcification. Accelerated vascular senescence may act as an important intermediate factor to promote vascular calcification in circadian rhythm disorders. In this review, we elaborate the potential effect of circadian rhythm disorder in vascular calcification and try to provide a new direction in the prevention of vascular calcification.
Collapse
Affiliation(s)
- Haoran Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaohuai Li
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuyi Ruan
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weijing Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxue Li
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China
| | - Liu Ouyang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China.
| |
Collapse
|
24
|
Zhang Z, Yu B, Wang X, Luo C, Zhou T, Zheng X, Ding J. Circadian rhythm and atherosclerosis (Review). Exp Ther Med 2020; 20:96. [PMID: 32973945 PMCID: PMC7506962 DOI: 10.3892/etm.2020.9224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis is the leading cause of morbidity and mortality worldwide. The underlying pathogenesis involves multiple metabolic disorders, endothelial dysfunction and a maladaptive immune response, and leads to chronic arterial wall inflammation. Numerous normal physiological activities exhibit daily rhythmicity, including energy metabolism, vascular function and inflammatory immunoreactions, and disrupted or misaligned circadian rhythms may promote the progression of atherosclerosis. However, the association between the circadian rhythm and atherosclerosis remains to be fully elucidated. In the present review, the effects of the circadian rhythm on atherosclerosis progression are discussed.
Collapse
Affiliation(s)
- Zaiqiang Zhang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Bin Yu
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Xinan Wang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Caiyun Luo
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Tian Zhou
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Xiaxia Zheng
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jiawang Ding
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
25
|
Che L, Wu ZL, Huang LY, Wu JS, Du ZB, Lin JX, Su YH, Chen XX, Lin ZN, Lin YC. MicroRNA-101 inhibits cadmium-induced angiogenesis by targeting cyclooxygenase-2 in primary human umbilical vein endothelial cells. Biochem Pharmacol 2020; 189:114192. [PMID: 32783891 DOI: 10.1016/j.bcp.2020.114192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
Exposure to toxic metal contaminants, such as cadmium compounds (Cd2+), has been shown to induce adverse effects on various organs and tissues. In particular, blood vessels are severely impacted by Cd2+ exposure, which may lead to cardiovascular diseases (CVDs). According to previous studies, CVDs are associated with increased cyclooxygenase 2 (COX-2) levels. However, the mechanisms by which CdCl2-induced COX-2 overexpression leads to cardiovascular dysfunction remain unclear. Herein, we show that the relative gene expressions of VEGF and PTGS2 (COX-2 encoding gene) are positively correlated in CVDs patients. Moreover, we demonstrate that the in vitro administration of CdCl2 induces cytotoxicity and endoplasmic reticulum (ER) stress in primary human umbilical vein endothelial cells (HUVECs). The induction of ER stress and the overexpression of COX-2 in CdCl2-treated cells alters the protein level of vascular endothelial growth factor (VEGF), resulting in abnormal angiogenesis and increased cytotoxicity. At the pre-transcription level, the inhibition of ER stress by siGRP78 (a key mediator of ER stress) can restore normal angiogenesis in the CdCl2-exposed cells. Meanwhile, at the transcription level, the adverse effects of CdCl2 exposure may be reversed via genetic modification with siRNA (siPTGS2) or by using phytochemical inhibitors (parthenolide, PN) of COX-2. Finally, at the post-transcription level, COX-2 expression may be restricted by the binding of microRNA-101 (miR-101) to the 3'-UTR of PTGS2 mRNA. The use of mimic miR-101 (mi101) to induce the expression of miR-101 eventually leads to reduced COX-2 protein levels, relieved ER stress, and less abnormal angiogenesis and cytotoxicity of CdCl2-exposed primary HUVECs. Overall, our results suggest that CdCl2-induced abnormal angiogenesis is mediated by miR-101/COX-2/VEGF-axis-dependent ER stress, and that cardiovascular dysfunction may be controlled by manipulating COX-2 at the pre-transcription, transcription, and post-transcription levels.
