1
|
Xiao Y, He M, Zhang X, Yang M, Yuan Z, Yao S, Qin Y. Research progress on the mechanism of tumor cell ferroptosis regulation by epigenetics. Epigenetics 2025; 20:2500949. [PMID: 40327848 DOI: 10.1080/15592294.2025.2500949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025] Open
Abstract
Cancer remains a significant barrier to human longevity and a leading cause of mortality worldwide. Despite advancements in cancer therapies, challenges such as cellular toxicity and drug resistance to chemotherapy persist. Regulated cell death (RCD), once regarded as a passive process, is now recognized as a programmed mechanism with distinct biochemical and morphological characteristics, thereby presenting new therapeutic opportunities. Ferroptosis, a novel form of RCD characterized by iron-dependent lipid peroxidation and unique mitochondrial damage, differs from apoptosis, autophagy, and necroptosis. It is driven by reactive oxygen species (ROS)-induced lipid peroxidation and is implicated in tumorigenesis, anti-tumor immunity, and resistance, particularly in tumors undergoing epithelial-mesenchymal transition. Moreover, ferroptosis is associated with ischemic organ damage, degenerative diseases, and aging, regulated by various cellular metabolic processes, including redox balance, iron metabolism, and amino acid, lipid, and glucose metabolism. This review focuses on the role of epigenetic factors in tumor ferroptosis, exploring their mechanisms and potential applications in cancer therapy. It synthesizes current knowledge to provide a comprehensive understanding of epigenetic regulation in tumor cell ferroptosis, offering insights for future research and clinical applications.
Collapse
Affiliation(s)
- Yuyang Xiao
- Department of Health Management Medical, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mengyang He
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xupeng Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meng Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhangchi Yuan
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shanhu Yao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Medical Information Research, Central South University, Changsha, Hunan, China
| | - Yuexiang Qin
- Department of Health Management Medical, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Wu Y, Wei M, Wang M, Guo M, Yu H, Chen Y, Xu T, Zhou Y. Schisandra total lignans ameliorate neuronal ferroptosis in 3xTg-AD mice via regulating NADK/NADPH/GSH pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156612. [PMID: 40088743 DOI: 10.1016/j.phymed.2025.156612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/22/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder with limited treatments. Schisandra total lignans (STL), the primary active component of Schisandra chinensis, shows potential in alleviating AD-related symptoms, though the mechanisms remain unclear. PURPOSE Considering the promoting effect of neuronal ferroptosis on AD and the neuroprotective activity of STL, this study aimed to investigate the impact of STL on AD neuronal ferroptosis and elucidate its underlying mechanisms. METHODS This study used 3xTg-AD mice and SH-SY5Y cells overexpressing APPswe as models. UHPLC/Q-TOF-MS was applied for identifying components in STL extract and the plasma of 3xTg-AD mice, as well as to detect cellular endogenous metabolites for one-carbon metabolism analysis. Behavioral tests, including the Y maze, novel object recognition, Morris water maze, and open field, were conducted to assess the cognitive function and emotional state. Histopathological examinations were performed using immunofluorescence, immunohistochemistry, Nissl staining, and transmission electron microscopy. The GSH, GSSG, NAD(H), NADP(H), and MDA levels, as well as GPX and GR activity were measured using assay kits. ROS, Fe2+, and lipid peroxidation levels were detected with probes. Protein expression was evaluated by Western blot. Molecular docking, molecular dynamics simulations and cellular thermal shift assay were performed to analyze the STL-NADK interactions. RESULTS Behavioral tests indicated that STL alleviated cognitive impairments and anxiety in 3xTg-AD mice. Histological analysis showed that STL decreased hippocampal Aβ levels, inhibited hippocampal neuronal ferroptosis, and mitigated synaptic damage. Cellular assays demonstrated that STL alleviated APPswe overexpression-induced ferroptosis and synaptic damage by activating the NADK/NADPH/GSH pathway, with NADK knockdown abolishing this neuroprotective effect of STL. Computational analysis and cellular thermal shift assay identified Gomisin D as the key STL component with strong affinity for NADK, driving its neuroprotective effects. CONCLUSION NADK emerges as a novel potential therapeutic target for AD, with STL activating NADK, promoting NADPH and GSH production, thereby mitigating neuronal ferroptosis in AD.
Collapse
Affiliation(s)
- Yuying Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mengying Wei
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Mengyao Wang
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Minsong Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hengyuan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Tengfei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
3
|
Mu F, Luo P, Zhu Y, Nie P, Li B, Bai X. Iron Metabolism and Ferroptosis in Diabetic Kidney Disease. Cell Biochem Funct 2025; 43:e70067. [PMID: 40166850 DOI: 10.1002/cbf.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Diabetic kidney disease (DKD) is a major diabetic microvascular complication that still lacks effective therapeutic drugs. Ferroptosis is a recently identified form of programmed cell death that is triggered by iron overload. It is characterized by unrestricted lipid peroxidation and subsequent membrane damage and is found in various diseases. Accumulating evidence has highlighted the crucial roles of iron overload and ferroptosis in DKD. Here, we review iron metabolism and the biology of ferroptosis. The role of aberrant ferroptosis in inducing diverse renal intrinsic cell death, oxidative stress, and renal fibrosis in DKD is summarized, and we elaborate on critical regulatory factors related to ferroptosis in DKD. Finally, we focused on the significance of ferroptosis in the treatment of DKD and highlight recent data regarding the novel activities of some drugs as ferroptosis inhibitors in DKD, aiming to provide new research targets and treatment strategies on DKD.
Collapse
Affiliation(s)
- Fangxin Mu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Zhao Y, Xu Y, Xu Q, He N, Zhao J, Liu Y. p23 protects against ferroptosis of brain microvascular endothelial cells in ischemic stroke. Int J Mol Med 2025; 55:64. [PMID: 39981897 PMCID: PMC11878478 DOI: 10.3892/ijmm.2025.5505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/03/2025] [Indexed: 02/22/2025] Open
Abstract
Ferroptosis is a type of iron‑dependent regulated cell death that differs from apoptosis, autophagy or necrosis. p23 serves as a co‑chaperone and performs a unique biological function in various diseases by binding to client proteins to modulate their biological functions; however, its effect on ferroptosis remains largely unknown. In the present study, the effects of cerebral ischemia/reperfusion (I/R) injury (CIRI) or oxygen‑glucose deprivation/reoxygenation on the blood‑brain barrier (BBB) and ferroptosis in brain microvascular endothelial cells (BMECs), as well as the expression of p23, were examined. Subsequently, the effects of p23 on CIRI‑induced BBB dysfunction and BMEC ferroptosis were determined. Finally, the role of glutathione peroxidase 4 (GPX4) in the regulatory effects of p23 on ferroptosis was detected. The results revealed that p23 protected against BBB injury caused by CIRI by inhibiting ferroptosis in BMECs. The effect of p23 on ferroptosis was then explored, and it was found that the expression of GPX4, a major regulator of ferroptosis, was promoted by p23. Furthermore, molecular docking and co‑immunoprecipitation experiments revealed that p23 could bind to GPX4 through its N‑terminal domain (1‑90aa), enhance the stability of GPX4 and inhibit the degradation of GPX4 by cycloheximide. Finally, a cerebral I/R animal model was established using GPX4 conditional knockout mice (GPX4 FosCreERT2/+), and it was revealed that the protective effect of p23 overexpression on the BBB in GPX4 FosCreERT2/+ mice was attenuated compared with that in GPX4 FosCreERT2/‑ mice. In conclusion, p23 may serve a protective role against cerebral I/R‑induced BBB injury by inhibiting ferroptosis in BMECs through enhancing the stability of GPX4, providing a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan 410013, P.R. China
- National Medicine Functional Experimental Teaching Center, Changsha, Hunan 410013, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan 410013, P.R. China
- National Medicine Functional Experimental Teaching Center, Changsha, Hunan 410013, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan 410013, P.R. China
- National Medicine Functional Experimental Teaching Center, Changsha, Hunan 410013, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan 410013, P.R. China
- National Medicine Functional Experimental Teaching Center, Changsha, Hunan 410013, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan 410013, P.R. China
- National Medicine Functional Experimental Teaching Center, Changsha, Hunan 410013, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan 410013, P.R. China
- National Medicine Functional Experimental Teaching Center, Changsha, Hunan 410013, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
5
|
Mao X, Xiong J, Cai M, Wang C, He Q, Wang B, Chen J, Xiao Z, Wang B, Han S, Zhang Y. SCARB1 links cholesterol metabolism-mediated ferroptosis inhibition to radioresistance in tumor cells. J Adv Res 2025:S2090-1232(25)00045-1. [PMID: 39832721 DOI: 10.1016/j.jare.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Ferroptosis is an iron-dependent form of cell death triggered by the excessive accumulation of lipid peroxides. Understanding the regulatory mechanisms of ferroptosis and developing strategies to target this process hold significant clinical applications in tumor therapy. OBJECTIVE Our study aims to search for novel candidate genes involved in the regulation of ferroptosis and to investigate their mechanism of action in ferroptosis and tumor therapy. METHODS We employed a CRISPR-Cas9 library to perform a genome-wide screen under ferroptosis inducer treatment conditions, revealing Scavenger Receptor Class B Member 1(SCARB1) as a novel candidate gene involved in ferroptosis regulation. Subsequently, lipidomic analyses, metabolic interventions, and relevant cellular experimental analyses were performed to elucidate the role of SCARB1 in ferroptosis, lipid peroxidation, and tumor therapy. RESULTS Our study confirmed that SCARB1 significantly inhibits ferroptosis and lipid peroxidation induced by ferroptosis inducers. Mechanistically, SCARB1 inhibits ferroptosis through the regulation of cholesterol metabolism, and the upregulation of CoQ10 level is demonstrated to mediate the suppression of ferroptosis by SCARB1 after lipidomic analysis and metabolic intervention. Interestingly, SCARB1 exerts a tumor suppressive effect regarding tumor growth, migration and invasion, which is possibly independent of ferroptosis regulation. However, SCARB1 promotes radioresistance through the upregulation of cholesterol metabolism and inhibition of ferroptosis, while the combination of ferroptosis inducers can overcome radioresistance in tumor cells with high SCARB1 expression. CONCLUSION This study establishes a theoretical foundation for the regulation of ferroptosis by SCARB1 and highlights the potential of targeting lipid metabolism to overcome radioresistance in cancer therapy. The identification of SCARB1 as a key player in ferroptosis and its dual role in tumor suppression and radioresistance provides new avenues for therapeutic intervention in cancer treatment.
