1
|
Jo Y, Kim BY, Lee SM, Park J, Kim W, Shim JA, Park JH, Park JE, Shin YI, Ryu JH, Hong C. Particulate matter exposure induces pulmonary T H2 responses and oxidative stress-mediated NRF2 activation in mice. Redox Biol 2025; 82:103632. [PMID: 40215613 PMCID: PMC12018062 DOI: 10.1016/j.redox.2025.103632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
INTRODUCTION Particulate matter (PM) is a harmful air pollutant associated with respiratory and cardiovascular diseases, but its effects on adaptive immunity are poorly understood. OBJECTIVES This study investigates the role of NRF2 in T cells in mediating immune and pulmonary responses to long-term PM exposure, highlighting its impact on inhalation toxicity. METHODS To establish a mouse model of lung injury induced by PM exposure, C57BL/6 mice were intranasally administered 20 μg/kg PM10 or PM2.5 daily for 16 weeks. Lung injury parameters were analyzed in bronchoalveolar lavage fluid (BALF), plasma, and lung tissue. Changes in the proportion of immune cells in the lymph nodes and spleen were analyzed. RESULTS Mice exposed to PM for 16 weeks showed severe lung damage, such as inflammatory cell infiltration, thickened alveolar walls, and increased oxidative stress and apoptosis. PM exposure also increased collagen and fibronectin levels, indicating tissue remodeling. Immune cell analysis revealed reduced B cell expansion, increased IL-4-producing CD4+ T cells, and decreased IFN-γ- and TNF-α-producing CD4+ T cells, accompanied by higher TH2 cytokines and plasma IgE and IgG1 levels. PM activated the NRF2 pathway, skewing immune responses toward TH2 differentiation, which worsened lung inflammation. CONCLUSIONS These findings highlight how PM exposure disrupts immune balance and exacerbates conditions like asthma and chronic obstructive pulmonary disease by promoting TH2-driven inflammation through NRF2 activation.
Collapse
Affiliation(s)
- Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Bo-Young Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - So Min Lee
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Republic of Korea; Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, Republic of Korea; PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jisu Park
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Wooseok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Republic of Korea; Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jun Hong Park
- Department of Physiology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yong-Il Shin
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea; Department of Rehabilitation Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Ji Hyeon Ryu
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea; Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, Republic of Korea; PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| |
Collapse
|
2
|
Zhang X, Ye X, Xie Y, Yang Z, Spanos M, Guo Z, Jin Y, Li G, Lei Z, Schiffelers RM, Sluijter JPG, Wang H, Chen H, Xiao J. GEV Sod2 Powder: A Modified Product Based on Biovesicles Functioned in Air Pollution PM2.5-Induced Cardiopulmonary Injury. RESEARCH (WASHINGTON, D.C.) 2025; 8:0609. [PMID: 39949511 PMCID: PMC11822167 DOI: 10.34133/research.0609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025]
Abstract
The prevention of air pollution-related cardiopulmonary disorders has been largely overlooked despite its important burden. Extracellular vesicles (EVs) have shown great potential as carriers for drug delivery. However, the efficiency and effect of EVs derived from different sources on ambient fine particulate matter (PM2.5)-induced cardiopulmonary injury remain unknown. Using PM2.5-exposed cellular and mouse models, we investigated the prevention of air pollution-related cardiopulmonary injury via an innovative strategy based on EV delivery. By using a "2-step" method that combines bibliometric and bioinformatic analysis, we identified superoxide dismutase 2 (Sod2) as a potential target for PM2.5-induced injury. Sod2-overexpressing plasmid was constructed and loaded into human plasma-, bovine milk-, and fresh grape-derived EVs, ultimately obtaining modified nanoparticles including PEV Sod2 , MEV Sod2 , and GEV Sod2 , respectively. GEV Sod2 , especially its lyophilized GEV Sod2 powder, exhibited superior protection against PM2.5-induced cardiopulmonary injury as compared to PEV Sod2 and MEV Sod2 . High-sensitivity structured illumination microscopy imaging and immunoblotting showed that GEV Sod2 powder treatment altered lysosome positioning by reducing Rab-7 expression. Our findings support the use of fruit-derived EVs as a preferred candidate for nucleic acid delivery and disease treatment, which may facilitate the translation of treatments for cardiopulmonary injuries.
Collapse
Affiliation(s)
- Xiao Zhang
- />School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science,
Shanghai University, Shanghai 200444, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Xuan Ye
- />School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuling Xie
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science,
Shanghai University, Shanghai 200444, China
- Department of Cardiovascular Surgery,
Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Provincial Center for Cardiovascular Medicine, Fuzhou 350001, China
| | - Zijiang Yang
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science,
Shanghai University, Shanghai 200444, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zilin Guo
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science,
Shanghai University, Shanghai 200444, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - YuXin Jin
- QianWeiChang College,
Shanghai University, Shanghai 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhiyong Lei
- CDL Research,
University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cardiology, Laboratory of Experimental Cardiology,
University Medical Center Utrecht, Utrecht, The Netherlands
- UMC Utrecht Regenerative Medicine Center, Circulatory Health Research Center, University Medical Center,
Utrecht University, Utrecht, The Netherlands
| | | | - Joost P. G. Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology,
University Medical Center Utrecht, Utrecht, The Netherlands
- UMC Utrecht Regenerative Medicine Center, Circulatory Health Research Center, University Medical Center,
Utrecht University, Utrecht, The Netherlands
| | - Hongyun Wang
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science,
Shanghai University, Shanghai 200444, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Huihua Chen
- />School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junjie Xiao
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science,
Shanghai University, Shanghai 200444, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
4
|
Zhang L, Huang FY, Dai SZ, Wang L, Zhou X, Zheng ZY, Li Q, Tan GH, Wang CC. Rosuvastatin attenuates airway inflammation and remodeling in a chronic allergic asthma model through modulation of the AMPKα signaling pathway. PLoS One 2024; 19:e0305863. [PMID: 38913666 PMCID: PMC11195969 DOI: 10.1371/journal.pone.0305863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
The efficacy of rosuvastatin in reducing allergic inflammation has been established. However, its potential to reduce airway remodeling has yet to be explored. This study aimed to evaluate the efficacy of rosuvastatin in reducing airway inflammation and remodeling in a mouse model of chronic allergic asthma induced by sensitization and challenge with OVA. Histology of the lung tissue and the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) showed a marked decrease in airway inflammation and remodeling in mice treated with rosuvastatin, as evidenced by a decrease in goblet cell hyperplasia, collagen deposition, and smooth muscle hypertrophy. Furthermore, levels of inflammatory cytokines, angiogenesis-related factors, and OVA-specific IgE in BALF, plasma, and serum were all reduced upon treatment with rosuvastatin. Western blotting was employed to detect AMPK expression, while immunohistochemistry staining was used to observe the expression of remodeling signaling proteins such as α-SMA, TGF-β, MMP-9, and p-AMPKα in the lungs. It was found that the activity of 5'-adenosine monophosphate-activated protein kinase alpha (AMPKα) was significantly lower in the lungs of OVA-induced asthmatic mice compared to Control mice. However, the administration of rosuvastatin increased the ratio of phosphorylated AMPK to total AMPKα, thus inhibiting the formation of new blood vessels, as indicated by CD31-positive staining mainly in the sub-epithelial region. These results indicate that rosuvastatin can effectively reduce airway inflammation and remodeling in mice with chronic allergic asthma caused by OVA, likely due to the reactivation of AMPKα and a decrease in angiogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, China
| | - Feng-Ying Huang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shu-Zhen Dai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Lin Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, China
| | - Zhen-You Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, China
| | - Guang-Hong Tan
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Cai-Chun Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, China
| |
Collapse
|
5
|
Liao C, He ZW, Yu R, Yu YJ, Liu XR, Kong DL, Wang Y. CircRNA: a rising therapeutic strategy for lung injury induced by pulmonary toxicants. Arch Toxicol 2024; 98:1297-1310. [PMID: 38498160 DOI: 10.1007/s00204-024-03706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Lung injury has been a serious medical problem that requires new therapeutic approaches and biomarkers. Circular RNAs (circRNAs) are non-coding RNAs (ncRNAs) that exist widely in eukaryotes. CircRNAs are single-stranded RNAs that form covalently closed loops. CircRNAs are significant gene regulators that have a role in the development, progression, and therapy of lung injury by controlling transcription, translating into protein, and sponging microRNAs (miRNAs) and proteins. Although the study of circRNAs in lung injury caused by pulmonary toxicants is just beginning, several studies have revealed their expression patterns. The function that circRNAs perform in relation to pulmonary toxicants (severe acute respiratory distress syndrome coronavirus-2 (SARS-CoV-2), drug abuse, PM2.5, and cigarette smoke) is the main topic of this review. A variety of circRNAs can serve as potential biomarkers of lung injury. In this review, the biogenesis, properties, and biological functions of circRNAs were concluded, and the relationship between circRNAs and pulmonary toxicants was discussed. It is expected that the new ideas and potential treatment targets that circRNAs provide would be beneficial to research into the molecular mechanisms behind lung injury.
Collapse
Affiliation(s)
- Cai Liao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Zhen-Wei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rui Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Ya-Jie Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Xiao-Ru Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - De-Lei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, No. 155, Nanjing Street, Heping District, Shenyang, 110000, Liaoning, China.
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
6
|
Zhang J, Li W, Li H, Liu W, Li L, Liu X. Selenium-Enriched Soybean Peptides as Novel Organic Selenium Compound Supplements: Inhibition of Occupational Air Pollution Exposure-Induced Apoptosis in Lung Epithelial Cells. Nutrients 2023; 16:71. [PMID: 38201901 PMCID: PMC10780830 DOI: 10.3390/nu16010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The occupational groups exposed to air pollutants, particularly PM2.5, are closely linked to the initiation and advancement of respiratory disorders. The aim of this study is to investigate the potential protective properties of selenium-enriched soybean peptides (Se-SPeps), a novel Se supplement, in mitigating apoptosis triggered by PM2.5 in A549 lung epithelial cells. The results indicate a concentration-dependent reduction in the viability of A549 cells caused by PM2.5, while Se-SPeps at concentrations of 62.5-500 µg/mL showed no significant effect. Additionally, the Se-SPeps reduced the production of ROS, proinflammatory cytokines, and apoptosis in response to PM2.5 exposure. The Se-SPeps suppressed the PM2.5-induced upregulation of Bax/Bcl-2 and caspase-3, while also restoring reductions in p-Akt in A549 cells. The antiapoptotic effects of Se-SPeps have been found to be more effective compared to SPeps, SeMet, and Na2SeO3 when evaluated at an equivalent protein or Se concentration. Our study results furnish evidence that supports the role of Se-SPeps in reducing the harmful effects of PM2.5, particularly in relation to its effect on apoptosis, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wenhui Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Wanlu Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
| | - Lu Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Ryu SH, Kim N, Kim C, Bae JS. Jujuboside B post-treatment attenuates PM 2.5-induced lung injury in mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1479-1489. [PMID: 35854640 DOI: 10.1080/09603123.2022.2102156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) is an air pollutant that causes severe lung injury. We investigated the effects of Jujuboside B (JB), a component of Zizyphi Spinosi Semen, on lung toxicity caused by PM2.5, and we identified the mechanism of its protective effect. Lung injury in an animal model was induced by intratracheal administration of a PM2.5 suspension. After 2 days of PM2.5 pretreatment, mice were administered JB via the tail vein three times over a 2-day period. JB significantly reduced the histological lung damage as well as the lung wet/dry weight ratio. JB also considerably reduced PM2.5-induced autophagy dysfunction, apoptosis, inflammatory cytokine levels, and the number of PM2.5-induced lymphocytes in the bronchial alveolar fluid. We conclude that by regulating TLR2, 4-MyD88, and mTOR-autophagy pathways, JB exerts a protective effect on lung injury. Thus, JB can be used as a potential therapeutic agent for PM2.5-induced lung damage.
