1
|
Zhu C, Ke X, Gu Y, Wang C, Lin S, Qian Y, Cheng J, Chen Y, Xu L, Chen Z. Antimicrobial properties and preservation potential of Allium sativum L-derived extracellular vesicle-like particles for food applications. Food Chem 2025; 484:144419. [PMID: 40267679 DOI: 10.1016/j.foodchem.2025.144419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
This study proposes an innovative approach to food preservation by leveraging extracellular vesicle-like particles derived from Garlic (ASL-EVLPs) as a natural and effective preservation agent. To address the limitations of chemical preservatives and sensory drawbacks of garlic, we systematically investigated the antibacterial mechanisms, stability, and sensory impact of ASL-EVLPs. The isolated ASL-EVLPs exhibited notable stability and biocompatibility. Antibacterial evaluations demonstrated significant inhibition of Escherichia coli (ATCC 25922) and Staphylococcus aureus (CMCC(B) 26003) through membrane disruption mechanisms. ASL-EVLPs effectively delayed spoilage and preserved sensory attributes in carrot juice, with in vivo safety confirmed. These findings position ASL-EVLPs as a dual-functional alternative, overcoming both microbial and sensory challenges in food preservation.
Collapse
Affiliation(s)
- Chenqi Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China; Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Xiaoxiao Ke
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China; Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Chunmeng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shangyang Lin
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China; Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Yijie Qian
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China; Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Jiale Cheng
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China; Gusu School, Nanjing Medical University, Suzhou 215002, China; Linzhou County People's Hospital, Lhasa 851600, China
| | - Yan Chen
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China; Gusu School, Nanjing Medical University, Suzhou 215002, China.
| | - Liu Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Caioni G, Reyes CP, Laurenti D, Chiaradia C, Dainese E, Mattioli R, Di Risola D, Santavicca E, Francioso A. Biochemistry and Future Perspectives of Antibiotic Resistance: An Eye on Active Natural Products. Antibiotics (Basel) 2024; 13:1071. [PMID: 39596764 PMCID: PMC11591525 DOI: 10.3390/antibiotics13111071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Antibiotic resistance poses a serious threat to the current healthcare system, negatively impacting the effectiveness of many antimicrobial treatments. The situation is exacerbated by the widespread overuse and abuse of available antibiotics, accelerating the evolution of resistance. Thus, there is an urgent need for novel approaches to therapy to overcome established resistance mechanisms. Plants produce molecules capable of inhibiting bacterial growth in various ways, offering promising paths for the development of alternative antibiotic medicine. This review emphasizes the necessity of research efforts on plant-derived chemicals in the hopes of finding and creating novel drugs that can successfully target resistant bacterial populations. Investigating these natural chemicals allows us to improve our knowledge of novel antimicrobial pathways and also expands our antibacterial repertoire with novel molecules. Simultaneously, it is still necessary to utilize present antibiotics sparingly; prudent prescribing practices must be encouraged to extend the effectiveness of current medications. The combination of innovative drug research and responsible drug usage offers an integrated strategy for managing the antibiotic resistance challenge.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (G.C.); (E.D.)
| | - Carolina Pérez Reyes
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Instituto Universitario de Bio-Orgánica “Antonio González”, University of La Laguna, 38206 San Cristobal de La Laguna, Spain;
| | - Davide Laurenti
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (D.L.); (C.C.); (R.M.); (D.D.R.)
| | - Carmen Chiaradia
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (D.L.); (C.C.); (R.M.); (D.D.R.)
| | - Enrico Dainese
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (G.C.); (E.D.)
| | - Roberto Mattioli
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (D.L.); (C.C.); (R.M.); (D.D.R.)
| | - Daniel Di Risola
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (D.L.); (C.C.); (R.M.); (D.D.R.)
| | | | - Antonio Francioso
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (G.C.); (E.D.)
| |
Collapse
|
3
|
Pedre B. A guide to genetically-encoded redox biosensors: State of the art and opportunities. Arch Biochem Biophys 2024; 758:110067. [PMID: 38908743 DOI: 10.1016/j.abb.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Genetically-encoded redox biosensors have become invaluable tools for monitoring cellular redox processes with high spatiotemporal resolution, coupling the presence of the redox-active analyte with a change in fluorescence signal that can be easily recorded. This review summarizes the available fluorescence recording methods and presents an in-depth classification of the redox biosensors, organized by the analytes they respond to. In addition to the fluorescent protein-based architectures, this review also describes the recent advances on fluorescent, chemigenetic-based redox biosensors and other emerging chemigenetic strategies. This review examines how these biosensors are designed, the biosensors sensing mechanism, and their practical advantages and disadvantages.
Collapse
Affiliation(s)
- Brandán Pedre
- Biochemistry, Molecular and Structural Biology Unit, Department of Chemistry, KU Leuven, Belgium.
| |
Collapse
|
4
|
Alfei S, Schito GC, Schito AM, Zuccari G. Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal. Int J Mol Sci 2024; 25:7182. [PMID: 39000290 PMCID: PMC11241369 DOI: 10.3390/ijms25137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
5
|
Abass S, Parveen R, Irfan M, Malik Z, Husain SA, Ahmad S. Mechanism of antibacterial phytoconstituents: an updated review. Arch Microbiol 2024; 206:325. [PMID: 38913205 DOI: 10.1007/s00203-024-04035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
The increase of multiple drug resistance bacteria significantly diminishes the effectiveness of antibiotic armory and subsequently exaggerates the level of therapeutic failure. Phytoconstituents are exceptional substitutes for resistance-modifying vehicles. The plants appear to be a deep well for the discovery of novel antibacterial compounds. This is owing to the numerous enticing characteristics of plants, they are easily accessible and inexpensive, extracts or chemicals derived from plants typically have significant levels of action against infections, and they rarely cause serious adverse effects. The enormous selection of phytochemicals offers very distinct chemical structures that may provide both novel mechanisms of antimicrobial activity and deliver us with different targets in the interior of the bacterial cell. They can directly affect bacteria or act together with the crucial events of pathogenicity, in this manner decreasing the aptitude of bacteria to create resistance. Abundant phytoconstituents demonstrate various mechanisms of action toward multi drug resistance bacteria. Overall, this comprehensive review will provide insights into the potential of phytoconstituents as alternative treatments for bacterial infections, particularly those caused by multi drug resistance strains. By examining the current state of research in this area, the review will shed light on potential future directions for the development of new antimicrobial therapies.
Collapse
Affiliation(s)
- Sageer Abass
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Rabea Parveen
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Irfan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Zoya Malik
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
6
|
Quach NT, Nguyen TTA, Vu THN, Ta TTT, Phi QT, Trieu TA, Van Thuoc D. Genome mining and physiological analyses uncover adaptation strategies and biotechnological potential of Virgibacillus dokdonensis T4.6 isolated from high-salt shrimp paste. Arch Microbiol 2024; 206:309. [PMID: 38896253 DOI: 10.1007/s00203-024-04049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Virgibacillus spp. stand out as a potent starter culture for accelerating the fermention of fish sauces and shrimp pastes. However, the underlying molecular mechanisms responsible for their adaptation and biotechnological potential remain elusive. Therefore, the present study focuses on phenotypic and genomic analyses of a halophilic bacterium Virgibacillus dokdonensis T4.6, derived from Vietnamese high-salt fermented shrimp paste. The draft genome contained 4,096,868 bp with 3780 predicted coding sequences. Genome mining revealed the presence of 143 genes involved in osmotic adaptation explaining its resistant phenotype to 24% (w/v) NaCl. Among them, 37 genes making up the complete ectoine metabolism pathway, confirmed its ability to produce 4.38 ± 0.29 wt% ectoine under 12.5% NaCl stress. A significant finding was the identification of 39 genes responsible for an entire degradation pathway of the toxic biogenic amine histamine, which was in agreement with its histamine degradation rate of 42.7 ± 2.1% in the HA medium containing 5 mM histamine within 10 days at 37 °C. Furthermore, 114 proteolytic and 19 lipolytic genes were detected which might contribute to its survival as well as the nutrient quality and flavor of shrimp paste. Of note, a putative gene vdo2592 was found as a possible novel lipase/esterase due to its unique Glycine-Aspartate-Serine-Leucine (GDSL) sequence motif. This is the first report to reveal the adaptative strategies and related biotechnological potential of Virgibacillus associated with femented foods. Our findings indicated that V. dokdonensis T4.6 is a promising starter culture for the production of fermented shrimp paste products.
Collapse
Affiliation(s)
- Ngoc Tung Quach
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Thu An Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Hanh Nguyen Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | | | - Quyet-Tien Phi
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Trung Anh Trieu
- Department of Biotechnology and Microbiology, Faculty of Biology, Hanoi National University of Education, Hanoi, 100000, Vietnam
| | - Doan Van Thuoc
- Department of Biotechnology and Microbiology, Faculty of Biology, Hanoi National University of Education, Hanoi, 100000, Vietnam.
| |
Collapse
|
7
|
Schier C, Gruhlke MCH, Reucher G, Slusarenko AJ, Rink L. Combating Black Fungus: Using Allicin as a Potent Antifungal Agent against Mucorales. Int J Mol Sci 2023; 24:17519. [PMID: 38139348 PMCID: PMC10743604 DOI: 10.3390/ijms242417519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Invasive fungal (IF) diseases are a leading global cause of mortality, particularly among immunocompromised individuals. The SARS-CoV-2 pandemic further exacerbated this scenario, intensifying comorbid IF infections such as mucormycoses of the nasopharynx. In the work reported here, it is shown that zygomycetes, significant contributors to mycoses, are sensitive to the natural product allicin. Inhibition of Mucorales fungi by allicin in solution and by allicin vapor was demonstrated. Mathematical modeling showed that the efficacy of allicin vapor is comparable to direct contact with the commercially available antifungal agent amphotericin B (ampB). Furthermore, the study revealed a synergistic interaction between allicin and the non-volatile ampB. The toxicity of allicin solution to human cell lines was evaluated and it was found that the half maximal effective concentration (EC50) of allicin was 25-72 times higher in the cell lines as compared to the fungal spores. Fungal allicin sensitivity depends on the spore concentration, as demonstrated in a drop test. This study shows the potential of allicin, a sulfur-containing defense compound from garlic, to combat zygomycete fungi. The findings underscore allicin's promise for applications in infections of the nasopharynx via inhalation, suggesting a novel therapeutic avenue against challenging fungal infections.
Collapse
Affiliation(s)
- Christina Schier
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany; (C.S.); (A.J.S.)
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Martin C. H. Gruhlke
- GENAWIF e.V.—Society for Natural Compound and Active Ingredient Research, Lukasstraße 1, 52070 Aachen, Germany;
- Institute of Applied Microbiology—iAMB, Aachener Biology and Biotechnology—ABBt, RWTH Aachen University, 52074 Aachen, Germany
| | - Georg Reucher
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Alan J. Slusarenko
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany; (C.S.); (A.J.S.)