Collapse
Affiliation(s)
- Xiaojuan Mao
- Department of Radiation Oncology, The First Affiliated Hospital, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jingwen Xiong
- Department of Radiation Oncology, The First Affiliated Hospital, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengjiao Cai
- Department of Radiation Oncology, The First Affiliated Hospital, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qian He
- Department of Radiation Oncology, The First Affiliated Hospital, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Binxian Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Chen
- Shaanxi Stem Cell Engineering Application Research Center, Shaanxi Jiuzhou Biomedical Science and Technology Group, Xi'an, Shaanxi, China
| | - Zhengtao Xiao
- Department of Radiation Oncology, The First Affiliated Hospital, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Baofeng Wang
- Department of Radiation Therapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Yilei Zhang
- Department of Radiation Oncology, The First Affiliated Hospital, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Liu S, Wang J. Recent Progress of Glutathione Peroxidase 4 Inhibitors in Cancer Therapy. Mini Rev Med Chem 2025; 25:42-57. [PMID: 38879766 DOI: 10.2174/0113895575308546240607073310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 01/31/2025]
Abstract
Ferroptosis is a novel type of programmed cell death that relies on the build-up of intracellular iron and leads to an increase in toxic lipid peroxides. Glutathione Peroxidase 4 (GPX4) is a crucial regulator of ferroptosis that uses glutathione as a cofactor to detoxify cellular lipid peroxidation. Targeting GPX4 in cancer could be a promising strategy to induce ferroptosis and kill drugresistant cancers effectively. Currently, research on GPX4 inhibitors is of increasing interest in the field of anti-tumor agents. Many reviews have summarized the regulation and ferroptosis induction of GPX4 in human cancer and disease. However, insufficient attention has been paid to GPX4 inhibitors. This article outlines the molecular structures and development prospects of GPX4 inhibitors as novel anticancer agents.
Collapse
Affiliation(s)
- Shangde Liu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Zhang W, Yan Y, Yi C, Jiang X, Guo L, Huang S, Xia T, Huang F, Jiao Y, Li H, Yu B, Dai Y. Targeting ferroptosis in the neurovascular unit: A promising approach for treating diabetic cognitive impairment. Int Immunopharmacol 2024; 142:113146. [PMID: 39298819 DOI: 10.1016/j.intimp.2024.113146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The cognitive decline associated with chronic metabolic disease diabetes has garnered extensive scrutiny, yet its pathogenesis remains incompletely understood, and the advancement of targeted therapeutics has posed a persistent challenge. Ferroptosis, a novel form of cell death characterized by intracellular lipid peroxidation and iron overload, has recently emerged as a significant factor. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetes-induced cognitive impairment. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetic cognitive impairment (DCI). This article initially conducts a profound analysis of the mechanism of ferroptosis, followed by a detailed elucidation of the specific manifestations of neurovascular unit ferroptosis in the context of diabetic cognitive function impairment. Furthermore, an exhaustive review of pertinent literature from April 2020 to March 2024 has been undertaken, resulting in the selection of 31 documents of significant reference value. These documents encompass studies on 11 distinct drugs, all of which are centered around investigating methods to inhibit the ferroptosis pathway as a potential treatment for DCI. Simultaneously, we conducted a review of 12 supplementary literary sources that presented 10 pharmacological agents with anti-ferroptosis properties in other neurodegenerative disorders. This article critically examines the potential influence of neurovascular unit ferroptosis on the progression of cognitive impairment in diabetes, from the three aforementioned perspectives, and organizes the existing and potential therapeutic drugs. It is our aspiration that this article will serve as a theoretical foundation for scholars in related disciplines when conceptualizing, investigating, and developing novel clinical drugs for DCI.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tong Xia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fayin Huang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yike Jiao
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
8
|
Zhao M, Wang H, Zhang Y, Lv C, Guan J, Chen X. Selenium alleviates dextran sulfate sodium-induced colitis and inhibits ferroptosis of intestinal epithelial cells via upregulating glutathione peroxidase 4. J Gastroenterol Hepatol 2024; 39:2709-2722. [PMID: 39285673 DOI: 10.1111/jgh.16738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/04/2024] [Accepted: 08/29/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND AND AIM Selenium, an essential micronutrient for humans, has been shown to be protective against ulcerative colitis (UC), but the exact mechanism remains unclear. The role of selenium, protecting against ferroptosis of intestinal epithelial cells (IECs) in colitis, was investigated in this current study. METHODS Serum selenium level and ferroptosis-related gene expression in the colonic mucosa were measured in UC patients and healthy controls. The effects of sodium selenite supplementation on experimental colitis were investigated in dextran sulfate sodium (DSS)-treated mice. The influence of sodium selenite on IEC ferroptosis was evaluated through assessing cell death rate, intracellular ferrous iron content, lipid reactive oxygen species level, and mitochondrial membrane damage of DSS-treated Caco-2 cells. Moreover, glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4, ferroptosis-related genes, were detected in Caco-2 cells and mouse intestines. RESULTS Serum selenium was decreased in UC patients in comparison with healthy individuals. Additionally, serum selenium level was negatively correlated with disease activity and was associated with clinical inflammation and nutrition indicators. The expression of GPX4 in the mucosa of UC was positively correlated with serum selenium level. The in vivo experiments showed that selenium treatment ameliorated DSS-induced colitis and inhibited ferroptosis in IECs. The in vitro results suggested that selenium supplementation inhibited DSS-induced ferroptosis in Caco-2 cells. GPX4 was upregulated after selenium supplementation both in vivo and in vitro. CONCLUSIONS Serum selenium level was associated with IEC ferroptosis in UC patients. Selenium supplementation alleviates DSS-induced colitis and inhibits ferroptosis in IECs by upregulating the expression of GPX4.
Collapse
Affiliation(s)
- Mengxue Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Digestive Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongqian Wang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Digestive Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yumeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Digestive Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chuang Lv
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Digestive Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Guan
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Digestive Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Digestive Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
You Y, Qian Z, Jiang Y, Chen L, Wu D, Liu L, Zhang F, Ning X, Zhang Y, Xiao J. Insights into the pathogenesis of gestational and hepatic diseases: the impact of ferroptosis. Front Cell Dev Biol 2024; 12:1482838. [PMID: 39600338 PMCID: PMC11588751 DOI: 10.3389/fcell.2024.1482838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Ferroptosis, a distinct form of non-apoptotic cell death characterized by iron dependency and lipid peroxidation, is increasingly linked to various pathological conditions in pregnancy and liver diseases. It plays a critical role throughout pregnancy, influencing processes such as embryogenesis, implantation, and the maintenance of gestation. A growing body of evidence indicates that disruptions in these processes can precipitate pregnancy-related disorders, including pre-eclampsia (PE), gestational diabetes mellitus (GDM), and intrahepatic cholestasis of pregnancy (ICP). Notably, while ICP is primarily associated with elevated maternal serum bile acid levels, its precise etiology remains elusive. Oxidative stress induced by bile acid accumulation is believed to be a significant factor in ICP pathogenesis. Similarly, the liver's susceptibility to oxidative damage underscores the importance of lipid metabolism dysregulation and impaired iron homeostasis in the progression of liver diseases such as alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), cholestatic liver injury, autoimmune hepatitis (AIH), acute liver injury, viral hepatitis, liver fibrosis, and hepatocellular carcinoma (HCC). This review discusses the shared signaling mechanisms of ferroptosis in gestational and hepatic diseases, and explores recent advances in understanding the mechanisms of ferroptosis and its potential role in the pathogenesis of gestational and hepatic disorders, with the aim of identifying viable therapeutic targets.
Collapse
Affiliation(s)
- Yilan You
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Zhiwen Qian
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ying Jiang
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Lingyan Chen
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Danping Wu
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Lu Liu
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Feng Zhang
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xin Ning
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Yan Zhang
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Jianping Xiao
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Shi J, Ji S, Xu M, Wang Y, Shi H. Selenium inhibits ferroptosis in ulcerative colitis through the induction of Nrf2/Gpx4. Clin Res Hepatol Gastroenterol 2024; 48:102467. [PMID: 39313068 DOI: 10.1016/j.clinre.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/23/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND AND AIM Selenium, an essential micronutrient for human and has been reported to have a protective effect in ulcerative colitis (UC). However, the role of selenium in UC is unclear. Our aim was to investigate the mechanism of action of selenium in UC. METHODS Serum selenium levels were measured in UC patients and healthy controls. In addition, the effect of sodium selenite supplementation on experimental colitis in mice treated with dextran sulfate sodium (DSS) was investigated. The effect of sodium selenite on IECs ferroptosis was evaluated by observing the cell mortality, intracellular ferrous content, lipid reactive oxygen species and mitochondrial membrane damage in DSS-treated Caco2 cells. In addition, glutathione peroxidase 4 (Gpx4) and nuclear factor erythroid 2-like 2 (Nrf2) were detected in Caco2 cells and mouse intestines to explore their mechanisms. RESULTS The serum selenium content of UC patients was lower than that of healthy subjects. In addition, serum selenium levels were negatively correlated with disease activity. The in vivo results showed that selenium treatment could improve colitis induced by DSS and inhibit IECs ferroptosis. The in vitro results further showed that selenium inhibited the ferroptosis of Caco-2 cells induced by DSS. Nrf2/Gpx4 was up-regulated after selenium supplementation in vivo and in vitro. CONCLUSIONS Serum selenium level is associated with IECs ferroptosis in UC patients. Selenium can relieve DSS-induced colitis and inhibit IECs ferroptosis by up-regulating the expression of Nrf2/Gpx4.
