1
|
Tanaka Y, Tominari T, Takatoya M, Arai D, Sugasaki M, Ichimaru R, Miyaura C, Matsumoto C, Ma S, Suzuki K, Hirata M, Grundler FMW, Inada M. Lutein Maintains Bone Mass In Vitro and In Vivo Against Disuse-Induced Bone Loss in Hindlimb-Unloaded Mice. Nutrients 2024; 16:4271. [PMID: 39770893 PMCID: PMC11678298 DOI: 10.3390/nu16244271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Lutein, a carotenoid, exhibits various biological activities such as maintaining the health of the eye, skin, heart, and bone. Recently, we found that lutein has dual roles in suppressing bone resorption and promoting bone formation. In this study, we examined the effects of lutein in a disuse-induced osteoporosis model using hindlimb-unloaded (HLU) mice. METHODS Osteoclast differentiation was assessed by coculturing mouse primary osteoblasts and bone marrow cells or culturing a mouse osteoclast precursor cell line. The bone-resorbing activity was determined by mouse calvarial organ cultures. An in situ docking simulation was conducted to reveal the interaction of lutein and IκB kinase (IKK) β protein. HLU mice were fed a 1% lutein-containing diet for two weeks, and the femoral bone mass was measured by μCT. RESULTS Osteoclast differentiation is significantly inhibited by lutein, astaxanthin, and β-cryptoxanthin. In contrast, only lutein promoted osteoblastic calcified bone nodule formation. To elucidate the molecular role of lutein, we functionally analyzed the NF-κB complex, a molecule involved in bone metabolism, especially in osteoclasts. Docking simulations showed that lutein binds to IKK, thus inhibiting the activation of NF-κB. In a cell culture analysis, the phosphorylation of p65, the active form of NF-κB in osteoblasts, was suppressed by lutein treatment. In vivo, a μCT analysis of the bone microarchitecture showed that lutein improves several bone parameters while maintaining bone mass. CONCLUSIONS Lutein is effective in maintaining bone mass by controlling both bone resorption and formation, which is applied to prevent disuse-induced osteoporosis.
Collapse
Affiliation(s)
- Yuki Tanaka
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei 184-8588, Tokyo, Japan
| | - Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei 184-8588, Tokyo, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Masaru Takatoya
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei 184-8588, Tokyo, Japan
| | - Daichi Arai
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei 184-8588, Tokyo, Japan
| | - Moe Sugasaki
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei 184-8588, Tokyo, Japan
| | - Ryota Ichimaru
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei 184-8588, Tokyo, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Chisato Miyaura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei 184-8588, Tokyo, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei 184-8588, Tokyo, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Sihui Ma
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Saitama, Japan; (S.M.); (K.S.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Saitama, Japan; (S.M.); (K.S.)
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei 184-8588, Tokyo, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Florian M. W. Grundler
- Institute of Crop Science and Resource Conservation, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany;
- Life Science Inada Team, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei 184-8588, Tokyo, Japan
| | - Masaki Inada
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei 184-8588, Tokyo, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei 184-8588, Tokyo, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
- Life Science Inada Team, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei 184-8588, Tokyo, Japan
| |
Collapse
|
2
|
Tang S, Zhang J, Ma P, Zhang Z. Effect of ultraviolet treatment on soft tissue healing and bacterial attachment to titania-coated zirconia. Biomed Mater 2024; 20:015003. [PMID: 39419114 DOI: 10.1088/1748-605x/ad8827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Zirconia is the most promising implant abutment material due to its excellent aesthetic effect, good biocompatibility and corrosion resistance. To obtain ideal soft tissue sealing, the implant abutment surface should facilitate cell adhesion and inhibit bacterial colonization. In this study, pre-sintered zirconia was placed in a suspension of titania (TiO2) and zirconium oxychloride (ZrOCl2) and heated in a water bath for dense sintering. A titania coating was prepared on the zirconia surface and subjected to UV irradiation. The surface morphology, elemental composition and chemical state of each group of samples were analyzed by scanning electron microscope, x-ray energy spectrometer, x-ray photoelectron spectroscopy and x-ray diffraction. The responses of human gingival fibroblasts (HGFs) and common oral pathogensStreptococcus mutans(S. mutans) andPorphyromonas gingivalis(P. gingivalis) to modified zirconia were systematically assessed. Our findings demonstrated that the surface of titania-coated zirconia after UV irradiation produced a large number of hydroxyl groups, and its hydrophilicity was significantly improved. Meanwhile, the UV irradiation also greatly removed the hydrocarbon contaminants on the surface of the titania-coated zirconia. The UV-treated titania coating significantly promoted the proliferation, spreading, and up-regulation of adhesion-related genes and proteins of HGFs. Furthermore, the titania coating irradiated with UV could reduce the adhesion, colonization and metabolic activity ofS. mutansandP. gingivalis. Therefore, UV irradiation of titania-coated zirconia can promote the biological behavior of HGFs and exert a significant antibacterial effect, which has broad clinical application prospects for improving soft tissue integration around zirconia abutments.
Collapse
Affiliation(s)
- Shuang Tang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Jiebing Zhang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Ping Ma
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Zutai Zhang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| |
Collapse
|
3
|
Wang M, Mequanint K. ROS Scavenging and Osteogenic Differentiation Potential of L-Methionine-Substituted Poly(Organophosphazene) Electrospun Fibers. Biomimetics (Basel) 2024; 9:676. [PMID: 39590248 PMCID: PMC11592370 DOI: 10.3390/biomimetics9110676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/01/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
This study investigated the application of poly[bis (ethylmethionato) phosphazene] (PαAPz-M) electrospun fibers in tissue engineering, focusing on their reactive oxygen species (ROS) scavenging capabilities and material-directed cell behavior, including the influence of their degradation products on cell viability and differentiation, and the scaffold topography's influence on cell alignment. The ROS scavenging ability of PαAPz-M was assessed by DPPH assay, and then PαAPz-M's protection against exogenous ROS was studied. The results showed enhanced cell viability on PαAPz-M fiber mats under oxidative stress conditions. This study also investigated the effects of the degradation products of PαAPz-M on cell viability and osteogenic differentiation. It was observed that the late-stage degradation product, phosphoric acid, can significantly influence the osteogenic differentiation of MSCs. In contrast, methionine, which is the early-stage degradation product, showed a minimal influence. Additionally, the study fabricated fiber mats that can lead to enhanced cell alignment while maintaining high porosity. Collectively, this study expanded the applications of PαAPz-M fiber mat protection against oxidative stress and guiding osteogenic differentiation and cell alignment.
