1
|
Gao N, Huang Z, Xie J, Gao S, Wang B, Feng H, Bao C, Tian H, Liu X. Cryptotanshinone alleviates cerebral ischemia reperfusion injury by regulating ferroptosis through the PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119800. [PMID: 40222690 DOI: 10.1016/j.jep.2025.119800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Cryptotanshinone (CT) is a kind of Chinese medicine extracted from salvia miltiorrhiza, which has various pharmacological activities and is widely used in the treatment of diseases. AIM OF THE STUDY The objective is to delve into the mechanism by which cryptotanshinone (CT) exerts its effects on rats with the middle cerebral artery occlusion/reperfusion (MCAO/R) model. Additionally, it aims to further assess the interplay between inflammation and oxidative stress, along with the underlying mechanism of CT's anti-ferroptosis function. MATERIALS AND METHODS We constructed the middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats. The effects of cryptotanshinone (CT) were evaluated using 2,3,5 - triphenyltetrazolium chloride (TTC) staining, behavioral assays, immunofluorescence, hematoxylin - eosin (HE) staining, and Nissl staining. Additionally, in vitro, cell viability was assessed by the Cell Counting Kit - 8 (CCK - 8) assay following experimental dosing. Oxygen - glucose deprivation/oxidation (OGD/R) models were established in PC12 and BV2 cells. Flow cytometry was employed to detect cellular reactive oxygen species (ROS) expression. The activities of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-px), and Mitochondrial Membrane Potential Assay Kit with JC-1(JC-1) were measured using biochemical methods. Inflammatory factor levels were determined using enzyme-linked immunosorbent assay (ELISA) kits. Immunoblotting was used to detect the levels of rat phosphatidylinositol 3 - kinase (PI3K), phosphorylated-PI3K (P-PI3K), protein kinase B (AKT), phosphorylated - AKT (P-AKT), nuclear factor erythroid 2 - related factor 2 (Nrf2), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4). RESULTS In rats with the MCAO/R model, CT demonstrated the ability to decrease ROS levels, enhance the activity of glutathione (GSH), mitigate inflammation, augment the activity of glutathione peroxidase 4 (GPX4), inhibit ferroptosis, safeguard neurons, and facilitate the restoration of nerve function. Results from network pharmacology indicated that the action of CT might be mediated via the PI3K/Akt signaling pathway. Simultaneously, in-vivo investigations revealed that CT curbs ferroptosis through the PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathways. CONCLUSION CT can inhibit ferroptosis by inhibiting the vicious cycle between oxidative stress and inflammation, protect neurons and promote motor function recovery.
Collapse
Affiliation(s)
- Nana Gao
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Zongyu Huang
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Jianjie Xie
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Shuang Gao
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Biaobiao Wang
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Huicong Feng
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Cuifen Bao
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| | - He Tian
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| | - Xia Liu
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| |
Collapse
|
2
|
Li K, Ji X, Tian S, Li J, Tian Y, Ma X, Li H, Zhang H, Chen CT, Gu W. Oxidative stress in asthma pathogenesis: mechanistic insights and implications for airway smooth muscle dysfunction. Cell Tissue Res 2025; 400:17-34. [PMID: 39918765 DOI: 10.1007/s00441-025-03953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/28/2025] [Indexed: 04/04/2025]
Abstract
Airway smooth muscle (ASM) dysfunction is a key factor in the narrowing of airways in asthma patients, characterized by excessive secretion of inflammatory factors, increased mass, and amplified contractile responses. These pathological features are instrumental in the propagation of airway inflammation, structural remodeling, and the escalation of airway hyperresponsiveness (AHR), which are also principal factors underlying the limitations of current therapeutic strategies. In asthmatic ASM, an imbalance between oxidant production and antioxidant defenses culminates in oxidative stress, which is involved in the excessive secretion of inflammatory factors, increased mass, and amplified contractile responses of ASM, and is a critical etiological factor implicated in the dysregulation of ASM function. The molecular pathways through which oxidative stress exerts its effects on ASM in asthma are multifaceted, with the Nrf2/HO-1, MAPK, and PI3K/Akt pathways being particularly noteworthy. These characteristic pathways play a potential role by connecting with different upstream and downstream signaling molecules and are involved in the amplification of ASM inflammatory responses, increased mass, and AHR. This review provides a comprehensive synthesis of the phenotypic expression of ASM dysfunction in asthma, the interplay between oxidants and antioxidants, and the evidence base and molecular underpinnings linking oxidative stress to ASM dysfunction. Given the profound implications of ASM dysfunction on the airflow limitation in asthma and the seminal role of oxidative stress in this process, a deeper exploration of these mechanisms is essential for unraveling the pathogenesis of asthma and may offer novel perspectives for its prophylaxis and management.
Collapse
Affiliation(s)
- Kangxia Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiang Ji
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Shan Tian
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, People's Republic of China
| | - Jian Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Yizhu Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiaoqing Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Huanping Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Hong Zhang
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China
| | - Cai-Tao Chen
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China.
| | - Wei Gu
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China.
| |
Collapse
|
3
|
Li X, Li W, Xie X, Fang T, Yang J, Shen Y, Wang Y, Wang H, Tao L, Zhang H. ROS Regulate Rotenone-induced SH-SY5Y Dopamine Neuron Death Through Ferroptosis-mediated Autophagy and Apoptosis. Mol Neurobiol 2025:10.1007/s12035-025-04824-6. [PMID: 40097764 DOI: 10.1007/s12035-025-04824-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Rotenone, a plant-derived natural insecticide, is widely used to induce Parkinson's disease (PD) models. However, the mechanisms of rotenone-induced cell death remain unclear. Here, we found that rotenone (0.01, 0.1, or 1 μmol/L) suppressed SH-SY5Y dopamine neuron viability and led to PD-like pathological changes, such as reduced tyrosine hydroxylase (TH) but increased α-synuclein. Rotenone increased the levels of intracellular reactive oxygen species (ROS) and mitochondrial ROS, as well as the levels of the antioxidants nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), ultimately resulting in oxidative stress. Moreover, rotenone significantly downregulated the expression of GPX4 and xCT but upregulated the expression of COX2 and NCOA4, which are markers of ferroptosis. Furthermore, rotenone decreased phosphorylated mTOR level but increased Beclin-1, ATG5, LC3 and p62 expression, suggesting that rotenone enhances autophagy and reduces autophagy flux. Additionally, rotenone reduced Bcl-2 levels and the mitochondrial membrane potential (MMP) while promoting BAX and Caspase-3 expression, thus initiating cell apoptosis. N-acetylcysteine (NAC), a ROS scavenger, and ferrostatin-1 (Fer-1) and deferoxamine (DFO), two ferroptosis inhibitors, significantly eliminated rotenone-induced autophagy and apoptosis. Moreover, ML385, a specific inhibitor of Nrf2, suppressed rotenone-induced ferroptosis. Our results demonstrated that ROS might mediate rotenone-induced PD-like pathological changes by regulating iron death, autophagy, and apoptosis. Inhibiting ferroptosis blocked the rotenone-induced increase in autophagy and apoptosis. Thus, the ability of ROS to regulate rotenone-induced death through autophagy and apoptosis is dependent on ferroptosis. The findings require validation in multiple neuronal cell lines and in vivo.
Collapse
Affiliation(s)
- Xinying Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Weiran Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Clinical Medicine, School of Medicine, Qinghai University, Xining, China
| | - Xinying Xie
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Ting Fang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Jingwen Yang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yue Shen
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yicheng Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongyan Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Liqing Tao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
4
|
Sun D, Wang L, Wu Y, Yu Y, Yao Y, Yang H, Hao C. Lipid metabolism in ferroptosis: mechanistic insights and therapeutic potential. Front Immunol 2025; 16:1545339. [PMID: 40134420 PMCID: PMC11932849 DOI: 10.3389/fimmu.2025.1545339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, plays a pivotal role in various physiological and pathological processes. In this review, we summarize the core mechanisms of ferroptosis, emphasizing its intricate connections to lipid metabolism, including fatty acid synthesis, phospholipid remodeling, and oxidation dynamics. We further highlight advancements in detection technologies, such as fluorescence imaging, lipidomics, and in vivo PET imaging, which have deepened our understanding of ferroptotic regulation. Additionally, we discuss the role of ferroptosis in human diseases, where it acts as a double-edged sword, contributing to cancer cell death while also driving ischemia-reperfusion injury and neurodegeneration. Finally, we explore therapeutic strategies aimed at either inducing or inhibiting ferroptosis, including iron chelation, antioxidant modulation, and lipid-targeted interventions. By integrating mechanistic insights, disease relevance, and therapeutic potential, this review provides a comprehensive perspective on ferroptosis as a crucial interface between lipid metabolism and oxidative stress.
Collapse
Affiliation(s)
- Daoyun Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Zhengzhou, Henan, China
| | - Longfei Wang
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Zhengzhou, Henan, China
| | - Yufan Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hongju Yang
- Division of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chunlin Hao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Yuan CX, Wang X, Liu Y, Xu TC, Yu Z, Xu B. Electroacupuncture alleviates diabetic peripheral neuropathy through modulating mitochondrial biogenesis and suppressing oxidative stress. World J Diabetes 2025; 16:93130. [PMID: 39959279 PMCID: PMC11718478 DOI: 10.4239/wjd.v16.i2.93130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/15/2024] [Accepted: 10/31/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Peripheral neuropathy caused by diabetes is closely related to the vicious cycle of oxidative stress and mitochondrial dysfunction resulting from metabolic abnormalities. The effects mediated by the silent information regulator type 2 homolog-1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) axis present new opportunities for the treatment of type 2 diabetic peripheral neuropathy (T2DPN), potentially breaking this harmful cycle. AIM To validate the effectiveness of electroacupuncture (EA) in the treatment of T2DPN and investigate its potential mechanism based on the SIRT1/PGC-1α axis. METHODS The effects of EA were evaluated through assessments of metabolic changes, morphological observations, and functional examinations of the sciatic nerve, along with measurements of inflammation and oxidative stress. Proteins related to the SIRT1/PGC-1α axis, involved in the regulation of mitochondrial biogenesis and antioxidative stress, were detected in the sciatic nerve using Western blotting to explain the underlying mechanism. A counterevidence group was created by injecting a SIRT1 inhibitor during EA intervention to support the hypothesis. RESULTS In addition to diabetes-related metabolic changes, T2DPN rats showed significant reductions in pain threshold after 9 weeks, suggesting abnormal peripheral nerve function. EA treatment partially restored metabolic control and reduced nerve damage in T2DPN rats. The SIRT1/PGC-1α axis, which was downregulated in the model group, was upregulated by EA intervention. The endogenous antioxidant system related to the SIRT1/PGC-1α axis, previously inhibited in diabetic rats, was reactivated. A similar trend was observed in inflammatory markers. When SIRT1 was inhibited in diabetic rats, these beneficial effects were abolished. CONCLUSION EA can alleviate the symptoms of T2DNP in experimental rats, and its effects may be related to the mitochondrial biogenesis and endogenous antioxidant system mediated by the SIRT1/PGC-1α axis.
Collapse
Affiliation(s)
- Chong-Xi Yuan
- Department of Traditional Chinese Medicine, Suzhou Xiangcheng People's Hospital, Suzhou 215100, Jiangsu Province, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Xuan Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
- College of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, Jiangsu Province, China
| | - Yun Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Tian-Cheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
6
|
Li P, Liu J, Wang R, Cao F, Li J, Wang H. Myricetin Mitigated Sevoflurane-induced Cognitive Dysfunction in Aged-mice Through Inhibiting Histone Deacetylase 2/nuclear Factor Erythroid 2-related Factor 2/heme Oxygenase-1 Signalling-mediated Ferroptosis and Mitochondrial Dysfunction. Mol Neurobiol 2025:10.1007/s12035-025-04703-0. [PMID: 39937417 DOI: 10.1007/s12035-025-04703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Sevoflurane anaesthesia induces neurotoxicity and postoperative cognitive dysfunction (POCD) after surgery. This study investigated the roles and potential mechanisms of the natural flavonoid myricetin in sevoflurane-induced cognitive dysfunction. Primary hippocampal neurons were treated with 3% sevoflurane to establish a neuron injury model. Neurons was pre-treated with different concentrations of myricetin, and ferroptosis inhibitor ferrostatin-1 (Fer-1) was used as a positive control. Moreover, mice were anaesthetised with 3% sevoflurane to establish an in-vivo model, and they were pre-treated with 50 or 100 m/kg myricetin. Cell viability and death were determined. Ferroptosis-related markers, including intracellular iron content, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), 4-hydroxy-2-nonenal (4-HNE), glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) protein levels were measured. Myricetin treatment enhanced cell viability and mitigated sevoflurane-induced cell death in the hippocampal neurons. Sevoflurane exposure increased the ROS, MDA and 4-HNE levels and reduced the GSH level, whereas myricetin treatment abrogated these effects. Meanwhile, myricetin treatment restrained sevoflurane-induced increase in intracellular iron content and GPX4 and SLC7A11 protein levels. A high dose of myricetin showed distinct protective effects. Mechanistic studies demonstrated that myricetin treatment reversed sevoflurane-induced histone deacetylase 2 (HDAC2) upregulation and nuclear factor erythroid 2-related factor 2 (Nrf2) deacetylation, thus activating the Nrf2/heme oxygenase-1 (HO-1) signalling. Myricetin treatment mitigated sevoflurane-induced cognitive dysfunction in aged mice by inhibiting hippocampal ferroptosis and mitochondrial dysfunction via the HDAC2/Nrf2/HO-1 signalling pathway. Myricetin may be a treatment option for POCD after surgery.