- GENAWIF e.V.—Society for Natural Compound and Active Ingredient Research, Lukasstraße 1, 52070 Aachen, Germany;
| | - Lothar Rink
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany;
| |
Collapse
|
8
|
Loi VV, Busche T, Schnaufer F, Kalinowski J, Antelmann H. The neutrophil oxidant hypothiocyanous acid causes a thiol-specific stress response and an oxidative shift of the bacillithiol redox potential in Staphylococcus aureus. Microbiol Spectr 2023; 11:e0325223. [PMID: 37930020 PMCID: PMC10715087 DOI: 10.1128/spectrum.03252-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus colonizes the skin and the airways but can also lead to life-threatening systemic and chronic infections. During colonization and phagocytosis by immune cells, S. aureus encounters the thiol-reactive oxidant HOSCN. The understanding of the adaptation mechanisms of S. aureus toward HOSCN stress is important to identify novel drug targets to combat multi-resistant S. aureus isolates. As a defense mechanism, S. aureus uses the flavin disulfide reductase MerA, which functions as HOSCN reductase and protects against HOSCN stress. Moreover, MerA homologs have conserved functions in HOSCN detoxification in other bacteria, including intestinal and respiratory pathogens. In this work, we studied the comprehensive thiol-reactive mode of action of HOSCN and its effect on the reversible shift of the E BSH to discover new defense mechanisms against the neutrophil oxidant. These findings provide new leads for future drug design to fight the pathogen at the sites of colonization and infections.
Collapse
Affiliation(s)
- Vu Van Loi
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Franziska Schnaufer
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Haike Antelmann
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Liu L, Li Y, Al-Huqail AA, Ali E, Alkhalifah T, Alturise F, Ali HE. Green synthesis of Fe 3O 4 nanoparticles using Alliaceae waste (Allium sativum) for a sustainable landscape enhancement using support vector regression. CHEMOSPHERE 2023; 334:138638. [PMID: 37100254 DOI: 10.1016/j.chemosphere.2023.138638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 06/02/2023]
Abstract
The synthesis of metal nanoparticles using green chemistry methods has gained significant attention in the field of landscape enhancement. Researchers have paid close attention to the development of very effective green chemistry approaches for the production of metal nanoparticles (NPs). The primary goal is to create an environmentally sustainable technique for generating NPs. At the nanoscale, ferro- and ferrimagnetic minerals such as magnetite exhibit superparamagnetic properties (Fe3O4). Magnetic nanoparticles (NPs) have received increased interest in nanoscience and nanotechnology due to their physiochemical properties, small particle size (1-100 nm), and low toxicity. Biological resources such as bacteria, algae, fungus, and plants have been used to manufacture affordable, energy-efficient, non-toxic, and ecologically acceptable metallic NPs. Despite the growing demand for Fe3O4 nanoparticles in a variety of applications, typical chemical production processes can produce hazardous byproducts and trash, resulting in significant environmental implications. The purpose of this study is to look at the ability of Allium sativum, a member of the Alliaceae family recognized for its culinary and medicinal benefits, to synthesize Fe3O4 NPs. Extracts of Allium sativum seeds and cloves include reducing sugars like glucose, which may be used as decreasing factors in the production of Fe3O4 NPs to reduce the requirement for hazardous chemicals and increase sustainability. The analytic procedures were carried out utilizing machine learning as support vector regression (SVR). Furthermore, because Allium sativum is widely accessible and biocompatible, it is a safe and cost-effective material for the manufacture of Fe3O4 NPs. Using the regression indices metrics of root mean square error (RMSE) and coefficient of determination (R2), the X-ray diffraction (XRD) study revealed the lighter, smoother spherical forms of NPs in the presence of aqueous garlic extract and 70.223 nm in its absence. The antifungal activity of Fe3O4 NPs against Candida albicans was investigated using a disc diffusion technique but exhibited no impact at doses of 200, 400, and 600 ppm. This characterization of the nanoparticles helps in understanding their physical properties and provides insights into their potential applications in landscape enhancement.
Collapse
Affiliation(s)
- Lisha Liu
- Chongqing Creation Vocational College, Chongqing, 402160, China
| | - Yuanhua Li
- Chongqing Creation Vocational College, Chongqing, 402160, China.
| | - Arwa A Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Elimam Ali
- Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - H Elhosiny Ali
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
10
|
Tao Z, Geng D, Tao J, Wang J, Liu S, Wang Q, Xu F, Xiao S, Wang R. Synergistic Antibacterial Effect and Mechanism of Allicin and an Enterobacter cloacae Bacteriophage. Microbiol Spectr 2023; 11:e0315522. [PMID: 36472428 PMCID: PMC9927155 DOI: 10.1128/spectrum.03155-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Enterobacter cloacae is a troublesome pathogen causing refractory infections of the lower respiratory tract, urethra and abdominal cavity, endocarditis, osteomyelitis, and neonatal septicemia. It is prone to developing resistance to ordinary antibiotics and has brought a serious problem to clinical treatment. An artful synergistic combination of an antibacterial natural product allicin and a newly isolated bacteriophage, named BD523, was constructed herein. This combination significantly lowered effective dosage of allicin and effectually overcame bacterial drug-resistance. We experimentally evidenced that allicin interacts with bacterial DNA in the groove region by inserting itself into the DNA double helix and, subsequently, disrupts the bacterial DNA by cleaving phosphate diester bonds of deoxynucleotides. Further, BD523 destroys the cell wall and membrane of bacteria by synthesizing lyase proteins, including holin and endolysins. Thus, the synergistic effect of the combination benefits from complementary targeting mechanisms of allicin and BD523. They cooperatively act on bacterial DNA, cell wall, and membrane to improve antibacterial efficiency and avoid drug-resistance. IMPORTANCE Bacterial drug-resistance is a serious problem afflicting pharmacologists all over the world. Many strategies have been developed and practiced to overcome it, but almost no one is satisfactory due to the continual change of bacteria. Combinations of antibiotics and bacteriophages are promising because of the cooperation of 2 bacterial killers with distinct mechanisms. The combination of allicin and an Enterobacter cloacae bacteriophage reported herein can significantly improve the effect of allicin against E. cloacae. Its synergistic effect was even superior to the combination of bacteriophage and neomycin, of which the MIC was significantly lower than allicin. It was ascribed to the complementary antibacterial and the possible resistance-proof mechanism of bacteriophage and allicin. This study provided a pragmatic way to conquer the cunning bacterium, and may offer reference for research and development of new bacterial killers.
Collapse
Affiliation(s)
- Zhi Tao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Di Geng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jiayue Tao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Siqi Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qiaoxia Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Xu
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Shengyuan Xiao
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Rufeng Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Shearer HL, Loi VV, Weiland P, Bange G, Altegoer F, Hampton MB, Antelmann H, Dickerhof N. MerA functions as a hypothiocyanous acid reductase and defense mechanism in Staphylococcus aureus. Mol Microbiol 2023; 119:456-470. [PMID: 36779383 DOI: 10.1111/mmi.15035] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/14/2023]
Abstract
The major pathogen Staphylococcus aureus has to cope with host-derived oxidative stress to cause infections in humans. Here, we report that S. aureus tolerates high concentrations of hypothiocyanous acid (HOSCN), a key antimicrobial oxidant produced in the respiratory tract. We discovered that the flavoprotein disulfide reductase (FDR) MerA protects S. aureus from this oxidant by functioning as a HOSCN reductase, with its deletion sensitizing bacteria to HOSCN. Crystal structures of homodimeric MerA (2.4 Å) with a Cys43 -Cys48 intramolecular disulfide, and reduced MerACys43 S (1.6 Å) showed the FAD cofactor close to the active site, supporting that MerA functions as a group I FDR. MerA is controlled by the redox-sensitive repressor HypR, which we show to be oxidized to intermolecular disulfides under HOSCN stress, resulting in its inactivation and derepression of merA transcription to promote HOSCN tolerance. Our study highlights the HOSCN tolerance of S. aureus and characterizes the structure and function of MerA as a major HOSCN defense mechanism. Crippling the capacity to respond to HOSCN may be a novel strategy for treating S. aureus infections.
Collapse
Affiliation(s)
- Heather L Shearer
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Vu V Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, Berlin, Germany
| | - Paul Weiland
- Center for Synthetic Microbiology (SYNMIKRO), Department of Chemistry, Philipps-University Marburg, Marburg, Germany.,Center for Tumor Biology and Immunology, Department of Medicine, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Department of Chemistry, Philipps-University Marburg, Marburg, Germany.,Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Florian Altegoer
- Center for Synthetic Microbiology (SYNMIKRO), Department of Chemistry, Philipps-University Marburg, Marburg, Germany.,Institute of Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, Berlin, Germany
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
12
|
Fritsch VN, Linzner N, Busche T, Said N, Weise C, Kalinowski J, Wahl MC, Antelmann H. The MerR-family regulator NmlR is involved in the defense against oxidative stress in Streptococcus pneumoniae. Mol Microbiol 2023; 119:191-207. [PMID: 36349475 DOI: 10.1111/mmi.14999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Streptococcus pneumoniae has to cope with the strong oxidant hypochlorous acid (HOCl), during host-pathogen interactions. Thus, we analyzed the global gene expression profile of S. pneumoniae D39 towards HOCl stress. In the RNA-seq transcriptome, the NmlR, SifR, CtsR, HrcA, SczA and CopY regulons and the etrx1-ccdA1-msrAB2 operon were most strongly induced under HOCl stress, which participate in the oxidative, electrophile and metal stress response in S. pneumoniae. The MerR-family regulator NmlR harbors a conserved Cys52 and controls the alcohol dehydrogenase-encoding adhC gene under carbonyl and NO stress. We demonstrated that NmlR senses also HOCl stress to activate transcription of the nmlR-adhC operon. HOCl-induced transcription of adhC required Cys52 of NmlR in vivo. Using mass spectrometry, NmlR was shown to be oxidized to intersubunit disulfides or S-glutathionylated under oxidative stress in vitro. A broccoli-FLAP-based assay further showed that both NmlR disulfides significantly increased transcription initiation at the nmlR promoter by RNAP in vitro, which depends on Cys52. Phenotype analyses revealed that NmlR functions in the defense against oxidative stress and promotes survival of S. pneumoniae during macrophage infections. In conclusion, NmlR was characterized as HOCl-sensing transcriptional regulator, which activates transcription of adhC under oxidative stress by thiol switches in S. pneumoniae.
