1
|
Zeng R, Xu H, Wu M, Zhou X, Lei P, Yu J, Wang P, Ma H, Zhao Y. Entacapone alleviates muscle atrophy by modulating oxidative stress, proteolysis, and lipid aggregation in multiple mice models. Front Physiol 2024; 15:1483594. [PMID: 39717825 PMCID: PMC11663891 DOI: 10.3389/fphys.2024.1483594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Background Skeletal muscle atrophy significantly affects quality of life and has socio-economic and health implications. This study evaluates the effects of entacapone (ENT) on skeletal muscle atrophy linked with oxidative stress and proteolysis. Methods C2C12 cells were treated with dexamethasone (Dex) to simulate muscle atrophy. Four murine models were employed: diaphragm atrophy from mechanical ventilation, Dex-induced atrophy, lipopolysaccharide (LPS)-induced atrophy, and hyperlipidemia-induced atrophy. Each model utilized entacapone (10 mg/kg), with sample sizes: Control (9), MV (11), MV + ENT (5) for diaphragm atrophy; Control (4), Dex (4), Dex + ENT (5) for Dex model; Control (4), LPS (4), LPS + ENT (5) for LPS model; and similar for hyperlipidemia. Measurements included muscle strength, myofiber cross-sectional area (CSA), proteolysis, oxidative stress markers [uperoxide dismutase 1 (SOD1), uperoxide dismutase 2 (SOD2), 4-hydroxynonenal (4-HNE)], and lipid levels. Results Our findings confirm Dex-induced muscle atrophy, evidenced by increased expression of muscle atrophy-associated proteins, including Atrogin-1 and Murf-1, along with decreased diameter of C2C12 myotubes. Atrogin-1 levels rose by 660.6% (p < 0.05) in the Dex group compared to control, while entacapone reduced Atrogin-1 by 84.4% (p < 0.05). Similarly, Murf-1 levels increased by 365% (p < 0.05) in the Dex group and were decreased by 89.5% (p < 0.05) with entacapone. Dexamethasone exposure induces oxidative stress, evidenced by the upregulation of oxidative stress-related proteins Sod1, Sod2, and 4-HNE. Entacapone significantly reduced the levels of these oxidative stress markers, enhancing GSH-PX content by 385.6% (p < 0.05) compared to the Dex-treated group. Additionally, ENT effectively reduced the Dex-induced increase in MDA content by 63.98% (p < 0.05). Furthermore, entacapone effectively prevents the decline in diaphragm muscle strength and myofiber CSA in mice. It also mitigates diaphragm oxidative stress and protein hydrolysis. Additionally, entacapone exhibits the ability to attenuate lipid accumulation in the gastrocnemius muscle of hyperlipidemic mice and alleviate the reduction in muscle fiber CSA. Conclusion Our findings suggest that entacapone is a promising therapeutic candidate for muscle atrophy, functioning through the reduction of oxidative stress, proteolysis, and lipid aggregation. Future research should explore the underlying mechanisms and potential clinical applications of entacapone in muscle-wasting conditions.
Collapse
Affiliation(s)
- Rong Zeng
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Health Management, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hanbing Xu
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of General Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Mingzheng Wu
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xianlong Zhou
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pan Lei
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jiangtao Yu
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pinyi Wang
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haoli Ma
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Zhao
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Powers SK. Ventilator-induced diaphragm dysfunction: phenomenology and mechanism(s) of pathogenesis. J Physiol 2024; 602:4729-4752. [PMID: 39216087 DOI: 10.1113/jp283860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mechanical ventilation (MV) is used to support ventilation and pulmonary gas exchange in patients during critical illness and surgery. Although MV is a life-saving intervention for patients in respiratory failure, an unintended side-effect of MV is the rapid development of diaphragmatic atrophy and contractile dysfunction. This MV-induced diaphragmatic weakness is labelled as 'ventilator-induced diaphragm dysfunction' (VIDD). VIDD is an important clinical problem because diaphragmatic weakness is a risk factor for the failure to wean patients from MV. Indeed, the inability to remove patients from ventilator support results in prolonged hospitalization and increased morbidity and mortality. The pathogenesis of VIDD has been extensively investigated, revealing that increased mitochondrial production of reactive oxygen species within diaphragm muscle fibres promotes a cascade of redox-regulated signalling events leading to both accelerated proteolysis and depressed protein synthesis. Together, these events promote the rapid development of diaphragmatic atrophy and contractile dysfunction. This review highlights the MV-induced changes in the structure/function of diaphragm muscle and discusses the cell-signalling mechanisms responsible for the pathogenesis of VIDD. This report concludes with a discussion of potential therapeutic opportunities to prevent VIDD and suggestions for future research in this exciting field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Zhang J, Tu R, Guan F, Feng J, Jia J, Zhou J, Wang X, Liu L. Irisin attenuates ventilator-induced diaphragmatic dysfunction by inhibiting endoplasmic reticulum stress through activation of AMPK. J Cell Mol Med 2024; 28:e18259. [PMID: 38676364 PMCID: PMC11053354 DOI: 10.1111/jcmm.18259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/25/2023] [Accepted: 01/12/2024] [Indexed: 04/28/2024] Open
Abstract
Mechanical ventilation (MV) is an essential life-saving technique, but prolonged MV can cause significant diaphragmatic dysfunction due to atrophy and decreased contractility of the diaphragm fibres, called ventilator-induced diaphragmatic dysfunction (VIDD). It is not clear about the mechanism of occurrence and prevention measures of VIDD. Irisin is a newly discovered muscle factor that regulates energy metabolism. Studies have shown that irisin can exhibit protective effects by downregulating endoplasmic reticulum (ER) stress in a variety of diseases; whether irisin plays a protective role in VIDD has not been reported. Sprague-Dawley rats were mechanically ventilated to construct a VIDD model, and intervention was performed by intravenous administration of irisin. Diaphragm contractility, degree of atrophy, cross-sectional areas (CSAs), ER stress markers, AMPK protein expression, oxidative stress indicators and apoptotic cell levels were measured at the end of the experiment.Our findings showed that as the duration of ventilation increased, the more severe the VIDD was, the degree of ER stress increased, and the expression of irisin decreased.ER stress may be one of the causes of VIDD. Intervention with irisin ameliorated VIDD by reducing the degree of ER stress, attenuating oxidative stress, and decreasing the apoptotic index. MV decreases the expression of phosphorylated AMPK in the diaphragm, whereas the use of irisin increases the expression of phosphorylated AMPK. Irisin may exert its protective effect by activating the phosphorylated AMPK pathway.
Collapse
Affiliation(s)
- Jumei Zhang
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Anesthesiology and Critical Care Medicine Key Laboratory of LuzhouSouthwest Medical UniversityLuzhouChina
| | - Rui Tu
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Anesthesiology and Critical Care Medicine Key Laboratory of LuzhouSouthwest Medical UniversityLuzhouChina
| | - Fasheng Guan
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Anesthesiology and Critical Care Medicine Key Laboratory of LuzhouSouthwest Medical UniversityLuzhouChina
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of LuzhouSouthwest Medical UniversityLuzhouChina
| | - Jing Jia
- Anesthesiology and Critical Care Medicine Key Laboratory of LuzhouSouthwest Medical UniversityLuzhouChina
| | - Jun Zhou
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiaobin Wang
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Li Liu
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
4
|
Panelli A, Grunow JJ, VERFUß MA, Bartels HG, Brass Z, Schaller SJ. Outcomes in critically ill patients after diaphragmatic stimulation on ventilator-induced diaphragmatic dysfunction: a systematic review. Eur J Phys Rehabil Med 2023; 59:772-781. [PMID: 38214045 PMCID: PMC10794987 DOI: 10.23736/s1973-9087.23.08031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 10/09/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION Mechanical ventilation (MV) is a lifesaving procedure for critically ill patients. Diaphragm activation and stimulation may counteract side effects, such as ventilator-induced diaphragm dysfunction (VIDD). The effects of stimulation on diaphragm atrophy and patient outcomes are reported in this systematic review. EVIDENCE ACQUISITION Studies investigating diaphragmatic stimulation versus standard of care in critically ill patients and evaluating clinical outcomes were extracted from a Medline database last on January 23, 2023, after registration in Prospero (CRD42021259353). Selected studies included the investigation of diaphragmatic stimulation versus standard of care in critically ill patients, an evaluation of the clinical outcomes. These included muscle atrophy, VIDD, weaning failure, mortality, quality of life, ventilation time, diaphragmatic function, length of stay in the Intensive Care Unit (ICU), and length of hospital stay. All articles were independently evaluated by two reviewers according to their abstract and title and, secondly, a full texts evaluation by two independent reviewers was performed. To resolve diverging evaluations, a third reviewer was consulted to reach a final decision. Data were extracted by the reviewers following the Oxford 2011 levels of evidence guidelines and summarized accordingly. EVIDENCE SYNTHESIS Seven studies were extracted and descriptively synthesized, since a metanalysis was not feasible. Patients undergoing diaphragm stimulation had moderate evidence of higher maximal inspiratory pressure (MIP), less atrophy, less mitochondrial respiratory dysfunction, less oxidative stress, less molecular atrophy, shorter MV time, shorter ICU length of stay, longer survival, and better SF-36 scores than control. CONCLUSIONS Evidence of the molecular and histological benefits of diaphragmatic stimulation is limited. The results indicate positive clinical effects of diaphragm activation with a moderate level of evidence for MIP and a low level of evidence for other outcomes. Diaphragm activation could be a therapeutic solution to avoid diaphragm atrophy, accelerate weaning, shorten MV time, and counteract VIDD; however, better-powered studies are needed to increase the level of evidence.