Collapse
Affiliation(s)
- Peng Li
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jingjing Liu
- Department of Anesthesiology, Chinese People's Armed Police Force Hospital of Beijing, Beijing, 100037, China
| | - Rui Wang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Fuyang Cao
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jiannan Li
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Henglin Wang
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
7
|
Fang T, Ma C, Yang B, Zhao M, Sun L, Zheng N. Roxadustat improves diabetic myocardial injury by upregulating HIF-1α/UCP2 against oxidative stress. Cardiovasc Diabetol 2025; 24:67. [PMID: 39920720 PMCID: PMC11806548 DOI: 10.1186/s12933-025-02601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Diabetes mellitus (DM), characterized by hyperglycemia, is intricately linked with cardiovascular complications. Hyperglycemia induces oxidative stress, compromising mitochondria energy metabolism disturbances, leading to cardiomyocyte hypoxia and dysregulation of hypoxia-inducible factor-1α (HIF-1α), thereby exacerbating diabetic myocardial injury. Roxadustat (FG-4592), as an inhibitor of HIF-PHD, reduces HIF-1α degradation and regulates the transcription and function of downstream target genes. This study explores the protective effect of FG-4592 on the diabetic myocardium and further investigates the specific mechanisms responsible for this action. METHODS We established diabetic myocardial injury mice and high glucose-induced rat cardiomyocyte models, administered FG-4592 pretreatment to clarify the protective effects and related mechanisms of FG-4592 on diabetic myocardial injury by detecting changes in oxidative stress, mitochondrial function, and related pathways. RESULTS FG-4592 demonstrated cardioprotective effects in diabetic mice by regulating mitochondrial structure and function, as well as maintaining oxidative stress balance in the myocardium. It stabilized HIF-1α, activated UCP2, and enhanced the PI3K/AKT/Nrf2 pathway, reducing mitochondrial superoxide production, improving mitochondrial respiratory potential, and modulating oxidative stress markers in high glucose-induced cardiomyocytes. CONCLUSIONS FG-4592 exerts protective effects against diabetic myocardial injury by reducing oxidative stress. The mechanism is linked with the upregulation of HIF-1α and UCP2, which subsequently activate the PI3K/AKT/Nrf2 signaling pathway.
Collapse
MESH Headings
- Animals
- Oxidative Stress/drug effects
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/prevention & control
- Diabetic Cardiomyopathies/drug therapy
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/physiopathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Male
- Signal Transduction/drug effects
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Uncoupling Protein 2/metabolism
- Uncoupling Protein 2/genetics
- Up-Regulation
- Mice, Inbred C57BL
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Isoquinolines/pharmacology
- Rats, Sprague-Dawley
- Benzodioxoles/pharmacology
- Benzodioxoles/therapeutic use
- Proto-Oncogene Proteins c-akt/metabolism
- Prolyl-Hydroxylase Inhibitors/pharmacology
- NF-E2-Related Factor 2/metabolism
- Cells, Cultured
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinase/metabolism
- Mice
- Rats
Collapse
Affiliation(s)
- Tingting Fang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Congcong Ma
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Bingyun Yang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Meiyu Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Luning Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| | - Ningning Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
8
|
Ji Y, Yang C, Pang X, Yan Y, Wu Y, Geng Z, Hu W, Hu P, Wu X, Wang K. Repetitive transcranial magnetic stimulation in Alzheimer's disease: effects on neural and synaptic rehabilitation. Neural Regen Res 2025; 20:326-342. [PMID: 38819037 PMCID: PMC11317939 DOI: 10.4103/nrr.nrr-d-23-01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/23/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis. The Alzheimer's disease brain tends to be hyperexcitable and hypersynchronized, thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life, leaving patients incapacitated. Repetitive transcranial magnetic stimulation is a cost-effective, neuro-modulatory technique used for multiple neurological conditions. Over the past two decades, it has been widely used to predict cognitive decline; identify pathophysiological markers; promote neuroplasticity; and assess brain excitability, plasticity, and connectivity. It has also been applied to patients with dementia, because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult. However, its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies. This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment, evaluate its effects on synaptic plasticity, and identify the associated mechanisms. This review essentially focuses on changes in the pathology, amyloidogenesis, and clearance pathways, given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer's disease. Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription, which are closely related to the neural regeneration process, are also highlighted. Finally, we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation, with the aim to highlight future directions for better clinical translations.
Collapse
Affiliation(s)
- Yi Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Chaoyi Yang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Xuerui Pang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Yibing Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Yue Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Wenjie Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
9
|
Zang X, Zhang J, Hu J, Mo X, Zheng T, Ji J, Xing J, Chen C, Zhou S. Electroconvulsive therapy combined with esketamine improved depression through PI3K/AKT/GLT-1 pathway. J Affect Disord 2025; 368:282-294. [PMID: 39265873 DOI: 10.1016/j.jad.2024.08.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024]
Abstract
Neuron excitotoxic damage induced by extracellular glutamate accumulation pathologically is one of the main mechanisms of depression. Glutamate transporter-1 (GLT-1) expressed in astrocyte is responsible for glutamate clearance to maintain glutamate balance. Electroconvulsive therapy (ECT) is prevalently recommended for severe depression due to its significant anti-depressant effect. Esketamine could offer advantages of rapid anti-depressant effect and neuron protection. The aim of this study is to investigate the anti-depressant efficacy of esketamine plus ECT, and further to explore the mechanism. Firstly, total 12 patients were randomized into anesthesia with propofol (P) or propofol+esketamine (PK) before ECT. 24-Hamilton Depression Scale (HAMD) was used to evaluate the severity of depression after each ECT. Then, depressive rat model was built using chronic unpredictable mild stress method, and subsequently received infusion of esketamine (5 mg/kg) or saline before ECT treatment (0.5 mA; 100 V) for consecutive 10 days. Tests including sucrose preference test, open field test and forced swimming test were used to evaluate depression-like behaviors. In next experiments, rats were injected with RIL, DHK or LY294002 intracerebroventricularly for continuous 10 days before individual treatment. After the fifth and sixth ECT, PK group displayed lower HAMD score compared to P group. In rat model, we found that esketamine plus ECT could significantly improve depression-like behaviors and decrease glutamate level. Esketamine and ECT could both activate PI3K/Akt/GLT-1 pathway. The GLT-1 agonist RIL made equivalent effect as esketamine plus ECT. Furthermore, after using PI3K/Akt inhibitor LY294002 and GLT-1 inhibitor DHK, esketamine plus ECT could neither improve depression-like symptoms, nor upregulate GLT-1 level. Our present study suggested that esketamine plus ECT could dramatically improve depression symptom. The activation of PI3K/Akt/GLT-1 pathway may be the potential mechanism.
Collapse
Affiliation(s)
- Xiangyang Zang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Jingting Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Jingping Hu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Xingying Mo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Tingwei Zheng
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Jiaming Ji
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Jibin Xing
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China.
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China.
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
10
|
Chuang YF, Cheng L, Chang WH, Yu SY, Hsu HT, An LM, Yen CH, Chang FR, Lo YC. Spatheliachromen mitigates methylglyoxal-induced myotube atrophy by activating Nrf2, inhibiting ubiquitin-mediated protein degradation, and restoring mitochondrial function. Eur J Pharmacol 2024; 984:177070. [PMID: 39442745 DOI: 10.1016/j.ejphar.2024.177070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Methylglyoxal (MGO) is a potent precursor of glycative stress that leads to oxidative stress and muscle atrophy in diabetes. Spatheliachromen (FPATM-20), derived from Ficus pumila var. awkeotsang, exhibited potential antioxidant activity. PURPOSE This study aimed to evaluate the potential impact and underlying mechanisms of FPATM-20 on MGO-induced myotube atrophy and mitochondrial dysfunction in mouse skeletal C2C12 myotubes. METHODS Atrophic and antioxidant factors were evaluated using immunofluorescence, enzyme-linked immunosorbent assay, and western blotting. Mitochondrial function was assessed using the ATP assay and Seahorse Cell Mito Stress Test. The glycogen content was determined using periodic acid-Schiff staining. Molecular docking was performed to determine the interaction between FPATM-20 and Keap1. RESULTS In myotubes treated with MGO, FPATM-20 activated the Nrf2 pathway, reduced ROS levels, enhanced antioxidant defense, and increased glycogen content. FPATM-20 improved myotube viability and size, upregulated myosin heavy chain (MyHC) expression, modulated ubiquitin-proteasome molecules (nuclear FoxO3a, atrogin-1, MuRF-1, and p62/SQSTM1), and inhibited apoptosis (Bax/Bcl-2 ratio and cleaved caspase 3). Moreover, FPATM-20 restored mitochondrial function, including mitochondrial membrane potential, mitochondrial oxygen consumption rate, and mitochondrial biogenesis pathway (nuclear PGC-1α/TFAM/FNDC5). The inhibition of Nrf2 with ML385 reversed the effects of FPATM-20 on MGO. Furthermore, molecular docking confirmed the binding of FPATM-20 to Keap1, a suppressor of Nrf2, showing the crucial role of Nrf2 in protective effects. CONCLUSIONS FPATM-20 protects myotubes from MGO toxicity by activating the Nrf2 antioxidant defense, reducing protein degradation and apoptosis, and enhancing mitochondrial function. Thus, FPATM-20 may be a novel agent for preventing skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yu-Fan Chuang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin Cheng
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Hsuan Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Yin Yu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Pharmacognosy, University of Szeged, Szeged, Hungary
| | - Hung-Te Hsu
- Department of Anesthesia, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan; Faculty of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Mei An
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Wang J, Ma H, Guo H, Chen Y, Liu Y. Clinical applications of phosphocreatine and related mechanisms. Life Sci 2024; 355:123012. [PMID: 39181314 DOI: 10.1016/j.lfs.2024.123012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Phosphocreatine (PCr), a naturally occurring creatine phosphorylated molecule, is a high-energy phosphate compound that is one of the most important substances involved in cell energy metabolism, and also has anti-apoptosis and anti-oxidative stress effects. It is precisely because of its role in maintaining energy homeostasis that PCr is widely used in diseases related to energy damage. In the regulation of cell signal, PCr mainly plays a role through MAPK, NF-κB, PI3K/AKT, ERK/Nrf2/HO-1 and JAK2/STAT3. In clinical applications, PCr is commonly used as a cardioprotective drug, such as ischemic heart disease, myocardial fibrosis, myocardial infarction, arrhythmia, and myocarditis. In recent years, further research on PCr has found that PCr also has a positive role in the treatment of other diseases, including diabetes-induced liver injury, kidney injury, cerebral ischemia-reperfusion injury, and neurodegenerative diseases. In this paper, the literature on PCr in three databases, Web of Sciences, SciFinder, and PubMed, was summarized and analyzed, and the research progress of PCr in recent years was reviewed, hoping to provide help for the expansion of its application in clinical therapy.
Collapse
Affiliation(s)
- Jing Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Huizhong Ma
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Haohao Guo
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Yuan Chen
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Yufeng Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China; Natural Products Pharmaceutical Engineering Technology Research Center of Liaoning Province, Shenyang 110036, China.
| |
Collapse
|
12
|
Soni ND, Swain A, Juul H, Cao Q, Haris M, Wolk DA, Lee VM, Detre JA, Nanga RPR, Reddy R. Detection of sex-specific glutamate changes in subregions of hippocampus in an early-stage Alzheimer's disease mouse model using GluCEST MRI. Alzheimers Dement 2024; 20:7124-7137. [PMID: 39262197 PMCID: PMC11485308 DOI: 10.1002/alz.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Regional glucose hypometabolism resulting in glutamate loss has been shown as one of the characteristics of Alzheimer's disease (AD). Because the impact of AD varies between the sexes, we utilized glutamate-weighted chemical exchange saturation transfer (GluCEST) magnetic resonance imaging (MRI) for high-resolution spatial mapping of cerebral glutamate and investigated subregional changes in a sex-specific manner. METHODS Eight-month-old male and female AD mice harboring mutant amyloid precursor protein (APPNL-F/NL-F: n = 36) and wild-type (WT: n = 39) mice underwent GluCEST MRI, followed by proton magnetic resonance spectroscopy (1H-MRS) in hippocampus and thalamus/hypothalamus using 9.4T preclinical MR scanner. RESULTS GluCEST measurements revealed significant (p ≤ 0.02) glutamate loss in the entorhinal cortex (% change ± standard error: 8.73 ± 2.12%), hippocampus (11.29 ± 2.41%), and hippocampal fimbriae (19.15 ± 2.95%) of male AD mice. A similar loss of hippocampal glutamate in male AD mice (11.22 ± 2.33%; p = 0.01) was also observed in 1H-MRS. DISCUSSIONS GluCEST MRI detected glutamate reductions in the fimbria and entorhinal cortex of male AD mice, which was not reported previously. Resilience in female AD mice against these changes indicates an intact status of cerebral energy metabolism. HIGHLIGHTS Glutamate levels were monitored in different brain regions of early-stage Alzheimer's disease (AD) and wild-type male and female mice using glutamate-weighted chemical exchange saturation transfer (GluCEST) magnetic resonance imaging (MRI). Male AD mice exhibited significant glutamate loss in the hippocampus, entorhinal cortex, and the fimbriae of the hippocampus. Interestingly, female AD mice did not have any glutamate loss in any brain region and should be investigated further to find the probable cause. These findings demonstrate previously unreported sex-specific glutamate changes in hippocampal sub-regions using high-resolution GluCEST MRI.