Collapse
Affiliation(s)
- Lin Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zi-Li Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lian-Yun Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jia-Shen Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ze-Bang Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jin-Xian Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yan-Hua Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiao-Xuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
26
|
Smadja DM, Chocron R, Rossi E, Poitier B, Pya Y, Bekbossynova M, Peronino C, Rancic J, Roussel JC, Kindo M, Gendron N, Migliozzi L, Capel A, Perles JC, Gaussem P, Ivak P, Jansen P, Girard C, Carpentier A, Latremouille C, Guerin C, Netuka I. Autoregulation of Pulsatile Bioprosthetic Total Artificial Heart is Involved in Endothelial Homeostasis Preservation. Thromb Haemost 2020; 120:1313-1322. [PMID: 32688422 DOI: 10.1055/s-0040-1713751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulsatile Carmat bioprosthetic total artificial heart (C-TAH) is designed to be implanted in patients with biventricular end-stage heart failure. Since flow variation might contribute to endothelial dysfunction, we explored circulating endothelial biomarkers after C-TAH implantation in seven patients and compared the manual and autoregulated mode. Markers of endothelial dysfunction and regeneration were compared before and during a 6- to 9-month follow-up after implantation. The follow-up was divided into three periods (< 3, 3-6, and > 6 months) and used to estimate the temporal trends during the study period. A linear mixed model was used to analyze repeated measures and association between tested parameters according to the mode of C-TAH and the time. Relevance of soluble endoglin (sEndoglin) level increase has been tested on differentiation and migration potential of human vasculogenic progenitor cells (endothelial colony forming cells [ECFCs]). Normal sEndoglin and soluble endothelial protein C receptor (sEPCR) levels were found in patients after implantation with autoregulated C-TAH, whereas they significantly increased in the manual mode, as compared with pretransplant values (p = 0.005 and 0.001, respectively). In the autoregulated mode, a significant increase in the mobilization of cytokine stromal cell-derived factor 1 was found (p = 0.03). After adjustment on the mode of C-TAH, creatinine or C-reactive protein level, sEndoglin, and sEPCR, were found significantly associated with plasma total protein levels. Moreover, a significant decrease in pseudotubes formation and migration ability was observed in vitro in ECFCs receiving sEndoglin activation. Our combined analysis of endothelial biomarkers confirms the favorable impact of blood flow variation achieved with autoregulation in patients implanted with the bioprosthetic total artificial heart.
Collapse
Affiliation(s)
- David M Smadja
- Inserm UMR-S 1140, Innovative Therapies in Haemostasis, Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Richard Chocron
- Inserm UMR-S 970 PARCC, Service d'urgences, Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Elisa Rossi
- Innovative Therapies in Haemostasis, Université de Paris, Paris, France
| | - Bastien Poitier
- Innovative Therapies in Haemostasis, Service de Chirurgie Cardiaque et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Yuri Pya
- National Research Cardiac Surgery Center, Astana, Kazakhstan
| | | | - Christophe Peronino
- Inserm UMR-S 1140, Innovative Therapies in Haemostasis, Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Jeanne Rancic
- Inserm UMR-S 1140, Innovative Therapies in Haemostasis, Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Jean Christian Roussel
- Service de Chirurgie Thoracique et Cardiovasculaire, Unité de transplantation thoracique, CHU de Nantes, Hôpital Nord Laënnec, Saint-Herblain, Nantes Cedex 1, France
| | - Michel Kindo
- Service de Chirurgie Cardiovasculaire, NHC - Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1, Place de L'Hôpital, Strasbourg, Cedex, France
| | - Nicolas Gendron
- Inserm UMR-S 1140, Innovative Therapies in Haemostasis, Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Ludovica Migliozzi
- Innovative Therapies in Haemostasis, Service de Chirurgie Cardiaque et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | | | | | - Pascale Gaussem
- Innovative Therapies in Haemostasis, Service d'Hématologie, Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Peter Ivak
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Claude Girard
- Unité d'Anesthesie Réanimation Cardio-Vasculaire, CHU François Mitterrand, Dijon Cedex, France
| | - Alain Carpentier
- Innovative Therapies in Haemostasis, Université de Paris, Paris, France
| | - Christian Latremouille
- Innovative Therapies in Haemostasis, Service de Chirurgie Cardiaque et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Coralie Guerin
- Innovative Therapies in Haemostasis, Plateforme de Cytométrie, Institut Curie, Université de Paris, Paris, France
| | - Ivan Netuka
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
27
|
Isenberg JS, Roberts DD. Thrombospondin-1 in maladaptive aging responses: a concept whose time has come. Am J Physiol Cell Physiol 2020; 319:C45-C63. [PMID: 32374675 DOI: 10.1152/ajpcell.00089.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous age-dependent alterations at the molecular, cellular, tissue and organ systems levels underlie the pathophysiology of aging. Herein, the focus is upon the secreted protein thrombospondin-1 (TSP1) as a promoter of aging and age-related diseases. TSP1 has several physiological functions in youth, including promoting neural synapse formation, mediating responses to ischemic and genotoxic stress, minimizing hemorrhage, limiting angiogenesis, and supporting wound healing. These acute functions of TSP1 generally require only transient expression of the protein. However, accumulating basic and clinical data reinforce the view that chronic diseases of aging are associated with accumulation of TSP1 in the extracellular matrix, which is a significant maladaptive contributor to the aging process. Identification of the relevant cell types that chronically produce and respond to TSP1 and the molecular mechanisms that mediate the resulting maladaptive responses could direct the development of therapeutic agents to delay or revert age-associated maladies.
