1
|
Niu J, Zhu G, Zhang J. Ginseng in delaying brain aging: Progress and Perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156587. [PMID: 40049102 DOI: 10.1016/j.phymed.2025.156587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/23/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND The Shennong Bencao Jing (Shennong's Classic of Materia Medica) records that Panax ginseng C. A. Mey (ginseng) 'lightens the body and prolongs life'. Many investigations have documented that ginseng exerts neuroprotective effects by mitigating the aging of the brain. However, a comprehensive review of the impacts of ginseng on brain aging remains lacking. PURPOSE This study aims to review the advances in ginseng research regarding its role in delaying brain aging, focusing on its bioactive constituents, underlying mechanisms and potential side effects. The findings provide scientific pieces of evidence to support the medical utilization of ginseng in the delaying senescence and the management of aging-related diseases. METHODS This review includes studies on ginseng and brain aging in humans, retrieved from English-language research articles published between 2017 and the present in the PubMed and Web of Science databases. The work focused on ginseng, brain aging, and aging-related diseases, utilizing keywords such as "Ginseng", "Brain aging", "central nervous system", "intracellular homeostasis", "peripheral system", etc. RESULTS: Ginseng comprises a varied spectrum of biologically bioactive constituents, such as ginsenosides, Maillard reaction products, ginseng polysaccharides, volatile oils, amino acids, proteins, etc. These components work to contribute to their significant medicinal value. Based on the traditional Chinese medicine (TCM) theory that "the heart and brain are interconnected, the liver and brain are mutually supportive, the brain and spleen are related, the brain and lung are linked, and the brain and kidney work in harmony," we summarize that ginseng may sustain neural homeostasis through both central and peripheral perspectives. Additionally, the potential toxic side effects of ginseng are minimal. CONCLUSION Ginseng and its bioactive constituents exhibit considerable promise in delaying brain aging and treating neurodegenerative diseases. Future research should prioritize exploring the direct targets of ginseng and its active ingredients, and work toward establishing precise drug-target-efficacy relationships. This approach will facilitate the translation of these findings into clinically viable therapeutic approaches.
Collapse
Affiliation(s)
- Jingwen Niu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| | - Junjie Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
2
|
Roy KK, Mehta DK, Das R. Reevaluating Alzheimer's disease treatment: Can phytochemicals bridge the therapeutic Gap? Neuroscience 2025; 575:1-18. [PMID: 40216186 DOI: 10.1016/j.neuroscience.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Alzheimer's disease (AD) is a growing neurological disorder giving impact cognition and memory, posing a global health challenge with over 55 million individuals affected. It is the 7th foremost cause of dying worldwide, and its pervasiveness is expected to twofold in each five years, reaching 115 million by 2050. AD is characterized by neurofibrillary tangles, senile plaques, and oxidative stress, leading to synaptic failure and cognitive decline. Currently, there is no cure, and available FDA-approved drugs provide only symptomatic relief. The disease progresses through five phases- mild cognitive impairment (MCI), very severe, severe, moderate and mild AD. Research on AD focuses on various neurodegenerative pathways, including inflammation, oxidative stress, genetic factors, environmental variables, and amyloid-beta accumulation. Existing FDA-accepted drugs, like rivastigmine, memantine, galantamine, and donepezil, primarily address early symptoms but have limitations, including side effects and high costs. In this context, phytochemicals from plants, such as resveratrol, huperzine, quercetin, galantamine, and rosmarinic acid, show promise as potential treatments for AD and overcome the challenges and limitation of conventional treatment. These natural substances are being investigated for their ability to lower the risk of AD safely. However, there is a lack of comprehensive knowledge about their application, necessitating further research and clinical trials to explore their potential benefits and limitations. This review serves as an essential reference for advancing future studies on Alzheimer's disease. By thoroughly analyzing neurodegenerative pathways, addressing drug limitations, and highlighting the potential of phytochemicals, we establish a strong foundation for developing innovative therapeutic strategies. Closing the knowledge gap related to the use of phytochemicals in Alzheimer's management is not just important; it is critical for creating novel and more effective treatments for this challenging neurological condition.