Collapse
Affiliation(s)
- Narayan Datt Soni
- Department of Radiology, Perelman School of MedicineCenter for Advanced Metabolic Imaging in Precision MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Anshuman Swain
- Department of Radiology, Perelman School of MedicineCenter for Advanced Metabolic Imaging in Precision MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Bioengineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Halvor Juul
- Department of Radiology, Perelman School of MedicineCenter for Advanced Metabolic Imaging in Precision MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Quy Cao
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Mohammad Haris
- Department of Radiology, Perelman School of MedicineCenter for Advanced Metabolic Imaging in Precision MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David A. Wolk
- Center for Cognitive NeuroscienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Alzheimer's Disease Research CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Virginia M.‐Y. Lee
- Alzheimer's Disease Research CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Neurodegenerative Disease ResearchPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - John A. Detre
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ravi Prakash Reddy Nanga
- Department of Radiology, Perelman School of MedicineCenter for Advanced Metabolic Imaging in Precision MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ravinder Reddy
- Department of Radiology, Perelman School of MedicineCenter for Advanced Metabolic Imaging in Precision MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
13
|
Cheng X, Tan Y, Li H, Zhang Z, Hui S, Zhang Z, Peng W. Mechanistic Insights and Potential Therapeutic Implications of NRF2 in Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8253-8278. [PMID: 38483656 DOI: 10.1007/s12035-024-04097-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/04/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a complication of diabetes, especially type 2 diabetes (T2D), characterized by damage in the central nervous system and cognitive impairment, which has gained global attention. Despite the extensive research aimed at enhancing our understanding of DE, the underlying mechanism of occurrence and development of DE has not been established. Mounting evidence has demonstrated a close correlation between DE and various factors, such as Alzheimer's disease-like pathological changes, insulin resistance, inflammation, and oxidative stress. Of interest, nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor with antioxidant properties that is crucial in maintaining redox homeostasis and regulating inflammatory responses. The activation and regulatory mechanisms of NRF2 are a relatively complex process. NRF2 is involved in the regulation of multiple metabolic pathways and confers neuroprotective functions. Multiple studies have provided evidence demonstrating the significant involvement of NRF2 as a critical transcription factor in the progression of DE. Additionally, various molecules capable of activating NRF2 expression have shown potential in ameliorating DE. Therefore, it is intriguing to consider NRF2 as a potential target for the treatment of DE. In this review, we aim to shed light on the role and the possible underlying mechanism of NRF2 in DE. Furthermore, we provide an overview of the current research landscape and address the challenges associated with using NRF2 activators as potential treatment options for DE.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Yejun Tan
- School of Mathematics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| |
Collapse
|
14
|
Deng X, Wu Q, Liu Y. Eucommia ulmoidesOliv. leaves flavonoids attenuate methylglyoxal-induced endothelial cell apoptosis in vitro and in vivo by upregulating AKT-Nrf2 signaling and downregulating oxidative stress. Food Sci Nutr 2024; 12:7938-7953. [PMID: 39479661 PMCID: PMC11521679 DOI: 10.1002/fsn3.4416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/19/2024] [Accepted: 08/04/2024] [Indexed: 11/02/2024] Open
Abstract
Methylglyoxal (MGO) triggers oxidative stress responses in vascular endothelial cells, leading to apoptosis linked to diabetic vascular complications. Total flavonoids of Eucommia ulmoides leaves (TFEL) display antioxidant activity, yet its prevention of MGO-induced apoptosis and mechanisms are unclear. Our study used western blotting and ELISA to evaluate protein levels and enzyme activities. Cell viability and apoptosis were evaluated using CCK8 assay and PE Annexin V/7-AAD double staining. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured using fluorescence probes. Vascular pathological changes and apoptosis were analyzed through H&E and TUNEL staining. In vitro, MGO-stimulated human umbilical vein endothelial cells (HUVECs) were treated with varying TFEL concentrations. Our results demonstrated that TFEL significantly enhanced cell viability, reduced apoptosis, downregulated caspase-3 activity, and Bax/Bcl-2 ratio. Moreover, TFEL markedly suppressed MGO-induced ROS and malondialdehyde (MDA) production while restoring antioxidant enzyme activity and MMP. TFEL pretreatment promoted the expression of p-Akt, Nrf2, and HO-1 proteins. Pharmacological inhibition of p-Akt significantly suppressed the upregulation of Nrf2 and HO-1 protein levels mediated by TFEL. Consistently, pharmacological inhibition of Nrf2 or p-Akt partially abrogated the protective effects of TFEL against MGO-induced damage in HUVECs. In vivo studies revealed that TFEL (100 and 200 mg/kg) partially restored antioxidant capacity and reduced aortic thickness and apoptosis in MGO-injured mice. In conclusion, the findings indicate that TFEL mitigates MGO-induced apoptosis via activation of p-Akt/Nrf2/HO-1 and scavenging of oxidative stress, highlighting its potential in diabetic vascular complication management.
Collapse
Affiliation(s)
- Xin Deng
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of EducationSouthwest Medical UniversityLuzhouChina
| | - Qianfeng Wu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Youping Liu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
15
|
Li J, Wang H, Guo M, Guo Q, Li Y. Combination of Exogenous Spermidine and Phosphocreatine Efficiently Improved the Quality and Antioxidant Capacity of Cryopreserved Boar Sperm and Reduced Apoptosis-Like Changes. Mol Reprod Dev 2024; 91:e70003. [PMID: 39445630 DOI: 10.1002/mrd.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
The low resistance of boar sperm to cryopreservation dictates that addition antioxidants and energetic substances to the diluent to improve sperm quality is necessary. This study evaluated the effect of spermidine and phosphocreatine in combination on the quality, antioxidant capacity, and antiapoptotic-like changes capacity of cryopreserved boar sperm based on previous reports. The results showed that the combined application of spermidine and phosphocreatine significantly enhanced the motility, average path velocity, straight-line velocity, curvilinear velocity, beat cross frequency, acrosome integrity, plasma membrane integrity, mitochondrial activity, and DNA integrity compared with the control group (p < 0.05). In addition, the combined application of spermidine and phosphocreatine significantly enhanced the total antioxidant capacity, superoxide dismutase activity, glutathione peroxidase activity, and catalase activity while significantly decreasing malondialdehyde content and hydrogen peroxide content (p < 0.05). Western Blot analysis further showed that spermidine and phosphocreatine significantly decreased the expression of CASP3 and BAX and significantly enhanced the expression of BCL2 (p < 0.05); therefore, the combination of spermidine and phosphocreatine has potentially positive implications for improving the quality of cryopreserved boar sperm.
Collapse
Affiliation(s)
- Jingchun Li
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Hechuan Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Minghui Guo
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qing Guo
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yanbing Li
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
16
|
Chen PF, Huang GX, Gu WT, Zhuang GD, Chen C, Wang SM, Tang D. Exploration of the Mechanisms of Bu-Yang-Huan-Wu Decoction in the Treatment of Diabetic Peripheral Neuropathy by Integrating of Serum Pharmacochemistry and Network Pharmacology. Chem Biodivers 2024; 21:e202400910. [PMID: 39105318 DOI: 10.1002/cbdv.202400910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 08/07/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a significant and frequent complication of diabetes. Bu-Yang-Huan-Wu Decoction (BHD) is a classic traditional Chinese herbal prescription that is commonly used in modern clinical practice for the effective treatment of DPN, but the underlying mechanism is not yet clearly defined. The chemical constituents of BHD were characterized by UPLC-Q-Orbitrap HR MS/MS, and a total of 101 chemical components were identified, including 30 components absorbed into blood. An interaction network of "compound-target-disease" interactions was constructed based on the compounds detected absorbed in blood and their corresponding targets of diabetic neuropathy acquired from disease gene databases, and the possible biological targets and potential signalling pathways of BHD were predicted via network pharmacology analysis. Subsequently, methylglyoxal-induced (MGO-induced) Schwann cells (SCs) were used to identify the active ingredients in blood components of BHD and verify the molecular mechanisms of BHD. Through network topological analysis, 30 shared targets strongly implicated in the anti-DPN effects of BHD were identifed. Combined network pharmacology and in vitro cellular analysis, we found that the active ingredient of BHD may treat DPN by modulating the AGEs/RAGE pathway. This study provides valuable evidence for future mechanistic studies and potential therapeutic applications for patients with DPN.
Collapse
Affiliation(s)
- Peng-Fei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guang-Xiao Huang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wen-Ting Gu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guo-Dong Zhuang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chong Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
17
|
Wang J, Zhang J, Yu ZL, Chung SK, Xu B. The roles of dietary polyphenols at crosstalk between type 2 diabetes and Alzheimer's disease in ameliorating oxidative stress and mitochondrial dysfunction via PI3K/Akt signaling pathways. Ageing Res Rev 2024; 99:102416. [PMID: 39002644 DOI: 10.1016/j.arr.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disease in which senile plaques and neurofibrillary tangles are crucially involved in its physiological and pathophysiological processes. Growing animal and clinical studies have suggested that AD is also comorbid with some metabolic diseases, including type 2 diabetes mellitus (T2DM), and therefore, it is often considered brain diabetes. AD and T2DM share multiple molecular and biochemical mechanisms, including impaired insulin signaling, oxidative stress, gut microbiota dysbiosis, and mitochondrial dysfunction. In this review article, we mainly introduce oxidative stress and mitochondrial dysfunction and explain their role and the underlying molecular mechanism in T2DM and AD pathogenesis; then, according to the current literature, we comprehensively evaluate the possibility of regulating oxidative homeostasis and mitochondrial function as therapeutics against AD. Furthermore, considering dietary polyphenols' antioxidative and antidiabetic properties, the strategies for applying them as potential therapeutical interventions in patients with AD symptoms are assessed.
Collapse
Affiliation(s)
- Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jingyang Zhang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
18
|
Liu H, Zhang R, Wang W, Xia X, Xu Z, Xiang X. Inhibitory effects and mechanisms of phenolic compounds in rapeseed oil on advanced glycation end product formation in chemical and cellular models in vitro. Food Chem 2024; 447:139056. [PMID: 38513495 DOI: 10.1016/j.foodchem.2024.139056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Sinapic acid (SA), canolol (CAO) and canolol dimer (CAO dimer) are the main phenolic compounds in rapeseed oil. However, their possible efficacy against glycation remains unclear. This study aims to explore the impacts of these substances on the formation of advanced glycation end products (AGEs) based on chemical and cellular models in vitro. Based on fluorescence spectroscopy results, three chemical models of BSA-fructose, BSA-methylglyoxal (MGO), and arginine (Arg)-MGO showed that SA/CAO/CAO dimer could effectively reduce AGE formation but with different abilities. After SA/CAO/CAO dimer incubation, effective protection against BSA protein glycation was observed and three different MGO adducts were formed. In MGO-induced HUVEC cell models, only CAO and CAO dimer significantly inhibited oxidative stress and cell apoptosis, accompanied by the regulation of the Nrf2-HO-1 pathway. During the inhibition, 20 and 12 lipid mediators were reversed in the CAO and CAO dimer groups compared to the MGO group.
Collapse
Affiliation(s)
- Huihui Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Ruiying Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wen Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Xiaoyang Xia
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Zhenxia Xu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Xia Xiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| |
Collapse
|
19
|
Ding J, Tie F, Dong Q, Hu N, Wang H. Kaempferol Derivatives from Hippophae rhamnoides Linn. Ameliorate H 2O 2-Induced Oxidative Stress in SH-SY5Y Cells by Upregulating Nrf2. Chem Biodivers 2024; 21:e202400145. [PMID: 38738490 DOI: 10.1002/cbdv.202400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
As a medicinal and edible resource, Hippophae rhamnoides Linn. subsp. sinensis Rousi is rich in bioactive secondary metabolites, including flavonoids and their derivatives, which offer protective effects against oxidative damage. This study reported the isolation of three new kaempferol derivatives from the seed residue of H. rhamnoides - Hippophandine A, B, and C (compounds 1-3). Their structures were elucidated by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), nuclear magnetic resonance (NMR), and chemical analyses. The compounds were evaluated for their ability to mitigate hydrogen peroxide (H2O2)-induced cell death in SH-SY5Y cells. The results elucidated that Hippophandine A-C at concentrations of 1, 5, and 10 μM reduced the levels of malondialdehyde (MDA) and increased the activity of antioxidative enzymes, such as superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT). Furthermore, they significantly altered the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream heme oxygenase-1 (HO-1), which is an indicator of redox detection in H2O2-induced SH-SY5Y.