Collapse
Affiliation(s)
- Soo Ho Ryu
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Nayeon Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Chaeyeong Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
8
|
Ren J, Yin B, Guo Z, Sun X, Pei H, Wen R, Wang Z, Zhu S, Zuo J, Zhang Y, Ma Y. Astaxanthin alleviates PM 2.5-induced cardiomyocyte injury via inhibiting ferroptosis. Cell Mol Biol Lett 2023; 28:95. [PMID: 38007415 PMCID: PMC10675963 DOI: 10.1186/s11658-023-00513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Long-term exposure of humans to air pollution is associated with an increasing risk of cardiovascular diseases (CVDs). Astaxanthin (AST), a naturally occurring red carotenoid pigment, was proved to have multiple health benefits. However, whether or not AST also exerts a protective effect on fine particulate matter (PM2.5)-induced cardiomyocyte damage and its underlying mechanisms remain unclear. METHODS In vitro experiments, the H9C2 cells were subjected to pretreatment with varying concentrations of AST, and then cardiomyocyte injury model induced by PM2.5 was established. The cell viability and the ferroptosis-related proteins expression were measured in different groups. In vivo experiments, the rats were pretreated with different concentrations of AST for 21 days. Subsequently, a rat model of myocardial PM2.5 injury was established by intratracheal instillation every other day for 1 week. The effects of AST on myocardial tissue injury caused by PM2.5 indicating by histological, serum, and protein analyses were examined. RESULTS AST significantly ameliorated PM2.5-induced myocardial tissue injury, inflammatory cell infiltration, the release of inflammatory factors, and cardiomyocyte H9C2 cell damage. Mechanistically, AST pretreatment increased the expression of SLC7A11, GPX4 and down-regulated the expression of TfR1, FTL and FTH1 in vitro and in vivo. CONCLUSIONS Our study suggest that ferroptosis plays a significant role in the pathogenesis of cardiomyocyte injury induced by PM2.5. AST may serve as a potential therapeutic agent for mitigating cardiomyocyte injury caused by PM2.5 through the inhibition of ferroptosis.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zihao Guo
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoya Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Huanting Pei
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ziyi Wang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Siqi Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jinshi Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yadong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
9
|
Marchini T. Redox and inflammatory mechanisms linking air pollution particulate matter with cardiometabolic derangements. Free Radic Biol Med 2023; 209:320-341. [PMID: 37852544 DOI: 10.1016/j.freeradbiomed.2023.10.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Air pollution is the largest environmental risk factor for disease and premature death. Among the different components that are present in polluted air, fine particulate matter below 2.5 μm in diameter (PM2.5) has been identified as the main hazardous constituent. PM2.5 mainly arises from fossil fuel combustion during power generation, industrial processes, and transportation. Exposure to PM2.5 correlates with enhanced mortality risk from cardiovascular diseases (CVD), such as myocardial infarction and stroke. Over the last decade, it has been increasingly suggested that PM2.5 affects CVD already at the stage of risk factor development. Among the multiple biological mechanisms that have been described, the interplay between oxidative stress and inflammation has been consistently highlighted as one of the main drivers of pulmonary, systemic, and cardiovascular effects of PM2.5 exposure. In this context, PM2.5 uptake by tissue-resident immune cells in the lung promotes oxidative and inflammatory mediators release that alter tissue homeostasis at remote locations. This pathway is central for PM2.5 pathogenesis and might account for the accelerated development of risk factors for CVD, including obesity and diabetes. However, transmission and end-organ mechanisms that explain PM2.5-induced impaired function in metabolic active organs are not completely understood. In this review, the main features of PM2.5 physicochemical characteristics related to PM2.5 ability to induce oxidative stress and inflammation will be presented. Hallmark and recent epidemiological and interventional studies will be summarized and discussed in the context of current air quality guidelines and legislation, knowledge gaps, and inequities. Lastly, mechanistic studies at the intersection between redox metabolism, inflammation, and function will be discussed, with focus on heart and adipose tissue alterations. By offering an integrated analysis of PM2.5-induced effects on cardiometabolic derangements, this review aims to contribute to a better understanding of the pathogenesis and potential interventions of air pollution-related CVD.
Collapse
Affiliation(s)
- Timoteo Marchini
- Vascular Immunology Laboratory, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), Facultad de Farmacia y Bioquímica, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Liu H, Lai W, Nie H, Shi Y, Zhu L, Yang L, Tian L, Li K, Bian L, Xi Z, Lin B. PM 2.5 triggers autophagic degradation of Caveolin-1 via endoplasmic reticulum stress (ERS) to enhance the TGF-β1/Smad3 axis promoting pulmonary fibrosis. ENVIRONMENT INTERNATIONAL 2023; 181:108290. [PMID: 37924604 DOI: 10.1016/j.envint.2023.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Air pollution is highly associated with respiratory diseases. However, the influence and mechanism of particulate matter with aerodynamic equal to or less than 2.5 μm (PM2.5) in lung homeostasis remain unclear. Herein, we demonstrated the induction of pulmonary fibrosis (PF) by PM2.5 exposure. The animal model showed that PM2.5 exposure could activate the oxidative stress and inflammation response, promoting epithelial-mesenchymal transition and accumulation of collagen, high expression of pro-fibrotic factors, and pathological characteristics of fibrosis. The proteomic analysis indicated that PM2.5 exposure decreased the expression of caveolin-1 (Cav-1), and many differential proteins were enriched in the TGF-β1/Smad, endoplasmic reticulum stress (ERS) and autophagy pathways. Combining in vivo and in vitro experiments, it was found that PM2.5 exposure could reduce Cav-1 protein levels and activate TGF-β1/Smad3 signaling pathways through ERS and autophagy pathways, thereby inducing cell apoptosis and promoting pulmonary fibrosis. However, inhibiting ERS could alleviate the occurrence of autophagy, and blocking the autophagy system could increase the level of Cav-1 protein and inhibit TGF- β 1/Smad3 signaling pathway to improve pulmonary fibrosis. Therefore, we demonstrated that the exposure of PM2.5 could enhance the ERS induced-autophagy-mediated Cav-1 degradation, thus activating the TGF-β1/Smad3 axis to promote pneumonocytes apoptosis and overproduction of extracellular matrix (ECM), finally aggravating PF. Moreover, our findings revealed that intermittent exposure to high doses of PM2.5 was more toxic than continuous exposure to low dose.
Collapse
Affiliation(s)
- Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Huipeng Nie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lina Zhu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Linhui Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
11
|
Kuntic M, Kuntic I, Hahad O, Lelieveld J, Münzel T, Daiber A. Impact of air pollution on cardiovascular aging. Mech Ageing Dev 2023; 214:111857. [PMID: 37611809 DOI: 10.1016/j.mad.2023.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The world population is aging rapidly, and by some estimates, the number of people older than 60 will double in the next 30 years. With the increase in life expectancy, adverse effects of environmental exposures start playing a more prominent role in human health. Air pollution is now widely considered the most detrimental of all environmental risk factors, with some studies estimating that almost 20% of all deaths globally could be attributed to poor air quality. Cardiovascular diseases are the leading cause of death worldwide and will continue to account for the most significant percentage of non-communicable disease burden. Cardiovascular aging with defined pathomechanisms is a major trigger of cardiovascular disease in old age. Effects of environmental risk factors on cardiovascular aging should be considered in order to increase the health span and reduce the burden of cardiovascular disease in older populations. In this review, we explore the effects of air pollution on cardiovascular aging, from the molecular mechanisms to cardiovascular manifestations of aging and, finally, the age-related cardiovascular outcomes. We also explore the distinction between the effects of air pollution on healthy aging and disease progression. Future efforts should focus on extending the health span rather than the lifespan.
Collapse
Affiliation(s)
- Marin Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Ivana Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Omar Hahad
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Thomas Münzel
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
12
|
Fan D, Jin Z, Cao J, Li Y, He T, Zhang W, Peng L, Liu H, Wu X, Chen M, Fan Y, He B, Yu W, Wang H, Hu X, Lu Z. Leucine zipper protein 1 prevents doxorubicin-induced cardiotoxicity in mice. Redox Biol 2023; 64:102780. [PMID: 37354826 DOI: 10.1016/j.redox.2023.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
OBJECTIVE Doxorubicin (DOX) is commonly used for chemotherapy; however, its clinical value is extremely dampened because of the fatal cardiotoxicity. Leucine zipper protein 1 (LUZP1) plays critical roles in cardiovascular development, and this study is designed for determining its function and mechanism in DOX-induced cardiotoxicity. METHODS Cardiac-specific Luzp1 knockout (cKO) and transgenic (cTG) mice received a single or repeated DOX injections to establish acute and chronic cardiotoxicity. Biomarkers of inflammation, oxidative damage and cell apoptosis were evaluated. Transcriptome and co-immunoprecipitation analysis were used to screen the underlying molecular pathways. Meanwhile, primary cardiomyocytes were applied to confirm the beneficial effects of LUZP1 in depth. RESULTS LUZP1 was upregulated in DOX-injured hearts and cardiomyocytes. Cardiac-specific LUZP1 deficiency aggravated, while cardiac-specific LUZP1 overexpression attenuated DOX-associated inflammation, oxidative damage, cell apoptosis and acute cardiac injury. Mechanistic studies revealed that LUZP1 ameliorated DOX-induced cardiotoxicity through activating 5'-AMP-activated protein kinase (AMPK) pathway, and AMPK deficiency abolished the cardioprotection of LUZP1. Further findings suggested that LUZP1 interacted with protein phosphatase 1 to activate AMPK pathway. Moreover, we determined that cardiac-specific LUZP1 overexpression could also attenuate DOX-associated chronic cardiac injury in mice. CONCLUSION LUZP1 attenuates DOX-induced inflammation, oxidative damage, cell apoptosis and ventricular impairment through regulating AMPK pathway, and gene therapy targeting LUZP1 may provide novel therapeutic approached to treat DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Di Fan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Zhili Jin
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Jianlei Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Yi Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Tao He
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Wei Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Li Peng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Huixia Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Xiaoyan Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Ming Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Yongzhen Fan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Bo He
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Wenxi Yu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Hairong Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China.
| |
Collapse
|
13
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
14
|
The Inhibitory Functions of Sparstolonin B against Ambient Fine Particulate Matter Induced Lung Injury. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Kim C, Kim GO, Bae JS. Cirsilineol Treatment Attenuates PM 2.5-Induced Lung Injury in Mice. Int J Mol Sci 2022; 23:ijms232213948. [PMID: 36430427 PMCID: PMC9692977 DOI: 10.3390/ijms232213948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Ultrafine particulate matter with less than 2.5 μm diameter (PM2.5) is an air pollutant that causes severe lung damage. Currently, effective treatment and preventive methods for PM2.5-induced lung damage are limited. Cirsilineol (CSL) is a small natural compound isolated from Artemisia vestita. In this study, the efficacy of CSL on PM2.5-induced lung toxicity was tested, and its mechanism was identified. Lung injury was caused by intratracheal administration of PM2.5 suspension in animal models. Two days after PM2.5 pretreatment, CSL was injected via mouse tail vein for two days. The effects of CSL on PM2.5-induced lung damage, autophagy, apoptosis, and pulmonary inflammation in a mouse model and their mechanisms were investigated. CSL significantly suppressed histological lung damage and lung wet/dry weight proportion. CSL also significantly reduced PM2.5-induced autophagy dysfunction, apoptosis, lymphocyte suppression, and inflammatory cytokine levels in bronchoalveolar fluid (BALF). Furthermore, CSL increased mammalian target of rapamycin (mTOR) phosphorylation and significantly inhibited the expression of Toll-like receptors (TLR) 2 and 4, MyD88, and the autophagy proteins, Beclin1 and LC3II. Thus, CSL exerts protective effects on pulmonary damage by regulating mTOR and TLR2,4-myD88 autophagy pathways. Therefore, CSL can be used as an effective treatment for PM2.5-induced lung damage.