Collapse
Affiliation(s)
- Alessandro Panelli
- Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin, Berlin, Germany
| | - Julius J Grunow
- Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin, Berlin, Germany
| | - Michael A VERFUß
- Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin, Berlin, Germany
| | - Hermann G Bartels
- Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin, Berlin, Germany
| | - Zarina Brass
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Stefan J Schaller
- Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin, Berlin, Germany -
- School of Medicine, Department of Anesthesiology and Intensive Care, Klinikum rechts der Isar Hospital, School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Dridi H, Yehya M, Barsotti R, Liu Y, Reiken S, Azria L, Yuan Q, Bahlouli L, Soni RK, Marks AR, Lacampagne A, Matecki S. Aberrant mitochondrial dynamics contributes to diaphragmatic weakness induced by mechanical ventilation. PNAS NEXUS 2023; 2:pgad336. [PMID: 37954156 PMCID: PMC10635656 DOI: 10.1093/pnasnexus/pgad336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
In critical care patients, the ""temporary inactivity of the diaphragm caused by mechanical ventilation (MV) triggers a series of events leading to diaphragmatic dysfunction and atrophy, commonly known as ventilator-induced diaphragm dysfunction (VIDD). While mitochondrial dysfunction related to oxidative stress is recognized as a crucial factor in VIDD, the exact molecular mechanism remains poorly understood. In this study, we observe that 6 h of MV triggers aberrant mitochondrial dynamics, resulting in a reduction in mitochondrial size and interaction, associated with increased expression of dynamin-related protein 1 (DRP1). This effect can be prevented by P110, a molecule that inhibits the recruitment of DRP1 to the mitochondrial membrane. Furthermore, isolated mitochondria from the diaphragms of ventilated patients exhibited increased production of reactive oxygen species (ROS). These mitochondrial changes were associated with the rapid oxidation of type 1 ryanodine receptor (RyR1) and a decrease in the stabilizing subunit calstabin 1. Subsequently, we observed that the sarcoplasmic reticulum (SR) in the ventilated diaphragms showed increased calcium leakage and reduced contractile function. Importantly, the mitochondrial fission inhibitor P110 effectively prevented all of these alterations. Taken together, the results of our study illustrate that MV leads, in the diaphragm, to both mitochondrial fragmentation and dysfunction, linked to the up-/down-regulation of 320 proteins, as assessed through global comprehensive quantitative proteomics analysis, primarily associated with mitochondrial function. These outcomes underscore the significance of developing compounds aimed at modulating the balance between mitochondrial fission and fusion as potential interventions to mitigate VIDD in human patients.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Marc Yehya
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier 34000, France
| | - Robert Barsotti
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Lan Azria
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier 34000, France
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Laith Bahlouli
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, NewYork, NY 10032, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Alain Lacampagne
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier 34000, France
| | - Stefan Matecki
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier 34000, France
| |
Collapse
|
6
|
Gallagher H, Hendrickse PW, Pereira MG, Bowen TS. Skeletal muscle atrophy, regeneration, and dysfunction in heart failure: Impact of exercise training. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:557-567. [PMID: 37040849 PMCID: PMC10466197 DOI: 10.1016/j.jshs.2023.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 05/31/2023]
Abstract
This review highlights some established and some more contemporary mechanisms responsible for heart failure (HF)-induced skeletal muscle wasting and weakness. We first describe the effects of HF on the relationship between protein synthesis and degradation rates, which determine muscle mass, the involvement of the satellite cells for continual muscle regeneration, and changes in myofiber calcium homeostasis linked to contractile dysfunction. We then highlight key mechanistic effects of both aerobic and resistance exercise training on skeletal muscle in HF and outline its application as a beneficial treatment. Overall, HF causes multiple impairments related to autophagy, anabolic-catabolic signaling, satellite cell proliferation, and calcium homeostasis, which together promote fiber atrophy, contractile dysfunction, and impaired regeneration. Although both wasting and weakness are partly rescued by aerobic and resistance exercise training in HF, the effects of satellite cell dynamics remain poorly explored.
Collapse
Affiliation(s)
- Harrison Gallagher
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Paul W Hendrickse
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Marcelo G Pereira
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
7
|
Dridi H, Liu Y, Reiken S, Liu X, Argyrousi EK, Yuan Q, Miotto MC, Sittenfeld L, Meddar A, Soni RK, Arancio O, Lacampagne A, Marks AR. Heart failure-induced cognitive dysfunction is mediated by intracellular Ca 2+ leak through ryanodine receptor type 2. Nat Neurosci 2023; 26:1365-1378. [PMID: 37429912 PMCID: PMC10400432 DOI: 10.1038/s41593-023-01377-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Cognitive dysfunction (CD) in heart failure (HF) adversely affects treatment compliance and quality of life. Although ryanodine receptor type 2 (RyR2) has been linked to cardiac muscle dysfunction, its role in CD in HF remains unclear. Here, we show in hippocampal neurons from individuals and mice with HF that the RyR2/intracellular Ca2+ release channels were subjected to post-translational modification (PTM) and were leaky. RyR2 PTM included protein kinase A phosphorylation, oxidation, nitrosylation and depletion of the stabilizing subunit calstabin2. RyR2 PTM was caused by hyper-adrenergic signaling and activation of the transforming growth factor-beta pathway. HF mice treated with a RyR2 stabilizer drug (S107), beta blocker (propranolol) or transforming growth factor-beta inhibitor (SD-208), or genetically engineered mice resistant to RyR2 Ca2+ leak (RyR2-p.Ser2808Ala), were protected against HF-induced CD. Taken together, we propose that HF is a systemic illness driven by intracellular Ca2+ leak that includes cardiogenic dementia.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA.
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Xiaoping Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Elentina K Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Marco C Miotto
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | | | | | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Alain Lacampagne
- PHYMEDEXP, University of Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
- LIA1185 CNRS, Montpellier, France
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA.
| |
Collapse
|
8
|
吴 松, 李 学, 关 发, 冯 建, 贾 静, 李 京, 刘 力. [Enhanced endoplasmic reticulum RyR1 receptor phosphorylation leads to diaphragmatic dysfunction in septic rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:631-636. [PMID: 37202200 PMCID: PMC10202788 DOI: 10.12122/j.issn.1673-4254.2023.04.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Indexed: 05/20/2023]
Abstract
OBJECTIVE To explore the role of endoplasmic reticulum ryanodine receptor 1 (RyR1) expression and phosphorylation in sepsis- induced diaphragm dysfunction. METHODS Thirty SPF male SD rats were randomized equally into 5 groups, including a sham-operated group, 3 sepsis model groups observed at 6, 12, or 24 h following cecal ligation and perforation (CLP; CLP-6h, CLP-12h, and CLP-24h groups, respectively), and a CLP-24h group with a single intraperitoneal injection of KN- 93 immediately after the operation (CLP-24h+KN-93 group). At the indicated time points, diaphragm samples were collected for measurement of compound muscle action potential (CMAP), fatigue index of the isolated diaphragm and fitted frequencycontraction curves. The protein expression levels of CaMK Ⅱ, RyR1 and P-RyR1 in the diaphragm were detected using Western blotting. RESULTS In the rat models of sepsis, the amplitude of diaphragm CMAP decreased and its duration increased with time following CLP, and the changes were the most obvious at 24 h and significantly attenuated by KN-93 treatment (P < 0.05). The diaphragm fatigue index increased progressively following CLP (P < 0.05) irrespective of KN- 93 treatment (P>0.05). The frequency-contraction curve of the diaphragm muscle decreased progressively following CLP, and was significantly lower in CLP-24 h group than in CLP-24 h+KN-93 group (P < 0.05). Compared with that in the sham-operated group, RyR1 expression level in the diaphragm was significantly lowered at 24 h (P < 0.05) but not at 6 or 12 following CLP, irrespective of KN-93 treatment; The expression level of P-RyR1 increased gradually with time after CLP, and was significantly lowered by KN-93 treatment at 24 h following CLP (P < 0.05). The expression level of CaMKⅡ increased significantly at 24 h following CLP, and was obviously lowered by KN-93 treatment (P < 0.05). CONCLUSION Sepsis causes diaphragmatic dysfunction by enhancing CaMK Ⅱ expression and RyR1 receptor phosphorylation in the endoplasmic reticulum of the diaphragm.