Collapse
Affiliation(s)
- Jie Shi
- Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's hospital, Wuxi, Jiangsu Province 214187, China.
| | - Shan Ji
- Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's hospital, Wuxi, Jiangsu Province 214187, China
| | - Mengyao Xu
- Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's hospital, Wuxi, Jiangsu Province 214187, China
| | - Yongan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hui Shi
- Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's hospital, Wuxi, Jiangsu Province 214187, China.
| |
Collapse
|
11
|
Liu Y, Zhao X, Qu C, Chen M, Zhang R. The Dynamics of Methylation Concentrations in Glutathione Peroxidase 3 Promoter from Patients with Chronic Heart Failure and Their Association with Key Clinical Parameters. J Nutr 2024; 154:3365-3374. [PMID: 39277114 DOI: 10.1016/j.tjnut.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
OBJECTIVE This study investigated changes in methylation concentrations within the glutathione peroxidase 3 (GPX3) promoter region among patients diagnosed with chronic heart failure (CHF). Peripheral blood samples were collected from 20 CHF patients and 20 healthy individuals for analysis. METHODS Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, methylation concentrations of 11 CpG sites within the GPX3 promoter region were quantified. RESULTS Results showed a significant increase in methylation at the GPX3_FA10_CpG_24 site in patients with CHF compared with the control group (P < 0.05). Furthermore, a nonlinear dose-response relationship was observed between methylation concentrations at this site and key clinical parameters including serum apolipoprotein A-1, D-dimer, chlorine, potassium, and sodium (Na) (P < 0.05). CONCLUSIONS These findings suggest that aberrant methylation of the GPX3 promoter may impact disease progression by influencing physiological functions such as blood lipids, coagulation, and electrolytes. Further investigations are warranted to elucidate the role of GPX3 promoter methylation in CHF pathogenesis, potentially contributing valuable insights for its prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Yanmei Liu
- Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Xu Zhao
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chuanyong Qu
- Department of Neurology, People's Hospital of Ningxia Hui Autonomous Region, Ningxia, Yinchuan, China
| | - Mengli Chen
- Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China.
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China.
| |
Collapse
|
12
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Wang X, Lin Z, Li T, Zhu W, Huang H, Hu J, Zhou J. Sodium Selenite Prevents Matrine-Induced Nephrotoxicity by Suppressing Ferroptosis via the GSH-GPX4 Antioxidant System. Biol Trace Elem Res 2024; 202:4674-4686. [PMID: 38177716 DOI: 10.1007/s12011-023-04044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Matrine (MT), an active ingredient derived from Sophor flavescens Ait, is used as a therapeutic agent to treat liver disease and cancer. However, the serious toxic effects of MT, including nephrotoxicity, have limited its clinical application. Here, we explored the involvement of ferroptosis in MT-induced kidney injury and evaluated the potential efficacy and underlying mechanism of sodium selenite (SS) in attenuating MT-induced nephrotoxicity. We found that MT not only disrupts renal structure in mice but also induces the death of NRK-52E cells. Additionally, MT treatment resulted in significant elevations in ferrous iron, reactive oxygen species (ROS) and lipid peroxidation levels, accompanied by decreases in glutathione (GSH) and glutathione peroxidase (GPx) levels. SS effectively mitigated the alterations in ferroptosis-related indicators caused by MT and prevented MT-induced nephrotoxicity as effectively as Fer-1 in vivo and in vitro. SS also reversed the MT-induced reduction in GPX4, CTH and xCT protein levels. However, the glutathione peroxidase 4 (GPX4) inhibitor RSL3 and knockdown of GPX4, CTH, or xCT via siRNA abolished the protective effect of SS against MT-induced nephrotoxicity, indicating that SS exhibited antiferroptotic effects via the GSH-GPX4 antioxidant system. Overall, MT-induced ferroptosis triggers nephrotoxicity, and SS is a promising therapeutic drug for alleviating MT-induced renal injury by activating the GSH-GPX4 axis.
Collapse
Affiliation(s)
- Xi Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, Jiangxi, 336000, People's Republic of China
| | - Zixiong Lin
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, Jiangxi, 336000, People's Republic of China
| | - Ting Li
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, Jiangxi, 336000, People's Republic of China
| | - Wenjing Zhu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, Jiangxi, 336000, People's Republic of China
| | - Hanxin Huang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, Jiangxi, 336000, People's Republic of China
| | - Jiayan Hu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, Jiangxi, 336000, People's Republic of China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, Jiangxi, 336000, People's Republic of China.
| |
Collapse
|
14
|
Ma B, Hu X, Ai X, Zhang Y. Research progress of ferroptosis and inflammatory bowel disease. Biometals 2024; 37:1039-1062. [PMID: 38713412 DOI: 10.1007/s10534-024-00604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Inflammatory bowel disease (IBD) is a non-specific chronic inflammatory disorder of the gastrointestinal tract, imposing significant burdens on both society and individuals. As a new type of regulated cell death (RCD), ferroptosis is different from classic RCDs such as apoptosis and necrosis in cell morphology, biochemistry and genetics. The main molecular mechanisms of ferroptosis include dysregulation of iron metabolism, impaired antioxidant capacity, mitochondrial dysfunction, accumulation of lipid-associated super-oxides, and membrane disruption. In recent years, increasing evidence has shown that ferroptosis is involved in the pathophysiology of inflammatory bowel disease. However, the exact roles and underlying molecular mechanisms have not been fully elucidated. This article reviews the mechanism of ferroptosis in the occurrence and development of inflammatory bowel disease, in order to provide new ideas for the pathophysiological research of inflammatory bowel disease. Additionally, we discuss potential strategies for the prevention and treatment of inflammatory bowel disease by targeting ferroptosis.
Collapse
Affiliation(s)
- Baolian Ma
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xiaoxue Hu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xiaowen Ai
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yonglan Zhang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China.
| |
Collapse
|
15
|
Huangfu S, Zheng J, He J, Liao J, Jiang H, Zhou H, Pan J. Protective role of seleno-amino acid against IBD via ferroptosis inhibition in enteral nutrition therapy. iScience 2024; 27:110494. [PMID: 39290833 PMCID: PMC11407031 DOI: 10.1016/j.isci.2024.110494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 09/19/2024] Open
Abstract
The interplay between intestinal barrier degradation and trace element insufficiency worsens inflammatory bowel disease (IBD). Selenium (se) is essential for glutathione peroxidase 4 (GPX4) synthesis, which protects against intestinal epithelial cell injury in IBD. However, malnutrition and malabsorption limit the availability of dietary selenium. This study investigated the protective effects of naturally occurring seleno-amino acids on the intestinal barrier in an IBD animal model by promoting GPX4 synthesis. L-se-methylselenocystine (seMc) supplementation reversed decreased GPX4 expression levels, alleviated glutathione depletion and scavenged reactive oxygen species in vitro. In vivo, enteral nutrition combined with seMc protected the intestinal barrier and alleviated IBD-related symptoms by inhibiting ferroptosis and reversing lipid peroxidation in epithelial cells while reducing immune cell infiltration. Our findings suggest that seleno-amino acid-based nutritional formulations may provide a basis for nutritional support to alleviate complex cycles between intestinal barrier damage and malnutrition in IBD patients.
Collapse
Affiliation(s)
- Shuchen Huangfu
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jiashuai He
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jin Liao
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Haiping Jiang
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Hua Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jinghua Pan
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
16
|
Gao F, Xu T, Zang F, Luo Y, Pan D. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms, Clinical Management and Innovative Treatment. Drug Des Devel Ther 2024; 18:4089-4116. [PMID: 39286288 PMCID: PMC11404500 DOI: 10.2147/dddt.s469331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
With the continuous refinement of therapeutic measures, the survival rate of tumor patients has been improving year by year, while cardiovascular complications related to cancer therapy have become increasingly prominent. Exploring the mechanism and prevention strategy of cancer therapy-related cardiovascular toxicity (CTR-CVT) remains one of the research hotspots in the field of Cardio-Oncology in recent years. Cardiotoxicity of anticancer drugs involves heart failure, myocarditis, hypertension, arrhythmias and vascular toxicity, mechanistically related to vascular endothelial dysfunction, ferroptosis, mitochondrial dysfunction and oxidative stress. To address the cardiotoxicity induced by different anticancer drugs, various therapeutic measures have been put in place, such as reducing the accumulation of anticancer drugs, shifting to drugs with less cardiotoxicity, using cardioprotective drugs, and early detection. Due to the very limited treatments available to ameliorate anticancer drugs-induced cardiotoxicity, a few innovations are being shifted from animal studies to human studies. Examples include mitochondrial transplantation. Mitochondrial transplantation has been proven to be effective in in vivo and in vitro experiments. Several recent studies have demonstrated that intercellular mitochondrial transfer can ameliorate doxorubicin(DOX)-induced cardiotoxicity, laying the foundation for innovative therapies in anticancer drugs-induced cardiotoxicity. In this review, we will discuss the current status of anticancer drugs-induced cardiotoxicity in terms of the pathogenesis and treatment, with a focus on mitochondrial transplantation, and we hope that this review will bring some inspiration to you.
Collapse
Affiliation(s)
- Feiyu Gao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Tao Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Fangnan Zang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| |
Collapse
|
17
|
Zhou R, Wei K, Li X, Yan B, Li L. Mechanisms of ferroptosis and the relationship between ferroptosis and ER stress after JEV and HSV infection. Front Microbiol 2024; 15:1415417. [PMID: 39323885 PMCID: PMC11422203 DOI: 10.3389/fmicb.2024.1415417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Ferroptosis is a novel form of programmed cell death, which is different from apoptosis, pyroptosis and autophagy in morphology and biochemistry. Ferroptosis is characterized by condensed mitochondrial membrane densities, vanished of mitochondria crista and outer membrane rupture in morphology, and the accumulation of intracellular iron, lipid peroxidation (LPO), decrease of GSH and inhibition of GPX4 in biochemistry. Japanese encephalitis virus (JEV) and Herpes simplex virus (HSV) are both common neurotropic viruses that can cause neurological disorders, such as severe encephalitis. JEV and HSV have been demonstrated to be able to induce ferroptosis. This process is closely related to the inhibition of the GSH-GPX4 system, ACSL4 phosphorylation, and Nrf2 ubiquitination. In this review, we summarized the mechanisms by which JEV and HSV induced ferroptosis in the current study. In addition, we found a strong relationship between endoplasmic reticulum (ER) stress and ferroptosis, and we therefore speculated that sustained ER stress might be a prerequisite for ferroptosis in JEV and HSV-induced diseases.