Collapse
Affiliation(s)
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada;
| |
Collapse
|
4
|
Zhang M, Ye Q, Zhu Z, Shi S, Xu C, Xie R, Li Y. Hyaluronic Acid-Based Dynamic Hydrogels for Cartilage Repair and Regeneration. Gels 2024; 10:703. [PMID: 39590059 PMCID: PMC11594165 DOI: 10.3390/gels10110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Hyaluronic acid (HA), an important natural polysaccharide and meanwhile, an essential component of extracellular matrix (ECM), has been widely used in tissue repair and regeneration due to its high biocompatibility, biodegradation, and bioactivity, and the versatile chemical groups for modification. Specially, HA-based dynamic hydrogels, compared with the conventional hydrogels, offer an adaptable network and biomimetic microenvironment to optimize tissue repair and the regeneration process with a striking resemblance to ECM. Herein, this review comprehensively summarizes the recent advances of HA-based dynamic hydrogels and focuses on their applications in articular cartilage repair. First, the fabrication methods and advantages of HA dynamic hydrogels are presented. Then, the applications of HA dynamic hydrogels in cartilage repair are illustrated from the perspective of cell-free and cell-encapsulated and/or bioactive molecules (drugs, factors, and ions). Finally, the current challenges and prospective directions are outlined.
Collapse
Affiliation(s)
- Mingshuo Zhang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Qianwen Ye
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Zebo Zhu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Shuanglian Shi
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Chunming Xu
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Renjian Xie
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| | - Yumei Li
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
5
|
Qiu W, Sun Q, Li N, Chen Z, Wu H, Chen Z, Guo X, Fang F. Superoxide dismutase 2 scavenges ROS to promote osteogenic differentiation of human periodontal ligament stem cells by regulating Smad3 in alveolar bone-defective rats. J Periodontol 2024; 95:469-482. [PMID: 37921754 DOI: 10.1002/jper.23-0469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is an essential event in alveolar bone regeneration. Oxidative stress may be the main inhibiting factor of hPDLSC osteogenesis. Superoxide dismutase 2 (SOD2) is a key antioxidant enzyme, but its effect on hPDLSC osteogenic differentiation is unclear. METHODS Several surface markers were detected by flow cytometry, and the differentiation potential of hPDLSCs was validated by alkaline phosphatase (ALP), Alizarin Red S, and Oil Red O staining. Osteogenic indicators of hPDLSCs were detected by real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting, and ALP staining. Furthermore, alveolar bone defect rat models were analyzed through micro-CT, hematoxylin and eosin, and Masson staining. The intracellular reactive oxygen species (ROS) level was evaluated by a ROS assay kit. Finally, the expression of SOD2, Smad3, and p-Smad3 in hPDLSCs was detected by RT-qPCR and Western blotting (WB). RESULTS SOD2 positively regulated the gene and protein expressions of ALP, BMP6, and RUNX2 in hPDLSCs (p < 0.05). Ideal bone formation and continuous cortical bone were obtained by transplanting LV-SOD2 hPDLSCs (lentivirus vector for overexpressing SOD2 in hPDLSCs) in vivo. Exogenous H2O2 downregulated osteogenic indicators (ALP, BMP6, RUNX2) in hPDLSCs (p < 0.05); this was reversed by overexpression of SOD2. WB results showed that the Smad3 and p-Smad3 signaling pathways participated in the osteogenic process of SOD2 in hPDLSCs. CONCLUSION SOD2 positively regulated hPDLSC osteogenic differentiation in vitro and in vivo. Mechanistically, SOD2 promotes hPDLSC osteogenic differentiation by regulating the phosphorylation of Smad3 to scavenge ROS. This work provides a theoretical basis for the treatment of alveolar bone regeneration.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Sun
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongle Wu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolan Guo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Lei L, Cong R, Ni Y, Cui X, Wang X, Ren H, Wang Z, Liu M, Tu J, Jiang L. Dual-Functional Injectable Hydrogel for Osteoarthritis Treatments. Adv Healthc Mater 2024; 13:e2302551. [PMID: 37988224 DOI: 10.1002/adhm.202302551] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Osteoarthritis (OA) is a prevalent, chronic degenerative disease that affects people worldwide. It is characterized by the destruction of cartilage and inflammatory reactions. High levels of reactive oxygen species (ROS) cause oxidative stress, which damages lipids, proteins, and DNA, leading to cell damage and death. Furthermore, ROS also induces the production of inflammatory cytokines and cell chemotaxis, further worsening the inflammatory response and damaging cartilage resulted in limited movement. Herein, this work reports a dual-functional injectable hydrogel, which can help inhibit inflammation by scavenging ROS and provide lubrication to reduce wear and tear on the joints. To create the hydrogel, 3-aminophenylboronic acid modified hyaluronic acid is synthesized, then which is crosslinked with hydroxyl-containing polyvinyl alcohol (PVA) to construct a dual dynamic covalent crosslinked hydrogel oHA-PBA-PVA gel, Gel (HPP). The hydrogel mentioned here possesses a unique bond structure that allows it to be injected, self-heal, and provide lubrication. This innovative approach offers a new possibility for treating osteoarthritis by combining anti-inflammatory and lubrication effects.