Collapse
Affiliation(s)
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
28
|
Schröder A, Aitken KJ, Jiang JX, Sidler M, Tölg C, Siebenaller A, Jeffrey N, Kirwan T, Leslie B, Wu C, Weksberg R, Delgado-Olguin P, Bägli DJ. Persistent myopathy despite release of partial obstruction: in vivo reversal of dysfunction and transcriptional responses using rapamycin. FASEB J 2020; 34:3594-3615. [PMID: 31984552 DOI: 10.1096/fj.201900547rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
Abstract
Current and potential medical therapy for obstruction-induced myopathic bladder dysfunction (from benign prostatic hyperplasia or posterior urethral valves) focuses on symptoms. The persistent tissue pathology and dysfunction after release of obstruction is often deemed irreversible without any systematic therapeutic approaches. As rapamycin can attenuate bladder smooth muscle hypertrophy and dysfunction during the genesis of partial obstruction in vivo, we tested whether rapamycin could improve persistent function after release of obstruction (de-obstruction or REL). Female Sprague-Dawley rat bladders were partially obstructed (PBO) by suturing around both the urethra and a para-urethral steel rod, then removing the rod. One day prior to release of obstruction (preREL), voiding parameters and residual urine volume of preREL+future rapa, preREL+future veh groups were recorded. Release of obstruction (REL) was performed by suture removal following 6 weeks of PBO. For 4 more weeks after the de-obstruction, REL animals were randomized to rapamycin (REL+rapa) or vehicle (REL+veh). PBO for 6 weeks were used as positive controls. In shams, the urethra was exposed, but no suture tied. Voiding parameters and residual urine volume were measured prior to sacrifice of sham and REL+veh or REL+rapa, and PBO. Rapamycin efficacy was tested by pair-wise comparison of changes in individual voiding data from preREL+future veh or preREL+future rapa versus REL+veh or REL+rapa, respectively, as well as by comparisons of REL+veh to REL+rapa groups. Bladders were weighed and processed for a high-throughput QPCR array, and histopathology. Bladder/body mass ratios with PBO increased significantly and remained higher in the release phase in REL+veh animals. REL+rapa versus REL+veh improved residual volumes and micturition fractions toward sham levels. Three genes encoding extracellular proteins, BMP2, SOD3, and IGFBP7, correlated with functional improvement by Pearson's correlations. The promoters of these genes showed enrichment for several motifs including circadian E-boxes. While obstruction and REL augmented CLOCK and NPAS2 expression above sham levels, rapamycin treatment during release significantly blocked their expression. This experimental design of pharmaco-intervention during the de-obstruction phase revealed a novel pathway dysregulated during the clinically relevant treatment phase of obstructive bladder myopathy.
Collapse
Affiliation(s)
- Annette Schröder
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Karen J Aitken
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Jia-Xin Jiang
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Martin Sidler
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cornelia Tölg
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Aliza Siebenaller
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Nefateri Jeffrey
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Tyler Kirwan
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Bruno Leslie
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Rosanna Weksberg
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Genetics and Genome Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Paul Delgado-Olguin
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - Darius J Bägli
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Abstract
Humans, like all mammals, partition their daily behaviour into activity (wakefulness) and rest (sleep) phases that differ largely in their metabolic requirements. The circadian clock evolved as an autonomous timekeeping system that aligns behavioural patterns with the solar day and supports the body functions by anticipating and coordinating the required metabolic programmes. The key component of this synchronization is a master clock in the brain, which responds to light-darkness cues from the environment. However, to achieve circadian control of the entire organism, each cell of the body is equipped with its own circadian oscillator that is controlled by the master clock and confers rhythmicity to individual cells and organs through the control of rate-limiting steps of metabolic programmes. Importantly, metabolic regulation is not a mere output function of the circadian system, but nutrient, energy and redox levels signal back to cellular clocks in order to reinforce circadian rhythmicity and to adapt physiology to temporal tissue-specific needs. Thus, multiple systemic and molecular mechanisms exist that connect the circadian clock with metabolism at all levels, from cellular organelles to the whole organism, and deregulation of this circadian-metabolic crosstalk can lead to various pathologies.