Collapse
Affiliation(s)
- Rui Zhou
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Kexin Wei
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Xinyu Li
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Beibei Yan
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Lin Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
18
|
Lee J, Roh JL. Cholesterol-ferroptosis nexus: Unveiling novel cancer therapeutic avenues. Cancer Lett 2024; 597:217046. [PMID: 38852702 DOI: 10.1016/j.canlet.2024.217046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Ferroptosis, a novel form of regulated cell death characterized by iron-mediated lipid peroxidation, holds immense potential in cancer therapeutics due to its role in tumor progression and resistance. This review predominantly explores the intricate relationship between ferroptosis and cholesterol metabolism pathways, mainly focusing on the cholesterol biosynthesis pathway. This review highlights the therapeutic implications of targeting cholesterol metabolism pathways for cancer treatment by delving into the mechanisms underlying ferroptosis regulation. Strategies such as inhibiting HMG-CoA reductase and suppressing squalene synthesis offer promising avenues for inducing ferroptosis in cancer cells. Moreover, insights into targeting the 7-dehydrocholesterol pathway provide novel perspectives on modulating ferroptosis susceptibility and managing ferroptosis-associated diseases. Understanding the interplay between ferroptosis and cholesterol metabolism pathways underscores the potential of lipid metabolism modulation as an innovative therapeutic approach in cancer treatment.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|
19
|
Feng L, Sun J, Xia L, Shi Q, Hou Y, Zhang L, Li M, Fan C, Sun B. Ferroptosis mechanism and Alzheimer's disease. Neural Regen Res 2024; 19:1741-1750. [PMID: 38103240 PMCID: PMC10960301 DOI: 10.4103/1673-5374.389362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 09/09/2023] [Indexed: 12/18/2023] Open
Abstract
Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms. This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms. Ferroptosis is a classic regulatory mode of cell death. Extensive studies of regulatory cell death in Alzheimer's disease have yielded increasing evidence that ferroptosis is closely related to the occurrence, development, and prognosis of Alzheimer's disease. This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferroptosis in Alzheimer's disease. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Lina Feng
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Jingyi Sun
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Ling Xia
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qiang Shi
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Yajun Hou
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Lili Zhang
- Department of Internal Medicine, Taian Traffic Hospital, Taian, Shandong Province, China
| | - Mingquan Li
- Department of Neurology, the Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Cundong Fan
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Baoliang Sun
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
20
|
Tang Y, Zhuang Y, Zhao C, Gu S, Zhang J, Bi S, Wang M, Bao L, Li M, Zhang W, Zhu L. The metabolites from traditional Chinese medicine targeting ferroptosis for cancer therapy. Front Pharmacol 2024; 15:1280779. [PMID: 39021832 PMCID: PMC11251977 DOI: 10.3389/fphar.2024.1280779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/15/2024] [Indexed: 07/20/2024] Open
Abstract
Cancer is a major disease with ever-increasing morbidity and mortality. The metabolites derived from traditional Chinese medicine (TCM) have played a significant role in combating cancers with curative efficacy and unique advantages. Ferroptosis, an iron-dependent programmed death characterized by the accumulation of lipid peroxide, stands out from the conventional forms of cell death, such as apoptosis, pyroptosis, necrosis, and autophagy. Recent evidence has demonstrated the potential of TCM metabolites targeting ferroptosis for cancer therapy. We collected and screened related articles published in or before June 2023 using PubMed, Google Scholar, and Web of Science. The searched keywords in scientific databases were ferroptosis, cancer, tumor, traditional Chinese medicine, botanical drugs, and phytomedicine. Only research related to ferroptosis, the metabolites from TCM, and cancer was considered. In this review, we introduce an overview of the current knowledge regarding the ferroptosis mechanisms and review the research advances on the metabolites of TCM inhibiting cancer by targeting ferroptosis.
Collapse
Affiliation(s)
- Yu Tang
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Zhuang
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| | - Shuangshuang Gu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junya Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shiqi Bi
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ming Wang
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lei Bao
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Li
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liqun Zhu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
21
|
Jiang Y, Glandorff C, Sun M. GSH and Ferroptosis: Side-by-Side Partners in the Fight against Tumors. Antioxidants (Basel) 2024; 13:697. [PMID: 38929136 PMCID: PMC11201279 DOI: 10.3390/antiox13060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Glutathione (GSH), a prominent antioxidant in organisms, exhibits diverse biological functions and is crucial in safeguarding cells against oxidative harm and upholding a stable redox milieu. The metabolism of GSH is implicated in numerous diseases, particularly in the progression of malignant tumors. Consequently, therapeutic strategies targeting the regulation of GSH synthesis and metabolism to modulate GSH levels represent a promising avenue for future research. This study aimed to elucidate the intricate relationship between GSH metabolism and ferroptosis, highlighting how modulation of GSH metabolism can impact cellular susceptibility to ferroptosis and consequently influence the development of tumors and other diseases. The paper provides a comprehensive overview of the physiological functions of GSH, including its structural characteristics, physicochemical properties, sources, and metabolic pathways, as well as investigate the molecular mechanisms underlying GSH regulation of ferroptosis and potential therapeutic interventions. Unraveling the biological role of GSH holds promise for individuals afflicted with tumors.
Collapse
Affiliation(s)
- Yulang Jiang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.J.); (C.G.)
- Internal Medicine in Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Christian Glandorff
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.J.); (C.G.)
- Internal Medicine in Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- University Clinic of Hamburg at the HanseMerkur Center of TCM, 20251 Hamburg, Germany
| | - Mingyu Sun
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.J.); (C.G.)
- Internal Medicine in Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
22
|
Guo S, Li Z, Liu Y, Cheng Y, Jia D. Ferroptosis: a new target for hepatic ischemia-reperfusion injury? Free Radic Res 2024; 58:396-416. [PMID: 39068663 DOI: 10.1080/10715762.2024.2386075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Ischemia-reperfusion injury (IRI) can seriously affect graft survival and prognosis and is an unavoidable event during liver transplantation. Ferroptosis is a novel iron-dependent form of cell death characterized by iron accumulation and overwhelming lipid peroxidation; it differs morphologically, genetically, and biochemically from other well-known cell death types (autophagy, necrosis, and apoptosis). Accumulating evidence has shown that ferroptosis is involved in the pathogenesis of hepatic IRI, and targeting ferroptosis may be a promising therapeutic approach. Here, we review the pathways and phenomena involved in ferroptosis, explore the associations and implications of ferroptosis and hepatic IRI, and discuss possible strategies for modulating ferroptosis to alleviate the hepatic IRI.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zexin Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ying Cheng
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Degong Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Zhang M, Yao X, Xu J, Song J, Mai S, Zhu W, Zhang Y, Zhu L, Yang W. Biodegradable zwitterionic polymer-cloaked defective metal-organic frameworks for ferroptosis-inducing cancer therapy. Int J Pharm 2024; 655:124032. [PMID: 38521374 DOI: 10.1016/j.ijpharm.2024.124032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Ferroptosis inhibits tumor growth by iron-dependently accumulating lipid peroxides (LPO) to a lethal extent, which can result from iron overload and glutathione peroxidase 4 (GPX4) inactivation. In this study, we developed biodegradable zwitterionic polymer-cloaked atorvastatin (ATV)-loaded ferric metal-organic frameworks (Fe-MOFs) for cancer treatment. Fe-MOFs served as nanoplatforms to co-deliver ferrous ions and ATV to cancer cells; the zwitterionic polymer membrane extended the circulation time of the nanoparticles and increased their accumulation at tumor sites. In cancer cells, the structure of the Fe-MOFs collapsed in the presence of glutathione (GSH), leading to the depletion of GSH and the release of ATV and Fe2+. The released ATV decreased mevalonate biosynthesis and GSH, resulting in GPX4 attenuation. A large number of reactive oxygen species were generated by the Fe2+-triggered Fenton reaction. This synergistic effect ultimately contributed to a lethal accumulation of LPO, causing cancer cell death. The findings both in vitro and in vivo suggested that this ferroptosis-inducing nanoplatform exhibited enhanced anticancer efficacy and preferable biocompatibility, which could provide a feasible strategy for anticancer therapy.
Collapse
Affiliation(s)
- Minghua Zhang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Xianxian Yao
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Jian Xu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Jiaying Song
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Shuting Mai
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Weichu Zhu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Yichen Zhang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China.
| |
Collapse
|
24
|
Yehia A, Abulseoud OA. Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Mol Neurodegener 2024; 19:36. [PMID: 38641847 PMCID: PMC11031980 DOI: 10.1186/s13024-024-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.
Collapse
Affiliation(s)
- Asmaa Yehia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA.
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
25
|
Shirahama H, Tani Y, Tsukahara S, Okamoto Y, Hasebe A, Noda T, Ando S, Ushijima M, Matsuura M, Tomida A. Induction of stearoyl-CoA desaturase confers cell density-dependent ferroptosis resistance in melanoma. J Cell Biochem 2024; 125:e30542. [PMID: 38362828 DOI: 10.1002/jcb.30542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Ferroptosis is a form of regulated cell death that is induced by inhibiting glutathione peroxidase 4 (GPX4), which eliminates lipid peroxidation. Ferroptosis induction is influenced by the cell environment. However, the cellular states altering ferroptosis susceptibility remain largely unknown. We found that melanoma cell lines became resistant to ferroptosis as cell density increased. Comparative transcriptome and metabolome analyses revealed that cell density-dependent ferroptosis resistance was coupled with a shift toward a lipogenic phenotype accompanied by strong induction of stearoyl-CoA desaturase (SCD). Database analysis of gene dependency across hundreds of cancer cell lines uncovered a negative correlation between GPX4 and SCD dependency. Importantly, SCD inhibition, either pharmacologically or through genetic knockout, sensitized melanoma cells to GPX4 inhibition, thereby attenuating ferroptosis resistance in cells at high density. Our findings indicate that transition to an SCD-inducing, lipogenic cell state produces density-dependent resistance to ferroptosis, which may provide a therapeutic strategy against melanoma.