Collapse
Affiliation(s)
| | | | - Jong-Sup Bae
- Correspondence: ; Tel.: +82-53-950-8570; Fax: +82-53-950-8557
| |
Collapse
|
16
|
Ma P, Zhou Y, Fang P, Ke W, Xiao S, Fang L. Molecular cloning, prokaryotic expression and the anti-inflammatory activity of porcine PRDX5. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104515. [PMID: 35985565 DOI: 10.1016/j.dci.2022.104515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Peroxiredoxin 5 (PRDX5) is the sole member of the atypical 2-Cys subfamily of mammalian PRDXs, a family of thiol-dependent peroxidases. In addition to its antioxidant effect, PRDX5 has been implicated in modulating the inflammatory response. In this study, the full-length cDNA encoding porcine PRDX5 (pPRDX5) was cloned. Subsequently, using porcine alveolar macrophages (PAMs), the target cells of PRRSV infection in vivo, we found that the recombinant pPRDX5 protein inhibited inflammatory responses induced by tumor necrosis factor alpha (TNF-α) or porcine reproductive and respiratory syndrome virus (PRRSV), a virus causing severe interstitial pneumonia in pigs. By contrast, knockdown of endogenous pPRDX5 with specific siRNA enhanced inflammatory responses induced by TNF-α or PRRSV. We also demonstrated that the involvement of pPRDX5 in inflammation regulation depended on its peroxidase activity. Taken together, these results showed that pPRDX5 is an anti-inflammatory molecule, which may play an important immune-regulation role in the pathogenicity of PRRSV.
Collapse
Affiliation(s)
- Panpan Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
17
|
El Tabaa MM, Habib EI, Zahran A, Anis A. SERCA2a directs the cardioprotective role of nano-emulsion curcumin against PM2.5-induced cardiac injury in rats by prohibiting PERK-eIF2α pathway. Life Sci 2022; 311:121160. [DOI: 10.1016/j.lfs.2022.121160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 11/15/2022]
|
18
|
The macrophage senescence hypothesis: the role of poor heat shock response in pulmonary inflammation and endothelial dysfunction following chronic exposure to air pollution. Inflamm Res 2022; 71:1433-1448. [PMID: 36264363 DOI: 10.1007/s00011-022-01647-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/18/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Cardiovascular diseases (CVD) have been associated with high exposure to fine particulate air pollutants (PM2.5). Alveolar macrophages are the first defense against inhaled particles. As soon as they phagocytize the particles, they reach an inflammatory phenotype, which affects the surrounding cells and associates with CVD. Not coincidentally, CVD are marked by a depleted heat shock response (HSR), defined by a deficit in inducing 70-kDa heat shock protein (HSP70) expression during stressful conditions. HSP70 is a powerful anti-inflammatory chaperone, whose reduced levels trigger a pro-inflammatory milieu, cellular senescence, and a senescence-associated secretory phenotype (SASP). However, whether macrophage senescence is the main mechanism by which PM2.5 propagates low-grade inflammation remains unclear. OBJECTIVE AND DESIGN In this article, we review evidence supporting that chronic exposure to PM2.5 depletes HSR and determines the ability to solve the initial stress. RESULTS AND DISCUSSION When exposed to PM2.5, macrophages increase the production of reactive oxygen species, which activate nuclear factor-kappa B (NF-κB). NF-κB is naturally a pro-inflammatory factor that drives prostaglandin E2 (PGE2) synthesis and causes fever. PGE2 can be converted into prostaglandin A2, a powerful inducer of HSR. Therefore, when transiently activated, NF-κB can trigger the anti-inflammatory response through negative feedback, by inducing HSP70 expression. However, when chronically activated, NF-κB heads a set of pathways involved in mitochondrial dysfunction, endoplasmic reticulum stress, unfolded protein response, inflammasome activation, and apoptosis. During chronic exposure to PM2.5, cells cannot properly express sirtuin-1 or activate heat shock factor-1 (HSF-1), which delays the resolution phase of inflammation. Since alveolar macrophages are the first immune defense against PM2.5, we suppose that the pollutant impairs HSR and, consequently, induces cellular senescence. Accordingly, senescent macrophages change its secretory phenotype to a more inflammatory one, known as SASP. Finally, macrophages' SASP would propagate the systemic inflammation, leading to endothelial dysfunction and atherosclerosis.
Collapse
|
19
|
Gao J, Lei T, Wang H, Luo K, Wang Y, Cui B, Yu Z, Hu X, Zhang F, Chen Y, Ding W, Lu Z. Dimethylarginine dimethylaminohydrolase 1 protects PM 2.5 exposure-induced lung injury in mice by repressing inflammation and oxidative stress. Part Fibre Toxicol 2022; 19:64. [PMID: 36242005 PMCID: PMC9569114 DOI: 10.1186/s12989-022-00505-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Airborne fine particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) pollution is associated with the prevalence of respiratory diseases, including asthma, bronchitis and chronic obstructive pulmonary disease. In patients with those diseases, circulating asymmetric dimethylarginine (ADMA) levels are increased, which contributes to airway nitric oxide deficiency, oxidative stress and inflammation. Overexpression of dimethylarginine dimethylaminohydrolase 1 (DDAH1), an enzyme degrading ADMA, exerts protective effects in animal models. However, the impact of DDAH1/ADMA on PM2.5-induced lung injury has not been investigated. METHODS Ddah1-/- and DDAH1-transgenic mice, as well as their respective wild-type (WT) littermates, were exposed to either filtered air or airborne PM2.5 (mean daily concentration ~ 50 µg/m3) for 6 months through a whole-body exposure system. Mice were also acutely exposed to 10 mg/kg PM2.5 and/or exogenous ADMA (2 mg/kg) via intratracheal instillation every other day for 2 weeks. Inflammatory response, oxidative stress and related gene expressions in the lungs were examined. In addition, RAW264.7 cells were exposed to PM2.5 and/or ADMA and the changes in intracellular oxidative stress and inflammatory response were determined. RESULTS Ddah1-/- mice developed more severe lung injury than WT mice after long-term PM2.5 exposure, which was associated with greater induction of pulmonary oxidative stress and inflammation. In the lungs of PM2.5-exposed mice, Ddah1 deficiency increased protein expression of p-p65, iNOS and Bax, and decreased protein expression of Bcl-2, SOD1 and peroxiredoxin 4. Conversely, DDAH1 overexpression significantly alleviated lung injury, attenuated pulmonary oxidative stress and inflammation, and exerted opposite effects on those proteins in PM2.5-exposed mice. In addition, exogenous ADMA administration could mimic the effect of Ddah1 deficiency on PM2.5-induced lung injury, oxidative stress and inflammation. In PM2.5-exposed macrophages, ADMA aggravated the inflammatory response and oxidative stress in an iNOS-dependent manner. CONCLUSION Our data revealed that DDAH1 has a marked protective effect on long-term PM2.5 exposure-induced lung injury.
Collapse
Affiliation(s)
- Junling Gao
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Tong Lei
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Hongyun Wang
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Kai Luo
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yuanli Wang
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Bingqing Cui
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Zhuoran Yu
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Xiaoqi Hu
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Fang Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yingjie Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Wenjun Ding
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China.
| | - Zhongbing Lu
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China.
| |
Collapse
|
20
|
Jiang J, Ding S, Zhang G, Dong Y. Ambient particulate matter exposure plus a high-fat diet exacerbate renal injury by activating the NLRP3 inflammasome and TGF-β1/Smad2 signaling pathway in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113571. [PMID: 35512472 DOI: 10.1016/j.ecoenv.2022.113571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a public health problem of which the prevalence is increasing worldwide. Several studies have reported that ambient particulate matter (PM) causes kidney injury, which may be related to the risk of CKD. However, the underlying molecular mechanisms have not been fully clarified. In addition, whether a high-fat diet (HFD) could exacerbate ambient PM-induced nephrotoxicity has not been evaluated. This study aimed to investigate the combined effect of ambient PM and a HFD on renal injury. METHODS AND RESULTS Male C57BL/6 J mice were fed either a normal diet or a HFD and exposed to filtered air (FA) or particulate matter (PM) for 18 weeks. In the present study, we observed that renal function changed (serum blood urea nitrogen and serum creatinine), and exposure to PM and a HFD caused a synergistic effect on renal injury. Histopathological analysis showed that PM exposure induced renal fibrosis in mice, and combined exposure to PM and a HFD exacerbated these adverse effects. Moreover, ambient PM exposure activated the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome and increased the inflammatory response, as indicated by the increases in interleukin-1β, interleukin-6 and tumor necrosis factor-α in the serum and kidney, as well as the upregulation of specific renal fibrosis-related markers (transforming growth factor-β1 and p-Smad2) in the kidney tissues of mice. Furthermore, combined exposure to PM and a HFD augmented these changes in the kidney. In vitro, inhibition of the NLRP3 inflammasome by MCC950 (an inhibitor of NLRP3) reduced the levels of proinflammatory cytokines and the expression of transforming growth factor-β1 and p-Smad2 in HK-2 cells. CONCLUSION Taken together, our data indicated that PM exposure caused renal inflammation and induced profibrotic effects on the kidney, and combined exposure to ambient PM and a HFD exacerbated renal injury, which may involve activation of the NLRP3 inflammasome and the TGF-β1/Smad2 signaling pathway.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, PR China
| | - Shibin Ding
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, PR China.