Collapse
Affiliation(s)
- Lei Lei
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Rui Cong
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Yifei Ni
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xin Cui
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xulei Wang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Hongmei Ren
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Zun Wang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Mengyuan Liu
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Jiasheng Tu
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Lei Jiang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| |
Collapse
|
7
|
Geng H, Li R, Feng D, Zhu Y, Deng L. Role of the p38/AKT Pathway in the Promotion of Cell Proliferation by Serum Heat Inactivation. Int J Mol Sci 2023; 24:16538. [PMID: 38003726 PMCID: PMC10671805 DOI: 10.3390/ijms242216538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Serum is a common biomaterial in cell culture that provides nutrients and essential growth factors for cell growth. Serum heat inactivation is a common treatment method whose main purpose is to remove complement factors and viruses. As serum contains many heat-labile factors, heat inactivation may affect cell proliferation, migration, differentiation, and other functions. However, the specific mechanism of its effect on cell function has not been studied. Thus, we investigate the exact effects of heat-inactivated FBS on the viability of various cells and explore the possible molecular mechanisms. We treated HCT116, HT-29, and HepG2 cell lines with heat-inactivated (56 °C for 30 min) medium, DMEM, or fetal bovine serum (FBS) for different times (0, 10, 15, 30, 60, or 90 min); we found that heat-inactivated FBS significantly promoted the viability of these cells, whereas DMEM did not have this effect. Moreover, heat-inactivated FBS stimulated cells to produce a small amount of ROS and activated intracellular signaling pathways, mainly the p38/AKT signaling pathway. These results indicate that heat-inactivated FBS may regulate the p38/AKT signaling pathway by promoting the production of appropriate amounts of ROS, thereby regulating cell viability.
Collapse
Affiliation(s)
| | | | | | | | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.G.); (R.L.); (D.F.); (Y.Z.)
| |
Collapse
|
8
|
Lu L, Li Y, Dong Q, Fang J, Chen A, Lan Z, Ye Y, Yan J, Liang Q. Wogonin inhibits oxidative stress and vascular calcification via modulation of heme oxygenase-1. Eur J Pharmacol 2023; 958:176070. [PMID: 37739306 DOI: 10.1016/j.ejphar.2023.176070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Vascular calcification (VC) is highly prevalent and increases the morbidity and mortality of cardiovascular diseases. However, the underlying mechanism remains unclear and there is no effective treatment so far. Interestingly, using systems pharmacology approach, we have predicted that Wogonin (Wog) exhibited potential activity against VC. Then we validated the effect of Wog on VC using human and rat vascular smooth muscle cells (VSMCs), rat arterial rings and vitamin D3-overloaded mouse models. Our results showed that Wog dose-dependently inhibited calcification of VSMCs and rat arterial rings. Consistently, alizarin red staining and calcium content assay confirmed that Wog inhibited aortic calcification in vitamin D3-overloaded mice. Moreover, by constructing the protein regulating network of Wog in suppressing VC, we found heme oxygenase-1 (HMOX-1) was regulated by Wog. Additionally, pathway enrichment analysis revealed that inhibition of reactive oxygen species (ROS) pathway participated in the inhibitory role of Wog in VC and HMOX-1 was also involved in this process. Notably, our study revealed that Wog treatment promoted HMOX-1 expression, and reduced ROS levels in VSMCs. Interestingly, both inhibition of HMOX-1 by ZnPP9 and knockdown of HMOX-1 by siRNA independently eliminated the inhibitory effect of Wog on VC. Finally, administration of Wog suppressed aortic calcification in vitamin D3-overloaded mice and this effect was counteracted by ZnPP9,suggesting the crucial role of HMOX-1 in the inhibitory effect of Wog on VC. Collectively, this study combines systems pharmacology-based strategy and experiments to identify the therapeutic potential of Wog for VC via upregulating HMOX-1 and reducing oxidative stress.
Collapse
Affiliation(s)
- Lihe Lu
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Qian Dong
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China.
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Adhikari R, Shiwakoti S, Kim E, Choi IJ, Park SH, Ko JY, Chang K, Oak MH. Niclosamide Inhibits Aortic Valve Interstitial Cell Calcification by Interfering with the GSK-3β/β-Catenin Signaling Pathway. Biomol Ther (Seoul) 2023; 31:515-525. [PMID: 37366053 PMCID: PMC10468423 DOI: 10.4062/biomolther.2022.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
The most common heart valve disorder is calcific aortic valve stenosis (CAVS), which is characterized by a narrowing of the aortic valve. Treatment with the drug molecule, in addition to surgical and transcatheter valve replacement, is the primary focus of researchers in this field. The purpose of this study is to determine whether niclosamide can reduce calcification in aortic valve interstitial cells (VICs). To induce calcification, cells were treated with a pro-calcifying medium (PCM). Different concentrations of niclosamide were added to the PCM-treated cells, and the level of calcification, mRNA, and protein expression of calcification markers was measured. Niclosamide inhibited aortic valve calcification as observed from reduced alizarin red s staining in niclosamide treated VICs and also decreased the mRNA and protein expressions of calcification-specific markers: runt-related transcription factor 2 and osteopontin. Niclosamide also reduced the formation of reactive oxygen species, NADPH oxidase activity and the expression of Nox2 and p22phox. Furthermore, in calcified VICs, niclosamide inhibited the expression of β-catenin and phosphorylated glycogen synthase kinase (GSK-3β), as well as the phosphorylation of AKT and ERK. Taken together, our findings suggest that niclosamide may alleviate PCM-induced calcification, at least in part, by targeting oxidative stress mediated GSK-3β/β-catenin signaling pathway via inhibiting activation of AKT and ERK, and may be a potential treatment for CAVS.