Collapse
Affiliation(s)
- Hitomi Shirahama
- Division of Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuri Tani
- Division of Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satomi Tsukahara
- Division of Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuka Okamoto
- Division of Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akiko Hasebe
- Division of Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomomiki Noda
- Division of Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuji Ando
- Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Masaru Ushijima
- Clinical Research and Development Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masaaki Matsuura
- Graduate School of Public Health, Teikyo University, Tokyo, Japan
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akihiro Tomida
- Division of Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Zhang X, Hu Y, Wang B, Yang S. Ferroptosis: Iron-mediated cell death linked to disease pathogenesis. J Biomed Res 2024; 38:1-23. [PMID: 38808552 PMCID: PMC11461536 DOI: 10.7555/jbr.37.20230224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 05/30/2024] Open
Abstract
Ferroptosis is an iron-mediated regulatory cell death pattern characterized by oxidative damage. The molecular regulating mechanisms are related to iron metabolism, lipid peroxidation, and glutathione metabolism. Additionally, some immunological signaling pathways, such as the cyclic GMP-AMP synthase-stimulator ofinterferon genes axis, Janus kinase-signal transducer and activator of transcription 1 axis, and transforming growth factor beta 1-Smad3 axis may also participate in the regulation of ferroptosis. Studies have shown that ferroptosis is closely related to many diseases such as cancer, neurodegenerative diseases, inflammatory diseases, and autoimmune diseases. Considering the pivotal role of ferroptosis-regulating signaling in the pathogenesis of diverse diseases, the development of ferroptosis inducers or inhibitors may have significant clinical potential for the treatment of the aforementioned conditions.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yingchao Hu
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bingwei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Shuo Yang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
27
|
Zeng J, Zhang X, Lin Z, Zhang Y, Yang J, Dou P, Liu T. Harnessing ferroptosis for enhanced sarcoma treatment: mechanisms, progress and prospects. Exp Hematol Oncol 2024; 13:31. [PMID: 38475936 DOI: 10.1186/s40164-024-00498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Sarcoma is a malignant tumor that originates from mesenchymal tissue. The common treatment for sarcoma is surgery supplemented with radiotherapy and chemotherapy. However, patients have a 5-year survival rate of only approximately 60%, and sarcoma cells are highly resistant to chemotherapy. Ferroptosis is an iron-dependent nonapoptotic type of regulated programmed cell death that is closely related to the pathophysiological processes underlying tumorigenesis, neurological diseases and other conditions. Moreover, ferroptosis is mediated via multiple regulatory pathways that may be targets for disease therapy. Recent studies have shown that the induction of ferroptosis is an effective way to kill sarcoma cells and reduce their resistance to chemotherapeutic drugs. Moreover, ferroptosis-related genes are related to the immune system, and their expression can be used to predict sarcoma prognosis. In this review, we describe the molecular mechanism underlying ferroptosis in detail, systematically summarize recent research progress with respect to ferroptosis application as a sarcoma treatment in various contexts, and point out gaps in the theoretical research on ferroptosis, challenges to its clinical application, potential resolutions of these challenges to promote ferroptosis as an efficient, reliable and novel method of clinical sarcoma treatment.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yu Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
28
|
Punziano C, Trombetti S, Cesaro E, Grosso M, Faraonio R. Antioxidant Systems as Modulators of Ferroptosis: Focus on Transcription Factors. Antioxidants (Basel) 2024; 13:298. [PMID: 38539832 PMCID: PMC10967371 DOI: 10.3390/antiox13030298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 10/28/2024] Open
Abstract
Ferroptosis is a type of programmed cell death that differs from apoptosis, autophagy, and necrosis and is related to several physio-pathological processes, including tumorigenesis, neurodegeneration, senescence, blood diseases, kidney disorders, and ischemia-reperfusion injuries. Ferroptosis is linked to iron accumulation, eliciting dysfunction of antioxidant systems, which favor the production of lipid peroxides, cell membrane damage, and ultimately, cell death. Thus, signaling pathways evoking ferroptosis are strongly associated with those protecting cells against iron excess and/or lipid-derived ROS. Here, we discuss the interaction between the metabolic pathways of ferroptosis and antioxidant systems, with a particular focus on transcription factors implicated in the regulation of ferroptosis, either as triggers of lipid peroxidation or as ferroptosis antioxidant defense pathways.
Collapse
Affiliation(s)
- Carolina Punziano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Silvia Trombetti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| |
Collapse
|
29
|
Lin Y, He J, Mou Z, Chen H, You W, Guan T, Chen L. Ferroptosis-related genes, a novel therapeutic target for focal segmental glomerulosclerosis. BMC Nephrol 2024; 25:58. [PMID: 38368317 PMCID: PMC10874534 DOI: 10.1186/s12882-024-03490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
Recent studies have suggested that ferroptosis participates in various renal diseases. However, its effect on focal segmental glomerulosclerosis remains unclear. This study analyzed the GSE125779 and GSE121211 datasets to identify the differentially expressed genes (DEGs) in renal tubular samples with and without FSGS. The Cytoscape was used to construct the protein-protein interaction network. Moreover, the ferroptosis-related genes (FRGs) were obtained from the ferroptosis database, while ferroptosis-related DEGs were obtained by intersection with DEGs. The target genes were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The GSE108112 dataset was used to verify the expression of target FRGs. Besides, we built the mRNA-miRNA network regarding FRGs using the NetworkAnalyst database, and circRNAs corresponding to key miRNAs were predicted in the ENCORI database. In this study, 16 ferroptosis-related DEGs were identified between FSGS and healthy subjects, while five co-expressed genes were obtained by three topological algorithms in Cytoscape. These included the most concerned Hub genes JUN, HIF1A, ALB, DUSP1 and ATF3. The KEGG enrichment analysis indicated that FRGs were associated with mitophagy, renal cell carcinoma, and metabolic pathways. Simultaneously, the co-expressed hub genes were analyzed to construct the mRNA-miRNA interaction network and important miRNAs such as hsa-mir-155-5p, hsa-mir-1-3p, and hsa-mir-124-3p were obtained. Finally, 75 drugs targeting 54 important circRNAs and FRGs were predicted. This study identified the Hub FRGs and transcriptomic molecules from FSGS in renal tubules, thus providing novel diagnostic and therapeutic targets for FSGS.
Collapse
Affiliation(s)
- Yanbin Lin
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jinxuan He
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhixiang Mou
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | | | | | - Tianjun Guan
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lan Chen
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Fujian Medical University, Fuzhou, China.
- Xiamen Municipal Health Commission, Xiamen, China.
| |
Collapse
|
30
|
Niu T, Shi X, Liu X, Wang H, Liu K, Xu Y. Porous Se@SiO 2 nanospheres alleviate diabetic retinopathy by inhibiting excess lipid peroxidation and inflammation. Mol Med 2024; 30:24. [PMID: 38321393 PMCID: PMC10848509 DOI: 10.1186/s10020-024-00785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Lipid peroxidation is a characteristic metabolic manifestation of diabetic retinopathy (DR) that causes inflammation, eventually leading to severe retinal vascular abnormalities. Selenium (Se) can directly or indirectly scavenge intracellular free radicals. Due to the narrow distinction between Se's effective and toxic doses, porous Se@SiO2 nanospheres have been developed to control the release of Se. They exert strong antioxidant and anti-inflammatory effects. METHODS The effect of anti-lipid peroxidation and anti-inflammatory effects of porous Se@SiO2 nanospheres on diabetic mice were assessed by detecting the level of Malondialdehyde (MDA), glutathione peroxidase 4 (GPX4), decreased reduced/oxidized glutathione (GSH/GSSG) ratio, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL) -1β of the retina. To further examine the protective effect of porous Se@SiO2 nanospheres on the retinal vasculopathy of diabetic mice, retinal acellular capillary, the expression of tight junction proteins, and blood-retinal barrier destruction was observed. Finally, we validated the GPX4 as the target of porous Se@SiO2 nanospheres via decreased expression of GPX4 and detected the level of MDA, GSH/GSSG, TNF-α, IFN-γ, IL -1β, wound healing assay, and tube formation in high glucose (HG) cultured Human retinal microvascular endothelial cells (HRMECs). RESULTS The porous Se@SiO2 nanospheres reduced the level of MDA, TNF-α, IFN-γ, and IL -1β, while increasing the level of GPX4 and GSH/GSSG in diabetic mice. Therefore, porous Se@SiO2 nanospheres reduced the number of retinal acellular capillaries, depletion of tight junction proteins, and vascular leakage in diabetic mice. Further, we identified GPX4 as the target of porous Se@SiO2 nanospheres as GPX4 inhibition reduced the repression effect of anti-lipid peroxidation, anti-inflammatory, and protective effects of endothelial cell dysfunction of porous Se@SiO2 nanospheres in HG-cultured HRMECs. CONCLUSION Porous Se@SiO2 nanospheres effectively attenuated retinal vasculopathy in diabetic mice via inhibiting excess lipid peroxidation and inflammation by target GPX4, suggesting their potential as therapeutic agents for DR.
Collapse
Affiliation(s)
- Tian Niu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xin Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Yupeng Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
31
|
Wang F, Dai Q, Xu L, Gan L, Shi Y, Yang M, Yang S. Advances on the Role of Ferroptosis in Ionizing Radiation Response. Curr Pharm Biotechnol 2024; 25:396-410. [PMID: 37612860 DOI: 10.2174/1389201024666230823091144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
Ferroptosis is an iron-dependent programmed cell death mode that is distinct from other cell death modes, and radiation is able to stimulate cellular oxidative stress and induce the production of large amounts of reactive oxygen radicals, which in turn leads to the accumulation of lipid peroxide and the onset of ferroptosis. In this review, from the perspective of the role of ferroptosis in generating a radiation response following cellular irradiation, the relationship between ferroptosis induced by ionizing radiation stress and the response to ionizing radiation is reviewed, including the roles of MAPK and Nrf2 signaling pathways in ferroptosis, resulting from the oxidative stress response to ionizing radiation, the metabolic regulatory role of the p53 gene in ferroptosis, and regulatory modes of action of iron metabolism and iron metabolism-related regulatory proteins in promoting and inhibiting ferroptosis. It provides some ideas for the follow-up research to explore the specific mechanism and regulatory network of ferroptosis in response to ionizing radiation.