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, PR China
| | - Yaqi Dong
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, PR China
| |
Collapse
|
21
|
Wang H, Wang T, Rui W, Xie J, Xie Y, Zhang X, Guan L, Li G, Lei Z, Schiffelers RM, Sluijter JPG, Xiao J. Extracellular vesicles enclosed-miR-421 suppresses air pollution (PM 2.5 )-induced cardiac dysfunction via ACE2 signalling. J Extracell Vesicles 2022; 11:e12222. [PMID: 35536587 PMCID: PMC9089227 DOI: 10.1002/jev2.12222] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 01/05/2023] Open
Abstract
Air pollution, via ambient PM2.5, is a big threat to public health since it associates with increased hospitalisation, incidence rate and mortality of cardiopulmonary injury. However, the potential mediators of pulmonary injury in PM2.5‐induced cardiovascular disorder are not fully understood. To investigate a potential cross talk between lung and heart upon PM2.5 exposure, intratracheal instillation in vivo, organ culture ex vivo and human bronchial epithelial cells (Beas‐2B) culture in vitro experiments were performed respectively. The exposed supernatants of Beas‐2B were collected to treat primary neonatal rat cardiomyocytes (NRCMs). Upon intratracheal instillation, subacute PM2.5 exposure caused cardiac dysfunction, which was time‐dependent secondary to lung injury in mice, thereby demonstrating a cross‐talk between lungs and heart potentially mediated via small extracellular vesicles (sEV). We isolated sEV from PM2.5‐exposed mice serum and Beas‐2B supernatants to analyse the change of sEV subpopulations in response to PM2.5. Single particle interferometric reflectance imaging sensing analysis (SP‐IRIS) demonstrated that PM2.5 increased CD63/CD81/CD9 positive particles. Our results indicated that respiratory system‐derived sEV containing miR‐421 contributed to cardiac dysfunction post‐PM2.5 exposure. Inhibition of miR‐421 by AAV9‐miR421‐sponge could significantly reverse PM2.5‐induced cardiac dysfunction in mice. We identified that cardiac angiotensin converting enzyme 2 (ACE2) was a downstream target of sEV‐miR421, and induced myocardial cell apoptosis and cardiac dysfunction. In addition, we observed that GW4869 (an inhibitor of sEV release) or diminazene aceturate (DIZE, an activator of ACE2) treatment could attenuate PM2.5‐induced cardiac dysfunction in vivo. Taken together, our results suggest that PM2.5 exposure promotes sEV‐linked miR421 release after lung injury and hereby contributes to PM2.5‐induced cardiac dysfunction via suppressing ACE2.
Collapse
Affiliation(s)
- Hongyun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Tianhui Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Wei Rui
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Jinxin Xie
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Yuling Xie
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Xiao Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Longfei Guan
- China-America Institute Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zhiyong Lei
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | | | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
22
|
Study on Lung Injury Caused by Fine Particulate Matter and Intervention Effect of Rhodiola wallichiana. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3693231. [PMID: 35432571 PMCID: PMC9007651 DOI: 10.1155/2022/3693231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Objective The objective of this study was to observe the protective effect of Rhodiola wallichiana drops in a rat model of fine particulate matter (PM2.5) lung injury. Methods Forty male Wistar rats were randomly divided into blank control (NC), normal saline (NS), PM2.5-infected (PM), and Rhodiola wallichiana (RW) groups. Rats in the NC group were not provided any interventions, whereas those in the NS and PM groups were administered normal saline and PM2.5 suspension by trachea drip once a week for four weeks. Rats in the RW group were intraperitoneally administered Rhodiola wallichiana for 14 days and then administered PM2.5 suspension by trachea drip 7 days after drug delivery. The levels of inflammatory factors such as interleukin-6, interleukin-1β, and tumor necrosis factor-alpha and oxidative stress biomarkers such as 8-hydroxy-2′-deoxyguanosine, 4-hydroxynonenal, and protein carbonyl content were determined in the serum and bronchoalveolar lavage fluid by ELISA. The level of 4-hydroxynonenal in the lung was also determined using Western blotting and immunohistochemical staining. Results Levels of inflammatory factors and oxidative stress biomarkers were all increased in the PM group but decreased in the RW group. Western blotting revealed increased 4-hydroxynonenal levels in the PM group but decreased levels in the RW group. Immunohistochemical staining also provided similar results. Conclusion Rhodiola wallichiana could protect rats from inflammation and oxidative stress injury caused by PM2.5.
Collapse
|
23
|
Zhou Q, Li D, Zhang S, Wang S, Hu X. Quantum dots bind nanosheet to promote nanomaterial stability and resist endotoxin-induced fibrosis and PM 2.5-induced pneumonia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113420. [PMID: 35298970 DOI: 10.1016/j.ecoenv.2022.113420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Endotoxin lipopolysaccharide (LPS) is a harmful substance commonly found in various environments that causes lung fibrosis. Exposure to PM2.5 also increases the risk of respiratory diseases. Through sulfur-carbon bonds and the edge S effect, GOQDs were used to bind in single-layer molybdenum disulfide (SLMoS2) nanosheets to synthesize SLMoS2@GOQDs heterojunction structures. GOQDs doping greatly increased the water solubility and stabilized of SLMoS2. SLMoS2@GOQDs with catalase-like activity protected cells from ultrastructural and cytomembrane damage and apoptosis induced by LPS. Moreover, the doping of GOQDs enhanced the escape of SLMoS2@GOQDs from cellular uptake and suppressed the release of Mo ions. Nanosheet-cell interface interactions that were regulated by quantum dots supported these positive effects. Immunofluorescence analysis and cell imaging confirmed that the nanomaterial protected against cell injury by regulating the canonical Wnt/β-catenin pathway and the secretion of relevant cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Moreover, SLMoS2@GOQDs also mitigated pneumonia caused by PM2.5 in vivo. Collectively, our findings not only provide a simple and effective approach to control lung diseases (caused by LPS or PM2.5), but also reveal the potential value of heterojunction materials in the fields of toxicology and human health, boosting the application of nanotechnology in the fields of ecotoxicology and environmental safety.
Collapse
Affiliation(s)
- Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Dandan Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Suyan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Simin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
24
|
Wei M, Guo M, Meng X, Li L, Wang H, Zhang M, Bei Y. PPARγ Mediates the Cardioprotective Roles of Danlou Tablet After Acute Myocardial Ischemia-Reperfusion Injury. Front Cardiovasc Med 2022; 9:858909. [PMID: 35402529 PMCID: PMC8990898 DOI: 10.3389/fcvm.2022.858909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 02/02/2023] Open
Abstract
Ischemic heart disease is one of the biggest threats to human life in the world. Reperfusion therapy is an effective strategy to reduce infarct size and ischemic injury. However, reperfusion process may cause secondary myocardial injury which is defined as ischemia-reperfusion injury (IRI). Exploring potential therapeutic strategy to attenuate IRI is extremely important. Danlou tablet (Dan), a Chinese herbal compound consisting of ten herbs, has been identified to be protective for the heart. However, the mechanism of Dan-induced cardioprotection after acute reperfusion was unelucidated. In this study, to investigate the role and mechanism of Dan in myocardial IRI, we performed acute IRI modeling in mice and oxygen-glucose deprivation–reperfusion (OGD/R)-induced apoptosis in primary neonatal rat cardiomyocytes (NRCMs). We found that Dan had protective effect against acute IRI in mice, as evidenced by reduced infarct size, TUNEL-positive cardiomyocytes (CMs), and Bax/Bcl2 ratio and cleaved-caspase 3/caspase 3 ratio in vivo. Meanwhile, Dan inhibited OGD/R-induced apoptosis of NRCMs in vitro. Mechanistically, Dan could activate proliferator-activated receptor gamma (PPARγ) in both IRI hearts and OGD/R-stressed NRCMs, while inhibition of PPARγ attenuated the protective effect of Dan against IRI in vivo and OGD/R-induced CM apoptosis in vitro. These data reveal that Dan attenuates acute myocardial IRI and CM apoptosis through activating PPARγ. Our findings may extend the knowledge of Chinese medicine and provide potential strategy for the precise treatment of ischemic heart diseases.
Collapse
Affiliation(s)
- Meng Wei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Mengying Guo
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Xinxiu Meng
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Lin Li
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
- *Correspondence: Hongyun Wang
| | - Mingxue Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Mingxue Zhang
| | - Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
- Yihua Bei
| |
Collapse
|
25
|
Marchini T, Magnani N, Garces M, Kelly J, Paz M, Caceres L, Calabro V, Lasagni Vitar R, Caltana L, Contin M, Reynoso S, Lago N, Vico T, Vanasco V, Wolf D, Tripodi V, Gonzalez Maglio D, Alvarez S, Buchholz B, Berra A, Gelpi R, Evelson P. Chronic exposure to polluted urban air aggravates myocardial infarction by impaired cardiac mitochondrial function and dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118677. [PMID: 34906594 DOI: 10.1016/j.envpol.2021.118677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Air pollution exposure positively correlates with increased cardiovascular morbidity and mortality rates, mainly due to myocardial infarction (MI). Herein, we aimed to study the metabolic mechanisms underlying this association, focusing on the evaluation of cardiac mitochondrial function and dynamics, together with its impact over MI progression. An initial time course study was performed in BALB/c mice breathing filtered air (FA) or urban air (UA) in whole-body exposure chambers located in Buenos Aires City downtown for up to 16 weeks (n = 8 per group and time point). After 12 weeks, lung inflammatory cell recruitment was evident in UA-exposed mice. Interestingly, impaired redox metabolism, characterized by decreased lung SOD activity and increased GSSG levels and NOX activity, precede local inflammation in this group. At this selected time point, additional mice were exposed to FA or UA (n = 12 per group) and alveolar macrophage PM uptake and nitric oxide (NO) production was observed in UA-exposed mice, together with increased pro-inflammatory cytokine levels (TNF-α and IL-6) in BAL and plasma. Consequently, impaired heart tissue oxygen metabolism and altered mitochondrial ultrastructure and function were observed in UA-exposed mice after 12 weeks, characterized by decreased active state respiration and ATP production rates, and enhanced mitochondrial H2O2 production. Moreover, disturbed cardiac mitochondrial dynamics was detected in this group. This scenario led to a significant increase in the area of infarcted tissue following myocardial ischemia reperfusion injury in vivo, from 43 ± 3% of the area at risk in mice breathing FA to 66 ± 4% in UA-exposed mice (n = 6 per group, p < 0.01), together with a sustained increase in LVEDP during myocardial reperfusion. Taken together, our data unravel cardiac mitochondrial mechanisms that contribute to the understanding of the adverse health effects of urban air pollution exposure, and ultimately highlight the importance of considering environmental factors in the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Timoteo Marchini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina; University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Natalia Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Mariana Garces
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Jazmin Kelly
- CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, C1113AAD, Argentina
| | - Mariela Paz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, C1113AAD, Argentina
| | - Lourdes Caceres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Valeria Calabro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Romina Lasagni Vitar
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Laura Caltana
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias (IBCN), Buenos Aires, C1121ABG, Argentina
| | - Mario Contin
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, C1113AAD, Argentina
| | - Sofia Reynoso
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Nestor Lago
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, C1113AAD, Argentina
| | - Tamara Vico
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Virginia Vanasco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Dennis Wolf
- University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Valeria Tripodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, C1113AAD, Argentina
| | - Daniel Gonzalez Maglio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, C1113AAD, Argentina
| | - Silvia Alvarez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Bruno Buchholz
- CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, C1113AAD, Argentina
| | - Alejandro Berra
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, C1113AAD, Argentina
| | - Ricardo Gelpi
- CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, C1113AAD, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW With cardiovascular disease (CVD) being the top cause of deaths worldwide, it is important to ensure healthy cardiovascular aging through enhanced understanding and prevention of adverse health effects exerted by external factors. This review aims to provide an updated understanding of environmental influences on cardiovascular aging, by summarizing epidemiological and mechanistic evidence for the cardiovascular health impact of major environmental stressors, including air pollution, endocrine-disrupting chemicals (EDCs), metals, and climate change. RECENT FINDINGS Recent studies generally support positive associations of exposure to multiple chemical environmental stressors (air pollution, EDCs, toxic metals) and extreme temperatures with increased risks of cardiovascular mortality and morbidity in the population. Environmental stressors have also been associated with a number of cardiovascular aging-related subclinical changes including biomarkers in the population, which are supported by evidence from relevant experimental studies. The elderly and patients are the most vulnerable demographic groups to majority environmental stressors. Future studies should account for the totality of individuals' exposome in addition to single chemical pollutants or environmental factors. Specific factors most responsible for the observed health effects related to cardiovascular aging remain to be elucidated.