Collapse
Affiliation(s)
- Radhika Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Eunmin Kim
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ik Jun Choi
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Hee Park
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Kiyuk Chang
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Min-Ho Oak
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| |
Collapse
|
10
|
Li G, Li J, Wang W, Feng X, Yu X, Yuan S, Zhang W, Chen J, Hu C. Synthesis, In Vitro, and In Vivo Investigations of Pterostilbene-Tethered Analogues as Anti-Breast Cancer Candidates. Int J Mol Sci 2023; 24:11468. [PMID: 37511230 PMCID: PMC10380385 DOI: 10.3390/ijms241411468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Pterostilbene has been found to be an active scaffold with anti-breast cancer (BC) action. In this study, fourteen pterostilbene-tethered analogues (2A-2N) were prepared and screened in vitro against MDA-MB-231 and MCF-7 cells. Meanwhile, their structures were characterized using 1H-NMR, 13C-NMR, and HRMS (ESI) spectroscopy techniques. Among them, analogue 2L displayed the most potent anti-proliferation effect on MDA-MB-231 (IC50 = 10.39 μM) and MCF-7 cells (IC50 = 11.73 μM). Furthermore, the meaningful structure-activity relationships suggested that the introduction of a saturated six-membered nitrogen heterocyclic ring into the side chain favored anti-BC capacity. Biological observations indicated that 2L could cause the typical morphological changes in apoptosis, namely an increase in reactive oxygen species level and a loss of mitochondrial membrane potential in BC cells. Importantly, 2L could induce mitochondrial-mediated apoptosis by regulating the expression of caspase-related proteins. Consistent with the results of our in vitro study, 2L apparently inhibited tumor growth in MDA-MB-231 xenograft mice without obvious toxicity. These findings revealed that 2L is expected to be a promising anti-BC lead compound that merits further investigations.
Collapse
Affiliation(s)
- Guoxun Li
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jian Li
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou 213164, China
| | - Wenqian Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xiaoqing Feng
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xingkang Yu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Shuo Yuan
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Wei Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jialing Chen
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Caijuan Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
11
|
Hidayat DF, Mahendra MYN, Kamaludeen J, Pertiwi H. Lycopene in Feed as Antioxidant and Immuno-Modulator Improves Broiler Chicken's Performance under Heat-Stress Conditions. Vet Med Int 2023; 2023:5418081. [PMID: 37426426 PMCID: PMC10325881 DOI: 10.1155/2023/5418081] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/10/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023] Open
Abstract
Lycopene is a type of carotenoid pigment widely distributed in various plants and fruits, with tomatoes, carrots, and guava being the most abundant sources. Due to its high content of beneficial active components, lycopene has been used in medicine, where it is employed as a dietary additive for cancer therapy, immune modulator, and feed additive to improve livestock productivity. Lycopene is a lipophilic substance that can act as either a prooxidant or a free radical scavenger and is particularly efficient in enhancing broiler performance. Furthermore, lycopene can alleviate heat stress by improving the activity of various antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), as well as increasing the total antioxidant capacity (T-AOC) and nuclear muscle factor erythroid 2-related factor 2 (Nrf2), while simultaneously reducing the levels of malondialdehyde (MDA) and muscle Keap1 expression. In addition, lycopene can improve broiler fertility by enhancing sperm performance and reducing inflammation by modulating the levels of interleukin 1, 2, and 10 (IL-1, IL-2, and IL-10) in cases of infection. In cases of disease by aflatoxin B1 (AFB1), lycopene can modulate interferon-γ (IFN-γ), IL-1, claudin-1 (CLDN-1), and zonula occludens-1 (ZO-1). Furthermore, under the lipopolysaccharide challenge, lycopene can increase the relative weights of immune organ indices such as the bursal, spleen, and thymus.
Collapse
Affiliation(s)
- Dalila Fadhila Hidayat
- Department of Health, Faculty of Vocational Studies Airlangga University, Surabaya, Indonesia
| | | | - Juriah Kamaludeen
- Department of Animal Science and Fishery, University Putra Malaysia, Bintulu Serawak Campus, Nyabau Road 97008, Serawak, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Herinda Pertiwi
- Department of Health, Faculty of Vocational Studies Airlangga University, Surabaya, Indonesia
| |
Collapse
|
12
|
Vanreusel I, Taeymans J, Van Craenenbroeck E, Segers VFM, Van Berendoncks A, Briedé JJ, Hens W. Elevated oxidative stress in patients with congenital heart disease and the effect of cyanosis: a meta-analysis. Free Radic Res 2023; 57:470-486. [PMID: 38000042 DOI: 10.1080/10715762.2023.2284639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
Oxidative stress is an important pathophysiological mechanism in the development of numerous cardiovascular disorders. To improve therapy and preventive strategies, clinicians need a better understanding of the underlying pathophysiological mechanisms of congenital heart diseases (CHD). The objective of this meta-analysis was to determine whether oxidative stress is elevated in patients with CHD compared to healthy controls, and to evaluate whether a difference in oxidative stress parameters can be observed between patients with cyanotic (cCHD) and acyanotic CHD (aCHD). Therefore, 21 studies investigating oxidative stress in peripheral blood of both children and adults with CHD were reviewed. Different methods to assess the oxidant status were compared and divided into three categories: pro-oxidative or anti-oxidative stress markers and the ratio of pro-to-anti oxidative stress markers. This meta-analysis showed elevated oxidative stress levels in patients with CHD, and more specifically in patients with cCHD. Moreover, this indicates that there could be potential in oxidative stress measurements as a new biomarker of disease severity. Further research will be needed to clarify the exact role of oxidative stress and its contributors in CHD in order to get a better and more in-depth understanding of the underlying pathophysiology of CHD, especially the higher susceptibility of the right ventricle (RV) to progress to heart failure (HF). This could facilitate the development of antioxidant treatments and RV-specific HF therapies, which are necessary to improve survival in these patients and could be of particular importance in cCHD.