Collapse
Affiliation(s)
| | - Nico Linzner
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Tobias Busche
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany.,NGS Core Facility, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Nelly Said
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany.,Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Haike Antelmann
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
13
|
Hampton MB, Dickerhof N. Inside the phagosome: A bacterial perspective. Immunol Rev 2023; 314:197-209. [PMID: 36625601 DOI: 10.1111/imr.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The neutrophil phagosome is one of the most hostile environments that bacteria must face and overcome if they are to succeed as pathogens. Targeting bacterial defense mechanisms should lead to new therapies that assist neutrophils to kill pathogens, but this has not yet come to fruition. One of the limiting factors in this effort has been our incomplete knowledge of the complex biochemistry that occurs within the rapidly changing environment of the phagosome. The same compartmentalization that protects host tissue also limits our ability to measure events within the phagosome. In this review, we highlight the limitations in our knowledge, and how the contribution of bacteria to the phagosomal environment is often ignored. There appears to be significant heterogeneity among phagosomes, and it is important to determine whether survivors have more efficient defenses or whether they are ingested into less threatening environments than other bacteria. As part of these efforts, we discuss how monitoring or recovering bacteria from phagosomes can provide insight into the conditions they have faced. We also encourage the use of unbiased screening approaches to identify bacterial genes that are essential for survival inside neutrophil phagosomes.
Collapse
Affiliation(s)
- Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
14
|
Fighting Antibiotic Resistance: New Pyrimidine-Clubbed Benzimidazole Derivatives as Potential DHFR Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020501. [PMID: 36677558 PMCID: PMC9865878 DOI: 10.3390/molecules28020501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
The present work describes the design and development of seventeen pyrimidine-clubbed benzimidazole derivatives as potential dihydrofolate reductase (DHFR) inhibitors. These compounds were filtered by using ADMET, drug-likeness characteristics calculations, and molecular docking experiments. Compounds 27, 29, 30, 33, 37, 38, and 41 were chosen for the synthesis based on the results of the in silico screening. Each of the synthesized compounds was tested for its in vitro antibacterial and antifungal activities using a variety of strains. All the compounds showed antibacterial properties against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus pyogenes) as well as Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Most of the compounds either had a higher potency than chloramphenicol or an equivalent potency to ciprofloxacin. Compounds 29 and 33 were effective against all the bacterial and fungal strains. Finally, the 1,2,3,4-tetrahydropyrimidine-2-thiol derivatives with a 6-chloro-2-(chloromethyl)-1H-benzo[d]imidazole moiety are potent enough to be considered a promising lead for the discovery of an effective antibacterial agent.
Collapse
|
15
|
She P, Li Z, Li Y, Liu S, Li L, Yang Y, Zhou L, Wu Y. Pixantrone Sensitizes Gram-Negative Pathogens to Rifampin. Microbiol Spectr 2022; 10:e0211422. [PMID: 36318018 PMCID: PMC9769682 DOI: 10.1128/spectrum.02114-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence of bacterial drug resistance poses a severe threat to global public health. In particular, antimicrobial-resistant pathogens lead to a high rate of treatment failure and significantly increase mortality. Repurposing FDA-approved compounds to sensitize superbugs to conventional antibiotics provides a promising strategy to alleviate such crises. Pixantrone (PIX) has been approved for treating aggressive B-cell non-Hodgkin's lymphoma. By high-throughput drug screening, we profiled the synergistic activity between PIX and rifampin (RFP) against Gram-negative extensively drug-resistant isolates by checkerboard assay. Mechanistic studies demonstrated that PIX impacted the flagellum assembly, induced irreversible intracellular reactive oxygen species accumulation and disrupted proton motive force. In addition, the combination of PIX with RFP possesses effective antimicrobial activity against multidrug-resistant strains in vivo without detected toxicity. Collectively, these results reveal the potential of PIX in combination with RFP as a therapy option for refractory infections caused by Gram-negative pathogens. IMPORTANCE Bacterial resistance has become increasingly serious because of the widespread use and abuse of antibiotics. In particular, the emergence of multidrug-resistant bacteria has posed a serious threat to human public health. Drug repurposing, the process of finding new uses for existing drugs, provide a promising pathway to solve antimicrobial resistance. Compared to the development of novel antibiotics, this strategy leverages well-characterized pharmacology and toxicology of known drugs and is more cost-effective.
Collapse
Affiliation(s)
- Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Linying Zhou
- Department of Laboratory Medicine, The First Hospital of Changsha, Changsha, Hunan, China
| | - Yong Wu
- Department of Laboratory Medicine, The First Hospital of Changsha, Changsha, Hunan, China
| |
Collapse
|
16
|
Fritsch VN, Loi VV, Kuropka B, Gruhlke M, Weise C, Antelmann H. The MarR/DUF24-Family QsrR Repressor Senses Quinones and Oxidants by Thiol Switch Mechanisms in Staphylococcus aureus. Antioxid Redox Signal 2022; 38:877-895. [PMID: 36242097 DOI: 10.1089/ars.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: The MarR/DUF24-family QsrR and YodB repressors control quinone detoxification pathways in Staphylococcus aureus and Bacillus subtilis. In S. aureus, the QsrR regulon also confers resistance to antimicrobial compounds with quinone-like elements, such as rifampicin, ciprofloxacin, and pyocyanin. Although QsrR was shown to be inhibited by thiol-S-alkylation of its conserved Cys4 residue by 1,4-benzoquinone, YodB senses quinones and diamide by the formation of reversible intermolecular disulfides. In this study, we aimed at further investigating the redox-regulation of QsrR and the role of its Cys4, Cys29, and Cys32 residues under quinone and oxidative stress in S. aureus. Results: The QsrR regulon was strongly induced by quinones and oxidants, such as diamide, allicin, hypochlorous acid (HOCl), and AGXX® in S. aureus. Transcriptional induction of catE2 by quinones and oxidants required Cys4 and either Cys29' or Cys32' of QsrR for redox sensing in vivo. DNA-binding assays revealed that QsrR is reversibly inactivated by quinones and oxidants, depending on Cys4. Using mass spectrometry, QsrR was shown to sense diamide by an intermolecular thiol-disulfide switch, involving Cys4 and Cys29' of opposing subunits in vitro. In contrast, allicin caused S-thioallylation of all three Cys residues in QsrR, leading to its dissociation from the operator sequence. Further, the QsrR regulon confers resistance against quinones and oxidants, depending on Cys4 and either Cys29' or Cys32'. Conclusion and Innovation: QsrR was characterized as a two-Cys-type redox-sensing regulator, which senses the oxidative mode of quinones and strong oxidants, such as diamide, HOCl, and the antimicrobial compound allicin via different thiol switch mechanisms.
Collapse
Affiliation(s)
| | - Vu Van Loi
- Institute of Biology-Microbiology; Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry; Freie Universität Berlin, Berlin, Germany
| | - Martin Gruhlke
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry; Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
17
|
Kusza DA, Hunter R, Schäfer G, Smith M, Katz AA, Kaschula CH. Activity-Based Proteomic Identification of the S-Thiolation Targets of Ajoene in MDA-MB-231 Breast Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14679-14692. [PMID: 36351177 DOI: 10.1021/acs.jafc.2c04972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Garlic is a medicinal plant and spice that has been used for millennia for its health-promoting effects. These medicinal properties are associated with low molecular weight organosulfur compounds, produced following the crushing of garlic cloves. One of these compounds, ajoene, is proposed to act by S-thioallylating cysteine residues on target proteins whose identification in cancer cells holds great promise for understanding mechanistic aspects of ajoene's cancer cell cytotoxicity. To this end, an ajoene analogue (called biotin-ajoene, BA), containing a biotin affinity tag, was designed as an activity-based probe specific for the protein targets of ajoene in MDA-MB-231 breast cancer cells. BA was synthesized via a convergent "click" strategy and found to retain its cytotoxicity against MDA-MB-231 cells compared to ajoene. Widespread biotinylation of proteins was found to occur via disulfide bond formation in a dose-dependent manner, and the biotin-ajoene probe was found to share the same protein targets as its parent compound, ajoene. The biotinylated proteins were affinity-purified from the treated MDA-MB-231 cell lysate using streptavidin-coated magnetic beads followed by an on-bead reduction, alkylation, and digestion to liberate the peptide fragments, which were analyzed by liquid chromatography tandem mass chromatography. A total of 600 protein targets were identified, among which 91% overlapped with proteins with known protein cysteine modification (PCM) sites. The specific sites were enriched for those susceptible to S-glutathionylation (-SSG) (16%), S-sulfhydration (-SSH) (20%), S-sulfenylation (-SOH) (22%), and S-nitrosylation (-SNO) (31%). As target validation, both ajoene and a dansylated ajoene (DP) were found to S-thiolate the pure recombinant forms of glutathione S-transferase pi 1 (GSTP1) and protein disulfide isomerase (PDI), and the ajoene analogue DP was found to be a more potent inhibitor than 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). Pathway analysis elucidated that ajoene targets functional and signaling pathways that are implicated in cancer cell survival, specifically cellular processes, metabolism, and genetic information processing pathways. The results of this study provide mechanistic insights into the character of the anti-cancer activity of the natural dietary compound ajoene.
Collapse
Affiliation(s)
- Daniel A Kusza
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology, Observatory, Cape Town 7925, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Muneerah Smith
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Arieh A Katz
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
- SA-MRC-UCT Gynaecological Cancer Research Centre, University of Cape Town, Cape Town 7925, South Africa
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland 7600, South Africa
| |
Collapse
|
18
|
Ashby LV, Springer R, Loi VV, Antelmann H, Hampton MB, Kettle AJ, Dickerhof N. Oxidation of bacillithiol during killing of Staphylococcus aureus USA300 inside neutrophil phagosomes. J Leukoc Biol 2022; 112:591-605. [PMID: 35621076 PMCID: PMC9796752 DOI: 10.1002/jlb.4hi1021-538rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/29/2022] [Indexed: 01/07/2023] Open
Abstract
Targeting immune evasion tactics of pathogenic bacteria may hold the key to treating recalcitrant bacterial infections. Staphylococcus aureus produces bacillithiol (BSH), its major low-molecular-weight thiol, which is thought to protect this opportunistic human pathogen against the bombardment of oxidants inside neutrophil phagosomes. Here, we show that BSH was oxidized when human neutrophils phagocytosed S. aureus, but provided limited protection to the bacteria. We used mass spectrometry to measure the oxidation of BSH upon exposure of S. aureus USA300 to either a bolus of hypochlorous acid (HOCl) or a flux generated by the neutrophil enzyme myeloperoxidase. Oxidation of BSH and loss of bacterial viability were strongly correlated (r = 0.99, p < 0.001). BSH was fully oxidized after exposure of S. aureus to lethal doses of HOCl. However, there was no relationship between the initial BSH levels and the dose of HOCl required for bacterial killing. In contrast to the HOCl systems, only 50% of total BSH was oxidized when neutrophils killed the majority of phagocytosed bacteria. Oxidation of BSH was decreased upon inhibition of myeloperoxidase, implicating HOCl in phagosomal BSH oxidation. A BSH-deficient S. aureus USA300 mutant was slightly more susceptible to treatment with either HOCl or ammonia chloramine, or to killing within neutrophil phagosomes. Collectively, our data show that myeloperoxidase-derived oxidants react with S. aureus inside neutrophil phagosomes, leading to partial BSH oxidation, and contribute to bacterial killing. However, BSH offers only limited protection against the neutrophil's multifaceted killing mechanisms.