Collapse
Affiliation(s)
- 松林 吴
- 西南医科大学附属医院麻醉科,四川 泸州 646000Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 西南医科大学麻醉与重症医学中心实验室,四川 泸州 646000Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - 学欣 李
- 西南医科大学附属医院麻醉科,四川 泸州 646000Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 西南医科大学麻醉与重症医学中心实验室,四川 泸州 646000Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - 发升 关
- 西南医科大学附属医院麻醉科,四川 泸州 646000Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 西南医科大学麻醉与重症医学中心实验室,四川 泸州 646000Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - 建国 冯
- 西南医科大学附属医院麻醉科,四川 泸州 646000Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 西南医科大学麻醉与重症医学中心实验室,四川 泸州 646000Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - 静 贾
- 西南医科大学附属医院麻醉科,四川 泸州 646000Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 西南医科大学麻醉与重症医学中心实验室,四川 泸州 646000Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - 京 李
- 西南医科大学麻醉与重症医学中心实验室,四川 泸州 646000Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - 力 刘
- 西南医科大学附属医院麻醉科,四川 泸州 646000Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
9
|
Abstract
This Review provides an update on ryanodine receptors (RyRs) and their role in human diseases of heart, muscle, and brain. Calcium (Ca2+) is a requisite second messenger in all living organisms. From C. elegans to mammals, Ca2+ is necessary for locomotion, bodily functions, and neural activity. However, too much of a good thing can be bad. Intracellular Ca2+ overload can result in loss of function and death. Intracellular Ca2+ release channels evolved to safely provide large, rapid Ca2+ signals without exposure to toxic extracellular Ca2+. RyRs are intracellular Ca2+ release channels present throughout the zoosphere. Over the past 35 years, our knowledge of RyRs has advanced to the level of atomic-resolution structures revealing their role in the mechanisms underlying the pathogenesis of human disorders of heart, muscle, and brain. Stress-induced RyR-mediated intracellular Ca2+ leak in the heart can promote heart failure and cardiac arrhythmias. In skeletal muscle, RyR1 leak contributes to muscle weakness in inherited myopathies, to age-related loss of muscle function and cancer-associated muscle weakness, and to impaired muscle function in muscular dystrophies, including Duchenne. In the brain, leaky RyR channels contribute to cognitive dysfunction in Alzheimer's disease, posttraumatic stress disorder, and Huntington's disease. Novel therapeutics targeting dysfunctional RyRs are showing promise.
Collapse
|
10
|
Li S, Zhou X, Zeng R, Lin L, Zou X, Yan Y, Lu Z, Xia J, Zhang L, Ni S, Dai S, Chen H, Zhao Y. YAP1 silencing attenuated lung injury/fibrosis but worsened diaphragmatic function by regulating oxidative stress and inflammation response in mice. Free Radic Biol Med 2022; 193:485-498. [PMID: 36336232 DOI: 10.1016/j.freeradbiomed.2022.10.323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Oxidative stress is a crucial mechanism in the pathophysiology of lung injury/fibrosis and diaphragmatic dysfunction. Yes-associated protein 1 (YAP1) is a key oxidative stress response regulator. However, how lung injury/fibrosis and the subsequent YAP1 silencing treatment affect diaphragmatic function remains largely uncharacterized. In this study, mice models of acute lipopolysaccharide (LPS) and paraquat exposure were used to establish acute lung injury and chronic pulmonary fibrosis. AT2 and C2C12 cells were co-cultured under LPS and paraquat challenge. YAP1 was interfered with shRNA given in vivo and verteporfin administration in vitro. Pulmonary histology, contractile properties, and cross-sectional areas (CSAs) of the diaphragm and gastrocnemius were evaluated. Histological and biochemical analyses were performed for targeted biomarker determination. We found that LPS and paraquat caused significant lung injury/fibrosis and significantly reduced the diaphragmatic-specific force and CSAs compared with the control. YAP1 silencing alleviated inflammatory cell infiltration or collagen deposition in the lungs yet worsened the already impaired diaphragmatic function by increasing inflammatory cytokines (IL-6 and TNF-α), mitochondrial reactive oxidative species (ROS) emission, protein degradation (Murf-1, atrogin-1, and calpain), and decreasing antioxidant capabilities (superoxide dismutase 2 and glutathione peroxidase). No significant improvements were observed in diaphragmatic function by transient YAP1 knockdown in the gastrocnemius. In vitro, LPS- or paraquat-caused cytotoxicity in AT2 cells was mostly alleviated by verteporfin in a concentration that was 20-fold higher than that in C2C12 cells (20 and 1 μg/mL, respectively). Finally, 0.5 μg/mL of verteporfin significantly ameliorated hydrogen peroxide-induced proteolytic activity and antioxidant enzyme suppression in C2C12 cells, whereas 2 μg/mL of verteporfin deteriorated the same. Collectively, lung injury/fibrosis adversely affects the diaphragm. YAP1 inhibition alleviates lung injury/fibrosis but worsens diaphragmatic function potentially by enhancing inflammatory cytokines and ROS-mediated protein degradation. This disparity might be attributed to differences in susceptibility to YAP1 inhibition between muscles and the lungs.
Collapse
Affiliation(s)
- Shaoping Li
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China; Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xianlong Zhou
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China; Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Rong Zeng
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Lian Lin
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xingnan Zou
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yu Yan
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Zijun Lu
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jian Xia
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China; Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Lijuan Zhang
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China; Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Shaozhou Ni
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China; Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Shuai Dai
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Haihua Chen
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China; Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China; Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
11
|
Bao T, Feng L, Cho S, Yu H, Jin W, Dai L, Zhang J, Bai L, Fu M, Chen Y. RNA-Seq Reveals Protective Mechanisms of Mongolian Medicine Molor-Dabos-4 on Acute Indomethacin-Induced Gastric Ulcers in Rats. Genes (Basel) 2022; 13:genes13101740. [PMID: 36292625 PMCID: PMC9602025 DOI: 10.3390/genes13101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to apply transcriptomics to determine how Molor-Dabos-4 (MD-4) protects healthy rats against indomethacin (IND)-induced gastric ulcers and to identify the mechanism behind this protective effect. Rats were pretreated with MD-4 (0.3, 1.5, or 3 g/kg per day) for 21 days before inducing gastric ulcers by oral administration with indomethacin (30 mg/kg). Unulcerated and untreated healthy rats were used as controls. Effects of the treatment were assessed based on the ulcer index, histological and pathological examinations, and indicators of inflammation, which were determined by enzyme-linked immunosorbent assay. Transcriptomic analysis was performed for identifying potential pharmacological mechanisms. Eventually, after identifying potential target genes, the latter were validated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). After pretreatment with MD-4, gastric ulcers, along with other histopathological features, were reduced. MD-4 significantly (p < 0.05) increased the superoxide dismutase (SOD) levels in ulcers and reduced pepsin, TNF-α, and IL-6 levels. RNA-seq analysis identified a number of target genes on which MD-4 could potentially act. Many of these genes were involved in pathways that were linked to anti-inflammatory and antioxidant responses, and other protective mechanisms for the gastric mucosa. qRT-PCR showed that altered expression of the selected genes, such as Srm, Ryr-1, Eno3, Prkag3, and Eef1a2, was consistent with the transcriptome results. MD-4 exerts protective effects against IND-induced gastric ulcers by reducing inflammatory cytokines and pepsin and increasing the expression of SOD levels. Downregulation of Srm, Ryr-1, Eno3, Prkag3, and Eef1a2 genes involved in regulating arginine and proline metabolism, calcium signaling pathway, HIF-1 signaling pathway, oxytocin signaling pathway, and legionellosis are possibly involved in MD-4-mediated protection against gastric ulcers.