Collapse
Affiliation(s)
- Inne Vanreusel
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Jan Taeymans
- Division of Physiotherapy, School of Health Professions, Bern University of Applied Sciences, Bern, Switzerland
- Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussel, Belgium
| | - Emeline Van Craenenbroeck
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Vincent F M Segers
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - An Van Berendoncks
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Jacob J Briedé
- Department of Toxicogenomics, School of Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands
| | - Wendy Hens
- Cardiac Rehabilitation Centre, Antwerp University Hospital, Edegem, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, MOVANT Research Group, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Li J, Zhao C, Xu Y, Song L, Chen Y, Xu Y, Ma Y, Wang S, Xu A, He F. Remodeling of the osteoimmune microenvironment after biomaterials implantation in murine tibia: Single-cell transcriptome analysis. Bioact Mater 2023; 22:404-422. [PMID: 36311047 PMCID: PMC9588995 DOI: 10.1016/j.bioactmat.2022.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022] Open
Abstract
Osseointegration seems to be a foreign body reaction equilibrium due to the complicated interactions between the immune and skeletal systems. The heterogeneity of the osteoimmune microenvironment in the osseointegration of implant materials remains elusive. Here, a single-cell study involving 40043 cells is conducted, and a total of 10 distinct cell clusters are identified from five different groups. A preliminary description of the osteoimmune microenvironment revealed the diverse cellular heterogeneity and dynamic changes modulated by implant properties. The increased immature neutrophils, Ly6C + CCR2hi monocytes, and S100a8hi macrophages induce an aggressive inflammatory response and eventually lead to the formation of fibrous capsule around the stainless steel implant. The enrichment of mature neutrophils, FcgR1hi and differentiated immunomodulatory macrophages around the titanium implant indicates favorable osseointegration under moderate immune response. Neutrophil-depletion mice are conducted to explore the role of neutrophils in osseointegration. Neutrophils may improve bone formation by enhancing the recruitment of BMSCs via the CXCL12/CXCR3 signal axis. These findings contribute to a better knowledge of osteoimmunology and are valuable for the design and modification of 'osteoimmune-smart' biomaterials in the bone regeneration field.
Collapse
Key Words
- BMP2, Bone Morphogenetic Proteins 2
- CXCL12, Chemokine (C-X-C mode) Ligand 12
- CXCR, CXC Chemokine Receptor
- FcgR, Fc Gamma Receptor
- IFN-γ, Interferon-gamma
- IL-1β, Interleukin-1 beta
- Implant
- MHC, Major Histocompatibility Complex
- MIP, Macrophage inflammatory cytokines
- MPO, Myeloperoxidase
- NE, Neutrophil Elastase
- NF-κB, Nuclear Factor Kappa-light-chain-enhancer of Activated B cells
- NOD, Nucleotide Binding Oligomerization Domain
- Neutrophil
- OPG, Osteoprotegerin
- Osseointegration
- Osteoimmunology
- RANKL, Nuclear Factor B receptor Activator Ligand
- RUNX2, Runt-related Transcription Factor 2
- S100a8, S100 Calcium Binding Protein A8
- SDF-1α, Stromal Cell-derived Factor-1 alpha
- STAT, Signal Transduction and Transcription Activator
- Single-cell transcriptomics
- TLR, Toll Like Receptor
- TNFα, Tumor Necrosis Factor-alpha
- TRAP, Tartrate Resistant Acid Phosphatase
Collapse
Affiliation(s)
- Jia Li
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Congrui Zhao
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yangbo Xu
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Lu Song
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yanqi Chen
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yuzi Xu
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yang Ma
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Siyuan Wang
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Antian Xu
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Fuming He
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Tompkins YH, Liu G, Kim WK. Impact of exogenous hydrogen peroxide on osteogenic differentiation of broiler chicken compact bones derived mesenchymal stem cells. Front Physiol 2023; 14:1124355. [PMID: 36776980 PMCID: PMC9909420 DOI: 10.3389/fphys.2023.1124355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The effects of hydrogen peroxide (H2O2) on the osteogenic differentiation of primary chicken mesenchymal stem cells (MSCs) were investigated. MSCs were subjected to an osteogenic program and exposed to various concentrations of H2O2 for 14 days. Results showed that high concentrations of H2O2 (200 and 400 nM) significantly increased pro-apoptotic marker CASP8 expression and impaired osteogenic differentiation, as indicated by decreased mRNA expression levels of osteogenesis-related genes and reduced in vitro mineralization. In contrast, long-term H2O2 exposure promoted basal expression of adipogenic markers at the expense of osteogenesis in MSCs during osteogenic differentiation, and increased intracellular reactive oxygen species (ROS) production, as well as altered antioxidant enzyme gene expression. These findings suggest that long-term H2O2-induced ROS production impairs osteogenic differentiation in chicken MSCs under an osteogenic program.
Collapse
|
15
|
Lin L, Li S, Hu S, Yu W, Jiang B, Mao C, Li G, Yang R, Miao X, Jin M, Gu Y, Lu E. UCHL1 Impairs Periodontal Ligament Stem Cell Osteogenesis in Periodontitis. J Dent Res 2023; 102:61-71. [PMID: 36112902 DOI: 10.1177/00220345221116031] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Periodontitis comprises a series of inflammatory responses resulting in alveolar bone loss. The suppression of osteogenesis of periodontal ligament stem cells (PDLSCs) by inflammation is responsible for impaired alveolar bone regeneration, which remains an ongoing challenge for periodontitis therapy. Ubiquitin C-terminal hydrolase L1 (UCHL1) belongs to the family of deubiquitinating enzymes, which was found to play roles in inflammation previously. In this study, the upregulation of UCHL1 was identified in inflamed PDLSCs isolated from periodontitis patients and in healthy PDLSCs treated with tumor necrosis factor-α or interleukin-1β, and the higher expression level of UCHL1 was accompanied with the impaired osteogenesis of PDLSCs. Then UCHL1 was inhibited in PDLSCs using the lentivirus or inhibitor, and the osteogenesis of PDLSCs suppressed by inflammation was rescued by UCHL1 inhibition. Mechanistically, the negative effect of UCHL1 on the osteogenesis of PDLSCs was attributable to its negative regulation of mitophagy-dependent bone morphogenetic protein 2/Smad signaling pathway in periodontitis-associated inflammation. Furthermore, a ligature-induced murine periodontitis model was established, and the specific inhibitor of UCHL1 was administrated to periodontitis mice. The histological results showed increased active osteoblasts on alveolar bone surface and enhanced alveolar bone regeneration when UCHL1 was inhibited in periodontitis mice. Besides, the therapeutic effects of UCHL1 inhibition on ameliorating periodontitis were verified, as indicated by less bone loss and reduced inflammation. Altogether, our study proved UCHL1 to be a key negative regulator of the osteogenesis of PDLSCs in periodontitis and suggested that UCHL1 inhibition holds promise for alveolar bone regeneration in periodontitis treatment.