Collapse
Affiliation(s)
- Jin Ding
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Science, Beijing, P. R. China
| | - Fangfang Tie
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Qi Dong
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Na Hu
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Honglun Wang
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| |
Collapse
|
20
|
Wen J, Xiang Q, Guo J, Zhang J, Yang N, Huang Y, Chen Y, Hu T, Rao C. Pharmacological activities of Zanthoxylum L. plants and its exploitation and utilization. Heliyon 2024; 10:e33207. [PMID: 39022083 PMCID: PMC11252797 DOI: 10.1016/j.heliyon.2024.e33207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
The study aims to provide an up-to-date review at the advancements of the investigations on the ethnopharmacology, phytochemistry, pharmacological effect and exploitation and utilizations of Zanthoxylum L. Besides, the possible tendency and perspective for future research of this plant are discussed, as well. This article uses "Zanthoxylum L." "Zanthorylum bungeanum" as the keywords and collects relevant information on Zanthoxylum L. plants through electronic searches (Elsevier, PubMed, ACS, Web of Science, Science Direct, CNKI, Google Scholar), relevant books, and classic literature about Chinese herb. The plants of this genus are rich in volatile oils, alkaloids, amides, lignans, coumarins and organic acids, and has a wide range of pharmacological activities, including but not limited to anti-inflammatory, analgesic, anti-tumor, hypoglycemic, hypolipidemic, antioxidant and anti-infectious. This article reviewed both Chinese and international research progress on the active ingredients and pharmacological activities of Zanthoxylum L. as well as the applications of this genus in the fields of food, medicinal and daily chemicals, and clarified the material basis of its pharmacological activities. Based on traditional usage, phytochemicals, and pharmacological properties, of Zanthoxylum L. species, which indicate that they possess diverse bioactive metabolites with interesting bioactivities. Zanthoxylum L. is a potential medicinal and edible plant with diverse pharmacological effects. Due to its various advantages, it may have vast application potential in the food and medicinal industries and daily chemicals. Nonetheless, the currently available data has several gaps in understanding the herbal utilization of Zanthoxylum L. Thus, further research into their toxicity, mechanisms of actions of the isolated bioactive metabolites, as well as scientific connotations between the traditional medicinal uses and pharmacological properties is required to unravel their efficacy in therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
21
|
Chai S, Yang Y, Wei L, Cao Y, Ma J, Zheng X, Teng J, Qin N. Luteolin rescues postmenopausal osteoporosis elicited by OVX through alleviating osteoblast pyroptosis via activating PI3K-AKT signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155516. [PMID: 38547625 DOI: 10.1016/j.phymed.2024.155516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Recently, osteoblast pyroptosis has been proposed as a potential pathogenic mechanism underlying osteoporosis, although this remains to be confirmed. Luteolin (Lut), a flavonoid phytochemical, plays a critical role in the anti-osteoporosis effects of many traditional Chinese medicine prescriptions. However, its protective impact on osteoblasts in postmenopausal osteoporosis (PMOP) has not been elucidated. PURPOSE This research aimed to determine the effect of Lut in ameliorating PMOP by alleviating osteoblast pyroptosis and sustaining osteogenesis. STUDY DESIGN This research was designed to investigate the novel mechanism of Lut in alleviating PMOP both in cell and animal models. METHODS Ovariectomy-induced PMOP models were established in mice with/without daily gavaged of 10 or 20 mg/kg body weight Lut. The impact of Lut on bone microstructure, metabolism and oxidative stress was evaluated with 0.104 mg/kg body weight Estradiol Valerate Tablets daily gavaged as positive control. Network pharmacological analysis and molecular docking were employed to investigate the mechanisms of Lut in PMOP treatment. Subsequently, the impacts of Lut on the PI3K/AKT axis, oxidative stress, mitochondria, and osteoblast pyroptosis were assessed. In vitro, cultured MC3T3-E1(14) cells were exposed to H2O2 with/without Lut to examine its effects on the PI3K/AKT signaling pathway, osteogenic differentiation, mitochondrial function, and osteoblast pyroptosis. RESULTS Our findings demonstrated that 20 mg/kg Lut, similar to the positive control drug, effectively reduced systemic bone loss and oxidative stress, and enhanced bone metabolism induced by ovariectomy. Network pharmacological analysis and molecular docking indicated that the PI3K/AKT axis was a potential target, with oxidative stress response and nuclear membrane function being key mechanisms. Consequently, the effects of Lut on the PI3K/AKT axis and pyroptosis were investigated. In vivo data revealed that the PI3K/AKT axis was deactivated following ovariectomy, and Lut restored the phosphorylation of key proteins, thereby reactivating the axis. Additionally, Lut alleviated osteoblast pyroptosis and mitochondrial abnormalities induced by ovariectomy. In vitro, Lut intervention mitigated the inhibition of the PI3K/AKT axis and osteogenesis, as well as H2O2-induced pyroptosis. Furthermore, Lut attenuated ROS accumulation and mitochondrial dysfunction. The effects of Lut, including osteogenesis restoration, anti-pyroptosis, and mitochondrial maintenance, were all reversed with LY294002 (a PI3K/AKT pathway inhibitor). CONCLUSION In summary, Lut could improve mitochondrial dysfunction, alleviate GSDME-mediated pyroptosis and maintain osteogenesis via activating the PI3K/AKT axis, offering a new therapeutic strategy for PMOP.
Collapse
Affiliation(s)
- Shuang Chai
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Yanbing Yang
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Liwei Wei
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Yuju Cao
- Zhengzhou Traditional Chinese Medicine (TCM) Traumatology Hospital, Zhengzhou, 450016, Henan Province, China
| | - Jiangtao Ma
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Xuxia Zheng
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Junyan Teng
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Na Qin
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China.
| |
Collapse
|
22
|
Mi Y, Wang Y, Liu Y, Dang W, Xu L, Tan S, Liu L, Chen G, Liu Y, Li N, Hou Y. Kellerin alleviates cerebral ischemic injury by inhibiting ferroptosis via targeting Akt-mediated transcriptional activation of Nrf2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155406. [PMID: 38520834 DOI: 10.1016/j.phymed.2024.155406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Ischemic stroke (IS) is characterized as a detrimental cerebrovascular disease with high mortality and disability. Ferroptosis is a novel mechanism involved in neuronal death. There is a close connection between IS and ferroptosis, and inhibiting ferroptosis may provide an effective strategy for treating IS. Our previous investigations have discovered that kellerin, the active compound of Ferula sinkiangensis K. M. Shen, possesses the capability to shield against cerebral ischemia injury. PURPOSE Our objective is to clarify the relationship between the neuroprotective properties of kellerin against IS and its ability to modulate ferroptosis, and investigate the underlying regulatory pathway. STUDY DESIGN We investigated the impact and mechanism of kellerin in C57BL/6 mice underwent middle cerebral artery occlusion/reperfusion (MCAO/R) as well as SH-SY5Y cells exposed to oxygen-glucose deprivation/ re-oxygenation (OGD/R). METHODS The roles of kellerin on neurological severity, cerebral infarction and edema were investigated in vivo. The regulatory impacts of kellerin on ferroptosis, mitochondrial damage and Akt/Nrf2 pathway were explored. Molecular docking combined with drug affinity responsive target stability assay (DARTS) and cellular thermal shift assay (CETSA) were performed to analyze the potential target proteins for kellerin. RESULTS Kellerin protected against IS and inhibited ferroptosis in vivo. Meanwhile, kellerin improved the neuronal damage caused by OGD/R and suppressed ferroptosis by inhibiting the production of mitochondrial ROS in vitro. Further we found that kellerin directly interacted with Akt and enhanced its phosphorylation, leading to the increase of Nrf2 nuclear translocation and its downstream antioxidant genes expression. Moreover, kellerin's inhibitory effect on ferroptosis and mitochondrial ROS release was eliminated by inhibiting Akt/Nrf2 pathway. CONCLUSIONS Our study firstly demonstrates that the neuroprotective properties of kellerin against IS are related to suppressing ferroptosis through inhibiting the production of mitochondrial ROS, in which its modulation on Akt-mediated transcriptional activation of Nrf2 plays an important role. This finding shed light on the potential mechanism that kellerin exerts therapeutic effects in IS.
Collapse
Affiliation(s)
- Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, PR China
| | - Yongping Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, PR China
| | - Yeshu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, PR China
| | - Wen Dang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Libin Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, PR China
| | - Shaowen Tan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, PR China
| | - Linge Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, PR China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yueyang Liu
- Shenyang Key Laboratory of Vascular Biology, Science and Research Center, Department of Pharmacology, Shenyang Medical College, Shenyang, PR China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, PR China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, PR China.
| |
Collapse
|
23
|
Zhang D, He X, Wang T, Xing Y, Xiu Z, Bao Y, Dong Y. Synergistic Effect of Flavonoids and Metformin on Protection of the Methylglyoxal-Induced Damage in PC-12 Neuroblastoma Cells: Structure-Activity Relationship and Potential Target. Molecules 2024; 29:2306. [PMID: 38792167 PMCID: PMC11124423 DOI: 10.3390/molecules29102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Methylglyoxal-induced ROS elevation is the primary cause of neuronal damage. Metformin is a traditional hypoglycemic drug that has been reported to be beneficial to the nervous system. In this study, flavonoids were found to enhance the protective effect of metformin when added at a molar concentration of 0.5%. The structure-activity relationship (SAR) analysis indicated that ortho- substitution in the B ring, and the absence of double bonds between the 2 and 3 position combined with the gallate substitution with R configuration at the 3 position in the C ring played crucial roles in the synergistic effects, which could be beneficial for designing a combination of the compounds. Additionally, the mechanism study revealed that a typical flavonoid, EGCG, enhanced ROS scavenging and anti-apoptotic ability via the BCL2/Bax/Cyto C/Caspase-3 pathway, and synergistically inhibited the expression of GSK-3β, BACE-1, and APP in PC-12 cells when used in combination with metformin. The dose of metformin used in the combination was only 1/4 of the conventional dose when used alone. These results suggested that ROS-mediated apoptosis and the pathways related to amyloid plaques (Aβ) formation can be the targets for the synergistic neuroprotective effects of flavonoids and metformin.
Collapse
Affiliation(s)
- Danyang Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (Y.X.); (Z.X.); (Y.B.)
| | - Xiaoshi He
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (Y.X.); (Z.X.); (Y.B.)
| | - Ting Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050004, China;
| | - Yan Xing
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (Y.X.); (Z.X.); (Y.B.)
| | - Zhilong Xiu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (Y.X.); (Z.X.); (Y.B.)
| | - Yongming Bao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (Y.X.); (Z.X.); (Y.B.)
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Yuesheng Dong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (Y.X.); (Z.X.); (Y.B.)
| |
Collapse
|
24
|
Ramasubbu K, Rajeswari VD. Green Synthesising ZnO Nanoparticle Using Sesbania grandiflora and Their Evaluation of Anti-diabetic Anti-advanced Glycation End Products and Cytotoxic Effects. Appl Biochem Biotechnol 2024; 196:2652-2672. [PMID: 37432639 DOI: 10.1007/s12010-023-04631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/12/2023]
Abstract
Nanotechnology is an emerging area of science with diverse implementations, including medicine and drug delivery. Often for drug delivery, nanoparticles and nanocarriers were used. Diabetes mellitus is a metabolic disease with numerous complications, including advanced glycation end products (AGEs). AGEs advance neurodegeneration, obesity, renal dysfunction, retinopathy, and many more. Here, we have used zinc oxide nanoparticles synthesised with Sesbania grandiflora (hummingbird tree). ZnO nanoparticles and S. grandiflora are known for their biocompatibility and medicinal property, such as anti-cancer, anti-microbial, anti-diabetic, and anti-oxidant. So, we analysed the anti-diabetic, anti-oxidant, anti-AGEs, and cytotoxic effects of green synthesised and characterised ZnO nanoparticles with S. grandiflora (SGZ) and the leaf extract of S. grandiflora. Characterisation results indicated the synthesis of ZnO Nps at maximum concentration; the anti-oxidant assay showed 87.5% free radicle scavenging with DPPH. Additionally, anti-diabetic (72% α-amylase and 65% of α-glucosidase inhibition) and cell viability also exhibited promising results. In conclusion, SGZ can reduce the absorption of carbohydrates from the diet, elevate glucose uptake, and prevent protein glycation. So, it could be a potential tool for treating diabetes, hyperglycemia, and AGE-related diseases.
Collapse
Affiliation(s)
- Kanagavalli Ramasubbu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology-Vellore, Vellore, Tamil Nadu, 632 014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology-Vellore, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
25
|
Zeng Q, Qi Z, He X, Luo C, Wen J, Wei J, Yue F, Zhao X, Wei H, Chen T. Bifidobacterium pseudocatenulatum NCU-08 ameliorated senescence via modulation of the AMPK/Sirt1 signaling pathway and gut microbiota in mice. Food Funct 2024; 15:4095-4108. [PMID: 38563760 DOI: 10.1039/d3fo04575g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Aging is a degenerative disease in which organisms and neurological functions decline. Emerging research has underscored the vital role of the gut microbiota in age-related processes. However, the identification of aging-associated core microbiota remains limited. In this investigation, we isolated a strain of B. pseudocatenulatum NCU-08 from the feces of centenarians and assessed its impact on aging using a mouse model induced by D-gal. Our study revealed the exceptional probiotic attributes of B. pseudocatenulatum NCU-08. Administration of B. pseudocatenulatum NCU-08 significantly ameliorated age-related memory impairment, motor dysfunction, and anxiety-like behaviors in aging mice (p < 0.01). Moreover, tissue staining analysis demonstrated that B. pseudocatenulatum NCU-08 reduced the intensity of SA-β-gal-positive in the hippocampus of aging mice. It also reversed pathological damage and structural abnormalities in brain and intestinal tissue. B. pseudocatenulatum NCU-08 inhibited neuroinflammation induced by TLR4/NF-κB (p < 0.01) and preserved the blood-brain barrier integrity by activating the AMPK/Sirt1 pathway (p < 0.05). Furthermore, it mitigated neuronal apoptosis and oxidative stress by upregulating the PI3K/AKT signaling pathway (p < 0.01) and enhancing the activities of antioxidant enzymes, including GSH-Px (p < 0.01), SOD (p < 0.01), and CAT (p < 0.01). Besides, analysis of 16S rRNA sequencing data demonstrated that treatment with B. pseudocatenulatum NCU-08 restored intestinal microbiota homeostasis after senescence. It enhanced the abundance of beneficial bacteria while suppressing the growth of pathogenic microorganisms. In summary, our study unveiled that this novel strain of B. pseudocatenulatum NCU-08 exerts anti-aging effects through regulating the AMPK/Sirt1 pathway and intestinal microbiota. It holds promise as a functional food for promoting anti-aging effects and offers a novel approach to address aging and associated metabolic disorders.
Collapse
Affiliation(s)
- Qingwei Zeng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, P. R. China
| | - Zhanghua Qi
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
| | - Xia He
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
| | - Chuanlin Luo
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
| | - Jianing Wen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
| | - Fenfang Yue
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Xuanqi Zhao
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Hong Wei
- The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, P. R. China.