Collapse
Affiliation(s)
- Terigele Bao
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Lan Feng
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Sungbo Cho
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Hongzhen Yu
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Wenjie Jin
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Lili Dai
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Junqing Zhang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Laxinamujila Bai
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Minghai Fu
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- Correspondence: (M.F.); (Y.C.)
| | - Yongsheng Chen
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
- Correspondence: (M.F.); (Y.C.)
| |
Collapse
|
12
|
Zhang D, Hao W, Niu Q, Xu D, Duan X. Identification of the co-differentially expressed hub genes involved in the endogenous protective mechanism against ventilator-induced diaphragm dysfunction. Skelet Muscle 2022; 12:21. [PMID: 36085166 PMCID: PMC9461262 DOI: 10.1186/s13395-022-00304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In intensive care units (ICU), mechanical ventilation (MV) is commonly applied to save patients' lives. However, ventilator-induced diaphragm dysfunction (VIDD) can complicate treatment by hindering weaning in critically ill patients and worsening outcomes. The goal of this study was to identify potential genes involved in the endogenous protective mechanism against VIDD. METHODS Twelve adult male rabbits were assigned to either an MV group or a control group under the same anesthetic conditions. Immunostaining and quantitative morphometry were used to assess diaphragm atrophy, while RNA-seq was used to investigate molecular differences between the groups. Additionally, core module and hub genes were analyzed using WGCNA, and co-differentially expressed hub genes were subsequently discovered by overlapping the differentially expressed genes (DEGs) with the hub genes from WGCNA. The identified genes were validated by western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS After a VIDD model was successfully built, 1276 DEGs were found between the MV and control groups. The turquoise and yellow modules were identified as the core modules, and Trim63, Fbxo32, Uchl1, Tmprss13, and Cst3 were identified as the five co-differentially expressed hub genes. After the two atrophy-related genes (Trim63 and Fbxo32) were excluded, the levels of the remaining three genes/proteins (Uchl1/UCHL1, Tmprss13/TMPRSS13, and Cst3/CST3) were found to be significantly elevated in the MV group (P < 0.05), suggesting the existence of a potential antiproteasomal, antiapoptotic, and antiautophagic mechanism against diaphragm dysfunction. CONCLUSION The current research helps to reveal a potentially important endogenous protective mechanism that could serve as a novel therapeutic target against VIDD.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi, 046012, China.
| | - Wenyan Hao
- Department of Biomedical Engineering, Changzhi Medical College, Changzhi, 046012, China
| | - Qi Niu
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi, 046012, China
| | - Dongdong Xu
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi, 046012, China
| | - Xuejiao Duan
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi, 046012, China
| |
Collapse
|
13
|
Li S, Luo G, Zeng R, Lin L, Zou X, Yan Y, Ma H, Xia J, Zhao Y, Zhou X. Endoplasmic Reticulum Stress Contributes to Ventilator-Induced Diaphragm Atrophy and Weakness in Rats. Front Physiol 2022; 13:897559. [PMID: 35832486 PMCID: PMC9273093 DOI: 10.3389/fphys.2022.897559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022] Open
Abstract
Background: Accumulating evidence indicates that endoplasmic reticulum (ER) stress plays a critical role in the regulation of skeletal muscle mass. In recent years, much attention has been given to ventilator-induced diaphragm dysfunction (VIDD) because it strongly impacts the outcomes of critically ill patients. Current evidence suggests that the enhancement of oxidative stress is essential for the development of VIDD, but there are no data on the effects of ER stress on this pathological process. Methods: VIDD was induced by volume-controlled mechanical ventilation (MV) for 12 h; Spontaneous breathing (SB, for 12 h) rats were used as controls. The ER stress inhibitor 4-phenylbutyrate (4-PBA), the antioxidant N-acetylcysteine (NAC), and the ER stress inducer tunicamycin (TUN) were given before the onset of MV or SB. Diaphragm function, oxidative stress, and ER stress in the diaphragms were measured at the end of the experiments. Results: ER stress was markedly increased in diaphragms relative to that in SB after 12 h of MV (all p < 0.001). Inhibition of ER stress by 4-PBA downregulated the expression levels of proteolysis-related genes in skeletal muscle, including Atrogin-1 and MuRF-1, reduced myofiber atrophy, and improved diaphragm force-generating capacity in rats subjected to MV (all p < 0.01). In addition, mitochondrial reactive oxygen species (ROS) production and protein level of 4-HNE (4-hydroxynonenal) were decreased upon 4-PBA treatment in rats during MV (all p < 0.01). Interestingly, the 4-PBA treatment also markedly increased the expression of peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1α) (p < 0.01), a master regulator for mitochondrial function and a strong antioxidant. However, the antioxidant NAC failed to reduce ER stress in the diaphragm during MV (p > 0.05). Finally, ER stress inducer TUN largely compromised diaphragm dysfunction in the absence of oxidative stress (all p < 0.01). Conclusion: ER stress is induced by MV and the inhibition of ER stress alleviates oxidative stress in the diaphragm during MV. In addition, ER stress is responsible for diaphragm dysfunction in the absence of oxidative stress. Therefore, the inhibition of ER stress may be another promising therapeutic approach for the treatment of VIDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jian Xia
- *Correspondence: Jian Xia, ; Yan Zhao, ; Xianlong Zhou,
| | - Yan Zhao
- *Correspondence: Jian Xia, ; Yan Zhao, ; Xianlong Zhou,
| | - Xianlong Zhou
- *Correspondence: Jian Xia, ; Yan Zhao, ; Xianlong Zhou,
| |
Collapse
|
14
|
Yang X, Li M, Ji Y, Lin Y, Xu L, Gu X, Sun H, Wang W, Shen Y, Liu H, Zhu J. Changes of Gene Expression Patterns of Muscle Pathophysiology-Related Transcription Factors During Denervated Muscle Atrophy. Front Physiol 2022; 13:923190. [PMID: 35812340 PMCID: PMC9263185 DOI: 10.3389/fphys.2022.923190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Peripheral nerve injury is common, and can lead to skeletal muscle atrophy and dysfunction. However, the underlying molecular mechanisms are not fully understood. The transcription factors have been proved to play a key role in denervated muscle atrophy. In order to systematically analyze transcription factors and obtain more comprehensive information of the molecular regulatory mechanisms in denervated muscle atrophy, a new transcriptome survey focused on transcription factors are warranted. In the current study, we used microarray to identify and analyze differentially expressed genes encoding transcription factors in denervated muscle atrophy in a rat model of sciatic nerve dissection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to explore the biological functions of differentially expressed transcription factors and their target genes related to skeletal muscle pathophysiology. We found that the differentially expressed transcription factors were mainly involved in the immune response. Based on correlation analysis and the expression trends of transcription factors, 18 differentially expressed transcription factors were identified. Stat3, Myod1, Runx1, Atf3, Junb, Runx2, Myf6, Stat5a, Tead4, Klf5, Myog, Mef2a, and Hes6 were upregulated. Ppargc1a, Nr4a1, Lhx2, Ppara, and Rxrg were downregulated. Functional network mapping revealed that these transcription factors are mainly involved in inflammation, development, aging, proteolysis, differentiation, regeneration, autophagy, oxidative stress, atrophy, and ubiquitination. These findings may help understand the regulatory mechanisms of denervated muscle atrophy and provide potential targets for future therapeutic interventions for muscle atrophy following peripheral nerve injury.