Collapse
Affiliation(s)
- L Lin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Li
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Hu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - W Yu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - B Jiang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - C Mao
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Li
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - R Yang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X Miao
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - M Jin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Gu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - E Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Prasathkumar M, Sakthivel C, Becky R, Dhrisya C, Prabha I, Sadhasivam S. Phytofabrication of cost-effective selenium nanoparticles from edible and non-edible plant materials of Senna auriculata: Characterization, antioxidant, antidiabetic, antimicrobial, biocompatibility, and wound healing. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Cho S, Shon MJ, Son B, Eun GS, Yoon TY, Park TH. Tension exerted on cells by magnetic nanoparticles regulates differentiation of human mesenchymal stem cells. BIOMATERIALS ADVANCES 2022; 139:213028. [PMID: 35882121 DOI: 10.1016/j.bioadv.2022.213028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Cells can 'sense' physical cues in the surrounding microenvironment and 'react' by changing their function. Previous studies have focused on regulating the physical properties of the matrix, such as stiffness and topography, thus changing the tension 'felt' by the cell as a result. In this study, by directly applying a quantified magnetic force to the cell, a correlation between differentiation and tension was shown. The magnetic force, quantified by magnetic tweezers, was applied by incorporating magnetotactic bacteria-isolated magnetic nanoparticles (MNPs) in human mesenchymal stem cells. As the applied tension increased, the expression levels of osteogenic differentiation marker genes and proteins were proportionally upregulated. Additionally, the translocation of YAP and RUNX2, deformation of nucleus, and activation of the MAPK signaling pathway were observed in tension-based osteogenic differentiation. Our findings provide a platform for the quantitative control of tension, a key factor in stem cell differentiation, between cells and the matrix using MNPs. Furthermore, these findings improve the understanding of osteogenic differentiation by mechanotransduction.
Collapse
Affiliation(s)
- Sungwoo Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Min Ju Shon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Boram Son
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Gee Sung Eun
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
18
|
Yang H, Li X, Zheng X, Zhi H, Tang G, Ke Y, Liu B, Ma H. Comparing the toxicity of iodinated X-ray contrast media on eukaryote- and prokaryote-based quantified microarray assays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113678. [PMID: 35653977 DOI: 10.1016/j.ecoenv.2022.113678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
This study compared the toxicity mechanisms of four X-ray-based iodinated contrast media (ICM) on Escherichia coli (E. coli) and yeast microarray assays, aiming to determine the diverse toxicity mechanisms among different exposed organisms and the relationship between toxicity and their physical and chemical characteristics. The conventional phenotypic endpoint cytotoxicity and the change in reactive oxygen species (ROS) level were employed in conjunction with toxicogenomics to quantify changes in the gene/protein biomarker level in the regulation of different damage/repair pathways. The results showed that molecular toxicity endpoints, named transcriptional effect level index (TELI) and protein effect level index (PELI) for E. coli and yeast, respectively, correlated well with the phenotypic endpoints. Temporal altered gene/protein expression profiles revealed dynamic and complex damage/toxic mechanisms. In particular, compared with E. coli cells, yeast cells exposed to ICM exhibited significantly higher stress intensity and diverse stress types, resulting in stress or damage to the organism. The toxic mechanisms of ICM are concentration/property-dependent and relevant to the cellular structure and defense systems in prokaryotes and eukaryotes. In particular, the toxicity of ionic ICM is higher than that of non-ionic ICM, and eukaryotes are more susceptible than prokaryotes to ICM exposure.
Collapse
Affiliation(s)
- Heyun Yang
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaoliang Li
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China.
| | - Hegang Zhi
- College of Agricultural and Environmental Sciences, University of California, Davis 95616, United States
| | - Gang Tang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yanchun Ke
- Aerospace Kaitian environmental technology co. ltd., Changsha 410100, China
| | - Bao Liu
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Hao Ma
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
19
|
Lobov A, Malashicheva A. Osteogenic differentiation: a universal cell program of heterogeneous mesenchymal cells or a similar extracellular matrix mineralizing phenotype? BIOLOGICAL COMMUNICATIONS 2022; 67. [DOI: 10.21638/spbu03.2022.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Despite the popularity of mesenchymal stem cells (MSCs), many fundamental aspects of their physiology still have not been understood. The information accumulated to date argues that MSCs from different sources vary in their differentiation potential and, probably, in molecular mechanisms of trilineage differentiation. Therefore, this review consists of two parts. Firstly, we focus on the data on inter- and intra-source variation of MSCs. We discuss in detail MSC variation at the single-cell level and direct omics comparison of MSCs from four main tissue sources: bone marrow, adipose tissue, umbilical cord and tooth. MSCs from all tissues represent heterogeneous populations in vivo with sub-populational structures reflecting their functional role in the tissue. After in vitro cultivation MSCs lose their natural heterogeneity, but obtain a new one, which might be regarded as a cultivation artifact. Nevertheless, MSCs from various sources still keep their functional differences after in vitro cultivation. In the second part of the review, we discuss how these differences influence molecular mechanisms of osteogenic differentiation. We highlight at least one subtype of mesenchymal cells differentiation with matrix mineralization — odontoblastic differentiation. We also discuss differences in molecular mechanisms of pathological heterotopic osteogenic differentiation of valve interstitial and tumor cells, but these assumptions need additional empirical confirmation. Finally, we observe differences in osteogenic differentiation molecular mechanisms of several MSC types and argue that this differentiation might be influenced by the cell context. Nevertheless, bone marrow and adipose MSCs seem to undergo osteogenic differentiation similarly, by the same mechanisms.
