1
|
Glans H, Matos GM, Bradley M, Downing T, Andersson B. Genetic coping mechanisms observed in Leishmania tropica, from the Middle East region, enhance the survival of the parasite after drug exposure. PLoS One 2024; 19:e0310821. [PMID: 39625894 PMCID: PMC11614225 DOI: 10.1371/journal.pone.0310821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/07/2024] [Indexed: 12/06/2024] Open
Abstract
INTRODUCTION Cutaneous leishmaniasis caused by L. tropica is common in the Middle East and treatment failure and drug resistance are known to occur. Several genetic mechanisms: aneuploidy, recombination and loss of heterozygosity, single nucleotide polymorphism (SNP) changes, copy number variation (CNV), and mutation of the H locus associated with drug resistance have been described. MATERIALS AND METHODS We studied SNP and CNV patterns in 22 isolates of L. tropica from Afghanistan, Iran and Syria in a geographic, phylogenetic and antimony exposure context. RESULTS A high SNP frequency was observed in isolates from Syria on chromosome 23, including the H locus, linked to different ancestry at that chromosome segment. Among the isolates from Afghanistan and Iran, an elevated frequency of nonsynonymous SNPs was observed on several chromosomes. Changes in CNV patterns were seen in isolates exposed to drug pressure, especially for the ferric iron reductase gene. Expanded genes were categorised into five functional categories: translational elongation, mitochondrial transmembrane transport, positive regulation of cellular component organisation, response to stimulus and response to hypoxia. No CNV was identified at the H locus, the MAPK1 gene, the APQ1 gene, nor chromosomes 23, 31 or 36 regardless of previous antimonial exposure. DISCUSSION In our study, Leishmania tropica had a jump in the nonsynonymous SNP rates at chromosome 23, including the H locus. CNV was observed among isolates exposed to antimonials, especially involving the gene encoding a ferric iron reductase. Several essential genetic coping mechanisms in the cell were enhanced when exposed to antimony, possibly for the survival of the parasite. Our work supports the perspective that Leishmania uses several mechanisms to adapt to environmental changes and drug exposure.
Collapse
Affiliation(s)
- Hedvig Glans
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Dermatology and Venerology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Gabriel M. Matos
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Bradley
- Division of Dermatology and Venerology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
- The Pirbright Institute, Woking, United Kingdom
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Oliveira TKF, Oliveira-Silva J, Linhares-Lacerda L, da Silva Fraga-Junior V, Benjamim CF, Guimaraes-Costa AB, Saraiva EM. Leishmania infantum Axenic Amastigotes Induce Human Neutrophil Extracellular Traps and Resist NET-Mediated Killing. Trop Med Infect Dis 2023; 8:336. [PMID: 37505632 PMCID: PMC10385766 DOI: 10.3390/tropicalmed8070336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/29/2023] Open
Abstract
Neutrophils are multifaceted cells that, upon activation, release meshes of chromatin associated with different proteins, known as neutrophil extracellular traps (NETs). Leishmania amazonensis promastigotes and amastigotes induce NET release, and we have identified the signaling pathways involved in NET extrusion activated by promastigotes. Amastigotes maintain the infection in vertebrate hosts, and we have shown the association of NETs with amastigotes in human biopsies of cutaneous leishmaniasis. However, the interaction of amastigotes and neutrophils remains poorly understood. Our study aimed to characterize the pathways involved in the formation of NETs induced by axenic amastigotes from L. infantum, the causal agent of visceral leishmaniasis. Human neutrophils pretreated with signaling pathway inhibitors were incubated with amastigotes, and NET release was quantified in the culture supernatant. Amastigote viability was checked after incubation with NETs. We found that the release of NETs by neutrophils stimulated with these amastigotes requires the participation of elastase and peptidyl arginine deaminase and the involvement of PI3K, ROS, and calcium. Moreover, amastigotes are not susceptible to NET-mediated killing. Altogether, these findings improve our comprehension of the signaling pathways implicated in the interaction between amastigotes and human neutrophils.