Collapse
Affiliation(s)
- Louisa V Ashby
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Reuben Springer
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Vu Van Loi
- Freie Universität Berlin, Department of Biology, Chemistry, PharmacyInstitute of Biology‐MicrobiologyBerlinGermany
| | - Haike Antelmann
- Freie Universität Berlin, Department of Biology, Chemistry, PharmacyInstitute of Biology‐MicrobiologyBerlinGermany
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| |
Collapse
|
19
|
The Catalase KatA Contributes to Microaerophilic H2O2 Priming to Acquire an Improved Oxidative Stress Resistance in Staphylococcus aureus. Antioxidants (Basel) 2022; 11:antiox11091793. [PMID: 36139867 PMCID: PMC9495333 DOI: 10.3390/antiox11091793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus has to cope with oxidative stress during infections. In this study, S. aureus was found to be resistant to 100 mM H2O2 during aerobic growth. While KatA was essential for this high aerobic H2O2 resistance, the peroxiredoxin AhpC contributed to detoxification of 0.4 mM H2O2 in the absence of KatA. In addition, the peroxiredoxins AhpC, Tpx and Bcp were found to be required for detoxification of cumene hydroperoxide (CHP). The high H2O2 tolerance of aerobic S. aureus cells was associated with priming by endogenous H2O2 levels, which was supported by an oxidative shift of the bacillithiol redox potential to −291 mV compared to −310 mV in microaerophilic cells. In contrast, S. aureus could be primed by sub-lethal doses of 100 µM H2O2 during microaerophilic growth to acquire an improved resistance towards the otherwise lethal triggering stimulus of 10 mM H2O2. This microaerophilic priming was dependent on increased KatA activity, whereas aerobic cells showed constitutive high KatA activity. Thus, KatA contributes to the high H2O2 resistance of aerobic cells and to microaerophilic H2O2 priming in order to survive the subsequent lethal triggering doses of H2O2, allowing the adaptation of S. aureus under infections to different oxygen environments.
Collapse
|
20
|
Meredith JD, Chapman I, Ulrich K, Sebastian C, Stull F, Gray MJ. Escherichia coli RclA is a highly active hypothiocyanite reductase. Proc Natl Acad Sci U S A 2022; 119:e2119368119. [PMID: 35867824 PMCID: PMC9335216 DOI: 10.1073/pnas.2119368119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/20/2022] [Indexed: 01/24/2023] Open
Abstract
Hypothiocyanite and hypothiocyanous acid (OSCN-/HOSCN) are pseudohypohalous acids released by the innate immune system which are capable of rapidly oxidizing sulfur-containing amino acids, causing significant protein aggregation and damage to invading bacteria. HOSCN is abundant in saliva and airway secretions and has long been considered a highly specific antimicrobial that is nearly harmless to mammalian cells. However, certain bacteria, commensal and pathogenic, are able to escape damage by HOSCN and other harmful antimicrobials during inflammation, which allows them to continue to grow and, in some cases, cause severe disease. The exact genes or mechanisms by which bacteria respond to HOSCN have not yet been elucidated. We have found, in Escherichia coli, that the flavoprotein RclA, previously implicated in reactive chlorine resistance, reduces HOSCN to thiocyanate with near-perfect catalytic efficiency and strongly protects E. coli against HOSCN toxicity. This is notable in E. coli because this species thrives in the chronically inflamed environment found in patients with inflammatory bowel disease and is able to compete with and outgrow other important commensal organisms, suggesting that HOSCN may be a relevant antimicrobial in the gut, which has not previously been explored. RclA is conserved in a variety of epithelium-colonizing bacteria, implicating its HOSCN reductase activity in a variety of host-microbe interactions. We show that an rclA mutant of the probiotic Limosilactobacillus reuteri is sensitive to HOSCN and that RclA homologs from Staphylococcus aureus, Streptococcus pneumoniae, and Bacteroides thetaiotaomicron all have potent protective activity against HOSCN when expressed in E. coli.
Collapse
Affiliation(s)
- Julia D. Meredith
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Irina Chapman
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008
| | - Kathrin Ulrich
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Caitlyn Sebastian
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008
| | - Michael J. Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233
| |
Collapse
|
21
|
Qiu ZE, Xu JB, Chen L, Huang ZX, Lei TL, Huang ZY, Hou XC, Yang HL, Lin QH, Zhu YX, Zhao L, Zhou WL, Zhang YL. Allicin Facilitates Airway Surface Liquid Hydration by Activation of CFTR. Front Pharmacol 2022; 13:890284. [PMID: 35784719 PMCID: PMC9241074 DOI: 10.3389/fphar.2022.890284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Airway epithelium plays critical roles in regulating airway surface liquid (ASL), the alteration of which causes mucus stasis symptoms. Allicin is a compound released from garlic and harbors the capacity of lung-protection. However, the potential regulatory effects of allicin on airway epithelium remain elusive. This study aimed to investigate the effects of allicin on ion transport across airway epithelium and evaluate its potential as an expectorant. Application of allicin induced Cl− secretion across airway epithelium in a concentration-dependent manner. Blockade of cystic fibrosis transmembrane conductance regulator (CFTR) or inhibition of adenylate cyclase-cAMP signaling pathway attenuated allicin-induced Cl− secretion in airway epithelial cells. The in vivo study showed that inhaled allicin significantly increased the ASL secretion in mice. These results suggest that allicin induces Cl− and fluid secretion across airway epithelium via activation of CFTR, which might provide therapeutic strategies for the treatment of chronic pulmonary diseases associated with ASL dehydration.
Collapse
Affiliation(s)
- Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Bang Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ze-Xin Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian-Lun Lei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zi-Yang Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Chun Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hai-Long Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qin-Hua Lin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Lei Zhao, ; Wen-Liang Zhou, ; Yi-Lin Zhang,
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Lei Zhao, ; Wen-Liang Zhou, ; Yi-Lin Zhang,
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Lei Zhao, ; Wen-Liang Zhou, ; Yi-Lin Zhang,
| |
Collapse
|
22
|
Schier C, Foerster (née Reiter) J, Heupel M, Dörner P, Klaas M, Schröder W, Rink L, Slusarenko AJ, Gruhlke MCH. Allicin as a Volatile or Nebulisable Antimycotic for the Treatment of Pulmonary Mycoses: In Vitro Studies Using a Lung Flow Test Rig. Int J Mol Sci 2022; 23:ijms23126607. [PMID: 35743050 PMCID: PMC9224539 DOI: 10.3390/ijms23126607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Fungal infections of the lung are an increasing problem worldwide and the search for novel therapeutic agents is a current challenge due to emerging resistance to current antimycotics. The volatile defence substance allicin is formed naturally by freshly injured garlic plants and exhibits broad antimicrobial potency. Chemically synthesised allicin was active against selected fungi upon direct contact and via the gas phase at comparable concentrations to the pharmaceutically used antimycotic amphotericin B. We investigated the suppression of fungal growth by allicin vapour and aerosols in vitro in a test rig at air flow conditions mimicking the human lung. The effect of allicin via the gas phase was enhanced by ethanol. Our results suggest that allicin is a potential candidate for development for use in antifungal therapy for lung and upper respiratory tract infections.
Collapse
Affiliation(s)
- Christina Schier
- Department of Plant Physiology, RWTH Aachen University, 52074 Aachen, Germany; (A.J.S.); (M.C.H.G.)
- Correspondence:
| | | | - Monika Heupel
- Landwirtschaftskammer Rheinland, 50765 Köln-Auweiler, Germany;
| | - Philipp Dörner
- Chair of Fluid Mechanics and Institute of Aerodynamics, RWTH Aachen University, 52062 Aachen, Germany; (P.D.); (M.K.); (W.S.)
| | - Michael Klaas
- Chair of Fluid Mechanics and Institute of Aerodynamics, RWTH Aachen University, 52062 Aachen, Germany; (P.D.); (M.K.); (W.S.)
| | - Wolfgang Schröder
- Chair of Fluid Mechanics and Institute of Aerodynamics, RWTH Aachen University, 52062 Aachen, Germany; (P.D.); (M.K.); (W.S.)
| | - Lothar Rink
- Institute of Immunology, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Alan J. Slusarenko
- Department of Plant Physiology, RWTH Aachen University, 52074 Aachen, Germany; (A.J.S.); (M.C.H.G.)
- GENAWIF e.V.—Society for Natural Compound and Active Ingredient Research, 52070 Aachen, Germany;
| | - Martin C. H. Gruhlke
- Department of Plant Physiology, RWTH Aachen University, 52074 Aachen, Germany; (A.J.S.); (M.C.H.G.)
- GENAWIF e.V.—Society for Natural Compound and Active Ingredient Research, 52070 Aachen, Germany;
- Institute of Applied Microbiology—iAMB, Aachener Biology and Biotechnology—ABBt, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
23
|
Ibrahim ES, Ohlsen K. The Old Yellow Enzyme OfrA Fosters Staphylococcus aureus Survival via Affecting Thiol-Dependent Redox Homeostasis. Front Microbiol 2022; 13:888140. [PMID: 35656003 PMCID: PMC9152700 DOI: 10.3389/fmicb.2022.888140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Old yellow enzymes (OYEs) are widely found in the bacterial, fungal, and plant kingdoms but absent in humans and have been used as biocatalysts for decades. However, OYEs’ physiological function in bacterial stress response and infection situations remained enigmatic. As a pathogen, the Gram-positive bacterium Staphylococcus aureus adapts to numerous stress conditions during pathogenesis. Here, we show that in S. aureus genome, two paralogous genes (ofrA and ofrB) encode for two OYEs. We conducted a bioinformatic analysis and found that ofrA is conserved among all publicly available representative staphylococcal genomes and some Firmicutes. Expression of ofrA is induced by electrophilic, oxidative, and hypochlorite stress in S. aureus. Furthermore, ofrA contributes to S. aureus survival against reactive electrophilic, oxygen, and chlorine species (RES, ROS, and RCS) via thiol-dependent redox homeostasis. At the host–pathogen interface, S. aureusΔofrA has defective survival in macrophages and whole human blood and decreased staphyloxanthin production. Overall, our results shed the light onto a novel stress response strategy in the important human pathogen S. aureus.