Collapse
Affiliation(s)
- Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China.
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
27
|
Wang Z, Wu Y, Pei C, Wang M, Wang X, Shi S, Huang D, Wang Y, Li S, Xiao W, He Y, Wang F. Astragaloside IV pre-treatment attenuates PM2.5-induced lung injury in rats: Impact on autophagy, apoptosis and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153912. [PMID: 35026504 DOI: 10.1016/j.phymed.2021.153912] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fine particulate matter (PM2.5) with an aerodynamic diameter of less than 2.5 μm, exerts serious lung toxicity. At present, effective prevention measures and treatment modalities for pulmonary toxicity caused by PM2.5 are lacking. Astragaloside IV (AS-IV) is a natural product that has received increasing attention from researchers for its unique biological functions. PURPOSE To investigate the protective effects of AS-IV on PM2.5-induced pulmonary toxicity and identify its potential mechanisms. METHODS The rat model of PM2.5-induced lung toxicity was created by intratracheal instillation of PM2.5 dust suspension. The investigation was performed with AS-IV or in combination with autophagic flux inhibitor (Chloroquine) or AMP-sensitive protein kinase (AMPK)-specific inhibitor (Compound C). Apoptosis was detected by terminal deoxy-nucleotidyl transferase dUTP nick end labeling (TUNEL) and western blotting. Autophagy was detected by immunofluorescence staining, autophagic flux measurement, western blotting, and transmission electron microscopy. The AMPK/mTOR pathway was analyzed by western blotting. Inflammation was analyzed by western blotting and suspension array. RESULTS AS-IV prevented histopathological injury, inflammation, autophagy dysfunction, apoptosis, and changes in AMPK levels induced by PM2.5. AS-IV increased autophagic flux and inhibited apoptosis and inflammation by activating the AMPK/ mammalian target of rapamycin (mTOR) pathway. However, AS-IV had no protective effect on PM2.5-induced lung injury following treatment with Compound C or Chloroquine. CONCLUSION AS-IV prevented PM2.5-induced lung toxicity by restoring the balance among autophagy, apoptosis, and inflammation in rats by activating the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Mingjie Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Shuiqin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Wei Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan 611137, China.
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| |
Collapse
|
28
|
Ma W, Jin Q, Guo H, Han X, Xu L, Lu S, Wu C. Metformin Ameliorates Inflammation and Airway Remodeling of Experimental Allergic Asthma in Mice by Restoring AMPKα Activity. Front Pharmacol 2022; 13:780148. [PMID: 35153777 PMCID: PMC8830934 DOI: 10.3389/fphar.2022.780148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Metformin has been involved in modulating inflammatory state and inhibiting cell proliferation and angiogenesis. This study aimed to determine whether metformin alleviates airway inflammation and remodeling of experimental allergic asthma and elucidate the underlying mechanism. We sensitized and challenged mice with ovalbumin (OVA) to induce allergic asthma. During the challenge period, metformin was administered by intraperitoneal injection. By histopathological and immunohistochemical analyses, metformin-treated mice showed a significant alleviation in airway inflammation, and in the parameters of airway remodeling including goblet cell hyperplasia, collagen deposition and airway smooth muscle hypertrophy compared to those in the OVA-challenged mice. We also observed elevated levels of multiple cytokines (IL-4, IL-5, IL-13, TNF-α, TGF-β1 and MMP-9) in the bronchoalveolar lavage fluid, OVA-specific IgE in the serum and angiogenesis-related factors (VEGF, SDF-1 and CXCR4) in the plasma from asthmatic mice, while metformin reduced all these parameters. Additionally, the activity of 5′-adenosine monophosphate-activated protein kinase a (AMPKα) in the lungs from OVA-challenged mice was remarkably lower than control ones, while after metformin treatment, the ratio of p-AMPKα to AMPKα was upregulated and new blood vessels in the sub-epithelial area as evidenced by CD31 staining were effectively suppressed. These results indicate that metformin ameliorates airway inflammation and remodeling in an OVA-induced chronic asthmatic model and its protective role could be associated with the restoration of AMPKα activity and decreased asthma-related angiogenesis.
Collapse
Affiliation(s)
- Wenxian Ma
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Qiaoyan Jin
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haiqin Guo
- Department of Pulmonary and Critical Care Medicine, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Xinpeng Han
- Department of Pulmonary and Critical Care Medicine, Xi’an International Medical Center Hospital, Xi’an, China
| | - Lingbin Xu
- Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Changgui Wu, ; Shemin Lu,
| | - Changgui Wu
- Department of Pulmonary and Critical Care Medicine, Xi’an International Medical Center Hospital, Xi’an, China
- *Correspondence: Changgui Wu, ; Shemin Lu,
| |
Collapse
|
29
|
Gao Y, Zhang Q, Sun J, Liang Y, Zhang M, Zhao M, Zhang K, Dong C, Ma Q, Liu W, Li W, Chen Y, Han L, Jin F. Extracellular vesicles derived from PM2.5‐exposed alveolar epithelial cells mediate endothelial adhesion and atherosclerosis in ApoE
−/−
mice. FASEB J 2022; 36:e22161. [PMID: 35061300 DOI: 10.1096/fj.202100927rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/23/2022]
Affiliation(s)
- Yongheng Gao
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Qian Zhang
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Jinbo Sun
- Department of Urology General Hospital of the Central Theater Command Wuhan China
| | - Yuan Liang
- Department of Geriatrics 920th Hospital of Joint Logistics Support Force Kunming China
| | - Minlong Zhang
- Department of Respiration The 309th Hospital of the Chinese People's Liberation Army Beijing China
| | - Mingxuan Zhao
- Research Center of Clinical Pharmacology the First Affiliated Hospital of Yunnan University of Chinese Medicine Kunming China
| | - Kailiang Zhang
- Department of Orthopedics Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Chuan Dong
- Department of Orthopedics Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Qiong Ma
- Department of Orthopedics Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Wei Liu
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Wangping Li
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Yanwei Chen
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Luyao Han
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Faguang Jin
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| |
Collapse
|
30
|
Jiang J, Zhang G, Yu M, Gu J, Zheng Y, Sun J, Ding S. Quercetin improves the adipose inflammatory response and insulin signaling to reduce "real-world" particulate matter-induced insulin resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2146-2157. [PMID: 34365603 DOI: 10.1007/s11356-021-15829-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Numerous epidemiological data and experimental studies support a strong link between fine particulate matter (less than 2.5 mm in aerodynamic diameter, PM2.5) exposure and the development of insulin resistance/type 2 diabetes mellitus (T2DM). Quercetin (Que), a flavonoid compound with anti-inflammatory effects, has been confirmed to improve glucose metabolic disorders in rodents and humans. In this study, we investigated the underlying mechanisms of particulate matter (PM)-induced glucose metabolic disorder and subsequently examined the protective effect and mechanism of quercetin supplementation. Male C57BL/6 mice in the control group and PM group were exposed to ambient filtered air (FA) or PM (6 h/day, 7 days/week) for 18 weeks. Mice in the Que group were exposed to PM for 18 weeks and administered Que (50 or 100 mg/kg bw). Glucose tolerance, insulin sensitivity, and systemic and visceral white adipose tissue (vWAT) inflammatory responses were measured. The expression of proteins involved in insulin signal transduction in vWAT was assessed. Chronic PM exposure caused systemic and vWAT inflammation characterized by an increase in serum IL-6 and TNF-α levels and increased vWAT macrophage filtration, triggering NLRP3 inflammasome activation, impairing the classic glucose metabolism signal in vWAT, and inducing whole-body insulin resistance. Moreover, Que administration significantly alleviated systemic and vWAT inflammation, abolished NLRP3 inflammasome activation, and improved signaling abnormalities characteristic of insulin resistance in vWAT and adipocytes. Based on these findings, chronic PM exposure activated the NLRP3 inflammasome and subsequently caused systemic and WAT inflammation and impaired insulin signaling in vWAT and adipocytes. Most importantly, Que administration inhibited NLRP3 inflammasome-mediated inflammation and insulin signaling in vWAT to improve these adverse effects.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Min Yu
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China
| | - Juan Gu
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China
| | - Yang Zheng
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China
| | - Jinxia Sun
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China
| | - Shibin Ding
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China.
| |
Collapse
|
31
|
Endothelial Adenosine Monophosphate-Activated Protein Kinase-Alpha1 Deficiency Potentiates Hyperoxia-Induced Experimental Bronchopulmonary Dysplasia and Pulmonary Hypertension. Antioxidants (Basel) 2021; 10:antiox10121913. [PMID: 34943016 PMCID: PMC8750184 DOI: 10.3390/antiox10121913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Bronchopulmonary dysplasia and pulmonary hypertension, or BPD-PH, are serious chronic lung disorders of prematurity, without curative therapies. Hyperoxia, a known causative factor of BPD-PH, activates adenosine monophosphate-activated protein kinase (AMPK) α1 in neonatal murine lungs; however, whether this phenomenon potentiates or mitigates lung injury is unclear. Thus, we hypothesized that (1) endothelial AMPKα1 is necessary to protect neonatal mice against hyperoxia-induced BPD-PH, and (2) AMPKα1 knockdown decreases angiogenesis in hyperoxia-exposed neonatal human pulmonary microvascular endothelial cells (HPMECs). We performed lung morphometric and echocardiographic studies on postnatal day (P) 28 on endothelial AMPKα1-sufficient and -deficient mice exposed to 21% O2 (normoxia) or 70% O2 (hyperoxia) from P1–P14. We also performed tubule formation assays on control- or AMPKα1-siRNA transfected HPMECs, exposed to 21% O2 or 70% O2 for 48 h. Hyperoxia-mediated alveolar and pulmonary vascular simplification, pulmonary vascular remodeling, and PH were significantly amplified in endothelial AMPKα1-deficient mice. AMPKα1 siRNA knocked down AMPKα1 expression in HPMECs, and decreased their ability to form tubules in normoxia and hyperoxia. Furthermore, AMPKα1 knockdown decreased proliferating cell nuclear antigen expression in hyperoxic conditions. Our results indicate that AMPKα1 is required to reduce hyperoxia-induced BPD-PH burden in neonatal mice, and promotes angiogenesis in HPMECs to limit lung injury.
Collapse
|
32
|
Hahad O, Kuntic M, Frenis K, Chowdhury S, Lelieveld J, Lieb K, Daiber A, Münzel T. Physical Activity in Polluted Air-Net Benefit or Harm to Cardiovascular Health? A Comprehensive Review. Antioxidants (Basel) 2021; 10:1787. [PMID: 34829658 PMCID: PMC8614825 DOI: 10.3390/antiox10111787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Both exposure to higher levels of polluted air and physical inactivity are crucial risk factors for the development and progression of major noncommunicable diseases and, in particular, of cardiovascular disease. In this context, the World Health Organization estimated 4.2 and 3.2 million global deaths per year in response to ambient air pollution and insufficient physical activity, respectively. While regular physical activity is well known to improve general health, it may also increase the uptake and deposit of air pollutants in the lungs/airways and circulation, due to increased breathing frequency and minute ventilation, thus increasing the risk of cardiovascular disease. Thus, determining the tradeoff between the health benefits of physical activity and the potential harmful effects of increased exposure to air pollution during physical activity has important public health consequences. In the present comprehensive review, we analyzed evidence from human and animal studies on the combined effects of physical activity and air pollution on cardiovascular and other health outcomes. We further report on pathophysiological mechanisms underlying air pollution exposure, as well as the protective effects of physical activity with a focus on oxidative stress and inflammation. Lastly, we provide mitigation strategies and practical recommendations for physical activity in areas with polluted air.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
| | - Marin Kuntic
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
| | - Katie Frenis
- Department of Hematology/Oncology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Sourangsu Chowdhury
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55122 Mainz, Germany; (S.C.); (J.L.)