Collapse
Affiliation(s)
- Fang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - QingHui Dai
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Luhan Xu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yidi Shi
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Mingjun Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shuhong Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
32
|
Gao D, Hu L, Lv H, Lian L, Wang M, Fan X, Xie Y, Zhang J. Ferroptosis Involved in Cardiovascular Diseases: Mechanism Exploration of Ferroptosis' Role in Common Pathological Changes. J Cardiovasc Pharmacol 2024; 83:33-42. [PMID: 37890084 DOI: 10.1097/fjc.0000000000001507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
ABSTRACT Regulated cell death is a controlled form of cell death that protects cells by adaptive responses in pathophysiological states. Ferroptosis has been identified as a novel method of controlling cell death in recent years. Several cardiovascular diseases (CVDs) are shown to be profoundly influenced by ferroptosis, and ferroptosis is directly linked to the majority of cardiovascular pathological alterations. Despite this, it is still unclear how ferroptosis affects the pathogenic alterations that take place in CVDs. Based on a review of the mechanisms that regulate ferroptosis, this review explores the most recent research on the role of ferroptosis in the major pathological changes associated with CVDs, to provide new perspectives and strategies for cardiovascular research and clinical treatment.
Collapse
Affiliation(s)
- Dongjie Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leilei Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Lian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingyang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinbiao Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingyu Xie
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
33
|
Vogel FCE, Chaves-Filho AB, Schulze A. Lipids as mediators of cancer progression and metastasis. NATURE CANCER 2024; 5:16-29. [PMID: 38273023 DOI: 10.1038/s43018-023-00702-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/08/2023] [Indexed: 01/27/2024]
Abstract
Metastasis formation is a complex process, involving multiple crucial steps, which are controlled by different regulatory mechanisms. In this context, the contribution of cancer metabolism to the metastatic cascade is being increasingly recognized. This Review focuses on changes in lipid metabolism that contribute to metastasis formation in solid tumors. We discuss the molecular mechanisms by which lipids induce a pro-metastatic phenotype and explore the role of lipids in response to oxidative stress and as signaling molecules. Finally, we reflect on potential avenues to target lipid metabolism to improve the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Felix C E Vogel
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Adriano B Chaves-Filho
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
34
|
Zhang Q, Luo Y, Peng L, Rong X, Liu Y, Li J, Luo J. Ferroptosis in cardiovascular diseases: role and mechanism. Cell Biosci 2023; 13:226. [PMID: 38102663 PMCID: PMC10724928 DOI: 10.1186/s13578-023-01169-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
In multicellular organisms, regulatory cell death is a crucial aspect of growth and development. Ferroptosis, which was postulated roughly ten years ago, is a mode of cell death that differs from apoptosis, autophagy, and pyrodeath. This distinct pattern of cell death is triggered by an imbalance between oxidants and antioxidants and strongly associated with the metabolism of iron, lipids, amino acids, and glutathione. A growing body of research has implicated ferroptosis in the incidence and progression of many organ traumas and degenerative diseases. Recently, ferroptosis has gained attention as a crucial regulatory mechanism underlying the initiation and development of a variety of cardiovascular diseases, including myocardial ischemia/reperfusion injury, cardiomyopathy, arrhythmia, chemotherapy, and Corona Virus-2-induced cardiac injury. Pharmacological therapies that inhibit ferroptosis have great potential for the management of cardiovascular disorders. This review discusses the prevalence and regulatory mechanisms of ferroptosis, effect of ferroptosis on the immune system, significance of ferroptosis in cardiovascular diseases, and potential therapeutic value of regulating ferroptosis in a variety of heart diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Rong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yingxue Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiafu Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Collaborative Innovation Centre for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Collaborative Innovation Centre for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.
| |
Collapse
|
35
|
Deng H, Jia Q, Ming X, Sun Y, Lu Y, Liu L, Zhou J. Hippo pathway in intestinal diseases: focusing on ferroptosis. Front Cell Dev Biol 2023; 11:1291686. [PMID: 38130953 PMCID: PMC10734691 DOI: 10.3389/fcell.2023.1291686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The incidence of intestinal diseases, such as inflammatory bowel disease, gastric cancer, and colorectal cancer, has steadily increased over the past decades. The Hippo pathway is involved in cell proliferation, tissue and organ damage, energy metabolism, tumor formation, and other physiologic processes. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron and lipid peroxides. The Hippo pathway and ferroptosis are associated with various intestinal diseases; however, the crosstalk between them is unclear. This review elaborates on the current research on the Hippo pathway and ferroptosis in the context of intestinal diseases. We summarized the connection between the Hippo pathway and ferroptosis to elucidate the underlying mechanism by which these pathways influence intestinal diseases. We speculate that a mutual regulatory mechanism exists between the Hippo pathway and ferroptosis and these two pathways interact in several ways to regulate intestinal diseases.
Collapse
Affiliation(s)
- Hongwei Deng
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Qiuting Jia
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Xin Ming
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuxin Sun
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Yuxuan Lu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Zhou
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
36
|
Li J, Li L, Zhang Z, Chen P, Shu H, Yang C, Chu Y, Liu J. Ferroptosis: an important player in the inflammatory response in diabetic nephropathy. Front Immunol 2023; 14:1294317. [PMID: 38111578 PMCID: PMC10725962 DOI: 10.3389/fimmu.2023.1294317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Diabetic nephropathy (DN) is a chronic inflammatory disease that affects millions of diabetic patients worldwide. The key to treating of DN is early diagnosis and prevention. Once the patient enters the clinical proteinuria stage, renal damage is difficult to reverse. Therefore, developing early treatment methods is critical. DN pathogenesis results from various factors, among which the immune response and inflammation play major roles. Ferroptosis is a newly discovered type of programmed cell death characterized by iron-dependent lipid peroxidation and excessive ROS production. Recent studies have demonstrated that inflammation activation is closely related to the occurrence and development of ferroptosis. Moreover, hyperglycemia induces iron overload, lipid peroxidation, oxidative stress, inflammation, and renal fibrosis, all of which are related to DN pathogenesis, indicating that ferroptosis plays a key role in the development of DN. Therefore, this review focuses on the regulatory mechanisms of ferroptosis, and the mutual regulatory processes involved in the occurrence and development of DN and inflammation. By discussing and analyzing the relationship between ferroptosis and inflammation in the occurrence and development of DN, we can deepen our understanding of DN pathogenesis and develop new therapeutics targeting ferroptosis or inflammation-related regulatory mechanisms for patients with DN.
Collapse
Affiliation(s)
- Jialing Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Haiying Shu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
37
|
Dos Santos AF, Fazeli G, Xavier da Silva TN, Friedmann Angeli JP. Ferroptosis: mechanisms and implications for cancer development and therapy response. Trends Cell Biol 2023; 33:1062-1076. [PMID: 37230924 DOI: 10.1016/j.tcb.2023.04.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
As cancer cells develop resistance to apoptosis, non-apoptotic cell death modalities, such as ferroptosis, have emerged as promising strategies to combat therapy-resistant cancers. Cells that develop resistance to conventional therapies or metastatic cancer cells have been shown to have increased sensitivity to ferroptosis. Therefore, targeting the regulatory elements of ferroptosis in cancer could offer novel therapeutic opportunities. In this review, we first provide an overview of the known ferroptosis regulatory networks and discuss recent findings on how they contribute to cancer plasticity. We then expand into the critical role of selenium metabolism in regulating ferroptosis. Finally, we highlight specific cases where induction of ferroptosis could be used to sensitize cancer cells to this form of cell death.
Collapse
Affiliation(s)
- Ancély Ferreira Dos Santos
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, Würzburg, Germany
| | - Gholamreza Fazeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, Würzburg, Germany
| | - Thamara Nishida Xavier da Silva
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, Würzburg, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
38
|
Wang Y, Lv MN, Zhao WJ. Research on ferroptosis as a therapeutic target for the treatment of neurodegenerative diseases. Ageing Res Rev 2023; 91:102035. [PMID: 37619619 DOI: 10.1016/j.arr.2023.102035] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Ferroptosis is an iron- and lipid peroxidation (LPO)-mediated programmed cell death type. Recently, mounting evidence has indicated the involvement of ferroptosis in neurodegenerative diseases, especially in Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and so on. Treating ferroptosis presents opportunities as well as challenges for neurodegenerative diseases. This review provides a comprehensive overview of typical features of ferroptosis and the underlying mechanisms that contribute to its occurrence, as well as their implications in the pathogenesis and advancement of major neurodegenerative disorders. Meanwhile, we summarize the utilization of ferroptosis inhibition in both experimental and clinical approaches for the treatment of major neurodegenerative disorders. In addition, we specifically summarize recent advances in developing therapeutic means targeting ferroptosis in these diseases, which may guide future approaches for the effective management of these devastating medical conditions.
Collapse
Affiliation(s)
- Yi Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Meng-Nan Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei-Jiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
39
|
Wang L, Huang H, Li X, Ouyang L, Wei X, Xie J, Liu D, Tan P, Hu Z. A review on the research progress of traditional Chinese medicine with anti-cancer effect targeting ferroptosis. Chin Med 2023; 18:132. [PMID: 37833746 PMCID: PMC10571466 DOI: 10.1186/s13020-023-00838-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation. It can be triggered by various mechanisms, including the glutathione peroxidase 4 (GPX4)-glutathione (GSH) axis, iron metabolism, lipid metabolism, the GTP cyclohydrolase 1 (GCH1)-tetrahydrobiopterin (BH4) pathway, and the ferroptosis suppressor protein 1 (FSP1)-coenzyme Q10 axis. The redox balance is disrupted when ferroptosis occurs in cells, which is fatal to cancer cells. Additionally, some tumor-associated genes are involved in ferroptosis. Hence, targeting ferroptosis might be an effective strategy for treating cancer. Several small-molecule compounds exhibit anti-tumor effects through ferroptosis, including sorafenib and altretamine, which induce ferroptosis by inhibiting System-Xc and GPX4 respectively, but many problems, such as poor druggability, still exist. Some studies have shown that many traditional Chinese medicine (TCM) induce ferroptosis by inhibiting GPX4, solute carrier family 7 member 11 (SLC7A11), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), or by increasing the expression of Acyl-CoA synthetase long-chain family member 4 (ACSL4), transferrin (TF), and transferrin receptor 1 (TFR1). These changes can lead to the lysosomal degradation of ferritin, accumulation of iron, lipid peroxidation and the production of reactive oxygen species (ROS), which in turn can promote anti-tumor activities or synergistic effects with chemotherapeutic drugs. In this study, we elucidated the underlying mechanisms of ferroptosis, and the anti-tumor pharmacology of TCM targeting ferroptosis including prescriptions, Chinese herbs, extracts, and natural compounds. Our findings might act as valuable reference for research on anti-tumor drugs targeting ferroptosis, especially those drugs developed from TCM.