Collapse
Affiliation(s)
- Thamara K F Oliveira
- Laboratório de Imunologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jullyanna Oliveira-Silva
- Laboratório de Imunologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leandra Linhares-Lacerda
- Laboratório de Imunologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Vanderlei da Silva Fraga-Junior
- Laboratório de Imunologia Molecular e Celular, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Claudia F Benjamim
- Laboratório de Imunologia Molecular e Celular, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Anderson B Guimaraes-Costa
- Laboratório de Imunologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Elvira M Saraiva
- Laboratório de Imunologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
3
|
López-Arencibia A, Sifaoui I, Reyes-Batlle M, Bethencourt-Estrella CJ, San Nicolás-Hernández D, Lorenzo-Morales J, Piñero JE. Discovery of New Chemical Tools against Leishmania amazonensis via the MMV Pathogen Box. Pharmaceuticals (Basel) 2021; 14:1219. [PMID: 34959620 PMCID: PMC8708704 DOI: 10.3390/ph14121219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
The protozoan parasite Leishmania causes a spectrum of diseases and there are over 1 million infections each year. Current treatments are toxic, expensive, and difficult to administer, and resistance to them is emerging. In this study, we screened the antileishmanial activity of the Pathogen Box compounds from the Medicine for Malaria Venture against Leishmania amazonensis, and compared their structures and cytotoxicity. The compounds MMV676388 (3), MMV690103 (5), MMV022029 (7), MMV022478 (9) and MMV021013 (10) exerted a significant dose-dependent inhibition effect on the proliferation of L. amazonensis promastigotes and intracellular amastigotes. Moreover, studies on the mechanism of cell death showed that compounds 3 and 5 induced an apoptotic process while the compounds 7, 9 and 10 seem to induce an autophagic mechanism. The present findings underline the potential of these five molecules as novel therapeutic leishmanicidal agents.
Collapse
Affiliation(s)
- Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Campus de Anchieta, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (I.S.); (M.R.-B.); (C.J.B.-E.); (D.S.N.-H.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), 28006 Madrid, Spain
- Consorcio Centro de Investigacion Biomedica en Red M.P. (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Campus de Anchieta, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (I.S.); (M.R.-B.); (C.J.B.-E.); (D.S.N.-H.); (J.E.P.)
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), 28006 Madrid, Spain
- Consorcio Centro de Investigacion Biomedica en Red M.P. (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Campus de Anchieta, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (I.S.); (M.R.-B.); (C.J.B.-E.); (D.S.N.-H.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), 28006 Madrid, Spain
- Consorcio Centro de Investigacion Biomedica en Red M.P. (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - Carlos J. Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Campus de Anchieta, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (I.S.); (M.R.-B.); (C.J.B.-E.); (D.S.N.-H.); (J.E.P.)
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), 28006 Madrid, Spain
- Consorcio Centro de Investigacion Biomedica en Red M.P. (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Campus de Anchieta, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (I.S.); (M.R.-B.); (C.J.B.-E.); (D.S.N.-H.); (J.E.P.)
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), 28006 Madrid, Spain
- Consorcio Centro de Investigacion Biomedica en Red M.P. (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Campus de Anchieta, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (I.S.); (M.R.-B.); (C.J.B.-E.); (D.S.N.-H.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), 28006 Madrid, Spain
- Consorcio Centro de Investigacion Biomedica en Red M.P. (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Campus de Anchieta, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (I.S.); (M.R.-B.); (C.J.B.-E.); (D.S.N.-H.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), 28006 Madrid, Spain
- Consorcio Centro de Investigacion Biomedica en Red M.P. (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28006 Madrid, Spain
| |
Collapse
|
4
|
Zilberstein D, Myler PJ. Arginine sensing in intracellular parasitism of Leishmania. Curr Opin Microbiol 2021; 64:41-46. [PMID: 34592588 DOI: 10.1016/j.mib.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022]
Abstract
Protozoa of the genus Leishmania are intracellular parasites that cause human leishmaniasis, a disease spread mostly in the tropics and subtropics. Leishmania cycle between the midgut of female sand flies and phagolysosome of mammalian macrophages. During their life cycle they constantly encounter changing nutritional environments. To monitor the external concentration of essential nutrients, the invading parasites employ sensors that report on the availability of these nutrients; but to-date only a few sensing pathways have been identified in Leishmania. This review focuses on the Arginine Deprivation Response, which both extracellular and intracellular Leishmania utilize to monitor environmental arginine and adjust their arginine transporter (AAP3) levels accordingly.