Collapse
Affiliation(s)
- Xiaoming Yang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People’s Hospital affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yinghao Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Lai Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Yuntian Shen, ; Hua Liu, ; Jianwei Zhu,
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, China
- *Correspondence: Yuntian Shen, ; Hua Liu, ; Jianwei Zhu,
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Yuntian Shen, ; Hua Liu, ; Jianwei Zhu,
| |
Collapse
|
15
|
Dridi H, Forrester F, Umanskaya A, Xie W, Reiken S, Lacampagne A, Marks A. Role of oxidation of excitation-contraction coupling machinery in age-dependent loss of muscle function in C. elegans. eLife 2022; 11:75529. [PMID: 35506650 PMCID: PMC9113742 DOI: 10.7554/elife.75529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Age-dependent loss of body wall muscle function and impaired locomotion occur within 2 weeks in C. elegans; however, the underlying mechanism has not been fully elucidated. In humans, age-dependent loss of muscle function occurs at about 80 years of age and has been linked to dysfunction of ryanodine receptor (RyR)/intracellular calcium (Ca2+) release channels on the sarcoplasmic reticulum (SR). Mammalian skeletal muscle RyR1 channels undergo age-related remodeling due to oxidative overload, leading to loss of the stabilizing subunit calstabin1 (FKBP12) from the channel macromolecular complex. This destabilizes the closed state of the channel resulting in intracellular Ca2+ leak, reduced muscle function, and impaired exercise capacity. We now show that the C. elegans RyR homolog, UNC-68, exhibits a remarkable degree of evolutionary conservation with mammalian RyR channels and similar age-dependent dysfunction. Like RyR1 in mammals UNC-68 encodes a protein that comprises a macromolecular complex which includes the calstabin1 homolog FKB-2 and is immunoreactive with antibodies raised against the RyR1 complex. Further, as in aged mammals, UNC-68 is oxidized and depleted of FKB-2 in an age-dependent manner, resulting in 'leaky' channels, depleted SR Ca2+ stores, reduced body wall muscle Ca2+ transients, and age-dependent muscle weakness. FKB-2 (ok3007)-deficient worms exhibit reduced exercise capacity. Pharmacologically induced oxidization of UNC-68 and depletion of FKB-2 from the channel independently caused reduced body wall muscle Ca2+ transients. Preventing FKB-2 depletion from the UNC-68 macromolecular complex using the Rycal drug S107 improved muscle Ca2+ transients and function. Taken together, these data suggest that UNC-68 oxidation plays a role in age-dependent loss of muscle function. Remarkably, this age-dependent loss of muscle function induced by oxidative overload, which takes ~2 years in mice and ~80 years in humans, occurs in less than 2-3 weeks in C. elegans, suggesting that reduced antioxidant capacity may contribute to the differences in life span amongst species.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Frances Forrester
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Alisa Umanskaya
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Wenjun Xie
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Alain Lacampagne
- U1046, Montpellier University, INSERM, CNRS, Montpellier, France
| | - Andrew Marks
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| |
Collapse
|
16
|
Prolonged Mechanical Ventilation: Outcomes and Management. J Clin Med 2022; 11:jcm11092451. [PMID: 35566577 PMCID: PMC9103623 DOI: 10.3390/jcm11092451] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023] Open
Abstract
The number of patients requiring prolonged mechanical ventilation (PMV) is increasing worldwide, placing a burden on healthcare systems. Therefore, investigating the pathophysiology, risk factors, and treatment for PMV is crucial. Various underlying comorbidities have been associated with PMV. The pathophysiology of PMV includes the presence of an abnormal respiratory drive or ventilator-induced diaphragm dysfunction. Numerous studies have demonstrated that ventilator-induced diaphragm dysfunction is related to increases in in-hospital deaths, nosocomial pneumonia, oxidative stress, lung tissue hypoxia, ventilator dependence, and costs. Thus far, the pathophysiologic evidence for PMV has been derived from clinical human studies and experimental studies in animals. Moreover, recent studies have demonstrated the outcome benefits of pharmacological agents and rehabilitative programs for patients requiring PMV. However, methodological limitations affected these studies. Controlled prospective studies with an adequate number of participants are necessary to provide evidence of the mechanism, prognosis, and treatment of PMV. The great epidemiologic impact of PMV and the potential development of treatment make this a key research field.
Collapse
|
17
|
Zhang D, Hao W, Li X, Han P, Niu Q. Aldh1a1 and Scl25a30 in diaphragmatic dysfunction. Exp Biol Med (Maywood) 2022; 247:1013-1029. [PMID: 35410502 DOI: 10.1177/15353702221085201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
New methods to prevent ventilator-induced diaphragmatic dysfunction (VIDD) are urgently needed, and the cellular basis of VIDD is poorly understood. This study evaluated whether transvenous phrenic nerve stimulation (PNS) could prevent VIDD in rabbits undergoing mechanical ventilation (MV) and explored whether oxidative stress-related genes might be candidate molecular markers for VIDD. Twenty-four adult male New Zealand white rabbits were allocated to control, MV, and PNS groups (n = 8 in each group). Rabbits in the MV and PNS groups underwent MV for 24 h. Intermittent bilateral transvenous PNS was performed in rabbits in the PNS group. Transdiaphragmatic pressure was recorded using balloon catheters. The diameters and cross-sectional areas (CSAs) of types I and II diaphragmatic fibers were measured using immunohistochemistry (IHC) techniques. Genes associated with VIDD were identified by RNA sequencing (RNA-seq), differentially expressed gene (DEG) analysis, and weighted gene co-expression network analysis (WGCNA). Reverse transcription polymerase chain reaction (RT-PCR), Western blotting, and IHC analyses were carried out to verify the transcriptome profile. Pdi60Hz, Pdi80Hz, and Pdi100Hz were significantly higher in the PNS group than in the MV group at 12 and 24 h (P < 0.05 at both time points). The diameters and CSAs of types I (slow-twitch) and II (fast-twitch) fibers were significantly larger in the PNS group than in the MV group (P < 0.05). RNA-seq, RT-PCR, Western blotting, and IHC experiments identified two candidate genes associated with VIDD: Aldh1a1 and Scl25a30. The MV group had significantly higher mRNA and protein expressions of Aldh1a1/ALDH1A1 and significantly lower mRNA and protein expressions of Scl25a30/SCL25A30 than the control or PNS groups (P < 0.05). We have identified two candidate genes involved in the prevention of VIDD by transvenous PNS. These two key genes may provide a theoretical basis for targeted therapy against VIDD.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China
| | - Wenyan Hao
- Department of Biomedical Engineering, Changzhi Medical College, Changzhi 046000, China
| | - Xujiong Li
- Department of Physiology, Changzhi Medical College, Changzhi 046000, China
| | - Pengyong Han
- The Central Lab, Changzhi Medical College, Changzhi 046000, China
| | - Qi Niu
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China
| |
Collapse
|
18
|
Li LF, Yu CC, Wu HP, Chu CM, Huang CY, Liu PC, Liu YY. Reduction in Ventilation-Induced Diaphragmatic Mitochondrial Injury through Hypoxia-Inducible Factor 1α in a Murine Endotoxemia Model. Int J Mol Sci 2022; 23:ijms23031083. [PMID: 35163007 PMCID: PMC8835058 DOI: 10.3390/ijms23031083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanical ventilation (MV) is essential for patients with sepsis-related respiratory failure but can cause ventilator-induced diaphragm dysfunction (VIDD), which involves diaphragmatic myofiber atrophy and contractile inactivity. Mitochondrial DNA, oxidative stress, mitochondrial dynamics, and biogenesis are associated with VIDD. Hypoxia-inducible factor 1α (HIF-1α) is crucial in the modulation of diaphragm immune responses. The mechanism through which HIF-1α and mitochondria affect sepsis-related diaphragm injury is unknown. We hypothesized that MV with or without endotoxin administration would aggravate diaphragmatic and mitochondrial injuries through HIF-1α. C57BL/6 mice, either wild-type or HIF-1α-deficient, were exposed to MV with or without endotoxemia for 8 h. MV with endotoxemia augmented VIDD and mitochondrial damage, which presented as increased oxidative loads, dynamin-related protein 1 level, mitochondrial DNA level, and the expressions of HIF-1α and light chain 3-II. Furthermore, disarrayed myofibrils; disorganized mitochondria; increased autophagosome numbers; and substantially decreased diaphragm contractility, electron transport chain activities, mitofusin 2, mitochondrial transcription factor A, peroxisome proliferator activated receptor-g coactivator-1α, and prolyl hydroxylase domain 2 were observed (p < 0.05). Endotoxin-stimulated VIDD and mitochondrial injuries were alleviated in HIF-1α-deficient mice (p < 0.05). Our data revealed that endotoxin aggravated MV-induced diaphragmatic dysfunction and mitochondrial damages, partially through the HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Li-Fu Li
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (H.-P.W.); (C.-M.C.); (C.-Y.H.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chung-Chieh Yu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (H.-P.W.); (C.-M.C.); (C.-Y.H.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Huang-Pin Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (H.-P.W.); (C.-M.C.); (C.-Y.H.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Chien-Ming Chu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (H.-P.W.); (C.-M.C.); (C.-Y.H.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Chih-Yu Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (H.-P.W.); (C.-M.C.); (C.-Y.H.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ping-Chi Liu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (H.-P.W.); (C.-M.C.); (C.-Y.H.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yung-Yang Liu
- Chest Department, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence: ; Tel.: 886-2-28712121 (ext. 3071); Fax: 886-2-28757858
| |
Collapse
|
19
|
Keilhoff G, Pinkernelle J, Fansa H. The Ryanodine receptor stabilizer S107 fails to support motor neuronal neuritogenesis in vitro. Tissue Cell 2021; 73:101625. [PMID: 34419737 DOI: 10.1016/j.tice.2021.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022]
Abstract
Calcium homeostasis is essential for neuronal cell survival/differentiation. Imbalance of the Ca2+ homeostasis due to excessive Ca2+ overload is essential for spinal cord injury (SCI). The overload resulted from Ca2+ flux across the plasma membrane and from internal Ca2+ store release (mitochondria, endoplasmic reticulum, ER). Inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) are involved in releasing Ca2+ from ER contributing to axonal degeneration following SCI. In turn, block of both receptors is axoprotective. The calstabin RyR subunit, stabilizing the channel in a state of reduced activity, prevents pathological Ca2+ release too. We investigated whether S107, a RyR-stabilizing compound (Rycal), is beneficial for survival and neuritogenesis of spinal cord motor neurons in vitro. We used a spinal cord slice model and the motor neuron-like NSC-34 cell line. Effects of S107 were tested by propidium iodide/fluorescein diacetate vital staining, mitotic index determination via BrdU-incorporation, and neurite sprouting parameters. Results showed that S107 (i) had no effect on gliosis resulting from slices preparation; (ii) had no effect on motor neuronal survival and proliferation; and (iii) impaired neurite sprouting, no matter whether it was a differentiation (NSC-34 cells) or regeneration (spinal cord slices) process. The results underline the need for a flexible Ca2+homeostasis provided by the ER for re-initiation of neuritogenesis.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, 39120, Magdeburg, Germany.