Collapse
|
20
|
Sun L, Ma J, Chen J, Pan Z, Li L. Bioinformatics-Guided Analysis Uncovers AOX1 as an Osteogenic Differentiation-Relevant Gene of Human Mesenchymal Stem Cells. Front Mol Biosci 2022; 9:800288. [PMID: 35295843 PMCID: PMC8920545 DOI: 10.3389/fmolb.2022.800288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/04/2022] [Indexed: 01/05/2023] Open
Abstract
Background: The available therapeutic options of bone defects, fracture nonunion, and osteoporosis remain limited, which are closely related to the osteogenic differentiation of bone marrow–derived mesenchymal stem cells (BMSCs). Thus, there remains an urgent demand to develop a prediction method to infer osteogenic differentiation–related genes in BMSCs. Method: We performed differential expression analysis between hBMSCs and osteogenically induced samples. Association analysis, co-expression analysis, and PPI analysis are then carried out to identify potential osteogenesis-related regulators. GO enrichment analysis and GSEA are performed to identify significantly enriched pathways associated with AOX1. qRT-PCR and Western blotting were employed to investigate the expression of genes on osteogenic differentiation, and plasmid transfection was used to overexpress the gene AOX1 in hBMSCs. Result: We identified 25 upregulated genes and 17 downregulated genes. Association analysis and PPI network analysis among these differentially expressed genes show that AOX1 is a potential regulator of osteogenic differentiation. GO enrichment analysis and GSEA show that AOX1 is significantly associated with osteoblast-related pathways. The experiments revealed that AOX1 level was higher and increased gradually in differentiated BMSCs compared with undifferentiated BMSCs, and AOX1 overexpression significantly increased the expression of osteo-specific genes, thereby clearly indicating that AOX1 plays an important role in osteogenic differentiation. Moreover, our method has ability in discriminating genes with osteogenic differentiation properties and can facilitate the process of discovery of new osteogenic differentiation–related genes. Conclusion: These findings collectively demonstrate that AOX1 is an osteogenic differentiation-relevant gene and provide a novel method established with a good performance for osteogenic differentiation-relevant genes prediction.
Collapse
Affiliation(s)
- Lingtong Sun
- Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfei Ma
- Key Laboratory of Image Information Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Chen
- Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Pan
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Zhijun Pan, ; Lijun Li,
| | - Lijun Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Zhijun Pan, ; Lijun Li,
| |
Collapse
|
21
|
Oxidative Injury in Ischemic Stroke: A Focus on NADPH Oxidase 4. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1148874. [PMID: 35154560 PMCID: PMC8831073 DOI: 10.1155/2022/1148874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide. Thus, it is urgent to explore its pathophysiological mechanisms and find new therapeutic strategies for its successful treatment. The relationship between oxidative stress and ischemic stroke is increasingly appreciated and attracting considerable attention. ROS serves as a source of oxidative stress. It is a byproduct of mitochondrial metabolism but primarily a functional product of NADPH oxidases (NOX) family members. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is most closely related to the formation of ROS during ischemic stroke. Its expression is significantly upregulated after cerebral ischemia, making it a promising target for treating ischemic stroke. Several drugs targeting NOX4, such as SCM-198, Iso, G-Rb1, betulinic acid, and electroacupuncture, have shown efficacy as treatments of ischemic stroke. MTfp-NOX4 POC provides a novel insight for the treatment of stroke. Combinations of these therapies also provide new approaches for the therapy of ischemic stroke. In this review, we summarize the subcellular location, expression, and pathophysiological mechanisms of NOX4 in the occurrence and development of ischemic stroke. We also discuss the therapeutic strategies and related regulatory mechanisms for treating ischemic stroke. We further comment on the shortcomings of current NOX4-targeted therapy studies and the direction for improvement.
Collapse
|
22
|
Chen NX, O'Neill KD, Dominguez JM, Moe SM. Regulation of reactive oxygen species in the pathogenesis of matrix vesicles induced calcification of recipient vascular smooth muscle cells. Vasc Med 2021; 26:585-594. [PMID: 34338093 DOI: 10.1177/1358863x211024721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Increased oxidative stress is associated with vascular calcification in patients with chronic kidney disease (CKD). We have previously demonstrated that cellular-derived matrix vesicles (MV), but not media-derived MV, are endocytosed in the presence of phosphorus by recipient normal rat vascular smooth muscle cells (VSMC) and induce calcification through ERK1/2 and [Ca2+]i signaling. We hypothesized that these changes were mediated by increased reactive oxygen species (ROS) production. METHODS MV were co-cultured with recipient VSMC in the presence of high phosphorus and ROS production and cell signaling assessed. RESULTS The results demonstrated MV endocytosis led to increased ROS production in recipient VSMC with no increase in mitochondrial oxygen consumption or oxidative phosphorylation (OXPHOS), indicating the ROS was not from the mitochondria. The use of inhibitors demonstrated that endocytosis of these MV by VSMC led to a signaling cascade in the cytoplasm beginning with ERK1/2 signaling, then increased [Ca2+]i and stimulation of ROS production, mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)1/4. Media-derived MV did not induce this cascade, indicating endocytosis itself was not a factor. Furthermore, inhibition of either ERK1/2 activation or [Ca2+]i reduced vascular calcification. CONCLUSION We conclude that endocytosis of pro-mineralizing MV can induce a series of signaling events in normal VSMC that culminate in generation of ROS via activation of NOX1/4. Understanding these pathways will allow the development of future targeted therapeutics.