Collapse
Affiliation(s)
- Dan Zilberstein
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Peter J Myler
- Departments of Pediatrics, Biomedical Informatics & Medical Education, and Global Health, University of Washington, Seattle, WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Ave N, Seattle, WA 98109-5219, USA; Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, USA
| |
Collapse
|
5
|
Metabolic stringent response in intracellular stages of Leishmania. Curr Opin Microbiol 2021; 63:126-132. [PMID: 34340099 DOI: 10.1016/j.mib.2021.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022]
Abstract
Leishmania are unusual in being able to survive long-term in the mature phagolysosome compartment of macrophages and other phagocytic cells in their mammalian hosts. Key to their survival in this niche, Leishmania amastigotes switch to a slow growth state and activate a stringent metabolic response. The stringent metabolic response may be triggered by multiple stresses and is associated with decreased metabolic fluxes, restricted use of sugars and fatty acids as carbon sources and increased dependence on metabolic homeostasis pathways. Heterogeneity in expression of the Leishmania stringent response occurs in vivo reflects temporal and spatial heterogeneity in lesion tissues and includes non-dividing dormant stages. This response underpins the capacity of these parasites to maintain long-term chronic infections and survive drug treatments.
Collapse
|
6
|
Zilberstein D. Lysosome Sensing Is a Key Mechanism in Leishmania Intracellular Development. Front Microbiol 2021; 12:667807. [PMID: 34025623 PMCID: PMC8137843 DOI: 10.3389/fmicb.2021.667807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
Phagolysosomes of macrophages are the niche where the parasitic protozoan Leishmania resides and causes human leishmaniasis. During infection, this organism encounters dramatic environmental changes. These include heat shock (from 26°C in the vector to 33°C or 37°C in the host, for cutaneous and visceral species, respectively) and acidic pH typical to the lysosome and nutrient availability. Leishmania cells developed ways to sense the lysosome-specific environment (acidic pH and body temperature) as means of recognition and, subsequently, initiation of differentiation into the intracellular form. Recent studies have indicated that protein kinase A plays a role as the gatekeeper that enables differentiation initiation. This review provides an update on the lysosome signaling pathway-mediated Leishmania intracellular development.
Collapse
Affiliation(s)
- Dan Zilberstein
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Dick CF, de Moura Guimarães L, Carvalho-Kelly LF, Cortes AL, da Silva Lara Morcillo L, da Silva Sampaio L, Meyer-Fernandes JR, Vieyra A. A ferric reductase of Trypanosoma cruzi (TcFR) is involved in iron metabolism in the parasite. Exp Parasitol 2020; 217:107962. [PMID: 32763249 DOI: 10.1016/j.exppara.2020.107962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 01/05/2023]
Abstract
Trypanosoma cruzi is a parasitic protozoan that infects various species of domestic and wild animals, triatomine bugs and humans. It is the etiological agent of American trypanosomiasis, also known as Chagas Disease, which affects about 17 million people in Latin America and is emerging elsewhere in the world. Iron (Fe) is a crucial micronutrient for almost all cells, acting as a cofactor for several metabolic enzymes. T. cruzi has a high requirement for Fe, using heminic and non-heminic Fe for growth and differentiation. Fe occurs in the oxidized (Fe3+) form in aerobic environments and needs to be reduced to Fe2+ before it enters cells. Fe-reductase, located in the plasma membranes of some organisms, catalyzes the Fe3+⇒ Fe2+ conversion. In the present study we found an amino acid sequence in silico that allowed us to identify a novel 35 kDa protein in T. cruzi with two transmembrane domains in the C-terminal region containing His residues that are conserved in the Ferric Reductase Domain Superfamily and are required for catalyzing Fe3+ reduction. Accordingly, we named this protein TcFR. Intact epimastigotes from the T. cruzi DM28c strain reduced the artificial Fe3+-containing substrate potassium ferricyanide in a cell density-dependent manner, following Michaelis-Menten kinetics. The TcFR activity was more than eightfold higher in a plasma membrane-enriched fraction than in whole homogenates, and this increase was consistent with the intensity of the 35 kDa band on Western blotting images obtained using anti-NOX5 raised against the human antigen. Immunofluorescence experiments demonstrated TcFR on the parasite surface. That TcFR is part of a catalytic complex allowing T. cruzi to take up Fe from the medium was confirmed by experiments in which DM28c was assayed after culturing in Fe-depleted medium: (i) proliferation during the stationary growth phase was five times slower; (ii) the relative expression of TcFR (qPCR) was 50% greater; (iii) intact cells had 120% higher Fe-reductase activity. This ensemble of results indicates that TcFR is a conserved enzyme in T. cruzi, and its catalytic properties are modulated in order to respond to external Fe fluctuations.