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55122 Mainz, Germany; (S.C.); (J.L.)
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Klaus Lieb
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| |
Collapse
|
33
|
Dai S, Wang Z, Yang Y, Guo T, Li W. Assessment on the lung injury of mice posed by airborne PM 2.5 collected from developing area in China and associated molecular mechanisms by integrated analysis of mRNA-seq and miRNA-seq. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112661. [PMID: 34416640 DOI: 10.1016/j.ecoenv.2021.112661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Some epidemiological evidences showed exposure of airborne fine particulate matter (PM2.5) was associated with lung dysfunction. However, the adverse effects of PM2.5 from mid-scale city of China on the respiratory system were unknown. Correspondingly, the mechanisms, especially the epigenetic mechanism regulated by miRNAs, involved in PM2.5-induced lung injury has not been fully understood. In this study, male Balb/C mice were exposed to PM2.5 collected from mid-scale city (Baoji), China for 8 weeks (mean concentration 298.52 ± 25.86 μg/m3 at exposure chamber) using a whole-body exposure system. The carbon component was the main ingredient (45.80%) of PM2.5 followed by ions (43.19%). Meanwhile, the sum concentrations of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes (C18-C33) were 570.48 and 2029.13 ng/m3 in the exposure chamber, respectively. Obvious lung injury including pulmonary inflammation and fibrosis (p < 0.05 compared with the control) were found from PM2.5 exposure group determined by micro-CT and histopathological assays, respectively, suggesting the health risk posed by PM2.5 from mid-scale city of China should be concerned. The integrated analysis between mRNA-seq and miRNA-seq revealed the differentially expression genes in lung tissues were enriched in immune pathways including B cell receptor signaling (p = 0.078) and cell adhesion molecules (CAMs) (p = 0.0068). The expression profiles of the genes and corresponding mRNAs involved into the immune pathways determined by RT-qPCR analysis were consistent with them conducted by transcriptome. Moreover, the expression levels of the proteins (i.e., CD19, CD81, PIK3CD, and CD22) involved into B cell receptor signaling pathway from exposure group were 1.71- to 6.948- folds compared with the control, validating the results of the genes expression profiles. Further, canonical correlation analysis (CCA) and multiple correlation analysis between the target genes and components of PM2.5 documented the organic compounds (i.e., Benzo(a)pyrene (p = 0.012) and octadecane (p = 0.05)) and inorganic elements (i.e., Cl-, Ti, Al, and Zn) was the key environmental factors. Cd19, Pik3cd, and Cd8b1 might be the key genes for lung dysfunction induced by PM2.5 illuminated using interactive analysis (p < 0.05). This work for the first time showed the adverse effects of PM2.5 in mid-scale city in China on respiratory system should be concerned, and the associated epigenetic mechanism regulated by miRNA were revealed. These results may provide new insight into the development of future assessment on the air pollution associated respiratory disease.
Collapse
Affiliation(s)
- Shuiping Dai
- National Center for Geriatrics Clinical Medicine Research, Department of Geriatrics and Gerontology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenglu Wang
- College of oceanography, Hohai University, Nanjing 210098, China
| | - Ying Yang
- Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Guo
- Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weimin Li
- Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
34
|
Qi Z, Yang C, Liao X, Song Y, Zhao L, Liang X, Su Y, Chen ZF, Li R, Dong C, Cai Z. Taurine reduction associated with heart dysfunction after real-world PM 2.5 exposure in aged mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146866. [PMID: 33848856 DOI: 10.1016/j.scitotenv.2021.146866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/20/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Ambient PM2.5 has been proved to be an independent risk factor for cardiovascular diseases; however, little information is available on the age-dependent effects of PM2.5 on the cardiovascular system and the underlying mechanisms following chronic exposure. In this study, multi-aged mice were exposed to PM2.5 via the newly developed real-ambient PM2.5 exposure system to investigate age-related effects on the heart after long-term exposure. First, the chemical and physical properties of PM2.5 used in the exposure system were analyzed. The heart rate of conscious mice was recorded, and results showed that exposure of aged mice to PM2.5 for 26 weeks significantly increased heart rate. Histological analysis and ELISA assays indicated that aged mice were more sensitive to PM2.5 exposure in terms of inducing cardiac oxidative stress and inflammation. Furthermore, untargeted metabolomics revealed that taurine was involved with the PM2.5-induced cardiac dysfunction. The reduced taurine concentration in the heart was examined by LC-MS and imaging mass spectrometry; it may be due to the increased p53 expression level, ROS and inflammatory cytokines. These results emphasize the age-dependent effects of PM2.5 on the cardiovascular system and suggest that taurine may be the novel cardiac effect target for PM2.5-induced heart dysfunction in the aged.
Collapse
Affiliation(s)
- Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, University of Technology, Guangzhou 510006, PR China
| | - Chun Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, University of Technology, Guangzhou 510006, PR China
| | - Xiaoliang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, University of Technology, Guangzhou 510006, PR China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Lifang Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Xiaoping Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yuping Su
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, University of Technology, Guangzhou 510006, PR China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, University of Technology, Guangzhou 510006, PR China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, University of Technology, Guangzhou 510006, PR China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
35
|
Zhang N, Li P, Lin H, Shuo T, Ping F, Su L, Chen G. IL-10 ameliorates PM2.5-induced lung injury by activating the AMPK/SIRT1/PGC-1α pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103659. [PMID: 33862202 DOI: 10.1016/j.etap.2021.103659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/17/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Exposure to fine particulate matter with a diameter ≤2.5 μm (PM2.5) can cause a number of respiratory diseases. However, there is currently no safe treatment for PM2.5-induced lung damage. This study investigated the protective effect of IL-10 against lung injury and the possible involvement of AMPK/SIRT1/PGC-1α signaling. The mean diameter, particle size distribution, and zeta potential of PM2.5 samples were assessed using a Zetasizer Nano ZS90 analyzer. Thereafter, Wistar rats were exposed to PM2.5 (1.8, 5.4, or 16.2 mg/kg) alone or high-dose PM2.5 with recombinant rat IL-10 (rrIL-10; 5 μg/rat). Treatment with rrIL-10 ameliorated PM2.5-induced acute lung injury, reduced mitochondrial damage, and inhibited inflammation, oxidative stress, and apoptosis in the PM2.5-treated rats. Moreover, the mRNA and protein expression of AMPK, SIRT1, and PGC-1α were upregulated by rrIL-10 treatment. In conclusion, rrIL-10 protected lung tissues against PM2.5-induced inflammation by reducing oxidative stress and apoptosis via activating AMPK/SIRT1/PGC-1α signaling.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Respiratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China; Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Ping Li
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Hua Lin
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Tian Shuo
- Department of Urinary Surgery, The First Hospital of Shijiazhuang, Shijiazhuang, 050051, Hebei, China
| | - Fen Ping
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Li Su
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Gang Chen
- Department of Respiratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
36
|
Liu M, Shi Z, Yin Y, Wang Y, Mu N, Li C, Ma H, Wang Q. Particulate matter 2.5 triggers airway inflammation and bronchial hyperresponsiveness in mice by activating the SIRT2-p65 pathway. Front Med 2021; 15:750-766. [PMID: 34181194 DOI: 10.1007/s11684-021-0839-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Exposure to particulate matter 2.5 (PM2.5) potentially triggers airway inflammation by activating nuclear factor-κB (NF-κB). Sirtuin 2 (SIRT2) is a key modulator in inflammation. However, the function and specific mechanisms of SIRT2 in PM2.5-induced airway inflammation are largely understudied. Therefore, this work investigated the mechanisms of SIRT2 in regulating the phosphorylation and acetylation of p65 influenced by PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Results revealed that PM2.5 exposure lowered the expression and activity of SIRT2 in bronchial tissues. Subsequently, SIRT2 impairment promoted the phosphorylation and acetylation of p65 and activated the NF-κB signaling pathway. The activation of p65 triggered airway inflammation, increment of mucus secretion by goblet cells, and acceleration of tracheal stenosis. Meanwhile, p65 phosphorylation and acetylation, airway inflammation, and bronchial hyperresponsiveness were deteriorated in SIRT2 knockout mice exposed to PM2.5. Triptolide (a specific p65 inhibitor) reversed p65 activation and ameliorated PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Our findings provide novel insights into the molecular mechanisms underlying the toxicity of PM2.5 exposure. Triptolide inhibition of p65 phosphorylation and acetylation could be an effective therapeutic approach in averting PM2.5-induced airway inflammation and bronchial hyperresponsiveness.
Collapse
Affiliation(s)
- Manling Liu
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhaoling Shi
- Department of Pediatrics, Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Li
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Heng Ma
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Qiong Wang
- Department of Cardiovascular Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
37
|
Gao J, Yuan J, Liu Q, Wang Y, Wang H, Chen Y, Ding W, Ji G, Lu Z. Adipose-derived stem cells therapy effectively attenuates PM 2.5-induced lung injury. Stem Cell Res Ther 2021; 12:355. [PMID: 34147136 PMCID: PMC8214780 DOI: 10.1186/s13287-021-02441-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The adverse health effects of fine particulate matter (PM2.5) exposure are associated with marked inflammatory responses. Adipose-derived stem cells (ADSCs) have immunosuppressive effects, and ADSC transplantation could attenuate pulmonary fibrosis in different animal disease models. However, whether ADSCs affect PM2.5-induced lung injury has not been investigated. METHOD C57BL/6 mice were exposed to PM2.5 every other day via intratracheal instillation for 4 weeks. After that, the mice received tail vein injections of ADSCs every 2 weeks. RESULTS ADSC transplantation significantly attenuated systemic and pulmonary inflammation, cardiac dysfunction, fibrosis, and cell death in PM2.5-exposed mice. RNA-sequencing results and bioinformatic analysis suggested that the downregulated differentially expressed genes (DEGs) were mainly enriched in inflammatory and immune pathways. Moreover, ADSC transplantation attenuated PM2.5-induced cell apoptosis and pyroptosis in the lungs and hearts. CONCLUSION ADSCs protect against PM2.5-induced adverse health effects through attenuating pulmonary inflammation and cell death. Our findings suggest that ADSC transplantation may be a potential therapeutic approach for severe air pollution-associated diseases.
Collapse
Affiliation(s)
- Junling Gao
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Qun Liu
- Institute of Biophysics, Chinese Academy of Sciences, Datun Road 15, Chaoyang district, Beijing, 100101, China
| | - Yuanli Wang
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Huiwen Wang
- Institute of Biophysics, Chinese Academy of Sciences, Datun Road 15, Chaoyang district, Beijing, 100101, China
| | - Yingjie Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, USA
| | - Wenjun Ding
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Guangju Ji
- Institute of Biophysics, Chinese Academy of Sciences, Datun Road 15, Chaoyang district, Beijing, 100101, China.