Collapse
Affiliation(s)
- Neal X Chen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kalisha D O'Neill
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James M Dominguez
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sharon M Moe
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Roduebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| |
Collapse
|
23
|
Cheng X, Wang L, Wen X, Gao L, Li G, Chang G, Qin S, Zhang D. TNAP is a novel regulator of cardiac fibrosis after myocardial infarction by mediating TGF-β/Smads and ERK1/2 signaling pathways. EBioMedicine 2021; 67:103370. [PMID: 33971401 DOI: 10.1016/j.ebiom.2021.103370] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cardiac fibrosis is the most important pathogenesis leading to cardiac remodeling and heart failure after myocardial infarction (MI). Tissue nonspecific alkaline phosphatase (TNAP) has recently been recognized as a potential prognostic factor for MI. Nevertheless, the role of TNAP in cardiac fibrosis after MI has not been explicitly delineated. METHODS A systematic review and meta-analysis was conducted to assess the effect of serum TNAP levels on mortality in patients with ischemic heart disease (IHD). A correlation analysis was performed to investigate the relationship between serum levels of TNAP and biomarkers of fibrosis. Heart biopsies from patients with MI and a mouse model of MI were used to detect the expression and distribution of TNAP. Furthermore, we established adenovirus-mediated knockdown and overexpression of TNAP, using a combination of in vivo and in vitro studies in mice, to determine the role and mechanism of TNAP in cardiac fibrosis after MI. In the in vitro studies, cardiac fibroblasts were cultured on soft plates. FINDINGS After searching the main databases and performing a detailed assessment of the full-text articles, eight studies with 14,816 individuals were included in the quantitative analysis. We found that a high serum TNAP level was associated with an increased risk of mortality in patients with IHD and MI. The correlation analysis revealed a positive correlation between serum TNAP levels and the concentration of fibrosis biomarkers (PICP/PIIINP). The expression of TNAP was upregulated in the myocardium of patients with MI and in a mouse model of MI, accompanied by fibroblast activation and the deposition of collagen fibers. In the in vivo study, TNAP knockdown ameliorated cardiac fibrosis and improved cardiac function in mice. TNAP overexpression aggravated cardiac fibrosis and worsened cardiac function. In the in vitro study, TNAP promoted cardiac fibroblast differentiation, migration and proliferation. Mechanistically, the pro-fibrotic effect of TNAP on cardiac fibroblasts was at least partially achieved by activating the TGF-β1/Smads and ERK1/2 signaling pathways. INTERPRETATION Based on these findings, TNAP plays an important pro-fibrotic role in cardiac fibrosis after MI by activating TGF-β/Smads and ERK1/2 signaling, indicating that it functions as a potential regulator of and therapeutic target in cardiac fibrosis. FUNDING This work was supported by the National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Xiaocheng Cheng
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liyou Wang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Second Ward of Cardiovascular Medicine Department, Ankang City Central Hospital, Ankang, China
| | - Xuesong Wen
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lei Gao
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guoxing Li
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guanglei Chang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shu Qin
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dongying Zhang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
24
|
Targeting reactive oxygen species in stem cells for bone therapy. Drug Discov Today 2021; 26:1226-1244. [PMID: 33684524 DOI: 10.1016/j.drudis.2021.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have emerged as key players in regulating the fate and function of stem cells from both non-hematopoietic and hematopoietic lineages in bone marrow, and thus affect the osteoblastogenesis-osteoclastogenesis balance and bone homeostasis. Accumulating evidence has linked ROS and associated oxidative stress with the progression of bone disorders, and ROS-based therapeutic strategies have appeared to achieve favorable outcomes in bone. We review current knowledge of the multifactorial roles and mechanisms of ROS as a target in bone pathology. In addition, we discuss emerging ROS-based therapeutic strategies that show potential for bone therapy. Finally, we highlight the opportunities and challenges facing ROS-targeted stem cell therapeutics for improving bone health.
Collapse
|
25
|
Dynamic proteomic profiling of human periodontal ligament stem cells during osteogenic differentiation. Stem Cell Res Ther 2021; 12:98. [PMID: 33536073 PMCID: PMC7860046 DOI: 10.1186/s13287-020-02123-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/25/2020] [Indexed: 01/07/2023] Open
Abstract
Background Human periodontal ligament stem cells (hPDLSCs) are ideal seed cells for periodontal regeneration. A greater understanding of the dynamic protein profiles during osteogenic differentiation contributed to the improvement of periodontal regeneration tissue engineering. Methods Tandem Mass Tag quantitative proteomics was utilized to reveal the temporal protein expression pattern during osteogenic differentiation of hPDLSCs on days 0, 3, 7 and 14. Differentially expressed proteins (DEPs) were clustered and functional annotated by Gene Ontology (GO) terms. Pathway enrichment analysis was performed based on the Kyoto Encyclopedia of Genes and Genomes database, followed by the predicted activation using Ingenuity Pathway Analysis software. Interaction networks of redox-sensitive signalling pathways and oxidative phosphorylation (OXPHOS) were conducted and the hub protein SOD2 was validated with western blotting. Results A total of 1024 DEPs were identified and clustered in 5 distinctive clusters representing dynamic tendencies. The GO enrichment results indicated that proteins with different tendencies show different functions. Pathway enrichment analysis found that OXPHOS was significantly involved, which further predicted continuous activation. Redox-sensitive signalling pathways with dynamic activation status showed associations with OXPHOS to various degrees, especially the sirtuin signalling pathway. SOD2, an important component of the sirtuin pathway, displays a persistent increase during osteogenesis. Data are available via ProteomeXchange with identifier PXD020908. Conclusion This is the first in-depth dynamic proteomic analysis of osteogenic differentiation of hPDLSCs. It demonstrated a dynamic regulatory mechanism of hPDLSC osteogenesis and might provide a new perspective for research on periodontal regeneration. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02123-6.
Collapse
|