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, P. R. China
| |
Collapse
|
26
|
Liu X, Chen C, Lin Y, Liu Y, Cai S, Li D, Li L, Xiao P, Yi F. Withania somnifera root extract inhibits MGO-induced skin fibroblast cells dysfunction via ECM-integrin interaction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117699. [PMID: 38185262 DOI: 10.1016/j.jep.2023.117699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal, known as Ashwagandha, has long been used in traditional medicine in Ayurveda, India, a representative adaptogen. The main active constituents of W. somnifera are withanolides, and the root is often used as a medicine with a wide range of pharmacological activities, which can be used to treat insomnia, neurasthenia, diabetes mellitus and skin cancer. AIM OF THE STUDY Whole-component qualitative and quantitative analyses were performed on W. somnifera. We explored the ameliorative effect of the adaptogen representative plant W. somnifera on the senescence events of MGO-injured fibroblasts and its action mechanism and verified the hypotheses that WS can inhibit the accumulation of AGEs and regulate the dynamic balance among the components of the ECM by modulating the expression of integrin β1 receptor; as a result, WS maintains cellular behavioural and biological functions in a normal range and retards the aging of skin from the cellular level. MATERIALS AND METHODS In this study, the components of WS were first qualitatively and quantitatively analysed by HPLC fingerprinting and LC-MS detection. Second, a model of MGO-induced injury of CML-overexpressing fibroblasts was established. ELISA was used to detect CML expression and the synthesis of key extracellular matrix ECM protein components COL1, FN1, LM5 and TNC synthesis; CCK-8 was used to detect cell viability; EDU was used to detect cell proliferation capacity; fluorescence was used to detect cell adhesion capacity; and migration assay were used to detect cell migration capacity; qRT-PCR was used to detect the regulatory pathway TGF-β1 and MMP-2, MMP-9 in ECMs; immunofluorescence was used to detect the expression of ITGB1; and WB was used to detect the expression of COL1, FN1, LM5, Tnc, TGF-β1, MMP-2, MMP-9 and ITGB1. RESULTS In total, 27 active ingredients were analysed from WS, which mainly consisted of withanolide components, such as withaferin A and withanolide A. Based on the model of MGO-induced fibroblast senescence injury, WS significantly inhibited CML synthesis. By up-regulating the expression of integrin β1, it upregulated the expression of the TGF-β1 gene, which is closely related to the generation of ECMs, downregulated the expression of the MMP-2 and MMP-9 genes, which are closely related to the degradation of ECMs, maintained the dynamic balance of the four types of ECMs, and improved cell viability as well as proliferation, migration and adhesion abilities. CONCLUSIONS WS can prevent cellular behavioural dysfunction and delay skin ageing by reducing the accumulation of CML, upregulating the expression of the ITGB1 receptor, maintaining the normal function of ECM-integrin receptor interaction and preventing an imbalance between the production and degradation of protein components of ECMs. The findings reported in this study suggest that WS as a CML inhibitor can modulate ECM-integrin homeostasis and has great potential in the field of aging retardation.
Collapse
Affiliation(s)
- Xiaoxing Liu
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Institute of cosmetic regulatory science, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China
| | - Chunyu Chen
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Institute of cosmetic regulatory science, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China
| | - Yingying Lin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Institute of cosmetic regulatory science, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China
| | - Yanhong Liu
- Hua An Tang Biotech Group Co., Ltd., No.13, Liuwei Street, Hualong Town, Panyu District, Guangzhou, 511434, PR China
| | - Shaochun Cai
- Hua An Tang Biotech Group Co., Ltd., No.13, Liuwei Street, Hualong Town, Panyu District, Guangzhou, 511434, PR China
| | - Dongcui Li
- Hua An Tang Biotech Group Co., Ltd., No.13, Liuwei Street, Hualong Town, Panyu District, Guangzhou, 511434, PR China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Institute of cosmetic regulatory science, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 151 Malianwa N, Haidian District, Beijing, 100193, PR China
| | - Fan Yi
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Institute of cosmetic regulatory science, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China.
| |
Collapse
|
27
|
Chen J, Zhao T, Zheng X, Kang L, Wang J, Wei Y, Wu Y, Shen L, Long C, Wei G, Wu S. Protective effects of melatonin on DEHP-induced apoptosis and oxidative stress in prepubertal testes via the PI3K/AKT pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:952-964. [PMID: 37975621 DOI: 10.1002/tox.24029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/28/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, is one of the most common plasticizers and is widely used in various plastic products. DEHP induces apoptosis and oxidative stress and has been shown to have androgenic toxicity. However, the methods to combat DEHP-induced testicular damage and the mechanisms involved remain to be elucidated. In the present study, we used melatonin, which has strong antioxidant properties, to intervene in prepubertal mice and mouse Leydig cells (TM3) treated with DEHP or its metabolite mono(2-ethylhexyl) phthalate (MEHP). The results showed that melatonin protected against DEHP-induced testicular damage in prepubertal mice, mainly by protecting against DEHP-induced structural destruction of the germinal tubules and by attenuating the DEHP-induced decrease in testicular organ coefficients and testosterone levels. Transcriptomic analysis found that melatonin may attenuate DEHP-induced oxidative stress and apoptosis in prepubertal testes. In vitro studies further revealed that MEHP induces oxidative stress injury and increases apoptosis in TM3 cells, while melatonin reversed this damage. In vitro studies also found that MEHP exposure inhibited the expression levels of molecules related to the PI3K/AKT signaling pathway, and melatonin reversed this change. In conclusion, these findings suggest that melatonin protects against DEHP-induced prepubertal testicular injury via the PI3K/AKT signaling pathway, and provide a theoretical basis and experimental rationale for combating male reproductive dysfunction.
Collapse
Affiliation(s)
- Jiadong Chen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Woman and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiangqin Zheng
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Lian Kang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Junke Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Yuexin Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Yuhao Wu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Guanghui Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shengde Wu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Bertozzi-Matheus M, Bueno-Pereira TO, Nunes PR, Sandrim VC. EGCG, a Green Tea Compound, Increases NO Production and Has Antioxidant Action in a Static and Shear Stress In Vitro Model of Preeclampsia. Antioxidants (Basel) 2024; 13:158. [PMID: 38397756 PMCID: PMC10886151 DOI: 10.3390/antiox13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Preeclampsia (PE) is a gestational hypertensive disease characterized by endothelial dysfunction. Epigallocatechin-3-gallate (EGCG), the main compound in green tea, is a promising therapeutic target for the disease. By activating eNOS, EGCG increased NO production and exerted an important antioxidant action, but its specific impact in the context of PE remains understudied. The aim of this study is to evaluate the effects of EGCG on endothelial function in static and shear stress in in vitro models of PE. Endothelial cells were incubated with healthy (HP) and preeclamptic (PE) pregnant women's plasma, and the latter group was treated with EGCG. Additionally, NOS (L-NAME) and PI3K protein (LY249002) inhibitors were also used. The levels of NO, ROS, and O2•- were evaluated, as well as the antioxidant potential. These investigations were also carried out in a shear stress model. We found that EGCG increases the NO levels, which were reduced in the PE group. This effect was attenuated with the use of L-NAME and LY249002. Furthermore, EGCG increased the antioxidant capacity of PE, but its action decreased with LY294002. In cells subjected to shear stress, EGCG increased nitrite levels in the PE group and maintained its action on the antioxidant capacity. This is the first study of the effects of EGCG in this experimental model, as well as the investigation of its effects along with shear stress. Our findings suggest that EGCG improves parameters of endothelial dysfunction in vitro, making it a promising target in the search for treatments for the disease.
Collapse
Affiliation(s)
| | | | | | - Valeria Cristina Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (M.B.-M.); (T.O.B.-P.); (P.R.N.)
| |
Collapse
|
29
|
Qaed E, Alyafeai E, Al-Maamari A, Zaky MY, Almoiliqy M, Al-Hamyari B, Qaid A, Yafei S, Aldahmash W, Mahyoub MA, Wang F, Kang L, Tang Z, Zhang J. Uncovering the Therapeutic Potential of Phosphocreatine in Diabetic Retinopathy: Mitigating Mitochondrial Dysfunction and Apoptosis via JAK2/STAT3 Signaling Pathway. J Mol Neurosci 2024; 74:11. [PMID: 38231435 DOI: 10.1007/s12031-023-02175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Diabetic retinopathy (DR) stands as a prevalent complication of diabetes mellitus, causing damage to the delicate retinal capillaries and potentially leading to visual impairment. While the exact underlying cause of DR remains elusive, compelling research suggests that mitochondrial energy deficiency and the excessive generation of reactive oxygen species (ROS) play pivotal roles in its pathogenesis. Recognizing that controlling hyperglycemia alone fails to reverse the defects in retinal mitochondria induced by diabetes, current strategies seek to restore mitochondrial function as a means of safeguarding against DR. To address this pressing issue, a comprehensive study was undertaken to explore the potential of phosphocreatine (PCr) in bolstering mitochondrial bioenergetics and providing protection against DR via modulation of the JAK2/STAT3 signaling pathway. Employing rat mitochondria and RGC-5 cells, the investigation meticulously assessed the impact of PCr on ROS production, mitochondrial membrane potential, as well as the expression of crucial apoptotic and JAK2/STAT3 signaling pathway proteins, utilizing cutting-edge techniques such as high-resolution respirometry and western blotting. The remarkable outcomes revealed that PCr exerts a profound protective influence against DR by enhancing mitochondrial function and alleviating diabetes-associated symptoms and biochemical markers. Notably, PCr administration resulted in an upregulation of antiapoptotic proteins, concomitant with a downregulation of proapoptotic proteins and the JAK2/STAT3 signaling pathway. These significant findings firmly establish PCr as a potential therapeutic avenue for combating diabetic retinopathy. By augmenting mitochondrial function and exerting antiapoptotic effects via the JAK2/STAT3 signaling pathway, PCr demonstrates promising efficacy both in vivo and in vitro, particularly in counteracting the oxidative stress engendered by hyperglycemia. In summary, our study sheds light on the potential of PCr as an innovative therapeutic strategy for diabetic retinopathy. By bolstering mitochondrial function and exerting protective effects via the modulation of the JAK2/STAT3 signaling pathway, PCr holds immense promise in ameliorating the impact of DR in the face of oxidative stress induced by hyperglycemia.
Collapse
Grants
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
Collapse
Affiliation(s)
- Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ahmed Al-Maamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Marwan Almoiliqy
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
| | - Bandar Al-Hamyari
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, Lanzhou, People's Republic of China
| | - Abdullah Qaid
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Saeed Yafei
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
| | - Waleed Aldahmash
- Zoology Department, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mueataz A Mahyoub
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fuhan Wang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
| | - Le Kang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China.
| | - Jianbin Zhang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China.
| |
Collapse
|
30
|
Zhang Y, Liu L, Qi Y, Lou J, Chen Y, Liu C, Li H, Chang X, Hu Z, Li Y, Zhang Y, Feng C, Zhou Y, Zhai Y, Li C. Lactic acid promotes nucleus pulposus cell senescence and corresponding intervertebral disc degeneration via interacting with Akt. Cell Mol Life Sci 2024; 81:24. [PMID: 38212432 PMCID: PMC11071984 DOI: 10.1007/s00018-023-05094-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
The accumulation of metabolites in the intervertebral disc is considered an important cause of intervertebral disc degeneration (IVDD). Lactic acid, which is a metabolite that is produced by cellular anaerobic glycolysis, has been proven to be closely associated with IVDD. However, little is known about the role of lactic acid in nucleus pulposus cells (NPCs) senescence and oxidative stress. The aim of this study was to investigate the effect of lactic acid on NPCs senescence and oxidative stress as well as the underlying mechanism. A puncture-induced disc degeneration (PIDD) model was established in rats. Metabolomics analysis revealed that lactic acid levels were significantly increased in degenerated intervertebral discs. Elimination of excessive lactic acid using a lactate oxidase (LOx)-overexpressing lentivirus alleviated the progression of IVDD. In vitro experiments showed that high concentrations of lactic acid could induce senescence and oxidative stress in NPCs. High-throughput RNA sequencing results and bioinformatic analysis demonstrated that the induction of NPCs senescence and oxidative stress by lactic acid may be related to the PI3K/Akt signaling pathway. Further study verified that high concentrations of lactic acid could induce NPCs senescence and oxidative stress by interacting with Akt and regulating its downstream Akt/p21/p27/cyclin D1 and Akt/Nrf2/HO-1 pathways. Utilizing molecular docking, site-directed mutation and microscale thermophoresis assays, we found that lactic acid could regulate Akt kinase activity by binding to the Lys39 and Leu52 residues in the PH domain of Akt. These results highlight the involvement of lactic acid in NPCs senescence and oxidative stress, and lactic acid may become a novel potential therapeutic target for the treatment of IVDD.
Collapse
Affiliation(s)
- Yuyao Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Libangxi Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
- Department of Orthopedics, General Hospital of Central Theater Command of PLA, Wuhan, 430000, China
| | - Yuhan Qi
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, 100000, China
| | - Jinhui Lou
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yuxuan Chen
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Chao Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Haiyin Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Zhilei Hu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yueyang Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yang Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yu Zhai
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China.
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
31
|
Lin L, Chen Z, Li J, Peng J, Wang J, Feng M, Liu T, Zhang M, Wu X, Ai F, Shen C. Crocin alleviates neurotoxicity induced by bupivacaine in SH-SY5Y cells with inhibition of PI3K/AKT signaling. Genes Genomics 2024; 46:149-160. [PMID: 37523128 DOI: 10.1007/s13258-023-01431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Bupivacaine, a common local anesthetic, can cause neurotoxicity and permanent neurological disorders. Crocin has been widely reported as a potential neuroprotective agent in neural injury models. OBJECTIVE The aim of this study was to investigate the role and regulatory mechanism of crocin underlying bupivacaine-induced neurotoxicity. METHOD Human neuroblastoma SH-SY5Y cells were treated with bupivacaine and/or crocin for 24 h, followed by detecting cell viability using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. The effect of crocin or bupivacaine on SH-SY5Y cell proliferation was measured by Ki67 immunofluorescence assay. The levels of apoptosis-related proteins and the markers in the PI3K/Akt signaling pathway were examined using western blot analysis. The activities of caspase 3, catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) were tested using respective commercial assay kits. Flow cytometry analysis was executed for detecting SH-SY5Y cell apoptosis. RESULT Crocin attenuated bupivacaine-induced neurotoxicity in SH-SY5Y cells. Meanwhile, crocin inhibited SH-SY5Y cell apoptosis induced by bupivacaine via repressing the activity of caspase-3, reducing Bax expression, and elevating Bcl-2 expression. Moreover, crocin mitigated oxidative stress in SH-SY5Y cells by increasing the content of CAT, SOD, GSH-Px and reducing the content of MDA. Additionally, crocin protected against bupivacaine-induced dephosphorylation of Akt and GSK-3β. The protective effects of crocin against bupivacaine-induced neurotoxicity in SH-SY5Y cells were counteracted by the Akt inhibitor. CONCLUSION These results suggested that crocin may exert a neuroprotective function by promoting cell proliferation and suppressing apoptosis and oxidative stress in SH-SY5Y cells. Thus, crocin might become a promising drug for the treatment of bupivacaine-induced neurotoxicity.