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China.
| |
Collapse
|
38
|
Lee W, Ku SK, Kim TI, Kim EN, Park EK, Jeong GS, Bae JS. Inhibitory effects of cudratricusxanthone O on particulate matter-induced pulmonary injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:271-284. [PMID: 31407590 DOI: 10.1080/09603123.2019.1652252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Particulate matter 2.5 (PM2.5), aerodynamic diameter ≤ 2.5 μm, is the primary air pollutant that plays the key role for lung injury resulted from the loss of vascular barrier integrity. Cudratricusxanthone O (CTXO) is a novel xanthone compound isolated from the root of Cudrania tricuspidata Bureau. Here, we investigated the beneficial effects of CTXO against PM-induced lung endothelial cell (EC) barrier disruption and pulmonary inflammation. Permeability, leukocyte migration, activation of proinflammatory proteins, generation of reactive oxygen species (ROS), and histology were examined in PM2.5-treated ECs and mice. CTXO significantly scavenged PM2.5-induced ROS and inhibited the ROS-induced activation of p38 mitogen-activated protein kinase (MAPK). Concurrently, CTXO activated Akt, which helped maintain endothelial integrity. Furthermore, CTXO reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in the bronchoalveolar lavage fluid in PM-induced lung tissues. These results indicated that CTXO may exhibit protective effects against PM-induced inflammatory lung injury and vascular hyperpermeability.
Collapse
Affiliation(s)
- Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Deajeon, Republic of Korea
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu, Republic of Korea
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University , Gyeongsan-si, Republic of Korea
| | - Tae In Kim
- College of Pharmacy, Keimyung University , Daegu, Republic of Korea
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine , Dong-gu, Daegu, Republic of Korea
| | - Eun-Nam Kim
- College of Pharmacy, Keimyung University , Daegu, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University , Daegu, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University , Daegu, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu, Republic of Korea
| |
Collapse
|
39
|
Hahad O, Frenis K, Kuntic M, Daiber A, Münzel T. Accelerated Aging and Age-Related Diseases (CVD and Neurological) Due to Air Pollution and Traffic Noise Exposure. Int J Mol Sci 2021; 22:2419. [PMID: 33670865 PMCID: PMC7957813 DOI: 10.3390/ijms22052419] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization estimates that only approximately 25% of diversity in longevity is explained by genetic factors, while the other 75% is largely determined by interactions with the physical and social environments. Indeed, aging is a multifactorial process that is influenced by a range of environmental, sociodemographic, and biopsychosocial factors, all of which might act in concert to determine the process of aging. The global average life expectancy increased fundamentally over the past century, toward an aging population, correlating with the development and onset of age-related diseases, mainly from cardiovascular and neurological nature. Therefore, the identification of determinants of healthy and unhealthy aging is a major goal to lower the burden and socioeconomic costs of age-related diseases. The role of environmental factors (such as air pollution and noise exposure) as crucial determinants of the aging process are being increasingly recognized. Here, we critically review recent findings concerning the pathomechanisms underlying the aging process and their correlates in cardiovascular and neurological disease, centered on oxidative stress and inflammation, as well as the influence of prominent environmental pollutants, namely air pollution and traffic noise exposure, which is suggested to accelerate the aging process. Insight into these types of relationships and appropriate preventive strategies are urgently needed to promote healthy aging.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Katie Frenis
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| |
Collapse
|
40
|
Lederer AM, Fredriksen PM, Nkeh-Chungag BN, Everson F, Strijdom H, De Boever P, Goswami N. Cardiovascular effects of air pollution: current evidence from animal and human studies. Am J Physiol Heart Circ Physiol 2021; 320:H1417-H1439. [PMID: 33513082 DOI: 10.1152/ajpheart.00706.2020] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Air pollution is a global health concern. Particulate matter (PM)2.5, a component of ambient air pollution, has been identified by the World Health Organization as one of the pollutants that poses the greatest threat to public health. Cardiovascular health effects have been extensively documented, and these effects are still being researched to provide an overview of recent literature regarding air pollution-associated cardiovascular morbidity and mortality in humans. Additionally, potential mechanisms through which air pollutants affect the cardiovascular system are discussed based on human and additional animal studies. We used the strategy of a narrative review to summarize the scientific literature of studies that were published in the past 7 yr. Searches were carried out on PubMed and Web of Science using predefined search queries. We obtained an initial set of 800 publications that were filtered to 78 publications that were relevant to include in this review. Analysis of the literature showed significant associations between air pollution, especially PM2.5, and the risk of elevated blood pressure (BP), acute coronary syndrome, myocardial infarction (MI), cardiac arrhythmia, and heart failure (HF). Prominent mechanisms that underlie the adverse effects of air pollution include oxidative stress, systemic inflammation, endothelial dysfunction, autonomic imbalance, and thrombogenicity. The current review underscores the relevance of air pollution as a global health concern that affects cardiovascular health. More rigorous standards are needed to reduce the cardiovascular disease burden imposed by air pollution. Continued research on the health impact of air pollution is needed to provide further insight.
Collapse
Affiliation(s)
- Agnes Maria Lederer
- Physiology Division, Otto Loewi Research Centre, Medical University of Graz, Graz, Austria
| | | | - Benedicta Ngwenchi Nkeh-Chungag
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Frans Everson
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Stellenbosch University, Stellenbosch, South Africa
| | - Hans Strijdom
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Stellenbosch University, Stellenbosch, South Africa
| | - Patrick De Boever
- Department of Biology, University of Antwerp, Wilrijk, Belgium.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nandu Goswami
- Physiology Division, Otto Loewi Research Centre, Medical University of Graz, Graz, Austria.,Department of Health Sciences, Alma Mater Europaea Maribor, Maribor, Slovenia
| |
Collapse
|
41
|
Badamjav R, Zhang L, Sonom D, Wu YH, Kou JP, Yu BY, Li F. Thalictrum minus L. ameliorates particulate matter-induced acute lung injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113379. [PMID: 32916235 DOI: 10.1016/j.jep.2020.113379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/17/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thalictrum minus L., which is widespread across Eurasia, is utilized as a folk medicine for treating dysentery, bedsore, fungal infection and lung inflammation in China, Mongolia and Iran. AIM OF THE STUDY A Mongolian folk medicinal plant named Thalictrum minus L. (TML) has been extensively used for the treatment of lung inflammation, bacterial and fungal infection and tuberculosis. Our present study aims to investigate the effectiveness of TML against particulate matter (PM)-induced acute lung injury (ALI) and the potential underlying mechanisms. MATERIALS AND METHODS Initially, HPLC-Q-TOF was applied for the qualitative analysis and HPLC was used for quantitative analysis of main components in TML. Then, the mice model of ALI was induced by PM via intratracheally instilled with 50 mg/kg body weight of Standard Reference Material1648a (SRM1648a), and TML (10, 20, 40 mg/kg) were administered orally 1 h prior to PM. The efficacy and molecular mechanisms in the presence or absence of TML were elucidated. RESULTS Eleven main ingredients were detected in TML and the contents of homoorientin and berberine were quantified. Additionally, the results demonstrated that TML profoundly inhibited weight loss in mice and ameliorated lung pathological injury induced by PM. Furthermore, we also found that TML significantly decreased the lung wet to dry weight (W/D) ratios, reduced total protein in bronchoalveolar lavage fluid (BALF), and effectively attenuated PM-induced increased leukocyte and macrophages in BALF. Meanwhile, TML could pronouncedly inhibited myeloperoxidase (MPO) activity in lung tissues, decreased the PM-induced inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β), reduced nitric oxide (NO) and increased superoxide dismutase (SOD) in BALF. In addition, TML markedly facilitated the expression of p-AMPK-Nrf2 and suppressed the expression of KEAP, prohibited the activation of the MAPKs-NLRP3/caspase-1 and cyclooxygenase-2 (COX2), and inhibited apoptotic pathways. CONCLUSION These findings indicated that TML attenuated PM-induced ALI through suppressing the release of inflammatory cytokines and alleviating oxidative damage correlated with the AMPK-Nrf2/KEAP signaling pathways, MAPKs-NLRP3/caspase-1 signaling pathways, as well as apoptotic pathways.
Collapse
Affiliation(s)
- Rentsen Badamjav
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; Mongolian University of Pharmaceutical Science, Ulaanbaatar, Mongolia.
| | - Lu Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Dolgor Sonom
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; Mongolian University of Pharmaceutical Science, Ulaanbaatar, Mongolia.
| | - Yun-Hao Wu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Jun-Ping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
42
|
Mazuryk O, Stochel G, Brindell M. Variations in Reactive Oxygen Species Generation by Urban Airborne Particulate Matter in Lung Epithelial Cells-Impact of Inorganic Fraction. Front Chem 2021; 8:581752. [PMID: 33392147 PMCID: PMC7773840 DOI: 10.3389/fchem.2020.581752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/03/2020] [Indexed: 11/23/2022] Open
Abstract
Air pollution is associated with numerous negative effects on human health. The toxicity of organic components of air pollution is well-recognized, while the impact of their inorganic counterparts in the overall toxicity is still a matter of various discussions. The influence of airborne particulate matter (PM) and their inorganic components on biological function of human alveolar-like epithelial cells (A549) was investigated in vitro. A novel treatment protocol based on covering culture plates with PM allowed increasing the studied pollutant concentrations and prolonging their incubation time without cell exposure on physical suffocation and mechanical disturbance. PM decreased the viability of A549 cells and disrupted their mitochondrial membrane potential and calcium homeostasis. For the first time, the difference in the reactive oxygen species (ROS) profiles generated by organic and inorganic counterparts of PM was shown. Singlet oxygen generation was observed only after treatment of cells with inorganic fraction of PM, while hydrogen peroxide, hydroxyl radical, and superoxide anion radical were induced after exposure of A549 cells to both PM and their inorganic fraction.
Collapse
Affiliation(s)
- Olga Mazuryk
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Grazyna Stochel
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
43
|
Gao Y, Huang X, Lin H, Zhao M, Liu W, Li W, Han L, Ma Q, Dong C, Li Y, Hu Y, Jin F. Adipose mesenchymal stem cell-derived antioxidative extracellular vesicles exhibit anti-oxidative stress and immunomodulatory effects under PM2.5 exposure. Toxicology 2021; 447:152627. [DOI: 10.1016/j.tox.2020.152627] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/09/2020] [Accepted: 11/01/2020] [Indexed: 01/08/2023]
|
44
|
Yang L, Liu G, Fu L, Zhong W, Li X, Pan Q. DNA repair enzyme OGG1 promotes alveolar progenitor cell renewal and relieves PM2.5-induced lung injury and fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111283. [PMID: 32977282 DOI: 10.1016/j.ecoenv.2020.111283] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate matter (PM2.5) airborne pollution increases the risk of chronic respiratory diseases, such as idiopathic pulmonary fibrosis (IPF), which is characterized by non-specific inflammation of the interstitial lung and extensive deposition of collagen fibers. Type 2 alveolar epithelial cells (AEC2s) are alveolar stem cells in the adult lung that contribute to the lung repair process through complex signaling. Our previous studies demonstrated that OGG1, a kind of DNA repair enzyme, have a critical role in protecting cells from oxidative damage and apoptosis induced by PM2.5, but the contribution of OGG1 in proliferation and self-renewal of AEC2s is not known. Here, we constructed OGG1-/-mice to test the effect and mechanism of OGG1 on PM2.5-induced pulmonary fibrosis and injury in vivo. We detected proliferation and self-renewal of OGG1 overexpression or OGG1 knockout AEC2s after PM2.5 injury by flow cytometry and clone formation. We observed that knockout of OGG1 aggravated pulmonary fibrosis, oxidative stress, and AEC2 cell death in PM2.5-injured mice. In addition, OGG1 is required for the proliferation and renewal of AEC2s after PM2.5 injury. Overexpression of OGG1 promotes the proliferation and self-renewal of AEC2s by inhibiting PM2.5-mediated oxidative stress and NF-κB signaling hyperactivation in vitro. Furthermore, NF-κB inhibitors promoted proliferation and self-renewal of OGG1-deficient AEC2s cells after PM2.5 injury, and attenuated PM2.5-induced pulmonary fibrosis and injury in mice. These data establish OGG1 as a regulator of NF-κB signal that serves to regulate AEC2 cell proliferation and self-renewal, and suggest a mechanism that inhibition of the NF-κB signaling pathway may represent a potential therapeutic strategy for IPF patients with low-expression of OGG1.