Collapse
Affiliation(s)
- Longyan Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Huiming Huang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Xingxing Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Lishan Ouyang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Xuejiao Wei
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jinxin Xie
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Dongxiao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Peng Tan
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
40
|
Liu M, Wu K, Wu Y. The emerging role of ferroptosis in female reproductive disorders. Biomed Pharmacother 2023; 166:115415. [PMID: 37660655 DOI: 10.1016/j.biopha.2023.115415] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023] Open
Abstract
Iron, as an essential trace element for the organism, is vital for maintaining the organism's health. Excessive iron can promote reactive oxygen species (ROS) accumulation, thus damaging cells and tissues. Ferroptosis is a novel form of programmed cell death distinguished by iron overload and lipid peroxidation, which is unique from autophagy, apoptosis and necrosis, more and more studies are focusing on ferroptosis. Recent evidence suggests that ferroptosis is associated with the development of female reproductive disorders (FRDs), including polycystic ovary syndrome (PCOS), premature ovarian insufficiency (POI), endometriosis (EMs), ovarian cancer (OC), preeclampsia (PE) and spontaneous abortion (SA). Pathways and genes associated with ferroptosis may participate in processes that regulate granulosa cell proliferation and secretion, oocyte development, ovarian reserve function, early embryonic development and placental oxidative stress. However, its exact mechanism has not been fully revealed. Therefore, our review systematically elaborates the occurrence mechanism of ferroptosis and its research progress in the development of FRDs, with a view to providing literature references for clinical targeting of ferroptosis -related pathways and regulatory factors for the management of FRDs.
Collapse
Affiliation(s)
- Min Liu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China; Department of Gynecology, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Keming Wu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China; Department of Gynecology, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| |
Collapse
|
41
|
Zaky MY, Fan C, Zhang H, Sun XF. Unraveling the Anticancer Potential of Statins: Mechanisms and Clinical Significance. Cancers (Basel) 2023; 15:4787. [PMID: 37835481 PMCID: PMC10572000 DOI: 10.3390/cancers15194787] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Statins are an essential medication class in the treatment of lipid diseases because they inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. They reduce cholesterol levels and reduce the risk of cardiovascular disease in both primary and secondary prevention. In addition to their powerful pharmacologic suppression of cholesterol production, statins appear to have pleitropic effects in a wide variety of other diseases by modulating signaling pathways. In recent years, statins have seen a large increase in interest due to their putative anticancer effects. Statins appear to cause upregulation or inhibition in key pathways involved in cancer such as inhibition of proliferation, angiogenesis, and metastasis as well as reducing cancer stemness. Further, statins have been found to induce oxidative stress, cell cycle arrest, autophagy, and apoptosis of cancer cells. Interestingly, clinical studies have shown that statin use is associated with a decreased risk of cancer formation, lower cancer grade at diagnosis, reduction in the risk of local reoccurrence, and increasing survival in patients. Therefore, our objective in the present review is to summarize the findings of the publications on the underlying mechanisms of statins' anticancer effects and their clinical implications.
Collapse
Affiliation(s)
- Mohamed Y. Zaky
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Chuanwen Fan
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Huan Zhang
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Xiao-Feng Sun
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
42
|
Yan R, Lin B, Jin W, Tang L, Hu S, Cai R. NRF2, a Superstar of Ferroptosis. Antioxidants (Basel) 2023; 12:1739. [PMID: 37760042 PMCID: PMC10525540 DOI: 10.3390/antiox12091739] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ferroptosis is an iron-dependent and lipid peroxidation-driven cell death cascade, occurring when there is an imbalance of redox homeostasis in the cell. Nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) is key for cellular antioxidant responses, which promotes downstream genes transcription by binding to their antioxidant response elements (AREs). Numerous studies suggest that NRF2 assumes an extremely important role in the regulation of ferroptosis, for its various functions in iron, lipid, and amino acid metabolism, and so on. Many pathological states are relevant to ferroptosis. Abnormal suppression of ferroptosis is found in many cases of cancer, promoting their progression and metastasis. While during tissue damages, ferroptosis is recurrently promoted, resulting in a large number of cell deaths and even dysfunctions of the corresponding organs. Therefore, targeting NRF2-related signaling pathways, to induce or inhibit ferroptosis, has become a great potential therapy for combating cancers, as well as preventing neurodegenerative and ischemic diseases. In this review, a brief overview of the research process of ferroptosis over the past decade will be presented. In particular, the mechanisms of ferroptosis and a focus on the regulation of ferroptosis by NRF2 will be discussed. Finally, the review will briefly list some clinical applications of targeting the NRF2 signaling pathway in the treatment of diseases.
Collapse
Affiliation(s)
| | | | | | | | - Shuming Hu
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.Y.); (B.L.); (W.J.); (L.T.)
| | - Rong Cai
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.Y.); (B.L.); (W.J.); (L.T.)
| |
Collapse
|
43
|
Moos WH, Faller DV, Glavas IP, Kanara I, Kodukula K, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG. Epilepsy: Mitochondrial connections to the 'Sacred' disease. Mitochondrion 2023; 72:84-101. [PMID: 37582467 DOI: 10.1016/j.mito.2023.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
Over 65 million people suffer from recurrent, unprovoked seizures. The lack of validated biomarkers specific for myriad forms of epilepsy makes diagnosis challenging. Diagnosis and monitoring of childhood epilepsy add to the need for non-invasive biomarkers, especially when evaluating antiseizure medications. Although underlying mechanisms of epileptogenesis are not fully understood, evidence for mitochondrial involvement is substantial. Seizures affect 35%-60% of patients diagnosed with mitochondrial diseases. Mitochondrial dysfunction is pathophysiological in various epilepsies, including those of non-mitochondrial origin. Decreased ATP production caused by malfunctioning brain cell mitochondria leads to altered neuronal bioenergetics, metabolism and neurological complications, including seizures. Iron-dependent lipid peroxidation initiates ferroptosis, a cell death pathway that aligns with altered mitochondrial bioenergetics, metabolism and morphology found in neurodegenerative diseases (NDDs). Studies in mouse genetic models with seizure phenotypes where the function of an essential selenoprotein (GPX4) is targeted suggest roles for ferroptosis in epilepsy. GPX4 is pivotal in NDDs, where selenium protects interneurons from ferroptosis. Selenium is an essential central nervous system micronutrient and trace element. Low serum concentrations of selenium and other trace elements and minerals, including iron, are noted in diagnosing childhood epilepsy. Selenium supplements alleviate intractable seizures in children with reduced GPX activity. Copper and cuproptosis, like iron and ferroptosis, link to mitochondria and NDDs. Connecting these mechanistic pathways to selenoproteins provides new insights into treating seizures, pointing to using medicines including prodrugs of lipoic acid to treat epilepsy and to potential alternative therapeutic approaches including transcranial magnetic stimulation (transcranial), photobiomodulation and vagus nerve stimulation.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | | | | | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| |
Collapse
|
44
|
Alborzinia H, Chen Z, Yildiz U, Freitas FP, Vogel FCE, Varga JP, Batani J, Bartenhagen C, Schmitz W, Büchel G, Michalke B, Zheng J, Meierjohann S, Girardi E, Espinet E, Flórez AF, dos Santos AF, Aroua N, Cheytan T, Haenlin J, Schlicker L, Xavier da Silva TN, Przybylla A, Zeisberger P, Superti‐Furga G, Eilers M, Conrad M, Fabiano M, Schweizer U, Fischer M, Schulze A, Trumpp A, Friedmann Angeli JP. LRP8-mediated selenocysteine uptake is a targetable vulnerability in MYCN-amplified neuroblastoma. EMBO Mol Med 2023; 15:e18014. [PMID: 37435859 PMCID: PMC10405063 DOI: 10.15252/emmm.202318014] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Ferroptosis has emerged as an attractive strategy in cancer therapy. Understanding the operational networks regulating ferroptosis may unravel vulnerabilities that could be harnessed for therapeutic benefit. Using CRISPR-activation screens in ferroptosis hypersensitive cells, we identify the selenoprotein P (SELENOP) receptor, LRP8, as a key determinant protecting MYCN-amplified neuroblastoma cells from ferroptosis. Genetic deletion of LRP8 leads to ferroptosis as a result of an insufficient supply of selenocysteine, which is required for the translation of the antiferroptotic selenoprotein GPX4. This dependency is caused by low expression of alternative selenium uptake pathways such as system Xc- . The identification of LRP8 as a specific vulnerability of MYCN-amplified neuroblastoma cells was confirmed in constitutive and inducible LRP8 knockout orthotopic xenografts. These findings disclose a yet-unaccounted mechanism of selective ferroptosis induction that might be explored as a therapeutic strategy for high-risk neuroblastoma and potentially other MYCN-amplified entities.