Collapse
Affiliation(s)
- Eslam S Ibrahim
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Knut Ohlsen
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Comparative synthetic study, in silico screening and biological evaluation of some substituted tetrahydropyrimidine-2-one derivatives as potential DHFR inhibitors. Int J Health Sci (Qassim) 2022. [DOI: 10.53730/ijhs.v6ns3.6198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In present study we have selected pyrimidine scaffold to design and develop some DHFR inhibitors as potential antibacterial and antifungal agents. The designed derivatives were first screened through ADMET property calculations and then those possess drug-likeness properties were subjected for the molecular docking studies. The derivatives which were found to be significant DHFR inhibition potential were subjected for the synthesis followed by spectral analysis and biological evaluation. From this virtual screening, it was concluded that all the compounds possess drug-like properties and hence were subjected to molecular docking studies. The selected derivatives were synthesized and subjected for in vitro biological evaluation. The comparative study for synthesis of the derivatives such as conventional, ultrasonic, microwave synthesis was carried out. It was also observed that yield of the compound was very good in microwave assisted synthesis i.e. 73.24% which is almost 30-40% more than that of the conventional and ultrasonic method. In mass spectrum it was observed that, product obtained through microwave method was completely pure and did not displayed any peak of starting material, whereas product obtained through conventional and ultrasonic method showed presence of starting material.
Collapse
|
25
|
Lewis AD, Riedel TM, Kesler MBA, Varney ME, Long TE. Pharmacological evaluation of disulfiram analogs as antimicrobial agents and their application as inhibitors of fosB-mediated fosfomycin resistance. J Antibiot (Tokyo) 2022; 75:146-154. [PMID: 35058577 PMCID: PMC8852335 DOI: 10.1038/s41429-022-00500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
Abstract
Disulfide analogs of the alcohol sobriety medication disulfiram (Antabuse™) were evaluated for antimicrobial activity. Structure-activity relationship analyses of MIC data obtained for MRSA and other pathogenic organisms revealed correlations between the lipophilicity and bulkiness of the substituents. Analogs conferring optimal anti-MRSA activity contained S-octyl disulfides and either N,N-dimethyl- or N-pyrrolidine dithiocarbamate substituents. Additional testing revealed that both disulfiram and its S-octyl derivative are capable of sensitizing MRSA to the bactericidal effects of fosfomycin. Mechanistic studies established that the compounds decrease intracellular levels of the fosB cofactor bacillithiol through a thiol-disulfide exchange reaction. The altered MRSA susceptibility was thereby attributed to a depleted cellular bacillithiol pool available for fosB inactivation of fosfomycin.
Collapse
|
26
|
Chang Z, An L, He Z, Zhang Y, Li S, Lei M, Xu P, Lai Y, Jiang Z, Huang Y, Duan X, Wu W. Allicin supressed Escherichia coli-induced urinary tract infections by a Novel MALT1/NF-κB pathway. Food Funct 2022; 13:3495-3511. [PMID: 35246671 DOI: 10.1039/d1fo03853b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Escherichia coli (E. coli) strains cause the majority of urinary tract infections (UTIs) and are resistant to various antibiotics. Therefore, it is imperative to explore novel host-target therapies. As a...
Collapse
Affiliation(s)
- Zhenglin Chang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Lingyue An
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Zhican He
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yuyan Zhang
- Guangzhou Institute of Dermatology, Guangzhou, 510095, China
| | - Shujue Li
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Min Lei
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Peng Xu
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yongchang Lai
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Zheng Jiang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yapeng Huang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Xiaolu Duan
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Wenqi Wu
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| |
Collapse
|
27
|
Pawłowska A, Stepczyńska M. Natural Biocidal Compounds of Plant Origin as Biodegradable Materials Modifiers. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:1683-1708. [PMID: 34720776 PMCID: PMC8541817 DOI: 10.1007/s10924-021-02315-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 05/07/2023]
Abstract
The article presents a literature review of the plant origin natural compounds with biocidal properties. These compounds could be used as modifiers of biodegradable materials. Modification of polymer material is one of the basic steps in its manufacturing process. Biodegradable materials play a key role in the current development of materials engineering. Natural modifiers are non-toxic, environmentally friendly, and renewable. The substances contained in natural modifiers exhibit biocidal properties against bacteria and/or fungi. The article discusses polyphenols, selected phenols, naphthoquinones, triterpenoids, and phytoncides that are natural antibiotics. Due to the increasing demand for biodegradable materials and the protection of the natural environment against the negative effects of toxic substances, it is crucial to replace synthetic modifiers with plant ones. This work mentions industries where materials containing natural modifying additives could find potential applications. Moreover, the probable examples of the final products are presented. Additionally, the article points out the current world's pandemic state and the use of materials with biocidal properties considering the epidemiological conditions.
Collapse
Affiliation(s)
- Alona Pawłowska
- Department of Materials Engineering, Kazimierz Wielki University, J.K. Chodkiewicza 30 street, 85-064 Bydgoszcz, Poland
| | - Magdalena Stepczyńska
- Department of Materials Engineering, Kazimierz Wielki University, J.K. Chodkiewicza 30 street, 85-064 Bydgoszcz, Poland
| |
Collapse
|
28
|
Vaishampayan A, Grohmann E. Antimicrobials Functioning through ROS-Mediated Mechanisms: Current Insights. Microorganisms 2021; 10:microorganisms10010061. [PMID: 35056511 PMCID: PMC8779550 DOI: 10.3390/microorganisms10010061] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Antibiotic resistance and infections caused by multidrug-resistant bacteria are global health concerns. Reducing the overuse and misuse of antibiotics is the primary step toward minimizing the antibiotic resistance crisis. Thus, it is imperative to introduce and implement novel antimicrobial strategies. Recently, several alternative antimicrobials targeting oxidative stress in bacteria have been studied and shown to be promising. Oxidative stress occurs when bacterial cells fail to detoxify the excessive reactive oxygen species (ROS) accumulated in the cells. Bacteria deploy numerous defense mechanisms against oxidative stress. The oxidative stress response is not essential for the normal growth of bacteria, but it is crucial for their survival. This toxic oxidative stress is created by the host immune response or antimicrobials generating ROS. ROS possess strong oxidation potential and cause serious damage to nucleic acids, lipids, and proteins. Since ROS-based antimicrobials target multiple sites in bacteria, these antimicrobials have attracted the attention of several researchers. In this review, we present recent ROS-based alternative antimicrobials and strategies targeting oxidative stress which might help in mitigating the problem of antibiotic resistance and dissemination.
Collapse
|
29
|
Van Loi V, Busche T, Fritsch VN, Weise C, Gruhlke MCH, Slusarenko AJ, Kalinowski J, Antelmann H. The two-Cys-type TetR repressor GbaA confers resistance under disulfide and electrophile stress in Staphylococcus aureus. Free Radic Biol Med 2021; 177:120-131. [PMID: 34678418 PMCID: PMC8693949 DOI: 10.1016/j.freeradbiomed.2021.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus has to cope with oxidative and electrophile stress during host-pathogen interactions. The TetR-family repressor GbaA was shown to sense electrophiles, such as N-ethylmaleimide (NEM) via monothiol mechanisms of the two conserved Cys55 or Cys104 residues in vitro. In this study, we further investigated the regulation and function of the GbaA repressor and its Cys residues in S. aureus COL. The GbaA-controlled gbaAB-SACOL2595-97 and SACOL2592-nmrA-2590 operons were shown to respond only weakly 3-10-fold to oxidants, electrophiles or antibiotics in S. aureus COL, but are 57-734-fold derepressed in the gbaA deletion mutant, indicating that the physiological inducer is still unknown. Moreover, the gbaA mutant remained responsive to disulfide and electrophile stress, pointing to additional redox control mechanisms of both operons. Thiol-stress induction of the GbaA regulon was strongly diminished in both single Cys mutants, supporting that both Cys residues are required for redox-sensing in vivo. While GbaA and the single Cys mutants are reversible oxidized under diamide and allicin stress, these thiol switches did not affect the DNA binding activity. The repressor activity of GbaA could be only partially inhibited with NEM in vitro. Survival assays revealed that the gbaA mutant confers resistance under diamide, allicin, NEM and methylglyoxal stress, which was mediated by the SACOL2592-90 operon encoding for a putative glyoxalase and oxidoreductase. Altogether, our results support that the GbaA repressor functions in the defense against oxidative and electrophile stress in S. aureus. GbaA represents a 2-Cys-type redox sensor, which requires another redox-sensing regulator and an unknown thiol-reactive ligand for full derepression of the GbaA regulon genes.
Collapse
Affiliation(s)
- Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Christoph Weise
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, D-14195, Berlin, Germany
| | | | - Alan John Slusarenko
- Department of Plant Physiology, RWTH Aachen University, D-52056, Aachen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany.
| |
Collapse
|
30
|
Mösbauer K, Fritsch VN, Adrian L, Bernhardt J, Gruhlke MCH, Slusarenko AJ, Niemeyer D, Antelmann H. The Effect of Allicin on the Proteome of SARS-CoV-2 Infected Calu-3 Cells. Front Microbiol 2021; 12:746795. [PMID: 34777295 PMCID: PMC8581659 DOI: 10.3389/fmicb.2021.746795] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Allicin (diallyl thiosulfinate) is the major thiol-reactive organosulfur compound produced by garlic plants (Allium sativum) upon tissue damage. Allicin exerts its strong antimicrobial activity against bacteria and fungi via S-thioallylation of protein thiols and low molecular weight thiols. Here, we investigated the effect of allicin on SARS-CoV-2 infected Vero E6 and Calu-3 cells. Toxicity tests revealed that Calu-3 cells showed greater allicin tolerance, probably due to >4-fold higher GSH levels compared to the very sensitive Vero E6 cells. Exposure of infected Vero E6 and Calu-3 cells to biocompatible allicin doses led to a ∼60–70% decrease of viral RNA and infectious viral particles. Label-free quantitative proteomics was used to investigate the changes in the Calu-3 proteome after SARS-CoV-2 infection and the effect of allicin on the host-virus proteome. SARS-CoV-2 infection of Calu-3 cells caused a strong induction of the antiviral interferon-stimulated gene (ISG) signature, including several antiviral effectors, such as cGAS, Mx1, IFIT, IFIH, IFI16, IFI44, OAS, and ISG15, pathways of vesicular transport, tight junctions (KIF5A/B/C, OSBPL2, CLTCL1, and ARHGAP17) and ubiquitin modification (UBE2L3/5), as well as reprogramming of host metabolism, transcription and translation. Allicin treatment of infected Calu-3 cells reduced the expression of IFN signaling pathways and ISG effectors and reverted several host pathways to levels of uninfected cells. Allicin further reduced the abundance of the structural viral proteins N, M, S and ORF3 in the host-virus proteome. In conclusion, our data demonstrate the antiviral and immunomodulatory activity of biocompatible doses of allicin in SARS-CoV-2-infected cell cultures. Future drug research should be directed to exploit the thiol-reactivity of allicin derivatives with increased stability and lower human cell toxicity as antiviral lead compounds.