| | - Josephine Pinkernelle
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, 39120, Magdeburg, Germany
| | - Hisham Fansa
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Hand Surgery, Klinikum Bielefeld, OWL-University, 33604, Bielefeld, Germany; Department of Plastic Surgery, and Breast Centre, Spital Zollikerberg, 8125, Zollikerberg, Switzerland
| |
Collapse
|
20
|
Preau S, Vodovar D, Jung B, Lancel S, Zafrani L, Flatres A, Oualha M, Voiriot G, Jouan Y, Joffre J, Huel F, De Prost N, Silva S, Azabou E, Radermacher P. Energetic dysfunction in sepsis: a narrative review. Ann Intensive Care 2021; 11:104. [PMID: 34216304 PMCID: PMC8254847 DOI: 10.1186/s13613-021-00893-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Background Growing evidence associates organ dysfunction(s) with impaired metabolism in sepsis. Recent research has increased our understanding of the role of substrate utilization and mitochondrial dysfunction in the pathophysiology of sepsis-related organ dysfunction. The purpose of this review is to present this evidence as a coherent whole and to highlight future research directions. Main text Sepsis is characterized by systemic and organ-specific changes in metabolism. Alterations of oxygen consumption, increased levels of circulating substrates, impaired glucose and lipid oxidation, and mitochondrial dysfunction are all associated with organ dysfunction and poor outcomes in both animal models and patients. The pathophysiological relevance of bioenergetics and metabolism in the specific examples of sepsis-related immunodeficiency, cerebral dysfunction, cardiomyopathy, acute kidney injury and diaphragmatic failure is also described. Conclusions Recent understandings in substrate utilization and mitochondrial dysfunction may pave the way for new diagnostic and therapeutic approaches. These findings could help physicians to identify distinct subgroups of sepsis and to develop personalized treatment strategies. Implications for their use as bioenergetic targets to identify metabolism- and mitochondria-targeted treatments need to be evaluated in future studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-021-00893-7.
Collapse
Affiliation(s)
- Sebastien Preau
- U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France.
| | - Dominique Vodovar
- Centre AntiPoison de Paris, Hôpital Fernand Widal, APHP, 75010, Paris, France.,Faculté de pharmacie, UMRS 1144, 75006, Paris, France.,Université de Paris, UFR de Médecine, 75010, Paris, France
| | - Boris Jung
- Medical Intensive Care Unit, Lapeyronie Teaching Hospital, Montpellier University Hospital and PhyMedExp, University of Montpellier, Montpellier, France
| | - Steve Lancel
- U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France
| | - Lara Zafrani
- Médecine Intensive Réanimation, Hôpital Saint-Louis, AP-HP, Université de Paris, Paris, France.,INSERM UMR 976, Hôpital Saint Louis, Université de Paris, Paris, France
| | | | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker Hospital, APHP, Centre - Paris University, Paris, France
| | - Guillaume Voiriot
- Service de Médecine Intensive Réanimation, Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Youenn Jouan
- Service de Médecine Intensive Réanimation, CHRU Tours, Tours, France.,Faculté de Médecine de Tours, INSERM U1100 Centre d'Etudes des Pathologies Respiratoires, Tours, France
| | - Jeremie Joffre
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, 94143, USA
| | - Fabrice Huel
- Réanimation médico-chirurgicale, Université de Paris, Assistance Publique - Hôpitaux de Paris, Hôpital Louis Mourier, Paris, France
| | - Nicolas De Prost
- Service de Réanimation Médicale, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Cedex 94010, Créteil, France
| | - Stein Silva
- Réanimation URM CHU Purpan, Cedex 31300, Toulouse, France.,Toulouse NeuroImaging Center INSERM1214, Cedex 31300, Toulouse, France
| | - Eric Azabou
- Clinical Neurophysiology and Neuromodulation Unit, Departments of Physiology and Critical Care Medicine, Raymond Poincaré Hospital, AP-HP, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles (UVSQ), Paris-Saclay University, Paris, France
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum, Ulm, Germany
| |
Collapse
|
21
|
Abstract
OBJECTIVES Mechanical ventilation is associated with primary diaphragmatic dysfunction, also termed ventilator-induced diaphragmatic dysfunction. Studies evaluating diaphragmatic function recovery after extubation are lacking. We evaluated early and late recoveries from ventilator-induced diaphragmatic dysfunction in a mouse model. DESIGN Experimental randomized study. SETTING Research laboratory. SUBJECTS C57/BL6 mice. INTERVENTIONS Six groups of C57/BL6 mice. Mice were ventilated for 6 hours and then euthanatized immediately (n = 18), or 1 (n = 18) or 10 days after extubation with (n = 5) and without S107 (n = 16) treatment. Mice euthanatized immediately after 6 hours of anesthesia (n = 15) or after 6 hours of anesthesia and 10 days of recovery (n = 5) served as controls. MEASUREMENTS AND MAIN RESULTS For each group, diaphragm force production, posttranslational modification of ryanodine receptor, oxidative stress, proteolysis, and cross-sectional areas were evaluated. After 6 hours of mechanical ventilation, diaphragm force production was decreased by 25-30%, restored to the control levels 1 day after extubation, and secondarily decreased by 20% 10 days after extubation compared with controls. Ryanodine receptor was protein kinase A-hyperphosphorylated, S-nitrosylated, oxidized, and depleted of its stabilizing subunit calstabin-1 6 hours after the onset of the mechanical ventilation, 1 and 10 days after extubation. Post extubation treatment with S107, a Rycal drug that stabilizes the ryanodine complex, did reverse the loss of diaphragmatic force associated with mechanical ventilation. Total protein oxidation was restored to the control levels 1 day after extubation. Markers of proteolysis including calpain 1 and calpain 2 remained activated 10 days after extubation without significant changes in cross-sectional areas. CONCLUSIONS We report that mechanical ventilation is associated with a late diaphragmatic dysfunction related to a structural alteration of the ryanodine complex that is reversed with the S107 treatment.