Collapse
Affiliation(s)
- Lili Lin
- Department of Anesthesiology, Zongrui Hospital of Beilun, Ningbo, 315800, China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan, 430014, China
| | - Jun Li
- Department of Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Jianye Peng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medcial School, University of South China, Hengyang, 421099, China
| | - Jian Wang
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Haishu District, Ningbo, 315010, China
| | - Mingjun Feng
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Haishu District, Ningbo, 315010, China
| | - Tiancheng Liu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan, 430014, China
| | - Mengli Zhang
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan, 430014, China
| | - Xian Wu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan, 430014, China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan, 430014, China.
| | - Caijie Shen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Haishu District, Ningbo, 315010, China.
| |
Collapse
|
32
|
Fu H, Sen L, Zhang F, Liu S, Wang M, Mi H, Liu M, Li B, Peng S, Hu Z, Sun J, Li R. Mesenchymal stem cells-derived extracellular vesicles protect against oxidative stress-induced xenogeneic biological root injury via adaptive regulation of the PI3K/Akt/NRF2 pathway. J Nanobiotechnology 2023; 21:466. [PMID: 38049845 PMCID: PMC10696851 DOI: 10.1186/s12951-023-02214-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
Xenogeneic extracellular matrices (xECM) for cell support have emerged as a potential strategy for addressing the scarcity of donor matrices for allotransplantation. However, the poor survival rate or failure of xECM-based organ transplantation is due to the negative impacts of high-level oxidative stress and inflammation on seed cell viability and stemness. Herein, we constructed xenogeneic bioengineered tooth roots (bio-roots) and used extracellular vesicles from human adipose-derived mesenchymal stem cells (hASC-EVs) to shield bio-roots from oxidative damage. Pretreatment with hASC-EVs reduced cell apoptosis, reactive oxygen species generation, mitochondrial changes, and DNA damage. Furthermore, hASC-EV treatment improved cell proliferation, antioxidant capacity, and odontogenic and osteogenic differentiation, while significantly suppressing oxidative damage by activating the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2) nuclear translocation via p62-associated Kelch-like ECH-associated protein 1 (KEAP1) degradation. Inhibition of PI3K/Akt and Nrf2 knockdown reduced antioxidant capacity, indicating that the PI3K/Akt/NRF2 pathway partly mediates these effects. In subcutaneous grafting experiments using Sprague-Dawley rats, hASC-EV administration significantly enhanced the antioxidant effect of the bio-root, improved the regeneration efficiency of periodontal ligament-like tissue, and maximized xenograft function. Conclusively, therefore, hASC-EVs have the potential to be used as an immune modulator and antioxidant for treating oxidative stress-induced bio-root resorption and degradation, which may be utilized for the generation and restoration of other intricate tissues and organs.
Collapse
Affiliation(s)
- Haojie Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Lin Sen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Fangqi Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Sirui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Meiyue Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Hongyan Mi
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Mengzhe Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Bingyan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Shumin Peng
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Zelong Hu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Jingjing Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China.
| | - Rui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China.
| |
Collapse
|
33
|
Xu K, Huang P, Wu Y, Liu T, Shao N, Zhao L, Hu X, Chang J, Peng Y, Qu S. Engineered Selenium/Human Serum Albumin Nanoparticles for Efficient Targeted Treatment of Parkinson's Disease via Oral Gavage. ACS NANO 2023; 17:19961-19980. [PMID: 37807265 PMCID: PMC10604087 DOI: 10.1021/acsnano.3c05011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopamine (DA) neurons in the midbrain substantia nigra pars compacta (SNpc). While existing therapeutic strategies can alleviate PD symptoms, they cannot inhibit DA neuron loss. Herein, a tailor-made human serum albumin (HSA)-based selenium nanosystem (HSA/Se nanoparticles, HSA/Se NPs) to treat PD that can overcome the intestinal epithelial barrier (IEB) and blood-brain barrier (BBB) is described. HSA, a transporter for drug delivery, has superior biological characteristics that make it an ideal potential drug delivery substance. Findings reveal that HSA/Se NPs have lower toxicity and higher efficacy than other selenium species and the ability to overcome the IEB and BBB to enrich DA neurons, which then protect MN9D cells from MPP+-induced neurotoxicity and ameliorate both behavioral deficits and DA neuronal death in MPTP-model mice. Thus, a therapeutic drug delivery system composed of orally gavaged HSA/Se NPs for the treatment of PD is described.
Collapse
Affiliation(s)
- Kai Xu
- Department
of Neurology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong
Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired
Intelligence, Guangzhou, Guangdong 510515, China
- Key
Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Peng Huang
- Department
of Neurology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong
Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired
Intelligence, Guangzhou, Guangdong 510515, China
- Key
Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yixuan Wu
- Department
of Neurology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong
Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired
Intelligence, Guangzhou, Guangdong 510515, China
- Key
Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Teng Liu
- Department
of Neonatology and Pediatrics, Xiangya Hospital
of Central South University, Changsha, Hunan 410008, China
| | - Ningyi Shao
- Cancer
Centre, Faculty of Health Sciences, University
of Macau, Taipa, Macau Special Administrative Region 999078, China
| | - Lulu Zhao
- Chongqing
Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory
of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyan Hu
- Shenzhen
Key Laboratory of Biomimetic Materials and Cellular Immunomodulation,
Institute of Biomedicine and Biotechnology, Shenzhen Institute of
Advanced Technology, Chinese Academy of
Sciences, Shenzhen, Guangdong 518055, China
- University
of Chinese Academy of Sciences, Beijing 100864, China
| | - Junlei Chang
- Shenzhen
Key Laboratory of Biomimetic Materials and Cellular Immunomodulation,
Institute of Biomedicine and Biotechnology, Shenzhen Institute of
Advanced Technology, Chinese Academy of
Sciences, Shenzhen, Guangdong 518055, China
| | - Yongbo Peng
- Chongqing
Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory
of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shaogang Qu
- Department
of Neurology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong
Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired
Intelligence, Guangzhou, Guangdong 510515, China
- Key
Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department
of Neurology, Ganzhou People’s Hospital, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
34
|
Chen Y, Pang J, Ye L, Zhang Z, Lin S, Lin N, Lee TH, Liu H. Disorders of the central nervous system: Insights from Notch and Nrf2 signaling. Biomed Pharmacother 2023; 166:115383. [PMID: 37643483 DOI: 10.1016/j.biopha.2023.115383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
The functional complexity of the central nervous system (CNS) is unparalleled in living organisms. It arises from neural crest-derived cells that migrate by the exact route, leading to the formation of a complex network of neurons and glial cells. Recent studies have shown that novel crosstalk exists between the Notch1 and Nrf2 pathways and is associated with many neurological diseases. The Notch1-Nrf2 axis may act on nervous system development, and the molecular mechanism has recently been reported. In this review, we summarize the essential structure and function of the CNS. The significance of interactions between signaling pathways and between developmental processes like proliferation, apoptosis and migration in ensuring the correct development of the CNS is also presented. We primarily focus on research concerning possible mechanism of interaction between Notch1 and Nrf2 and the functions of Notch1-Nrf2 in neurons. There may be a direct interaction between Notch1 and NRF2, which is closely related to the crosstalk that occurs between them. The significance and potential applications of the Notch1-Nrf2 axis in abnormal development of the nervous system are been highlighten. We also discuss the molecular mechanisms by which the Notch1-Nrf2 axis controls the apoptosis, antioxidant pathway and differentiation of neurons to modulate the development of the nervous system. This information will lead to a better understanding of Notch1-Nrf2 axis signaling pathways in the nervous system and may facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Chen
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jiao Pang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Lu Ye
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Zhentao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Suijin Lin
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Na Lin
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Hekun Liu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
35
|
Yu M, Wang Z, Wang D, Aierxi M, Ma Z, Wang Y. Oxidative stress following spinal cord injury: From molecular mechanisms to therapeutic targets. J Neurosci Res 2023; 101:1538-1554. [PMID: 37272728 DOI: 10.1002/jnr.25221] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
Spinal cord injury (SCI) is a medical condition that results from severe trauma to the central nervous system; it imposes great psychological and economic burdens on affected patients and their families. The dynamic balance between reactive oxygen species (ROS) and antioxidants is essential for maintaining normal cellular physiological functions. As important intracellular signaling molecules, ROS regulate numerous physiological activities, including vascular reactivity and neuronal function. However, excessive ROS can cause damage to cellular macromolecules, including DNA, lipids, and proteins; this damage eventually leads to cell death. This review discusses the mechanisms of oxidative stress in SCI and describes some signaling pathways that regulate oxidative injury after injury, with the aim of providing guidance for the development of novel SCI treatment strategies.
Collapse
Affiliation(s)
- Mengsi Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhiying Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dongmin Wang
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Milikemu Aierxi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhanjun Ma
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Yonggang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
36
|
Hoffman SS, Liang D, Hood RB, Tan Y, Terrell ML, Marder ME, Barton H, Pearson MA, Walker DI, Barr DB, Jones DP, Marcus M. Assessing Metabolic Differences Associated with Exposure to Polybrominated Biphenyl and Polychlorinated Biphenyls in the Michigan PBB Registry. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107005. [PMID: 37815925 PMCID: PMC10564108 DOI: 10.1289/ehp12657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Polybrominated biphenyls (PBB) and polychlorinated biphenyls (PCB) are persistent organic pollutants with potential endocrine-disrupting effects linked to adverse health outcomes. OBJECTIVES In this study, we utilize high-resolution metabolomics (HRM) to identify internal exposure and biological responses underlying PCB and multigenerational PBB exposure for participants enrolled in the Michigan PBB Registry. METHODS HRM profiling was conducted on plasma samples collected from 2013 to 2014 from a subset of participants enrolled in the Michigan PBB Registry, including 369 directly exposed individuals (F0) who were alive when PBB mixtures were accidentally introduced into the food chain and 129 participants exposed to PBB in utero or through breastfeeding, if applicable (F1). Metabolome-wide association studies were performed for PBB-153 separately for each generation and Σ PCB (PCB-118, PCB-138, PCB-153, and PCB-180) in the two generations combined, as both had direct PCB exposure. Metabolite and metabolic pathway alterations were evaluated following a well-established untargeted HRM workflow. RESULTS Mean levels were 1.75 ng / mL [standard deviation (SD): 13.9] for PBB-153 and 1.04 ng / mL (SD: 0.788) for Σ PCB . Sixty-two and 26 metabolic features were significantly associated with PBB-153 in F0 and F1 [false discovery rate (FDR) p < 0.2 ], respectively. There were 2,861 features associated with Σ PCB (FDR p < 0.2 ). Metabolic pathway enrichment analysis using a bioinformatics tool revealed perturbations associated with Σ PCB in numerous oxidative stress and inflammation pathways (e.g., carnitine shuttle, glycosphingolipid, and vitamin B9 metabolism). Metabolic perturbations associated with PBB-153 in F0 were related to oxidative stress (e.g., pentose phosphate and vitamin C metabolism) and in F1 were related to energy production (e.g., pyrimidine, amino sugars, and lysine metabolism). Using authentic chemical standards, we confirmed the chemical identity of 29 metabolites associated with Σ PCB levels (level 1 evidence). CONCLUSIONS Our results demonstrate that serum PBB-153 is associated with alterations in inflammation and oxidative stress-related pathways, which differed when stratified by generation. We also found that Σ PCB was associated with the downregulation of important neurotransmitters, serotonin, and 4-aminobutanoate. These findings provide novel insights for future investigations of molecular mechanisms underlying PBB and PCB exposure on health. https://doi.org/10.1289/EHP12657.
Collapse
Affiliation(s)
- Susan S. Hoffman
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Donghai Liang
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Robert B. Hood
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | | | - M. Elizabeth Marder
- Department of Environmental Toxicology, University of California, Davis, Davis, California, USA
| | - Hillary Barton
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Melanie A. Pearson
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Douglas I. Walker
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Dean P. Jones
- School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michele Marcus
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
37
|
Mao Z, Hui H, Zhao X, Xu L, Qi Y, Yin L, Qu L, Han L, Peng J. Protective effects of dioscin against Parkinson's disease via regulating bile acid metabolism through remodeling gut microbiome/GLP-1 signaling. J Pharm Anal 2023; 13:1153-1167. [PMID: 38024855 PMCID: PMC10657977 DOI: 10.1016/j.jpha.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 12/01/2023] Open
Abstract
It is necessary to explore potent therapeutic agents via regulating gut microbiota and metabolism to combat Parkinson's disease (PD). Dioscin, a bioactive steroidal saponin, shows various activities. However, its effects and mechanisms against PD are limited. In this study, dioscin dramatically alleviated neuroinflammation and oxidative stress, and restored the disorders of mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). 16 S rDNA sequencing assay demonstrated that dioscin reversed MPTP-induced gut dysbiosis to decrease Firmicutes-to-Bacteroidetes ratio and the abundances of Enterococcus, Streptococcus, Bacteroides and Lactobacillus genera, which further inhibited bile salt hydrolase (BSH) activity and blocked bile acid (BA) deconjugation. Fecal microbiome transplantation test showed that the anti-PD effect of dioscin was gut microbiota-dependent. In addition, non-targeted fecal metabolomics assays revealed many differential metabolites in adjusting steroid biosynthesis and primary bile acid biosynthesis. Moreover, targeted bile acid metabolomics assay indicated that dioscin increased the levels of ursodeoxycholic acid, tauroursodeoxycholic acid, taurodeoxycholic acid and β-muricholic acid in feces and serum. In addition, ursodeoxycholic acid administration markedly improved the protective effects of dioscin against PD in mice. Mechanistic test indicated that dioscin significantly up-regulated the levels of takeda G protein-coupled receptor 5 (TGR5), glucagon-like peptide-1 receptor (GLP-1R), GLP-1, superoxide dismutase (SOD), and down-regulated NADPH oxidases 2 (NOX2) and nuclear factor-kappaB (NF-κB) levels. Our data indicated that dioscin ameliorated PD phenotype by restoring gut dysbiosis and regulating bile acid-mediated oxidative stress and neuroinflammation via targeting GLP-1 signal in MPTP-induced PD mice, suggesting that the compound should be considered as a prebiotic agent to treat PD in the future.