Collapse
Affiliation(s)
- Kirstin Mösbauer
- Institute of Virology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Berlin, Germany.,German Centre for Infection Research (DZIF), Berlin, Germany
| | | | - Lorenz Adrian
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Fachgebiet Geobiotechnologie, Technische Universität Berlin, Berlin, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | | | | | - Daniela Niemeyer
- Institute of Virology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Berlin, Germany.,German Centre for Infection Research (DZIF), Berlin, Germany
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
31
|
Kim JH, Cheng LW, Land KM, Gruhlke MCH. Editorial: Redox-Active Molecules as Antimicrobials: Mechanisms and Resistance. Front Microbiol 2021; 12:758750. [PMID: 34566946 PMCID: PMC8461237 DOI: 10.3389/fmicb.2021.758750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jong H Kim
- Western Regional Research Center, Agricultural Research Service, Foodborne Toxin Detection and Prevention Research Unit, United States Department of Agriculture, Albany, CA, United States
| | - Luisa W Cheng
- Western Regional Research Center, Agricultural Research Service, Foodborne Toxin Detection and Prevention Research Unit, United States Department of Agriculture, Albany, CA, United States
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | - Martin C H Gruhlke
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany.,GENAWIF e.V. - Society for Natural Compound and Active Substance Research, Aachen, Germany
| |
Collapse
|
32
|
Magryś A, Olender A, Tchórzewska D. Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics. Arch Microbiol 2021; 203:2257-2268. [PMID: 33638666 PMCID: PMC8205873 DOI: 10.1007/s00203-021-02248-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/03/2020] [Accepted: 02/15/2021] [Indexed: 10/25/2022]
Abstract
Garlic has long been known as the most effective plant species in treatment of bacterial infections. Considering the vast potential of garlic as a source of antimicrobial drugs, this study is aimed to evaluate the antibacterial activity of Allium sativum extracts and their interactions with selected antibiotics against drug-sensitive and multidrug-resistant isolates of emerging bacterial pathogens that are frequently found in healthcare settings. As shown by the in vitro data obtained in this study, the whole Allium sativum extract inhibited the growth of a broad range of bacteria, including multidrug-resistant strains with bactericidal or bacteriostatic effects. Depending on the organism, the susceptibility to fresh garlic extract was comparable to the conventional antibiotic gentamycin. Since the combinations of fresh garlic extract with gentamycin and ciprofloxacin inhibited both the drug sensitive and MDR bacteria, in most cases showing a synergistic or insignificant relationship, the potential use of such combinations may be beneficial, especially in inhibiting drug-resistant pathogens. The study results indicate the possibility of using garlic as e.g. a supplement used during antibiotic therapy, which may increase the effectiveness of gentamicin and ciprofloxacin.
Collapse
Affiliation(s)
- Agnieszka Magryś
- Chair and Department of Medical Microbiology, Medical University of Lublin, Chodźki 1 Street, (Collegium Universum), 20-093, Lublin, Poland.
| | - Alina Olender
- Chair and Department of Medical Microbiology, Medical University of Lublin, Chodźki 1 Street, (Collegium Universum), 20-093, Lublin, Poland
| | - Dorota Tchórzewska
- Department of Cell Biology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033, Lublin, Poland.
| |
Collapse
|
33
|
Allicin, the Odor of Freshly Crushed Garlic: A Review of Recent Progress in Understanding Allicin's Effects on Cells. Molecules 2021; 26:molecules26061505. [PMID: 33801955 PMCID: PMC8001868 DOI: 10.3390/molecules26061505] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
The volatile organic sulfur compound allicin (diallyl thiosulfinate) is produced as a defense substance when garlic (Allium sativum) tissues are damaged, for example by the activities of pathogens or pests. Allicin gives crushed garlic its characteristic odor, is membrane permeable and readily taken up by exposed cells. It is a reactive thiol-trapping sulfur compound that S-thioallylates accessible cysteine residues in proteins and low molecular weight thiols including the cellular redox buffer glutathione (GSH) in eukaryotes and Gram-negative bacteria, as well as bacillithiol (BSH) in Gram-positive firmicutes. Allicin shows dose-dependent antimicrobial activity. At higher doses in eukaryotes allicin can induce apoptosis or necrosis, whereas lower, biocompatible amounts can modulate the activity of redox-sensitive proteins and affect cellular signaling. This review summarizes our current knowledge of how bacterial and eukaryotic cells are specifically affected by, and respond to, allicin.
Collapse
|
34
|
Gaballa A, Su TT, Helmann JD. The Bacillus subtilis monothiol bacilliredoxin BrxC (YtxJ) and the Bdr (YpdA) disulfide reductase reduce S-bacillithiolated proteins. Redox Biol 2021; 42:101935. [PMID: 33722570 PMCID: PMC8113031 DOI: 10.1016/j.redox.2021.101935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/30/2021] [Accepted: 03/02/2021] [Indexed: 12/03/2022] Open
Abstract
The bacterial cytosol is generally a reducing environment with protein cysteine residues maintained in their thiol form. The low molecular weight thiol bacillithiol (BSH) serves as a general thiol reductant, analogous to glutathione, in a wide range of bacterial species. Proteins modified by disulfide bond formation with BSH (S-bacillithiolation) are reduced by the action of bacilliredoxins, BrxA and BrxB. Here, the YtxJ protein is identified as a monothiol bacilliredoxin, renamed BrxC, and is implicated in BSH removal from oxidized cytosolic proteins, including the glyceraldehyde 3-phosphate dehydrogenases GapA and GapB. BrxC can also debacillithiolate the mixed disulfide form of the bacilliredoxin BrxB. Bdr is a thioredoxin reductase-like flavoprotein with bacillithiol-disulfide (BSSB) reductase activity. Here, Bdr is shown to additionally function as a bacilliredoxin reductase. Bdr and BrxB function cooperatively to debacillithiolate OhrR, a transcription factor regulated by S-bacillithiolation on its sole cysteine residue. Collectively, these results expand our understanding of the BSH redox network comprised of three bacilliredoxins and a BSSB reductase that serve to counter the widespread protein S-bacillithiolation that results from conditions of disulfide stress. Bacillithiol is the major low molecular weight thiol in Bacillus subtilis. Oxidative stress leads to protein S-bacillithiolation. BrxC functions as a monothiol class bacilliredoxin. The Bdr bacillithiol disulfide reductase is also a bacilliredoxin.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| | - Tina Tianjiao Su
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
35
|
Tran HT, Bonilla CY. SigB-regulated antioxidant functions in gram‐positive bacteria. World J Microbiol Biotechnol 2021; 37:38. [DOI: 10.1007/s11274-021-03004-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
|
36
|
Fritsch VN, Loi VV, Busche T, Tung QN, Lill R, Horvatek P, Wolz C, Kalinowski J, Antelmann H. The alarmone (p)ppGpp confers tolerance to oxidative stress during the stationary phase by maintenance of redox and iron homeostasis in Staphylococcus aureus. Free Radic Biol Med 2020; 161:351-364. [PMID: 33144262 PMCID: PMC7754856 DOI: 10.1016/j.freeradbiomed.2020.10.322] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Slow growing stationary phase bacteria are often tolerant to multiple stressors and antimicrobials. Here, we show that the pathogen Staphylococcus aureus develops a non-specific tolerance towards oxidative stress during the stationary phase, which is mediated by the nucleotide second messenger (p)ppGpp. The (p)ppGpp0 mutant was highly susceptible to HOCl stress during the stationary phase. Transcriptome analysis of the (p)ppGpp0 mutant revealed an increased expression of the PerR, SigB, QsrR, CtsR and HrcA regulons during the stationary phase, indicating an oxidative stress response. The (p)ppGpp0 mutant showed a slight oxidative shift in the bacillithiol (BSH) redox potential (EBSH) and an impaired H2O2 detoxification due to higher endogenous ROS levels. The increased ROS levels in the (p)ppGpp0 mutant were shown to be caused by higher respiratory chain activity and elevated total and free iron levels. Consistent with these results, N-acetyl cysteine and the iron-chelator dipyridyl improved the growth and survival of the (p)ppGpp0 mutant under oxidative stress. Elevated free iron levels caused 8 to 31-fold increased transcription of Fe-storage proteins ferritin (ftnA) and miniferritin (dps) in the (p)ppGpp0 mutant, while Fur-regulated uptake systems for iron, heme or siderophores (efeOBU, isdABCDEFG, sirABC and sstADBCD) were repressed. Finally, the susceptibility of the (p)ppGpp0 mutant towards the bactericidal action of the antibiotics ciprofloxacin and tetracycline was abrogated with N-acetyl cysteine and dipyridyl. Taken together, (p)ppGpp confers tolerance to ROS and antibiotics by down-regulation of respiratory chain activity and free iron levels, lowering ROS formation to ensure redox homeostasis in S. aureus.
Collapse
Affiliation(s)
- Verena Nadin Fritsch
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Tobias Busche
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany; Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Quach Ngoc Tung
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Roland Lill
- Institute of Cytobiology, Philipps-University of Marburg, D-35037, Marburg, Germany; Research Center for Synthetic Microbiology SynMikro, Hans-Meerwein-Str., D-35043, Marburg, Germany
| | - Petra Horvatek
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076, Tübingen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany.
| |
Collapse
|
37
|
Linzner N, Loi VV, Fritsch VN, Antelmann H. Thiol-based redox switches in the major pathogen Staphylococcus aureus. Biol Chem 2020; 402:333-361. [PMID: 33544504 DOI: 10.1515/hsz-2020-0272] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus is a major human pathogen, which encounters reactive oxygen, nitrogen, chlorine, electrophile and sulfur species (ROS, RNS, RCS, RES and RSS) by the host immune system, during cellular metabolism or antibiotics treatments. To defend against redox active species and antibiotics, S. aureus is equipped with redox sensing regulators that often use thiol switches to control the expression of specific detoxification pathways. In addition, the maintenance of the redox balance is crucial for survival of S. aureus under redox stress during infections, which is accomplished by the low molecular weight (LMW) thiol bacillithiol (BSH) and the associated bacilliredoxin (Brx)/BSH/bacillithiol disulfide reductase (YpdA)/NADPH pathway. Here, we present an overview of thiol-based redox sensors, its associated enzymatic detoxification systems and BSH-related regulatory mechanisms in S. aureus, which are important for the defense under redox stress conditions. Application of the novel Brx-roGFP2 biosensor provides new insights on the impact of these systems on the BSH redox potential. These thiol switches of S. aureus function in protection against redox active desinfectants and antimicrobials, including HOCl, the AGXX® antimicrobial surface coating, allicin from garlic and the naphthoquinone lapachol. Thus, thiol switches could be novel drug targets for the development of alternative redox-based therapies to combat multi-drug resistant S. aureus isolates.