Collapse
Affiliation(s)
- Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Zhiyi Chen
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Umut Yildiz
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- European Molecular Biology Laboratory, Genome Biology UnitHeidelbergGermany
| | - Florencio Porto Freitas
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Felix C E Vogel
- Division of Tumor Metabolism and MicroenvironmentGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Julianna Patricia Varga
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- European Molecular Biology OrganizationHeidelbergGermany
| | - Jasmin Batani
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Christoph Bartenhagen
- Center for Molecular Medicine Cologne (CMMC) and Department of Experimental Pediatric Oncology, University Children's Hospital, Medical FacultyUniversity of CologneCologneGermany
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, BiocenterUniversity of WürzburgWürzburgGermany
| | - Gabriele Büchel
- Mildred Scheel Early Career CenterUniversity Hospital WürzburgWürzburgGermany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistryHelmholtz Center München (HMGU)NeuherbergGermany
| | - Jashuo Zheng
- Institute of Metabolism and Cell DeathHelmholtz Zentrum München (HMGU)NeuherbergGermany
| | | | - Enrico Girardi
- CeMM‐Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Solgate GmbHKlosterneuburgAustria
| | - Elisa Espinet
- Anatomy Unit, Department of Pathology and Experimental Therapy, School of MedicineUniversity of Barcelona (UB), L'Hospitalet de LlobregatBarcelonaSpain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell)Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de LlobregatBarcelonaSpain
| | - Andrés F Flórez
- Department of Molecular and Cellular BiologyHarvard UniversityCambridgeMAUSA
| | - Ancely Ferreira dos Santos
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Nesrine Aroua
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Tasneem Cheytan
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Julie Haenlin
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Lisa Schlicker
- Division of Tumor Metabolism and MicroenvironmentGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Thamara N Xavier da Silva
- Division of Tumor Metabolism and MicroenvironmentGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Adriana Przybylla
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Petra Zeisberger
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Giulio Superti‐Furga
- CeMM‐Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, BiocenterUniversity of WürzburgWürzburgGermany
| | - Marcus Conrad
- Institute of Metabolism and Cell DeathHelmholtz Zentrum München (HMGU)NeuherbergGermany
| | - Marietta Fabiano
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich‐Wilhelms‐Universität BonnBonnGermany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich‐Wilhelms‐Universität BonnBonnGermany
| | - Matthias Fischer
- Center for Molecular Medicine Cologne (CMMC) and Department of Experimental Pediatric Oncology, University Children's Hospital, Medical FacultyUniversity of CologneCologneGermany
| | - Almut Schulze
- Division of Tumor Metabolism and MicroenvironmentGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| |
Collapse
|
45
|
Bi M, Li D, Zhang J. Research progress and insights on the role of ferroptosis in wound healing. Int Wound J 2023; 20:2473-2481. [PMID: 36788729 PMCID: PMC10333008 DOI: 10.1111/iwj.14102] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Ferroptosis is a newly discovered cell death type which is different from apoptosis, autophagy, pyroptosis as well as necrosis in the following aspects: morphology, biochemistry, gene and regulatory mechanisms. Ferroptosis is regulated by multiples of mechanisms such as system Xc- mechanism, glutathione peroxidase 4 (GPX4) mechanism, iron metabolism and lipid metabolism. Currently, ferroptosis has been revealed to be significant in wound healing such as diabetic wound, irradiated wound and ultraviolet (UV)-driven wound. Hence, how to intervene in the pathogenesis as well as the development of wounds and promote the wound healing by the regulation of ferroptosis have become a research hotspot. This review systematically summarises the latest scientific advances of ferroptosis and wound healing fields, with hoping to propose a new insight and advance in the wound treatment.
Collapse
Affiliation(s)
- Minglei Bi
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouChina
| | - Danyi Li
- Department of OphthalmologyJiading Central Hospital University of Medicine & Health SciencesShanghaiChina
| | - Jin Zhang
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
46
|
Jin Jung Y, Choi H, Oh E. Selenium mitigates ferroptosis-mediated dopaminergic cell death by regulating the Nrf2/GPX4 pathway. Neurosci Lett 2023; 810:137314. [PMID: 37247721 DOI: 10.1016/j.neulet.2023.137314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Affiliation(s)
- Yu Jin Jung
- Department of Neurology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunsu Choi
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
47
|
Zheng X, Jin X, Ye F, Liu X, Yu B, Li Z, Zhao T, Chen W, Liu X, Di C, Li Q. Ferroptosis: a novel regulated cell death participating in cellular stress response, radiotherapy, and immunotherapy. Exp Hematol Oncol 2023; 12:65. [PMID: 37501213 PMCID: PMC10375783 DOI: 10.1186/s40164-023-00427-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Ferroptosis is a regulated cell death mode triggered by iron-dependent toxic membrane lipid peroxidation. As a novel cell death modality that is morphologically and mechanistically different from other forms of cell death, such as apoptosis and necrosis, ferroptosis has attracted extensive attention due to its association with various diseases. Evidence on ferroptosis as a potential therapeutic strategy has accumulated with the rapid growth of research on targeting ferroptosis for tumor suppression in recent years. METHODS We summarize the currently known characteristics and major regulatory mechanisms of ferroptosis and present the role of ferroptosis in cellular stress responses, including ER stress and autophagy. Furthermore, we elucidate the potential applications of ferroptosis in radiotherapy and immunotherapy, which will be beneficial in exploring new strategies for clinical tumor treatment. RESULT AND CONCLUSION Based on specific biomarkers and precise patient-specific assessment, targeting ferroptosis has great potential to be translated into practical new approaches for clinical cancer therapy, significantly contributing to the prevention, diagnosis, prognosis, and treatment of cancer.
Collapse
Affiliation(s)
- Xiaogang Zheng
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Ye
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiongxiong Liu
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boyi Yu
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Li
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ting Zhao
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqiang Chen
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinguo Liu
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuixia Di
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Li
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
48
|
Fan C, Chu G, Yu Z, Ji Z, Kong F, Yao L, Wang J, Geng D, Wu X, Mao H. The role of ferroptosis in intervertebral disc degeneration. Front Cell Dev Biol 2023; 11:1219840. [PMID: 37576601 PMCID: PMC10413580 DOI: 10.3389/fcell.2023.1219840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Nucleus pulposus, annulus fibrosus, and cartilage endplate constitute an avascular intervertebral disc (IVD), which is crucial for spinal and intervertebral joint mobility. As one of the most widespread health issues worldwide, intervertebral disc degeneration (IVDD) is recognized as a key contributor to back and neck discomfort. A number of degenerative disorders have a strong correlation with ferroptosis, a recently identified novel regulated cell death (RCD) characterized by an iron-dependent mechanism and a buildup of lipid reactive oxygen species (ROS). There is growing interest in the part ferroptosis plays in IVDD pathophysiology. Inhibiting ferroptosis has been shown to control IVDD development. Several studies have demonstrated that in TBHP-induced oxidative stress models, changes in ferroptosis marker protein levels and increased lipid peroxidation lead to the degeneration of intervertebral disc cells, which subsequently aggravates IVDD. Similarly, IVDD is significantly relieved with the use of ferroptosis inhibitors. The purpose of this review was threefold: 1) to discuss the occurrence of ferroptosis in IVDD; 2) to understand the mechanism of ferroptosis and its role in IVDD pathophysiology; and 3) to investigate the feasibility and prospect of ferroptosis in IVDD treatment.
Collapse
Affiliation(s)
- Chunyang Fan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zilin Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhongwei Ji
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Pain Management, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fanchen Kong
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lingye Yao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiale Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xiexing Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Haiqing Mao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
49
|
Yan X, Xie Y, Liu H, Huang M, Yang Z, An D, Jiang G. Iron accumulation and lipid peroxidation: implication of ferroptosis in diabetic cardiomyopathy. Diabetol Metab Syndr 2023; 15:161. [PMID: 37468902 DOI: 10.1186/s13098-023-01135-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
Diabetic cardiomyopathy (DC) is a serious heart disease caused by diabetes. It is unrelated to hypertension and coronary artery disease and can lead to heart insufficiency, heart failure and even death. Currently, the pathogenesis of DC is unclear, and clinical intervention is mainly symptomatic therapy and lacks effective intervention objectives. Iron overdose mediated cell death, also known as ferroptosis, is widely present in the physiological and pathological processes of diabetes and DC. Iron is a key trace element in the human body, regulating the metabolism of glucose and lipids, oxidative stress and inflammation, and other biological processes. Excessive iron accumulation can lead to the imbalance of the antioxidant system in DC and activate and aggravate pathological processes such as excessive autophagy and mitochondrial dysfunction, resulting in a chain reaction and accelerating myocardial and microvascular damage. In-depth understanding of the regulating mechanisms of iron metabolism and ferroptosis in cardiovascular vessels can help improve DC management. Therefore, in this review, we summarize the relationship between ferroptosis and the pathogenesis of DC, as well as potential intervention targets, and discuss and analyze the limitations and future development prospects of these targets.
Collapse
Affiliation(s)
- Xuehua Yan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Xinjiang, China
| | - Yang Xie
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China
| | - Hongbing Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Meng Huang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Zhen Yang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Dongqing An
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China.
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Xinjiang, China.
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China.
| | - Guangjian Jiang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China.
| |
Collapse
|
50
|
Gu H, Liu Y, Zhao Y, Qu H, Li Y, Ahmed AA, Liu HY, Hu P, Cai D. Hepatic Anti-Oxidative Genes CAT and GPX4 Are Epigenetically Modulated by RORγ/NRF2 in Alphacoronavirus-Exposed Piglets. Antioxidants (Basel) 2023; 12:1305. [PMID: 37372035 DOI: 10.3390/antiox12061305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
As a member of alpha-coronaviruses, PEDV could lead to severe diarrhea and dehydration in newborn piglets. Given that lipid peroxides in the liver are key mediators of cell proliferation and death, the role and regulation of endogenous lipid peroxide metabolism in response to coronavirus infection need to be illuminated. The enzymatic activities of SOD, CAT, mitochondrial complex-I, complex-III, and complex-V, along with the glutathione and ATP contents, were significantly decreased in the liver of PEDV piglets. In contrast, the lipid peroxidation biomarkers, malondialdehyde, and ROS were markedly elevated. Moreover, we found that the peroxisome metabolism was inhibited by the PEDV infection using transcriptome analysis. These down-regulated anti-oxidative genes, including GPX4, CAT, SOD1, SOD2, GCLC, and SLC7A11, were further validated by qRT-PCR and immunoblotting. Because the nuclear receptor RORγ-driven MVA pathway is critical for LPO, we provided new evidence that RORγ also controlled the genes CAT and GPX4 involved in peroxisome metabolism in the PEDV piglets. We found that RORγ directly binds to these two genes using ChIP-seq and ChIP-qPCR analysis, where PEDV strongly repressed the binding enrichments. The occupancies of histone active marks such as H3K9/27ac and H3K4me1/2, together with active co-factor p300 and polymerase II at the locus of CAT and GPX4, were significantly decreased. Importantly, PEDV infection disrupted the physical association between RORγ and NRF2, facilitating the down-regulation of the CAT and GPX4 genes at the transcriptional levels. RORγ is a potential factor in modulating the CAT and GPX4 gene expressions in the liver of PEDV piglets by interacting with NRF2 and histone modifications.
Collapse
Affiliation(s)
- Haotian Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yaya Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yahui Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huan Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Abdelkareem A Ahmed
- Biomedical Research Institute, Darfur University College, Nyala 56022, Sudan
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|