Collapse
|
22
|
Moriscot A, Miyabara EH, Langeani B, Belli A, Egginton S, Bowen TS. Firearms-related skeletal muscle trauma: pathophysiology and novel approaches for regeneration. NPJ Regen Med 2021; 6:17. [PMID: 33772028 PMCID: PMC7997931 DOI: 10.1038/s41536-021-00127-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
One major cause of traumatic injury is firearm-related wounds (i.e., ballistic trauma), common in both civilian and military populations, which is increasing in prevalence and has serious long-term health and socioeconomic consequences worldwide. Common primary injuries of ballistic trauma include soft-tissue damage and loss, haemorrhage, bone fracture, and pain. The majority of injuries are of musculoskeletal origin and located in the extremities, such that skeletal muscle offers a major therapeutic target to aid recovery and return to normal daily activities. However, the underlying pathophysiology of skeletal muscle ballistic trauma remains poorly understood, with limited evidence-based treatment options. As such, this review will address the topic of firearm-related skeletal muscle injury and regeneration. We first introduce trauma ballistics and the immediate injury of skeletal muscle, followed by detailed coverage of the underlying biological mechanisms involved in regulating skeletal muscle dysfunction following injury, with a specific focus on the processes of muscle regeneration, muscle wasting and vascular impairments. Finally, we evaluate novel approaches for minimising muscle damage and enhancing muscle regeneration after ballistic trauma, which may have important relevance for primary care in victims of violence.
Collapse
Affiliation(s)
- Anselmo Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Antonio Belli
- NIHR Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Birmingham, UK
| | - Stuart Egginton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
23
|
Dridi H, Wu W, Reiken SR, Ofer RM, Liu Y, Yuan Q, Sittenfeld L, Kushner J, Muchir A, Worman HJ, Marks AR. Ryanodine receptor remodeling in cardiomyopathy and muscular dystrophy caused by lamin A/C gene mutation. Hum Mol Genet 2021; 29:3919-3934. [PMID: 33388782 PMCID: PMC7906753 DOI: 10.1093/hmg/ddaa278] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 01/06/2023] Open
Abstract
Mutations in the lamin A/C gene (LMNA), which encodes A-type lamins, cause several diseases called laminopathies, the most common of which is dilated cardiomyopathy with muscular dystrophy. The role of Ca2+ regulation in these diseases remain poorly understood. We now show biochemical remodeling of the ryanodine receptor (RyR)/intracellular Ca2+ release channel in heart samples from human subjects with LMNA mutations, including protein kinase A-catalyzed phosphorylation, oxidation and depletion of the stabilizing subunit calstabin. In the LmnaH222P/H222P murine model of Emery-Dreifuss muscular dystrophy caused by LMNA mutation, we demonstrate an age-dependent biochemical remodeling of RyR2 in the heart and RyR1 in skeletal muscle. This RyR remodeling is associated with heart and skeletal muscle dysfunction. Defective heart and muscle function are ameliorated by treatment with a novel Rycal small molecule drug (S107) that fixes 'leaky' RyRs. SMAD3 phosphorylation is increased in hearts and diaphragms of LmnaH222P/H222P mice, which enhances NADPH oxidase binding to RyR channels, contributing to their oxidation. There is also increased generalized protein oxidation, increased calcium/calmodulin-dependent protein kinase II-catalyzed phosphorylation of RyRs and increased protein kinase A activity in these tissues. Our data show that RyR remodeling plays a role in cardiomyopathy and skeletal muscle dysfunction caused by LMNA mutation and identify these Ca2+ channels as a potential therapeutic target.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Wei Wu
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Steven R Reiken
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Rachel M Ofer
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Leah Sittenfeld
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Jared Kushner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Antoine Muchir
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, 75013 Paris, France
| | - Howard J Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| |
Collapse
|
24
|
Molecular Modification of Transient Receptor Potential Canonical 6 Channels Modulates Calcium Dyshomeostasis in a Mouse Model Relevant to Malignant Hyperthermia. Anesthesiology 2021; 134:234-247. [PMID: 33301562 PMCID: PMC9836077 DOI: 10.1097/aln.0000000000003635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Pharmacologic modulation has previously shown that transient receptor potential canonical (TRPC) channels play an important role in the pathogenesis of malignant hyperthermia. This study tested the hypothesis that genetically suppressing the function of TRPC6 can partially ameliorate muscle cation dyshomeostasis and the response to halothane in a mouse model relevant to malignant hyperthermia. METHODS This study examined the effect of overexpressing a muscle-specific nonconducting dominant-negative TRPC6 channel in 20 RYR1-p.R163C and 20 wild-type mice and an equal number of nonexpressing controls, using calcium- and sodium-selective microelectrodes and Western blots. RESULTS RYR1-p.R163C mouse muscles have chronically elevated intracellular calcium and sodium levels compared to wild-type muscles. Transgenic expression of the nonconducting TRPC6 channel reduced intracellular calcium from 331 ± 34 nM (mean ± SD) to 190 ± 27 nM (P < 0.0001) and sodium from 15 ± 1 mM to 11 ± 1 mM (P < 0.0001). Its expression lowered the increase in intracellular Ca2+ of the TRPC6-specific activator hyperforin in RYR1-p.R163C muscle fibers from 52% (348 ± 37 nM to 537 ± 70 nM) to 14% (185 ± 11 nM to 210 ± 44 nM). Western blot analysis of TRPC3 and TRPC6 expression showed the expected increase in TRPC6 caused by overexpression of its dominant-negative transgene and a compensatory increase in expression of TRPC3. Although expression of the muscle-specific dominant-negative TRPC6 was able to modulate the increase in intracellular calcium during halothane exposure and prolonged life (35 ± 5 min vs. 15 ± 3 min; P < 0.0001), a slow, steady increase in calcium began after 20 min of halothane exposure, which eventually led to death. CONCLUSIONS These data support previous findings that TRPC channels play an important role in causing the intracellular calcium and sodium dyshomeostasis associated with RYR1 variants that are pathogenic for malignant hyperthermia. However, they also show that modulating TRPC channels alone is not sufficient to prevent the lethal effect of exposure to volatile anesthetic malignant hyperthermia-triggering agents. EDITOR’S PERSPECTIVE
Collapse
|
25
|
Goodman JB, Qin F, Morgan RJ, Chambers JM, Croteau D, Siwik DA, Hobai I, Panagia M, Luptak I, Bachschmid M, Tong X, Pimentel DR, Cohen RA, Colucci WS. Redox-Resistant SERCA [Sarco(endo)plasmic Reticulum Calcium ATPase] Attenuates Oxidant-Stimulated Mitochondrial Calcium and Apoptosis in Cardiac Myocytes and Pressure Overload-Induced Myocardial Failure in Mice. Circulation 2020; 142:2459-2469. [PMID: 33076678 PMCID: PMC7752816 DOI: 10.1161/circulationaha.120.048183] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND SERCA [sarco(endo)plasmic reticulum calcium ATPase] is regulated by oxidative posttranslational modifications at cysteine 674 (C674). Because sarcoplasmic reticulum (SR) calcium has been shown to play a critical role in mediating mitochondrial dysfunction in response to reactive oxygen species, we hypothesized that SERCA oxidation at C674 would modulate the effects of reactive oxygen species on mitochondrial calcium and mitochondria-dependent apoptosis in cardiac myocytes. METHODS Adult rat ventricular myocytes expressing wild-type SERCA2b or a redox-insensitive mutant in which C674 is replaced by serine (C674S) were exposed to H2O2 (100 µmol/Lμ). Free mitochondrial calcium concentration was measured in adult rat ventricular myocytes with a genetically targeted fluorescent probe, and SR calcium content was assessed by measuring caffeine-stimulated release. Mice with heterozygous knock-in of the SERCA C674S mutation were subjected to chronic ascending aortic constriction. RESULTS In adult rat ventricular myocytes expressing wild-type SERCA, H2O2 caused a 25% increase in mitochondrial calcium concentration that was associated with a 50% decrease in SR calcium content, both of which were prevented by the ryanodine receptor inhibitor tetracaine. In cells expressing the C674S mutant, basal SR calcium content was decreased by 31% and the H2O2-stimulated rise in mitochondrial calcium concentration was attenuated by 40%. In wild-type cells, H2O2 caused cytochrome c release and apoptosis, both of which were prevented in C674S-expressing cells. In myocytes from SERCA knock-in mice, basal SERCA activity and SR calcium content were decreased. To test the effect of C674 oxidation on apoptosis in vivo, SERCA knock-in mice were subjected to chronic ascending aortic constriction. In wild-type mice, ascending aortic constriction caused myocyte apoptosis, LV dilation, and systolic failure, all of which were inhibited in SERCA knock-in mice. CONCLUSIONS Redox activation of SERCA C674 regulates basal SR calcium content, thereby mediating the pathologic reactive oxygen species-stimulated rise in mitochondrial calcium required for myocyte apoptosis and myocardial failure.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Calcium/metabolism
- Calcium Signaling
- Cells, Cultured
- Disease Models, Animal
- Heart Failure/enzymology
- Heart Failure/genetics
- Heart Failure/pathology
- Heart Failure/physiopathology