Collapse
Affiliation(s)
- Nico Linzner
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| |
Collapse
|
38
|
Prieto JM, Rapún-Araiz B, Gil C, Penadés JR, Lasa I, Latasa C. Inhibiting the two-component system GraXRS with verteporfin to combat Staphylococcus aureus infections. Sci Rep 2020; 10:17939. [PMID: 33087792 PMCID: PMC7577973 DOI: 10.1038/s41598-020-74873-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/21/2020] [Indexed: 12/27/2022] Open
Abstract
Infections caused by Staphylococcus aureus pose a serious and sometimes fatal health issue. With the aim of exploring a novel therapeutic approach, we chose GraXRS, a Two-Component System (TCS) that determines bacterial resilience against host innate immune barriers, as an alternative target to disarm S. aureus. Following a drug repurposing methodology, and taking advantage of a singular staphylococcal strain that lacks the whole TCS machinery but the target one, we screened 1.280 off-patent FDA-approved drug for GraXRS inhibition. Reinforcing the connection between this signaling pathway and redox sensing, we found that antioxidant and redox-active molecules were capable of reducing the expression of the GraXRS regulon. Among all the compounds, verteporfin (VER) was really efficient in enhancing PMN-mediated bacterial killing, while topical administration of such drug in a murine model of surgical wound infection significantly reduced the bacterial load. Experiments relying on the chemical mimicry existing between VER and heme group suggest that redox active residue C227 of GraS participates in the inhibition exerted by this FDA-approved drug. Based on these results, we propose VER as a promising candidate for sensitizing S. aureus that could be helpful to combat persistent or antibiotic-resistant infections.
Collapse
Affiliation(s)
| | - Beatriz Rapún-Araiz
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IDISNA, 31008, Pamplona, Spain
| | - Carmen Gil
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IDISNA, 31008, Pamplona, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IDISNA, 31008, Pamplona, Spain
| | - Cristina Latasa
- RECOMBINA SL, Calle Nueva, 8 local 10, Mutilva 31192, Navarra, Spain.
| |
Collapse
|
39
|
Mourenza Á, Gil JA, Mateos LM, Letek M. Alternative Anti-Infective Treatments to Traditional Antibiotherapy against Staphylococcal Veterinary Pathogens. Antibiotics (Basel) 2020; 9:antibiotics9100702. [PMID: 33076497 PMCID: PMC7602553 DOI: 10.3390/antibiotics9100702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
The genus Staphylococcus encompasses many species that may be pathogenic to both humans and farm animals. These bacteria have the potential to acquire multiple resistant traits to the antimicrobials currently used in the veterinary or medical settings. These pathogens may commonly cause zoonoses, and the infections they cause are becoming difficult to treat due to antimicrobial resistance. Therefore, the development of novel alternative treatments to traditional antibiotherapy has gained interest in recent years. Here, we reviewed the most promising therapeutic strategies developed to control staphylococcal infections in the veterinary field to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
| | - José A. Gil
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Luis M. Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
- Correspondence: (L.M.M.); (M.L.)
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
- Correspondence: (L.M.M.); (M.L.)
| |
Collapse
|
40
|
Linzner N, Fritsch VN, Busche T, Tung QN, Loi VV, Bernhardt J, Kalinowski J, Antelmann H. The plant-derived naphthoquinone lapachol causes an oxidative stress response in Staphylococcus aureus. Free Radic Biol Med 2020; 158:126-136. [PMID: 32712193 DOI: 10.1016/j.freeradbiomed.2020.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/28/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a major human pathogen, which causes life-threatening systemic and chronic infections and rapidly acquires resistance to multiple antibiotics. Thus, new antimicrobial compounds are required to combat infections with drug resistant S. aureus isolates. The 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone lapachol was previously shown to exert antimicrobial effects. In this study, we investigated the antimicrobial mode of action of lapachol in S. aureus using RNAseq transcriptomics, redox biosensor measurements, S-bacillithiolation assays and phenotype analyses of mutants. In the RNA-seq transcriptome, lapachol caused an oxidative and quinone stress response as well as protein damage as revealed by induction of the PerR, HypR, QsrR, MhqR, CtsR and HrcA regulons. Lapachol treatment further resulted in up-regulation of the SigB and GraRS regulons, which is indicative for cell wall and general stress responses. The redox-cycling mode of action of lapachol was supported by an elevated bacillithiol (BSH) redox potential (EBSH), higher endogenous ROS levels, a faster H2O2 detoxification capacity and increased thiol-oxidation of GapDH and the HypR repressor in vivo. The ROS scavenger N-acetyl cysteine and microaerophilic growth conditions improved the survival of lapachol-treated S. aureus cells. Phenotype analyses revealed an involvement of the catalase KatA and the Brx/BSH/YpdA pathway in protection against lapachol-induced ROS-formation in S. aureus. However, no evidence for irreversible protein alkylation and aggregation was found in lapachol-treated S. aureus cells. Thus, the antimicrobial mode of action of lapachol in S. aureus is mainly caused by ROS formation resulting in an oxidative stress response, an oxidative shift of the EBSH and increased protein thiol-oxidation. As ROS-generating compound, lapachol is an attractive alternative antimicrobial to combat multi-resistant S. aureus isolates.
Collapse
Affiliation(s)
- Nico Linzner
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany
| | - Tobias Busche
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany; Center for Biotechnology, University Bielefeld, 33615, Bielefeld, Germany
| | - Quach Ngoc Tung
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, University Bielefeld, 33615, Bielefeld, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany.
| |
Collapse
|
41
|
Dickerhof N, Paton L, Kettle AJ. Oxidation of bacillithiol by myeloperoxidase-derived oxidants. Free Radic Biol Med 2020; 158:74-83. [PMID: 32629107 DOI: 10.1016/j.freeradbiomed.2020.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
Bacillithiol is a major low-molecular-weight thiol in gram-positive firmicutes including the human pathogen Staphylococcus aureus. Bacillithiol is regarded as an important defence mechanism against oxidants produced by the immune system, especially myeloperoxidase-derived hypochlorous acid (HOCl). However, it is unknown how fast BSH reacts with HOCl and what products are formed in the reaction. In the present study, we used sensitive MRM-based LC-MS methods to characterize the reaction of BSH with HOCl in cell-free solutions and in S. aureus. In the cell-free system, BSH formed predominantly the disulfide dimer (BSSB) at low mole ratios of HOCl and the sulfinic and sulfonic acids at higher oxidant concentrations. HOCl also promoted the formation of bacillithiol sulfonamide. In S. aureus, the oxidation pattern was similar except that a small proportion of BSH also formed mixed disulfides with protein thiols. Using competition with methionine, we determined the second-order rate constant for the reaction of HOCl with BSH to be 6 × 107 M-1s-1, which indicated a fast, near diffusion-controlled reaction. Other reactive halogen species, including hypothiocyanous acid (HOSCN), also produced bacillithiol sulfonamide, albeit to a smaller extent than HOCl. The sulfonamide was not produced by hydrogen peroxide, which instead formed BSSB. This study helps our understanding of BSH redox biology and provides tools for gauging the exposure of BSH-producing bacteria to oxidative stress.
Collapse
Affiliation(s)
- Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.
| | - Louise Paton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
42
|
Ray A, Edmonds KA, Palmer LD, Skaar EP, Giedroc DP. Staphylococcus aureus Glucose-Induced Biofilm Accessory Protein A (GbaA) Is a Monothiol-Dependent Electrophile Sensor. Biochemistry 2020; 59:2882-2895. [PMID: 32697076 DOI: 10.1021/acs.biochem.0c00347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a commensal pathogen that has evolved to protect itself from unfavorable conditions by forming complex community structures termed biofilms. The regulation of the formation of these structures is multifactorial and in S. aureus involves a number of transcriptional regulators. GbaA (glucose-induced biofilm accessory protein A) is a tetracycline repressor (TetR) family regulator that harbors two conserved Cys residues (C55 and C104) and impacts the regulation of formation of poly-N-acetylglucosamine-based biofilms in many methicillin-resistant S. aureus (MRSA) strains. Here, we show that GbaA-regulated transcription of a divergently transcribed operon in a MRSA strain can be induced by potent electrophiles, N-ethylmaleimide and methylglyoxal. Strikingly, induction of transcription in cells requires C55 or C104, but not both. These findings are consistent with in vitro small-angle X-ray scattering, chemical modification, and DNA operator binding experiments, which reveal that both reduced and intraprotomer (C55-C104) disulfide forms of GbaA have very similar overall structures and each exhibits a high affinity for the DNA operator, while DNA binding is strongly inhibited by derivatization of one or the other Cys residues via formation of a mixed disulfide with bacillithiol disulfide or a monothiol derivatization adduct with NEM. While both Cys residues are reactive toward electrophiles, C104 in the regulatory domain is the more reactive thiolate. These characteristics enhance the inducer specificity of GbaA and would preclude sensing of generalized cellular oxidative stress via disulfide bond formation. The implications of the findings for GbaA function in MRSA strains are discussed.
Collapse
Affiliation(s)
- Abhinaba Ray
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Lauren D Palmer
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
43
|
Borlinghaus J, Bolger A, Schier C, Vogel A, Usadel B, Gruhlke MC, Slusarenko AJ. Genetic and molecular characterization of multicomponent resistance of Pseudomonas against allicin. Life Sci Alliance 2020; 3:e202000670. [PMID: 32234751 PMCID: PMC7119367 DOI: 10.26508/lsa.202000670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/05/2023] Open
Abstract
The common foodstuff garlic produces the potent antibiotic defense substance allicin after tissue damage. Allicin is a redox toxin that oxidizes glutathione and cellular proteins and makes garlic a highly hostile environment for non-adapted microbes. Genomic clones from a highly allicin-resistant Pseudomonas fluorescens (PfAR-1), which was isolated from garlic, conferred allicin resistance to Pseudomonas syringae and even to Escherichia coli Resistance-conferring genes had redox-related functions and were on core fragments from three similar genomic islands identified by sequencing and in silico analysis. Transposon mutagenesis and overexpression analyses revealed the contribution of individual candidate genes to allicin resistance. Taken together, our data define a multicomponent resistance mechanism against allicin in PfAR-1, achieved through horizontal gene transfer.
Collapse
Affiliation(s)
- Jan Borlinghaus
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Anthony Bolger
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Christina Schier
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Alexander Vogel
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Björn Usadel
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Martin Ch Gruhlke
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Alan J Slusarenko
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| |
Collapse
|
44
|
Mourenza Á, Gil JA, Mateos LM, Letek M. Oxidative Stress-Generating Antimicrobials, a Novel Strategy to Overcome Antibacterial Resistance. Antioxidants (Basel) 2020; 9:antiox9050361. [PMID: 32357394 PMCID: PMC7278815 DOI: 10.3390/antiox9050361] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance is becoming one of the most important human health issues. Accordingly, the research focused on finding new antibiotherapeutic strategies is again becoming a priority for governments and major funding bodies. The development of treatments based on the generation of oxidative stress with the aim to disrupt the redox defenses of bacterial pathogens is an important strategy that has gained interest in recent years. This approach is allowing the identification of antimicrobials with repurposing potential that could be part of combinatorial chemotherapies designed to treat infections caused by recalcitrant bacterial pathogens. In addition, there have been important advances in the identification of novel plant and bacterial secondary metabolites that may generate oxidative stress as part of their antibacterial mechanism of action. Here, we revised the current status of this emerging field, focusing in particular on novel oxidative stress-generating compounds with the potential to treat infections caused by intracellular bacterial pathogens.