Collapse
Affiliation(s)
- Claudia F Dick
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; Carlos Chagas Filho Institute of Biophysics,Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.
| | - Lídia de Moura Guimarães
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Luiz Fernando Carvalho-Kelly
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Aline Leal Cortes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | | | - Luzia da Silva Sampaio
- Carlos Chagas Filho Institute of Biophysics,Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - José Roberto Meyer-Fernandes
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics,Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; Graduate Program in Translational Biomedicine, Grande Rio University, 25071-202, Duque de Caxias, Brazil
| |
Collapse
|
8
|
Li B, Wan Z, Wang Z, Zuo J, Xu Y, Han X, Phouthapane V, Miao J. TLR2 Signaling Pathway Combats Streptococcus uberis Infection by Inducing Mitochondrial Reactive Oxygen Species Production. Cells 2020; 9:cells9020494. [PMID: 32098158 PMCID: PMC7072855 DOI: 10.3390/cells9020494] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
Mastitis caused by Streptococcus uberis (S. uberis) is a common and difficult-to-cure clinical disease in dairy cows. In this study, the role of Toll-like receptors (TLRs) and TLR-mediated signaling pathways in mastitis caused by S. uberis was investigated using mouse models and mammary epithelial cells (MECs). We used S. uberis to infect mammary glands of wild type, TLR2−/− and TLR4−/− mice and quantified the adaptor molecules in TLR signaling pathways, proinflammatory cytokines, tissue damage, and bacterial count. When compared with TLR4 deficiency, TLR2 deficiency induced more severe pathological changes through myeloid differentiation primary response 88 (MyD88)-mediated signaling pathways during S. uberis infection. In MECs, TLR2 detected S. uberis infection and induced mitochondrial reactive oxygen species (mROS) to assist host in controlling the secretion of inflammatory factors and the elimination of intracellular S. uberis. Our results demonstrated that TLR2-mediated mROS has a significant effect on S. uberis-induced host defense responses in mammary glands as well as in MECs.
Collapse
Affiliation(s)
- Bin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
| | - Zhixin Wan
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
| | - Jiakun Zuo
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Vanhnaseng Phouthapane
- Biotechnology and Ecology Institute, Ministry of Science and Technology (MOST), Vientiane 22797, Lao PDR;
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
- Correspondence: ; Fax: +86-25-8439-8669
| |
Collapse
|
9
|
Laranjeira-Silva MF, Hamza I, Pérez-Victoria JM. Iron and Heme Metabolism at the Leishmania-Host Interface. Trends Parasitol 2020; 36:279-289. [PMID: 32005611 DOI: 10.1016/j.pt.2019.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
Species of the protozoan Leishmania are causative agents of human leishmaniasis, a disease that results in significant death, disability, and disfigurement around the world. The parasite is transmitted to a mammalian host by a sand fly vector where it develops as an intracellular parasite within macrophages. This process requires the acquisition of nutritional iron and heme from the host as Leishmania lacks the capacity for de novo heme synthesis and does not contain cytosolic iron-storage proteins. Proteins involved in Leishmania iron and heme transport and metabolism have been identified and shown to be crucial for the parasite's growth and replication within the host. Consequently, a detailed understanding of how these parasites harness host pathways for survival may lay the foundation for promising new therapeutic intervention against leishmaniasis.
Collapse
Affiliation(s)
| | - Iqbal Hamza
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| |
Collapse
|