Collapse
Affiliation(s)
- Lawei Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Liyuan Fu
- Guangdong Ocean University Cunjin College, Zhanjiang, 524086, China
| | - Weifeng Zhong
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xuenong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Qingjun Pan
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
45
|
Fine particulate matter exposure induces DNA damage by downregulating Rad51 expression in human bronchial epithelial Beas-2B cells in vitro. Toxicology 2020; 444:152581. [DOI: 10.1016/j.tox.2020.152581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
|
46
|
Yang L, Liu G, Li X, Xia Z, Wang Y, Lin W, Zhang W, Zhang W, Li X. Small GTPase RAB6 deficiency promotes alveolar progenitor cell renewal and attenuates PM2.5-induced lung injury and fibrosis. Cell Death Dis 2020; 11:827. [PMID: 33012781 PMCID: PMC7533251 DOI: 10.1038/s41419-020-03027-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by chronic non-specific inflammation of the interstitial lung and extensive deposition of collagen fibers leading to destruction of lung function. Studies have demonstrated that exposure to fine particulate matter (PM2.5) increases the risk of IPF. In order to recover from PM2.5-induced lung injury, alveolar epithelial cells need to be repaired and regenerated to maintain lung function. Type 2 alveolar epithelial cells (AEC2) are stem cells in the adult lung that contribute to the lung repair process through complex signaling. Our previous studies demonstrated that RAB6, a RAS family member lowly expressed in lung cancer, inhibited lung cancer stem cell self-renewal, but it is unclear whether or not and how RAB6 may regulate AEC2 cell proliferation and self-renewal in PM2.5-induced pulmonary fibrosis. Here, we demonstrated that knockout of RAB6 inhibited pulmonary fibrosis, oxidative stress, and AEC2 cell death in PM2.5-injured mice. In addition, knockout of RAB6 decreased Dickkopf 1(DKK1) autocrine and activated proliferation, self-renewal, and wnt/β-catenin signaling of PM2.5-injured AEC2 cells. RAB6 overexpression increased DKK1 autocrine and inhibited proliferation, self-renewal and wnt/β-catenin signaling in AEC2 cells in vitro. Furthermore, DKK1 inhibitors promoted proliferation, self-renewal and wnt/β-catenin signaling of RAB6 overexpressing AEC2 cells, and attenuated PM2.5-induced pulmonary fibrosis in mice. These data establish RAB6 as a regulator of DKK1 autocrine and wnt/β-catenin signal that serves to regulate AEC2 cell proliferation and self-renewal, and suggest a mechanism that RAB6 disruption may promote AEC2 cell proliferation and self-renewal to enhance lung repair following PM2.5 injury.
Collapse
Affiliation(s)
- Lawei Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.,Clinical Research Center, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, China
| | - Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, China
| | - Xiaomin Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Zhengyuan Xia
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, China.,Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Yahong Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, China
| | - Weihao Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Wei Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Wenjuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Xuenong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
47
|
Wu ZZ, Rao M, Xu S, Hu HY, Tang QZ. Coumestrol ameliorates doxorubicin-induced cardiotoxicity via activating AMPKα. Free Radic Res 2020; 54:629-639. [PMID: 32924662 DOI: 10.1080/10715762.2020.1822525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Doxorubicin (DOX) acts as the cornerstone in multiple tumour chemotherapy regimens, however, its clinical application is often impeded due to the induction of a severe cardiotoxicity that eventually provokes left ventricular dysfunction and congestive heart failure. Coumestrol (CMT) is a common dietary phytoestrogen with pleiotropic pharmacological effects. The present study aims to investigate the role and mechanism of CMT on DOX-induced cardiotoxicity. Mice were intragastrically administrated with CMT (5 mg/kg/day) for consecutive 2 weeks and then received a single intraperitoneal injection of DOX (15 mg/kg) to mimic the clinical toxic effects after 8-day additional feeding. To verify the role of 5' AMP-activated protein kinase alpha (AMPKα), AMPKα2 global knockout mice were used. H9C2 cells were cultured to further validate the beneficial role of CMT in vitro. CMT administration notably ameliorated oxidative damage, cell apoptosis and cardiac dysfunction in DOX-treated mice. Besides, we observed that DOX-induced reactive oxygen species overproduction and cardiomyocyte apoptosis were also reduced by CMT incubation in H9C2 cells. Mechanistically, CMT activated AMPKα and Ampkα deficiency abolished the beneficial effects of CMT in vivo and in vitro. Finally, we proved that protein kinase A (PKA) was required for CMT-mediated AMPKα activation and cardioprotective effects. CMT activated PKA/AMPKα pathway to alleviate DOX-induced oxidative damage, cell apoptosis and cardiac dysfunction. Our findings provide a promising therapeutic agent for cancer patients receiving anthracycline chemotherapy.
Collapse
Affiliation(s)
- Zhen-Zhong Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.,Department of Interventional Radiology, Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Rao
- Department of Interventional Radiology, Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Si Xu
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong-Yao Hu
- Department of Interventional Radiology, Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
48
|
Inhibitory functions of cardamonin against particulate matter-induced lung injury through TLR2,4-mTOR-autophagy pathways. Fitoterapia 2020; 146:104724. [PMID: 32946945 DOI: 10.1016/j.fitote.2020.104724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Particulate matter with an aerodynamic diameter equal to or less than 2.5 μm (PM2.5) is a form of air pollutant that causes significant lung damage when inhaled. Cardamonin, a flavone found in Alpinia katsumadai Heyata seeds, has been reported to have anti-inflammatory and anticoagulative activity. The aim of this study was to determine the protective effects of cardamonin on PM2.5-induced lung injury. Mice were treated with cardamonin via tail-vein injection 30 min after the intratracheal instillation of PM2.5. The results showed that cardamonin markedly reduced the pathological lung injury, lung wet/dry weight ratio, and hyperpermeability caused by PM2.5. Cardamonin also significantly inhibited PM2.5-induced myeloperoxidase (MPO) activity in lung tissue, decreased the levels of PM2.5-induced inflammatory cytokines and effectively attenuated PM2.5-induced increases in the number of lymphocytes in the bronchoalveolar lavage fluid (BALF). And, cardamonin increased the phosphorylation of mammalian target of rapamycin (mTOR) and dramatically suppressed the PM2.5-stimulated expression of toll-like receptor 2 and 4 (TLR 2,4), MyD88, and the autophagy-related proteins LC3 II and Beclin 1. In conclusion, these findings indicate that cardamonin has a critical anti-inflammatory effect due to its ability to regulate both the TLR2,4-MyD88 and mTOR-autophagy pathways and may thus be a potential therapeutic agent against PM2.5-induced lung injury.
Collapse
|
49
|
Kunovac A, Hathaway QA, Pinti MV, Taylor AD, Hollander JM. Cardiovascular adaptations to particle inhalation exposure: molecular mechanisms of the toxicology. Am J Physiol Heart Circ Physiol 2020; 319:H282-H305. [PMID: 32559138 PMCID: PMC7473925 DOI: 10.1152/ajpheart.00026.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Ambient air, occupational settings, and the use and distribution of consumer products all serve as conduits for toxicant exposure through inhalation. While the pulmonary system remains a primary target following inhalation exposure, cardiovascular implications are exceptionally culpable for increased morbidity and mortality. The epidemiological evidence for cardiovascular dysfunction resulting from acute or chronic inhalation exposure to particulate matter has been well documented, but the mechanisms driving the resulting disturbances remain elusive. In the current review, we aim to summarize the cellular and molecular mechanisms that are directly linked to cardiovascular health following exposure to a variety of inhaled toxicants. The purpose of this review is to provide a comprehensive overview of the biochemical changes in the cardiovascular system following particle inhalation exposure and to highlight potential biomarkers that exist across multiple exposure paradigms. We attempt to integrate these molecular signatures in an effort to provide direction for future investigations. This review also characterizes how molecular responses are modified in at-risk populations, specifically the impact of environmental exposure during critical windows of development. Maternal exposure to particulate matter during gestation can lead to fetal epigenetic reprogramming, resulting in long-term deficits to the cardiovascular system. In both direct and indirect (gestational) exposures, connecting the biochemical mechanisms with functional deficits outlines pathways that can be targeted for future therapeutic intervention. Ultimately, future investigations integrating "omics"-based approaches will better elucidate the mechanisms that are altered by xenobiotic inhalation exposure, identify biomarkers, and guide in clinical decision making.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
50
|
Zhou S, Xi Y, Chen Y, Zhang Z, Wu C, Yan W, Luo A, Wu T, Zhang J, Wu M, Dai J, Shen W, Zhang F, Ding W, Wang S. Ovarian Dysfunction Induced by Chronic Whole-Body PM2.5 Exposure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000845. [PMID: 32686359 DOI: 10.1002/smll.202000845] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate matter (PM2.5) pollution arouses public health concerns over the world. Increasing epidemiologic evidence suggests that exposure to ambient airborne PM2.5 increases the risk of female infertility. However, relatively few studies have systematically explored the harmful effect of chronic PM2.5 exposure on ovarian function and the underlying mechanisms. In this study, female C57BL/6J mice are exposed to filtered air or urban airborne PM2.5 for 4 months through a whole-body exposure system. It is found that PM2.5 exposure significantly caused the alteration of estrus cycles, reproductivity, hormone levels, and ovarian reserve. The granulosa cell apoptosis via the mitochondria dependent pathway contributes to the follicle atresia. With RNA-sequencing technique, the differentially expressed genes induced by PM2.5 exposure are mainly enriched in ovarian steroidogenesis, reactive oxygen species and oxidative phosphorylation pathways. Furthermore, it is found that increased PM2.5 profoundly exacerbated ovarian oxidative stress and inflammation in mice through the NF-κB/IL-6 signaling pathway. Notably, dietary polydatin (PD) supplement has protective effect in mice against PM2.5-induced ovarian dysfunction.These striking findings demonstrate that PM2.5 and/or air pollution is a critical factor for ovarian dysfunction through mitochondria-dependent and NF-κB/IL-6-mediated pathway, and PD may serve as a pharmaceutic candidate for air pollution-associated ovarian dysfunction.
Collapse
Affiliation(s)
- Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yueyue Xi
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yingying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zezhong Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Chunyan Wu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Wei Shen
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| |
Collapse
|