Collapse
|
45
|
Method for measurement of bacillithiol redox potential changes using the Brx-roGFP2 redox biosensor in Staphylococcus aureus. MethodsX 2020; 7:100900. [PMID: 32420048 PMCID: PMC7214941 DOI: 10.1016/j.mex.2020.100900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the design of genetically encoded redox biosensors, such as redox-sensitive GFP (roGFP) have facilitated the real-time imaging of the intracellular redox potential in eukaryotic cells at high sensitivity and at spatiotemporal resolution. To increase the specificity of roGFP2 for the interaction with the glutathione (GSH)/ glutathione disulfide (GSSG) redox couple, roGFP2 has been fused to glutaredoxin (Grx) to construct the Grx-roGFP2 biosensor. We have previously designed the related Brx-roGFP2 redox biosensor for dynamic measurement of the bacillithiol redox potential (EBSH) in the human pathogen Staphylococcus aureus. Here, we describe the detailed method for measurements of the oxidation degree (OxD) of the Brx-roGFP2 biosensor in S. aureus using the microplate reader. In particularly, we provide details for determination of the EBSH changes during the growth and after oxidative stress. For future biosensor applications at the single cell level, we recommend the design of genome-encoded roGFP2 biosensors enabling stable expression and fluorescence in bacteria.Brx-roGFP2 is specific for measurements of the bacillithiol redox potential in Staphylococcus aureus cells Control samples for fully reduced and oxidized states of Brx-roGFP2 are required for calibration during OxD measurements Easy to measure fluorescence excitation intensities at the 405 and 488 nm excitation maxima using microplate readers
Collapse
|
46
|
Abstract
With the increasing use of joint replacement surgery, the prevalence of periprosthetic joint infections (PJI) has also increased. However, treating PJI has become a challenge for orthopaedic surgeons because of the prevalence of multi-drug resistant (MDR) bacteria and the formation of protective biofilms. Numerous studies have shown that garlic extract (GE) has antibacterial activities and might be a good candidate for PJI treatment. This review explores the antibacterial and antibiofilm activities of GE and its potential to be used in the treatment of PJI.
Collapse
Affiliation(s)
- Xing-Yang Zhu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.,Department of Orthopaedics, Yichuan People's Hospital, Luoyang, Henan Province, China
| | - Yi-Rong Zeng
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
47
|
Altered redox status, DNA damage and modulation of L-tryptophan metabolism contribute to antimicrobial action of curcumin. Heliyon 2020; 6:e03495. [PMID: 32154425 PMCID: PMC7057199 DOI: 10.1016/j.heliyon.2020.e03495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/09/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
Identification and development of newer and better antimicrobials from natural products represent ongoing research efforts by many investigators. Curcumin is a polyphenol commonly found in the plant Curcuma longa (better known as turmeric). It has been reported to possess several bioactivities including antioxidant, anti-cancer, anti-inflammatory, anti-diabetic, anti-fibrotic, and antimicrobial properties. However, little is known about the antimicrobial mode of action of curcumin, thus undermining its prospects as an alternative antimicrobial agent. In this study, we investigated the mechanism of antimicrobial action by curcumin. The mechanism of inhibition was evaluated in representatives of Gram negative (Escherichia coli) and Gram positive (Staphylococcus aureus) bacteria isolates, treated with either curcumin singly or in combination with ascorbic acid (1000 μg/mL). Results showed that curcumin has broad antimicrobial capacity. In addition, curcumin only and/or co-treatment with ascorbic acid caused lipid peroxidation in S. aureus and E. coli, and by extension led to DNA damage, indicative of oxidative stress. It is plausible that the oxidative might be related to the activation of the kynurenine pathway in S. aureus but not in E. coli. Furthermore, curcumin exposure led to elevated total antioxidant capacity (TAC) and level of total thiol, but decreased nitric oxide level in the bacteria isolates. Together, the findings suggest that oxidative stress and DNA damage might be partly responsible for the antimicrobial action of curcumin.
Collapse
|
48
|
El Shazely B, Yu G, Johnston PR, Rolff J. Resistance Evolution Against Antimicrobial Peptides in Staphylococcus aureus Alters Pharmacodynamics Beyond the MIC. Front Microbiol 2020; 11:103. [PMID: 32117132 PMCID: PMC7033599 DOI: 10.3389/fmicb.2020.00103] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/17/2020] [Indexed: 12/03/2022] Open
Abstract
Antimicrobial peptides (AMPs) have been proposed as a promising class of new antimicrobials partly because they are less susceptible to bacterial resistance evolution. This is possibly caused by their mode of action but also by their pharmacodynamic characteristics, which differ significantly from conventional antibiotics. Although pharmacodynamics of antibiotic resistant strains have been studied, such data are lacking for AMP resistant strains. Here, we investigated if the pharmacodynamics of the Gram-positive human pathogen Staphylococcous aureus evolve under antimicrobial peptide selection. Interestingly, the Hill coefficient (kappa κ) evolves together with the minimum inhibition concentration (MIC). Except for one genotype, strains harboring mutations in menF and atl, all mutants had higher kappa than the non-selected sensitive controls. Higher κ results in steeper pharmacodynamic curve and, importantly, in a narrower mutant selection window. S. aureus selected for resistance to melittin displayed cross resistant against pexiganan and had as steep pharmacodynamic curves (high κ) as pexiganan-selected lines. By contrast, the pexiganan-sensitive tenecin-selected lines displayed lower κ. Taken together, our data demonstrate that pharmacodynamic parameters are not fixed traits of particular drug/strain interactions but actually evolve under drug treatment. The contribution of factors such as κ and the maximum and minimum growth rates on the dynamics and probability of resistance evolution are open questions that require urgent attention.
Collapse
Affiliation(s)
- Baydaa El Shazely
- Evolutionary Biology, Institute for Biology, Free University of Berlin, Berlin, Germany.,Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Guozhi Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Paul R Johnston
- Evolutionary Biology, Institute for Biology, Free University of Berlin, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Free University of Berlin, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| |
Collapse
|
49
|
Reiter J, Borlinghaus J, Dörner P, Schröder W, Gruhlke MC, Klaas M, Slusarenko AJ. Investigation of the deposition behaviour and antibacterial effectivity of allicin aerosols and vapour using a lung model. Exp Ther Med 2020; 19:1541-1549. [PMID: 32010336 PMCID: PMC6966168 DOI: 10.3892/etm.2019.8387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022] Open
Abstract
Allicin is a natural antibiotic produced by garlic as a defence against pathogens and pests. Due to the worldwide increase in antibiotic resistance, new antibiotics are desperately required. Allicin is such a candidate and is active against several multidrug-resistant (MDR) strains of human pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). When administered orally, allicin is titrated out by glutathione in the cells and blood, and effective therapeutic concentrations are difficult to achieve at the site of an infection. However, in the case of lung infections, allicin can be delivered directly to pathogens via the pulmonary route. In this study, we designed and constructed an in vitro lung test rig, which allowed us to model accurately the exposure of lung air-passage surfaces to allicin and gentamicin, in order to examine the feasibility of combating lung infections by direct inhalation. A prototype test rig of lung bronchi with three bifurcations was constructed, which could be coated internally with a thin layer of bacteria-seeded agar medium. The deposition of antimicrobial aerosols on the modelled bronchial surfaces was followed in preliminary tests without the need for animal experiments. The differential sensitivity of the test bacteria to different antibiotics and the dose-dependency of inhibition was shown using the model. Furthermore, a synergistic effect of allicin vapour and ethanol in inhibiting bacterial growth was demonstrated. The modelling of the axial velocity air-flow distribution correlated with the regions indicating the inhibition of bacterial growth, demonstrating that the model has predictive value and can reduce the requirement for animal sacrifice in pre-clinical trials of novel antibiotics.
Collapse
Affiliation(s)
- Jana Reiter
- Department of Plant Physiology (Bio3), RWTH Aachen University, D-52074 Aachen, Germany
| | - Jan Borlinghaus
- Department of Plant Physiology (Bio3), RWTH Aachen University, D-52074 Aachen, Germany
| | - Philipp Dörner
- Institute of Aerodynamics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Wolfgang Schröder
- Institute of Aerodynamics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Martin C.H. Gruhlke
- Department of Plant Physiology (Bio3), RWTH Aachen University, D-52074 Aachen, Germany
| | - Michael Klaas
- Institute of Aerodynamics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Alan J. Slusarenko
- Department of Plant Physiology (Bio3), RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
50
|
Nakamoto M, Kunimura K, Suzuki JI, Kodera Y. Antimicrobial properties of hydrophobic compounds in garlic: Allicin, vinyldithiin, ajoene and diallyl polysulfides. Exp Ther Med 2020; 19:1550-1553. [PMID: 32010337 PMCID: PMC6966194 DOI: 10.3892/etm.2019.8388] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/26/2019] [Indexed: 11/18/2022] Open
Abstract
Allium plants, such as garlic, onion and leek have long been known to be effective in the therapy of infectious diseases. In particular, garlic has a greater antimicrobial activity than other Allium plants as it contains several hydrophobic antimicrobial compounds, such as allicin, vinyldithiins, ajoenes and diallyl polysulfides. Allicin is a characteristic sulfur-containing compound found in raw garlic produced from alliin and exhibits antimicrobial activity against both Gram-positive and Gram-negative bacteria. In addition, allicin has been reported to inhibit the biofilm formation of bacteria, which is a major cause of bacterial resistance to the antibiotic treatment of infections, by regulating quorum sensing in microorganisms. Other hydrophobic compounds also have similar inhibitory effects on bacteria as allicin. These biological properties of garlic-derived hydrophobic compounds can be used to enhance the effects of existing drugs and may thus be used in the treatment of infections, such as by preventing drug resistance through the inhibition of biofilm formation. In this review, we summarize the effects of hydrophobic compounds of garlic on bacteria.
Collapse
Affiliation(s)
- Masato Nakamoto
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata-shi, Hiroshima 739-1195, Japan
| | - Kayo Kunimura
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata-shi, Hiroshima 739-1195, Japan
| | - Jun-Ichiro Suzuki
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata-shi, Hiroshima 739-1195, Japan
| | - Yukihiro Kodera
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata-shi, Hiroshima 739-1195, Japan
| |
Collapse
|