- Hydrogen Peroxide/toxicity
- Male
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/genetics
- Mitochondria, Heart/pathology
- Mutation
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Oxidants/toxicity
- Oxidation-Reduction
- Oxidative Stress/drug effects
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Jena B. Goodman
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Fuzhong Qin
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Robert J. Morgan
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Jordan M. Chambers
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Dominique Croteau
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Deborah A. Siwik
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Ion Hobai
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Marcello Panagia
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Ivan Luptak
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Markus Bachschmid
- Vascular Biology Unit, Boston University School of
Medicine, Boston, MA
| | - XiaoYong Tong
- Vascular Biology Unit, Boston University School of
Medicine, Boston, MA
| | - David R. Pimentel
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Richard A. Cohen
- Vascular Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Wilson S. Colucci
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| |
Collapse
|
26
|
Hyatt HW, Powers SK. Disturbances in Calcium Homeostasis Promotes Skeletal Muscle Atrophy: Lessons From Ventilator-Induced Diaphragm Wasting. Front Physiol 2020; 11:615351. [PMID: 33391032 PMCID: PMC7773636 DOI: 10.3389/fphys.2020.615351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Mechanical ventilation (MV) is often a life-saving intervention for patients in respiratory failure. Unfortunately, a common and undesired consequence of prolonged MV is the development of diaphragmatic atrophy and contractile dysfunction. This MV-induced diaphragmatic weakness is commonly labeled “ventilator-induced diaphragm dysfunction” (VIDD). VIDD is an important clinical problem because diaphragmatic weakness is a major risk factor for the failure to wean patients from MV; this inability to remove patients from ventilator support results in prolonged hospitalization and increased morbidity and mortality. Although several processes contribute to the development of VIDD, it is clear that oxidative stress leading to the rapid activation of proteases is a primary contributor. While all major proteolytic systems likely contribute to VIDD, emerging evidence reveals that activation of the calcium-activated protease calpain plays a required role. This review highlights the signaling pathways leading to VIDD with a focus on the cellular events that promote increased cytosolic calcium levels and the subsequent activation of calpain within diaphragm muscle fibers. In particular, we discuss the emerging evidence that increased mitochondrial production of reactive oxygen species promotes oxidation of the ryanodine receptor/calcium release channel, resulting in calcium release from the sarcoplasmic reticulum, accelerated proteolysis, and VIDD. We conclude with a discussion of important and unanswered questions associated with disturbances in calcium homeostasis in diaphragm muscle fibers during prolonged MV.
Collapse
Affiliation(s)
- Hayden W Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
27
|
Hyatt HW, Ozdemir M, Yoshihara T, Nguyen BL, Deminice R, Powers SK. Calpains play an essential role in mechanical ventilation-induced diaphragmatic weakness and mitochondrial dysfunction. Redox Biol 2020; 38:101802. [PMID: 33279868 PMCID: PMC7724197 DOI: 10.1016/j.redox.2020.101802] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Mechanical ventilation (MV) is a life-saving intervention for many critically ill patients. Unfortunately, an unintended consequence of prolonged MV is the rapid development of diaphragmatic atrophy and contractile dysfunction, known as ventilator-induced diaphragm dysfunction (VIDD). Although the mechanism(s) responsible for VIDD are not fully understood, abundant evidence reveals that oxidative stress leading to the activation of the major proteolytic systems (i.e., autophagy, ubiquitin-proteasome, caspase, and calpain) plays a dominant role. Of the proteolytic systems involved in VIDD, calpain has received limited experimental attention due to the longstanding dogma that calpain plays a minor role in inactivity-induced muscle atrophy. Guided by preliminary experiments, we tested the hypothesis that activation of calpains play an essential role in MV-induced oxidative stress and the development of VIDD. This premise was rigorously tested by transgene overexpression of calpastatin, an endogenous inhibitor of calpains. Animals with/without transfection of the calpastatin gene in diaphragm muscle fibers were exposed to 12 h of MV. Results confirmed that overexpression of calpastatin barred MV-induced activation of calpain in diaphragm fibers. Importantly, deterrence of calpain activation protected the diaphragm against MV-induced oxidative stress, fiber atrophy, and contractile dysfunction. Moreover, prevention of calpain activation in the diaphragm forstalled MV-induced mitochondrial dysfunction and prevented MV-induced activation of caspase-3 along with the transcription of muscle specific E3 ligases. Collectively, these results support the hypothesis that calpain activation plays an essential role in the early development of VIDD. Further, these findings provide the first direct evidence that calpain plays an important function in inactivity-induced mitochondrial dysfunction and oxidative stress in skeletal muscle fibers. Inhibiting calpains during mechanical ventilation protects the diaphragm. Calpains play an important role in muscle atrophy and contractile dysfunction. Calpain inhibition during mechanical ventilation prevents mitochondrial dysfunction. Calpain-cleaved molecules may play important signaling roles. Calpain activation cross-talks with other proteolytic systems.
Collapse
Affiliation(s)
- Hayden W Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | - Mustafa Ozdemir
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Exercise and Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Toshinori Yoshihara
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Exercise Physiology, Juntendo University, Tokyo, Japan
| | - Branden L Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Rafael Deminice
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Physical Education, State University of Londrina, Londrina, Brazil
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Redox modulation of muscle mass and function. Redox Biol 2020; 35:101531. [PMID: 32371010 PMCID: PMC7284907 DOI: 10.1016/j.redox.2020.101531] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Muscle mass and strength are very important for exercise performance. Training-induced musculoskeletal injuries usually require periods of complete immobilization to prevent any muscle contraction of the affected muscle groups. Disuse muscle wasting will likely affect every sport practitioner in his or her lifetime. Even short periods of disuse results in significant declines in muscle size, fiber cross sectional area, and strength. To understand the molecular signaling pathways involved in disuse muscle atrophy is of the utmost importance to develop more effective countermeasures in sport science research. We have divided our review in four different sections. In the first one we discuss the molecular mechanisms involved in muscle atrophy including the main protein synthesis and protein breakdown signaling pathways. In the second section of the review we deal with the main cellular, animal, and human atrophy models. The sources of reactive oxygen species in disuse muscle atrophy and the mechanism through which they regulate protein synthesis and proteolysis are reviewed in the third section of this review. The last section is devoted to the potential interventions to prevent muscle disuse atrophy with especial consideration to studies on which the levels of endogenous antioxidants enzymes or dietary antioxidants have been tested.
Collapse
|
29
|
Li R, Toan S, Zhou H. Role of mitochondrial quality control in the pathogenesis of nonalcoholic fatty liver disease. Aging (Albany NY) 2020; 12:6467-6485. [PMID: 32213662 PMCID: PMC7185127 DOI: 10.18632/aging.102972] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Nutrient oversupply and mitochondrial dysfunction play central roles in nonalcoholic fatty liver disease (NAFLD). The mitochondria are the major sites of β-oxidation, a catabolic process by which fatty acids are broken down. The mitochondrial quality control (MQC) system includes mitochondrial fission, fusion, mitophagy and mitochondrial redox regulation, and is essential for the maintenance of the functionality and structural integrity of the mitochondria. Excessive and uncontrolled production of reactive oxygen species (ROS) in the mitochondria damages mitochondrial components, including membranes, proteins and mitochondrial DNA (mtDNA), and triggers the mitochondrial pathway of apoptosis. The functionality of some damaged mitochondria can be restored by fusion with normally functioning mitochondria, but when severely damaged, mitochondria are segregated from the remaining functional mitochondrial network through fission and are eventually degraded via mitochondrial autophagy, also called as mitophagy. In this review, we describe the functions and mechanisms of mitochondrial fission, fusion, oxidative stress and mitophagy in the development and progression of NAFLD.
Collapse
Affiliation(s)
- Ruibing Li
- Department of Clinical Laboratory Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812, USA
| | - Hao Zhou
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|