Collapse
Affiliation(s)
- Zhang Mao
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, Shenyang, 116044, China
| | - Haochen Hui
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, Shenyang, 116044, China
| | - Xuerong Zhao
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, Shenyang, 116044, China
| | - Lina Xu
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, Shenyang, 116044, China
| | - Yan Qi
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, Shenyang, 116044, China
| | - Lianhong Yin
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, Shenyang, 116044, China
| | - Liping Qu
- Innovation Materials Research and Development Center, Botanee Research Institute, Yunnan Botanee Bio-technology Group Co., Ltd., Kunming, 650106, China
| | - Lan Han
- Department of Traditional Chinese Medicine Pharmacology, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jinyong Peng
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, Shenyang, 116044, China
- Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, China
| |
Collapse
|
38
|
Xu Y, Wang X, Xu Z, Sun F, Tian Y. Tbx2 knockdown alleviated sevoflurane-induced cognitive disorder and neuron damages in aged rats via suppressing oxidative stress and ferroptosis. Toxicol Sci 2023; 195:257-269. [PMID: 37494465 DOI: 10.1093/toxsci/kfad071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Anesthesia with sevoflurane contributes to perioperative neurocognitive disorder (PND), which is characterized by the deficiency in study and memory. T-Box transcription factor 2 (Tbx2), which is involved in the development of hippocampus neurons, was upregulated in the hippocampus of rats exposed to sevoflurane. Our study aimed to explore the role of Tbx2 in sevoflurane-induced cognitive disorder and hippocampus neuron damages. The expression of Tbx2 in hippocampus was upregulated after sevoflurane exposure, which was accompanied by the accumulation of reactive oxygen species and lipid peroxidation, as well as the loss of neurons in hippocampus. In vitro, silencing Tbx2 suppressed oxidative stress and ferroptosis induced by sevoflurane, whereas exogenous overexpression of Tbx2 exacerbated these processes. Importantly, Tbx2 knockdown improved sevoflurane-induced cognitive disorder in aged rats, as evidenced by the increases in behavioral indexes. Mechanistically, the expression of brain-derived neurotrophic factor (BDNF), as well as the downstream nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signaling, was repressed by Tbx2. Mimicking the activation of BDNF with 7,8-dihydroxyflavone rescued the effects of Tbx2 overexpression on oxidative stress and ferroptosis in vitro, indicating that the BDNF/Nrf2/HO-1 signaling may mediate the role of Tbx2 in sevoflurane-induced cognitive disorder and neuron damages. In summary, Tbx2 may contribute to neuronal damages via enhancing the oxidative stress and ferroptosis caused by sevoflurane. BDNF/Nrf2/HO-1 signaling mediates the role of Tbx2 in sevoflurane-induced cognitive disorder. Knockdown of Tbx2 improves sevoflurane-induced cognitive impairment. Our finding provides a novel insight for PND treatment.
Collapse
Affiliation(s)
- Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xueting Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ziyang Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Fengwei Sun
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
39
|
Li Y, Zhu Y, Hu F, Liu L, Shen G, Tu Q. Procyanidin B2 regulates the Sirt1/Nrf2 signaling pathway to improve random-pattern skin flap survival. Phytother Res 2023; 37:3913-3925. [PMID: 37128130 DOI: 10.1002/ptr.7847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Random-pattern skin flaps have been widely used in the reconstruction of damaged tissues. Ischemia-reperfusion injury occurring in the distal regions of the flap is a common issue, which often leads to flap necrosis and restricts its clinical applications. Procyanidin B2 (PB2), a naturally occurring flavonoid in large quantities in various fruits, has been demonstrated to exhibit several significant pharmacological properties. However, the effect of PB2 on flap viability is not clearly known. Here, using Western blot analysis, immunohistochemistry, and immunofluorescence staining, we observed that PB2 significantly reduced oxidative stress and inflammation and enhanced angiogenesis. Mechanically, we provided evidence for the first time that the beneficial effects of PB2 occur through the activation of the Sirt1/Nrf2 signaling pathway. Moreover, co-administration of PB2 and EX527, a selective inhibitor of Sirt1, resulted in down-regulation of the expression of Sirt1, Nrf2, and downstream antioxidants. In summary, our study showed that PB2 might be a novel therapeutic strategy for improving the survival of random-pattern skin flaps.
Collapse
Affiliation(s)
- Yao Li
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
- Nanjing Medical University, Nanjing, China
| | - Yurun Zhu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
- Nanjing Medical University, Nanjing, China
| | - Fei Hu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lue Liu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
| | - Guangjie Shen
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
| | - Qiming Tu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
| |
Collapse
|
40
|
Zhao X, Tian Z, Sun M, Dong D. Nrf2: a dark horse in doxorubicin-induced cardiotoxicity. Cell Death Discov 2023; 9:261. [PMID: 37495572 PMCID: PMC10372151 DOI: 10.1038/s41420-023-01565-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Being a broad-spectrum anticancer drug, doxorubicin is indispensable for clinical treatment. Unexpectedly, its cardiotoxic side effects have proven to be a formidable obstacle. Numerous studies are currently devoted to elucidating the pathological mechanisms underlying doxorubicin-induced cardiotoxicity. Nrf2 has always played a crucial role in oxidative stress, but numerous studies have demonstrated that it also plays a vital part in pathological mechanisms like cell death and inflammation. Numerous studies on the pathological mechanisms associated with doxorubicin-induced cardiotoxicity demonstrate this. Several clinical drugs, natural and synthetic compounds, as well as small molecule RNAs have been demonstrated to prevent doxorubicin-induced cardiotoxicity by activating Nrf2. Consequently, this study emphasizes the introduction of Nrf2, discusses the role of Nrf2 in doxorubicin-induced cardiotoxicity, and concludes with a summary of the therapeutic modalities targeting Nrf2 to ameliorate doxorubicin-induced cardiotoxicity, highlighting the potential value of Nrf2 in doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China
| | - Zheng Tian
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China.
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
41
|
Yang WG, Sun A, Zhu R, Liu N, He WJ, Liu LL. Exploration of Artemisinin Against IgA Nephropathy via AKT/Nrf2 Pathway by Bioinformatics and Experimental Validation. Drug Des Devel Ther 2023; 17:1679-1697. [PMID: 37309415 PMCID: PMC10257916 DOI: 10.2147/dddt.s403422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
Background Artemisinin (ART) is a safe and effective antimalarial drug. In recent years, antimalarial drugs have demonstrated a good therapeutic efficacy in IgA nephropathy, suggesting that this may become a new treatment option. Purpose We aimed to evaluate the effect and mechanism of artemisinin in IgA nephropathy. Methods In this study, CMap database was used to predict the artemisinin therapeutic effect for IgA nephropathy. A network pharmacology approach was applied to explore the unknown mechanism of artemisinin in IgA nephropathy. We used molecular docking to predict the binding affinity of artemisinin with the targets. A mouse model of IgA nephropathy was established to investigate the therapeutic effect of artemisinin on IgA nephropathy. In vitro, the cell counting Kit-8 assay was used to evaluate the cytotoxicity of artemisinin. Flow cytometry and PCR assays were used to detect the effects of artemisinin on oxidative stress and fibrosis in lipopolysaccharide (LPS)-stimulated mesangial cells. Western blot and immunofluorescence were used to detect the expression of pathway proteins. Results CMap analysis showed artemisinin may reverse the expression levels of differentially expressed genes in IgA nephropathy. Eighty-seven potential targets of artemisinin in the treatment of IgA nephropathy were screened. Among them, 15 hub targets were identified. Enrichment analysis and GSEA analysis indicated that response to reactive oxygen species is the core biological process. AKT1 and EGFR had the highest docking affinity with artemisinin. In vivo, artemisinin could improve renal injury and fibrosis in mice. In vitro, artemisinin attenuated LPS-induced oxidative stress and fibrosis promoted AKT phosphorylation and Nrf2 nuclear translocation. Conclusion Artemisinin reduced the level of fibrosis and oxidative stress with IgA nephropathy through the AKT/Nrf2 pathway, which provided an alternative treatment for IgAN.
Collapse
Affiliation(s)
- Wei-guang Yang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shen Yang, Liao Ning, People’s Republic of China
| | - Ao Sun
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shen Yang, Liao Ning, People’s Republic of China
| | - Rong Zhu
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shen Yang, Liao Ning, People’s Republic of China
| | - Nan Liu
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shen Yang, Liao Ning, People’s Republic of China
| | - Wei-jie He
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shen Yang, Liao Ning, People’s Republic of China
| | - Lin-lin Liu
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shen Yang, Liao Ning, People’s Republic of China
| |
Collapse
|
42
|
Li Z, Xu T, Fan X, Chen K, Wan C, Li X, Yin H, Li S. Bisphenol A aggravate selenium deficiency-induced apoptosis via miR-215-3p/Dio1 to activate ROS/PI3K/AKT pathway in chicken arterial. J Cell Physiol 2023; 238:1256-1274. [PMID: 37012668 DOI: 10.1002/jcp.31007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Both bisphenol A (BPA) and selenium (Se) deficiency can affect the expression of microRNAs (miRNAs), which can specifically regulate its target mRNA and induce apoptosis, and play a significant role in cardiovascular injury diseases. To explore the mechanism of apoptosis induced by BPA and Se deficiency in chicken arterial endothelial tissue and the role of miRNAs in this process, the model of BPA exposure/Se deficiency in chicken and PAEC cells have been employed. The targeting relationship between miR-215-3p and iodothyronine deiodinase 1 (Dio1) in PAEC was verified by double luciferase gene report. The level of miR-215-3p was detected by qRT-PCR. The oxidative stress level of arterial endothelial cells was detected by oxidative stress kit and DCFH-DA probe method. The PI3K/AKT pathway, mitochondrial dynamics, and apoptosis-related genes were detected by qRT-PCR and western blot. The mitochondrial ATP level and nitric oxide synthases (NOSs) level were detected with the kit. TUNEL, acridine orange/ethidium bromide, and flow cytometry were used to detect the level of apoptosis. The results showed that BPA exposure and Se deficiency led to overexpression of miR-215-3p, aggravated oxidative stress, inhibited activation of PI3K/AKT pathway, promoted mitochondrial division, increased expression of apoptosis related genes, and finally led to apoptosis of chicken arterial endothelial cells. We also established knockdown/overexpression models of miR-215-3p and Dio1 in vitro, and found that overexpression of miR-215-3p and knockout of Dio1 can induce apoptosis. Interestingly, miR-215-3p-Inhibitor and N-acetyl- l-cysteine (NAC) partially prevented apoptosis caused by BPA exposure and Se deficiency, and LY294002 aggravated apoptosis. These results suggest that BPA exposure aggravates the apoptosis of Se deficient arterial endothelial cells in chickens by regulating the ROS/PI3K/AKT pathway activated by miR-215-3p/Dio1. The miR-215-3p/Dio1 axis provides a new way to understand the toxic mechanism of BPA exposure and Se deficiency, and reveals a new regulatory model of apoptosis damage in vascular diseases.