Collapse
|
30
|
Yu H, Kalogeris T, Korthuis RJ. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic Biol Med 2019; 135:182-197. [PMID: 30849489 PMCID: PMC6503659 DOI: 10.1016/j.freeradbiomed.2019.02.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cells line the inner surface of the entire cardiovascular system as a single layer and are involved in an impressive array of functions, ranging from the regulation of vascular tone in resistance arteries and arterioles, modulation of microvascular barrier function in capillaries and postcapillary venules, and control of proinflammatory and prothrombotic processes, which occur in all segments of the vascular tree but can be especially prominent in postcapillary venules. When tissues are subjected to ischemia/reperfusion (I/R), the endothelium of resistance arteries and arterioles, capillaries, and postcapillary venules become dysfunctional, resulting in impaired endothelium-dependent vasodilator and enhanced endothelium-dependent vasoconstrictor responses along with increased vulnerability to thrombus formation, enhanced fluid filtration and protein extravasation, and increased blood-to-interstitium trafficking of leukocytes in these functionally distinct segments of the microcirculation. The number of capillaries open to flow upon reperfusion also declines as a result of I/R, which impairs nutritive perfusion. All of these pathologic microvascular events involve the formation of reactive species (RS) derived from molecular oxygen and/or nitric oxide. In addition to these effects, I/R-induced RS activate NLRP3 inflammasomes, alter connexin/pannexin signaling, provoke mitochondrial fission, and cause release of microvesicles in endothelial cells, resulting in deranged function in arterioles, capillaries, and venules. It is now apparent that this microvascular dysfunction is an important determinant of the severity of injury sustained by parenchymal cells in ischemic tissues, as well as being predictive of clinical outcome after reperfusion therapy. On the other hand, RS production at signaling levels promotes ischemic angiogenesis, mediates flow-induced dilation in patients with coronary artery disease, and instigates the activation of cell survival programs by conditioning stimuli that render tissues resistant to the deleterious effects of prolonged I/R. These topics will be reviewed in this article.
Collapse
Affiliation(s)
- Hong Yu
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ted Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA.
| |
Collapse
|
31
|
Young ME, Reddy AB, Pollock DM. Introduction to special issue: Circadian regulation of metabolism, redox signaling and function in health and disease. Free Radic Biol Med 2018; 119:1-2. [PMID: 29604398 PMCID: PMC6348105 DOI: 10.1016/j.freeradbiomed.2018.03.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Akhilesh B Reddy
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
32
|
Douma LG, Gumz ML. Circadian clock-mediated regulation of blood pressure. Free Radic Biol Med 2018; 119:108-114. [PMID: 29198725 PMCID: PMC5910276 DOI: 10.1016/j.freeradbiomed.2017.11.024] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022]
Abstract
Most bodily functions vary over the course of a 24h day. Circadian rhythms in body temperature, sleep-wake cycles, metabolism, and blood pressure (BP) are just a few examples. These circadian rhythms are controlled by the central clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral clocks located throughout the body. Light and food cues entrain these clocks to the time of day and this synchronicity contributes to the regulation of a variety of physiological processes with effects on overall health. The kidney, brain, nervous system, vasculature, and heart have been identified through the use of mouse models and clinical trials as peripheral clock regulators of BP. The dysregulation of this circadian pattern of BP, with or without hypertension, is associated with increased risk for cardiovascular disease. The mechanism of this dysregulation is unknown and is a growing area of research. In this review, we highlight research of human and mouse circadian models that has provided insight into the roles of these molecular clocks and their effects on physiological functions. Additional tissue-specific studies of the molecular clock mechanism are needed, as well as clinical studies including more diverse populations (different races, female patients, etc.), which will be critical to fully understand the mechanism of circadian regulation of BP. Understanding how these molecular clocks regulate the circadian rhythm of BP is critical in the treatment of circadian BP dysregulation and hypertension.
Collapse
Affiliation(s)
- Lauren G Douma
- Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL 32610, United States; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL 32610, United States; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|