Collapse
Affiliation(s)
- Zhe Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xue Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Kai Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chunyan Wan
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Xiang Li
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
43
|
Zhang Q, Yao M, Qi J, Song R, Wang L, Li J, Zhou X, Chang D, Huang Q, Li L, Wang N. Puerarin inhibited oxidative stress and alleviated cerebral ischemia-reperfusion injury through PI3K/Akt/Nrf2 signaling pathway. Front Pharmacol 2023; 14:1134380. [PMID: 37284311 PMCID: PMC10240043 DOI: 10.3389/fphar.2023.1134380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction: Puerarin (PUE) is a natural compound isolated from Puerariae Lobatae Radix, which has a neuroprotective effect on IS. We explored the therapeutic effect and underlying mechanism of PUE on cerebral I/R injury by inhibiting oxidative stress related to the PI3K/Akt/Nrf2 pathway in vitro and in vivo. Methods: The middle cerebral artery occlusion and reperfusion (MCAO/R) rats and oxygen-glucose deprivation and reperfusion (OGD/R) were selected as the models, respectively. The therapeutic effect of PUE was observed using triphenyl tetrazolium and hematoxylin-eosin staining. Tunel-NeuN staining and Nissl staining to quantify hippocampal apoptosis. The reactive oxygen species (ROS) level was detected by flow cytometry and immunofluorescence. Biochemical method to detect oxidative stress levels. The protein expression related to PI3K/Akt/Nrf2 pathway was detected by using Western blotting. Finally, co-immunoprecipitation was used to study the molecular interaction between Keap1 and Nrf2. Results: In vivo and vitro studies showed that PUE improved neurological deficits in rats, as well as decreased oxidative stress. Immunofluorescence and flow cytometry indicated that the release of ROS can be inhibited by PUE. In addition, the Western blotting results showed that PUE promoted the phosphorylation of PI3K and Akt, and enabled Nrf2 to enter the nucleus, which further activated the expression of downstream antioxidant enzymes such as HO-1. The combination of PUE with PI3K inhibitor LY294002 reversed these results. Finally, co-immunoprecipitation results showed that PUE promoted Nrf2-Keap1 complex dissociation. Discussion: Taken together, PUE can activate Nrf2 via PI3K/Akt and promote downstream antioxidant enzyme expression, which could further ameliorate oxidative stress, against I/R-induced Neuron injury.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Min Yao
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Jiajia Qi
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Rui Song
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Jiacheng Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Xian Zhou
- National Institute of Complementary Medicine, Western Sydney University, Westmead, NSW, Australia
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Westmead, NSW, Australia
| | - Qi Huang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, China
| | - Lili Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, China
| | - Ning Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
44
|
Zhang S, Zhang S, Li YY, Zhang Y, Wang H, Chen Y, Sun M. Umbelliferone protects against methylglyoxal-induced HUVECs dysfunction through suppression of apoptosis and oxidative stress. J Appl Toxicol 2023; 43:490-499. [PMID: 36170298 DOI: 10.1002/jat.4399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022]
Abstract
Methylglyoxal (MGO), a cytotoxic metabolite of glycolysis, can cause endothelial cells impairment, which is tightly associated with diabetic vascular complication. Umbelliferone, a derivative of coumarin, participates in various pharmacological activities. This study aimed to determine the effectiveness of umbelliferone in MGO-induced apoptosis and oxidative stress in endothelial cells. In this study, it has been indicated that umbelliferone inhibited MGO-induced human umbilical vein endothelial cells (HUVECs) cytotoxicity, apoptosis, Bax/Bcl-2 protein ratio, the activity of cleaved-caspase-3, and mitochondrial membrane potential loss. Furthermore, we found that umbelliferone inhibited MGO-induced activation of mitogen-activated protein kinases and nuclear factor-κB signaling pathways in HUVECs. In addition, umbelliferone could suppress oxidative stress, as evidenced by decrease of reactive oxygen species and malondialdehyde (MDA) generation, and increase of superoxide dismutase and glutathione peroxidase contents. Moreover, we found that umbelliferone can activate Nrf2/HO-1 signaling. Importantly, silencing of Nrf2 signaling clearly eliminated the anti-oxidative stress of umbelliferone, whereas umbelliferone pretreatment had no effect on Nrf2 overexpressing HUVECs. Altogether, this study suggested that umbelliferone pretreatment has a protective effect on MGO-induced endothelial cell dysfunction through inhibiting apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Shunxiao Zhang
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Zhang
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan-Yuan Li
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Zhang
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Wang
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Chen
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyu Sun
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
45
|
Hu H, Luo J, Liu Y, Li H, Jin R, Li S, Wei J, Wei H, Chen T. Improvement effect of a next-generation probiotic L. plantarum-pMG36e-GLP-1 on type 2 diabetes mellitus via the gut-pancreas-liver axis. Food Funct 2023; 14:3179-3195. [PMID: 36912589 DOI: 10.1039/d3fo00044c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Next-generation probiotics (NGPs) are currently being investigated as therapeutic agents that impact the gut microbiota and disease development. Glucagon-like peptide-1 (GLP-1) shows an excellent therapeutic effect on diabetes, but has an extremely short half-life in vivo. Here, we constructed a novel and diabetes-specific NGP, the genetically engineered strain Lactobacillus plantarum (L. plantarum)-pMG36e-GLP-1, and evaluated its ameliorative effect on type 2 diabetes mellitus (T2DM) in artificially induced mice and transgenic mice. In vitro, L. plantarum-pMG36e-GLP-1 showed good genetic stability and probiotic characteristics. In the high-fat diet combined with streptozotocin (HFD/STZ)-induced T2DM mice, L. plantarum-pMG36e-GLP-1 relieved the diabetic symptoms, regulated the intestinal microbiota, and reduced the inflammatory reaction in the pancreatic tissue. Meanwhile, the apoptosis of pancreatic islet cells was inhibited, while islet tissue morphology repairs, islet β-cell proliferation, and insulin secretion were all promoted by L. plantarum-pMG36e-GLP-1. Furthermore, a similar effect of the engineered strain on diabetic symptoms and the pancreas was observed in db/db mice, and the metabolism of lipids in the liver was regulated. Together, the findings of this study confirmed the anti-hyperglycemic effect of the engineered strain L. plantarum-pMG36e-GLP-1, providing a promising approach for T2DM treatment.
Collapse
Affiliation(s)
- Hong Hu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, P. R. China.
| | - Jie Luo
- School of Public Health and Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330031, P. R. China
| | - Ying Liu
- Life Science Institute, Nanchang University, Nanchang 330031, P. R. China
| | - Hongyu Li
- School of Queen Mary, Nanchang University, Nanchang, 330031, P. R. China
| | - Rui Jin
- School of Queen Mary, Nanchang University, Nanchang, 330031, P. R. China
| | - Shengjie Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, P. R. China.
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, P. R. China.
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China.
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, P. R. China.
| |
Collapse
|
46
|
Li Y, Fan H, Han X, Sun J, Ni M, Zhang L, Fang F, Zhang W, Ma P. PR-957 Suppresses Th1 and Th17 Cell Differentiation via Inactivating PI3K/AKT Pathway in Alzheimer's Disease. Neuroscience 2023; 510:82-94. [PMID: 36581132 DOI: 10.1016/j.neuroscience.2022.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/19/2022] [Accepted: 10/24/2022] [Indexed: 12/27/2022]
Abstract
PR-957 [low molecular mass polypeptide (LMP)-7 selective inhibitor] regulates T helper (Th) cell differentiation and inflammatory response in multiple neurological diseases. Hence, this study aimed to explore the effect of PR-957 on Th1/Th2/Th17 cell differentiation, therapeutic efficacy and its potential mechanisms in Alzheimer's disease (AD). The LMP7 expressions in peripheral blood mononuclear cells from 30 AD patients and 30 healthy controls (HC) were detected. PR-957 was added for the incubation of naive cluster of differentiation (CD)4+ T cells from AD patients, then SC79 [phosphorylated protein kinase B (pAKT) agonist] was added. LMP7, Th1 cells, and Th17 cells were upregulated, while Th2 cells were downregulated in AD patients compared to HC. Also, LMP7 was positively related to Th1 cells and Th17 cells, but it did not correlate with Th2 cells in AD patients. PR-957 treatment downregulated Th1 cells, Th17 cells, and their secreted cytokines as well as phosphorylated phosphoinositide 3-kinase (pPI3K)/PI3K and pAKT/AKT expressions in AD CD4+ T cells. SC79 addition upregulated pAKT/AKT expression, Th1 cells, and Th17 cells, while downregulated Th2 cells; also SC79 could alleviate the effect of PR-957 on regulating PI3K/AKT pathway and Th1, Th2, and Th17 cell differentiation in AD CD4+ T cells. Furthermore, PR-957 attenuated cognitive impairment and neurofibrillary tangle; also it inhibited Th17 cell differentiation and PI3K/AKT pathway in the brain and spleen of AD mice. In conclusion, PR-957 suppresses Th1 and Th17 cell differentiation, attenuates neural injury and improves cognitive function via inactivating PI3K/AKT pathway in AD.
Collapse
Affiliation(s)
- Yuanlong Li
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan, China
| | - Hua Fan
- School of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Xiong Han
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China
| | - Jun Sun
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan, China
| | - Ming Ni
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Clinical Pharmacy, Fuwai Central China Cardiovascular Hospital, Zhengzhou 450003, Henan, China
| | - Lulu Zhang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan, China
| | - Fengqin Fang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan, China
| | - Wei Zhang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan, China
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan, China.
| |
Collapse
|
47
|
Qian X, Lin S, Li J, Jia C, Luo Y, Fan R, Hu C, Chen Y. Fisetin Ameliorates Diabetic Nephropathy-Induced Podocyte Injury by Modulating Nrf2/HO-1/GPX4 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9331546. [PMID: 39281805 PMCID: PMC11401708 DOI: 10.1155/2023/9331546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 09/18/2024]
Abstract
Diabetic nephropathy (DN) is one of the most severe microvascular complications of diabetes and has become the leading cause of end-stage renal disease formation. The pathogenesis of diabetic nephropathy is very complex and is still not fully understood. Fisetin is a flavonoid polyphenolic compound that is widely found in different fruits, vegetables, and medicinal plants. Many studies have indicated that it has a variety of pharmacological activities. In this study, we investigated the mechanism of action of fisetin in the protection of DN-induced podocyte injury both in vivo and in vitro. Results showed that fisetin could reduce high glucose (HG)-induced podocyte injury and streptozotocin (STZ)-induced diabetic nephropathy in mice. According to the histopathological staining results, fisetin ameliorated DN-induced glomerular injury in a dose-dependent manner. Western blot and immunofluorescence results showed that fisetin effectively promoted the expression of podocyte functional integrity marker proteins and inhibited the expression of podocyte injury marker proteins. In addition, according to the Western blot and RT-qPCR results, fisetin activates the nuclear translocation of Nrf2 to exert antioxidative stress ability and affects the expression of downstream antioxidant enzymes HO-1, GPX4, and other ferroptosis-related markers, thereby protecting against HG-induced podocyte ferroptosis and oxidative stress injury in DN mice. In summary, this study demonstrated that fisetin could enhance the antioxidative stress capacity of DN mice by promoting the activation of the Nrf2/HO-1/GPX4 signaling pathway in renal tissues, and attenuated HG-induced podocytes injury and STZ-induced DN in mice.
Collapse
Affiliation(s)
- Xiaojing Qian
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shan Lin
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ji Li
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - ChengLin Jia
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yun Luo
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Rui Fan
- Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| | - Cheng Hu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Chen
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| |
Collapse
|
48
|
Deng C, Meng Z, Chen H, Meng S. Tetramethylpyrazine ameliorates systemic streptozotocin-induced Alzheimer-like pathology. J Chem Neuroanat 2023; 127:102207. [PMID: 36470527 DOI: 10.1016/j.jchemneu.2022.102207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022]
Abstract
Diabetes mellitus (DM) and its complications are the main threats to the global disease burden. DM-related cognitive dysfunction is a progressive neurodegenerative disease, similar to Alzheimer's disease (AD). The underlying pathophysiology remains unclear, and an effective treatment is unavailable. Tetramethylpyrazine (TMP) is a bioactive ingredient extracted from the plant Ligusticum wallichii, which has anti-diabetic and neuroprotective properties. In this study, streptozotocin (STZ) injection was used to establish a mouse STZ-AD model, and TMP was administered through the lateral ventricle (ICV) to evaluate the effects of TMP on cognitive ability and neurochemical changes and to explore the underlying cellular and molecular mechanisms. Using MWM and Y-maze behavioral paradigms, we observed that TMP protected against STZ-induced learning and memory impairment. STZ promoted the deposition of amyloid plaques, activation of glial cells, loss of neurons and synapses, and reduction of synaptic plasticity. In contrast, TMP restored these aberrations and improved cognitive deficits in STZ-induced diabetic animals. Moreover, TMP attenuated hippocampal mitochondrial dysfunction and oxidative stress through modulation of the SIRT1/Nrf2/ HO-1 pathway. This evidence shows that TMP exerts its therapeutic effects through multiple pathways. Our study provides new insights into the neuroprotective effects of TMP for the treatment of diabetes-related cognitive failure.
Collapse
Affiliation(s)
- Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
49
|
Zhang Z, Huang Q, Zhao D, Lian F, Li X, Qi W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front Endocrinol (Lausanne) 2023; 14:1112363. [PMID: 36824356 PMCID: PMC9941188 DOI: 10.3389/fendo.2023.1112363] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycaemia, with absolute insulin deficiency or insulin resistance as the main cause, and causes damage to various target organs including the heart, kidney and neurovascular. In terms of the pathological and physiological mechanisms of DM, oxidative stress is one of the main mechanisms leading to DM and is an important link between DM and its complications. Oxidative stress is a pathological phenomenon resulting from an imbalance between the production of free radicals and the scavenging of antioxidant systems. The main site of reactive oxygen species (ROS) production is the mitochondria, which are also the main organelles damaged. In a chronic high glucose environment, impaired electron transport chain within the mitochondria leads to the production of ROS, prompts increased proton leakage and altered mitochondrial membrane potential (MMP), which in turn releases cytochrome c (cyt-c), leading to apoptosis. This subsequently leads to a vicious cycle of impaired clearance by the body's antioxidant system, impaired transcription and protein synthesis of mitochondrial DNA (mtDNA), which is responsible for encoding mitochondrial proteins, and impaired DNA repair systems, contributing to mitochondrial dysfunction. This paper reviews the dysfunction of mitochondria in the environment of high glucose induced oxidative stress in the DM model, and looks forward to providing a new treatment plan for oxidative stress based on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Fengmei Lian
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| |
Collapse
|
50
|
Chen W, Zhang H, Liu G, Kang J, Wang B, Wang J, Li J, Wang H. Lutein attenuated methylglyoxal-induced oxidative damage and apoptosis in PC12 cells via the PI3K/Akt signaling pathway. J Food Biochem 2022; 46:e14382. [PMID: 36017617 DOI: 10.1111/jfbc.14382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 01/13/2023]
Abstract
Methylglyoxal (MGO), a cytotoxic byproduct of glycolysis, causes neuro oxidative damage and apoptosis, and plays key roles in diabetic encephalopathy (DE). The goal of this research was to evaluate the roles of lutein attenuated MGO-induced damage in PC12 cells as well as the underlying mechanisms. The findings of this study showed that lutein has a significant impact on reducing the generation of reactive oxygen species (ROS) and oxidative stress in MGO-induced PC12 cells, which may be attributed to the increased antioxidant enzymes activity and the decreased MDA levels. Moreover, treatment with lutein also alleviated cell apoptosis and mitochondrial damage. Real-time PCR and western blot analysis showed that lutein enhanced the Bcl-2:Bax ratio, inhibited the expression of caspase-3 and caspase-9, and increased the protein level of phosphorylated Akt. The network pharmacology and molecular docking prediction results suggested that the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway was a potential mechanism of lutein in DE treatment. Furthermore, LY294002, a specific PI3K inhibitor, partially abolished the protective effect of lutein. These results presented that lutein attenuated oxidative damage and apoptosis triggered by MGO in PC12 cells via the PI3K/Akt signaling pathway. PRACTICAL APPLICATIONS: Lutein is a common carotenoid dispersed in fruits and vegetables. This article confirmed a protective effect of lutein on oxidative damage and apoptosis in PC12 cells after MGO damage. These results indicated that lutein could potentially be developed as a nutraceutical or functional food in the prevention of diabetic-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Hua Zhang
- Animal & Plant and Food Inspection Center of Tianjin Customs (Former Tianjin Inspection and Quarantine Bureau), Tianjin, China
| | - Guishan Liu
- School of Food & Wine, Ningxia University, Yinchuan, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Biao Wang
- College of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin, China
| | - Jilite Wang
- Department of Agriculture, Hetao College, Bayannur, China
| | - Jing Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| |
Collapse
|