Collapse
Affiliation(s)
- Kishor Kumar Roy
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Dinesh Kumar Mehta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Rina Das
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India.
| |
Collapse
|
3
|
Yin M, Peng J, Chen M, Zhan Q, Zhong H. Rosa Roxburghii Tratt Polysaccharides Prevent Alzheimer's Disease-Like Cognitive Dysfunctions and Pathology in Rats by Regulating the Microbiota-Gut-Brain Axis and Oxidative Stress. J Med Food 2025; 28:232-242. [PMID: 40042065 DOI: 10.1089/jmf.2024.k.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
The microbial-gut-brain axis and oxidative stress may be important to the pathogenesis of Alzheimer's disease (AD). Rosa roxburghii Tratt polysaccharides (RRTP) have a strong antioxidant effect and can affect the gut microbiota, and whether it can affect AD is unknown. So, AlCl3 and d-galactose were used to establish AD model rats, and RRTP was used as an intervention treatment. Morris water maze test was used to detect cognitive functions. The hippocampus was used to observe the pathological changes, and the cortex was used to measure antioxidant markers. The stool was collected for 16S rDNA sequencing. Morris water maze test showed that the learning ability and memory level of AD group rats were decreased, and RRTP intervention could mitigate the injury to a certain extent. In the AD group, hematoxylin-eosin staining revealed changes in the morphology of neurons, silver glycine staining revealed neurofibrillary tangles and Congo red staining revealed β-amyloid. RRTP could ameliorate the above changes to some extent. The results of superoxide dismutase, malondialdehyde, and glutathione peroxidase showed that the antioxidant capacity in the RRTP intervention group was significantly higher than that in the AD group. 16S rDNA sequencing results showed that there were differences in the species composition of gut microbiota, and the ratio of Firmicutes to Bacteroidetes in the AD group was decreased. After RRTP intervention, the proportion of Lactobacillus increased. In conclusion, RRTP may prevent AD pathology and cognitive functions in rats to a certain extent through the microbiota-gut-brain axis and oxidative stress.
Collapse
Affiliation(s)
- Mingyue Yin
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
| | - Jiangjiang Peng
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
| | - Ming Chen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
| | - Qingqing Zhan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
| | - Hui Zhong
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Yang L, Hou H, Lu L, Sun Y, Chen R, Deng Q, Chen H. Effects of natural source polysaccharides on neurological diseases: A review. Int J Biol Macromol 2025; 296:139697. [PMID: 39805435 DOI: 10.1016/j.ijbiomac.2025.139697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
With the aging of society and changes in lifestyle, the incidence of neurological diseases (NDs) has been increasing year by year, bringing a heavy burden to patients and society. Although the efficacy of chemical drugs in the treatment of NDs is remarkable, there are problems such as high side effects and high costs. Therefore, finding mild and efficient drugs for NDs treatment has become an urgent clinical need. Natural source polysaccharides (NSPs) are macromolecules with unique bioactivity and low toxicity characteristics, which have great potential to become novel therapeutic agents for NDs. In the present study, the pharmacological activities and potential molecular mechanisms of NSPs to alleviate NDs are systematically reviewed from the perspectives of inflammation, oxidative stress, apoptosis, neuronal cell autophagy, neurotoxicity, and sedation-hypnosis. In addition, the limitations of the existing studies were analyzed and discussed, and the future research direction was suggested. This study may provide scientific basis for the research and development of therapeutic agents for NDs based on NSPs.
Collapse
Affiliation(s)
- Luyuan Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Hailu Hou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Liping Lu
- Guizhou Dalong Pharmaceutical Co., Ltd., Guiyang 550001, China
| | - Yu Sun
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Ruhai Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China.
| |
Collapse
|
5
|
Gurumayum N, Devi MB, Khound P, Bhattacharya A, Sarma H, Khan MR, Devi R. Bioactive fraction of Musa balbisiana seed mitigates D-galactose-induced brain aging via SIRT1/PGC-1α/FoxO3a activation and intestinal barrier dysfunction by modulating gut microbiota and core metabolites. Free Radic Biol Med 2025; 226:43-55. [PMID: 39542187 DOI: 10.1016/j.freeradbiomed.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/29/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Aging is an inevitable biological process, and emerging research has highlighted the potential of dietary and pharmacological interventions to decelerate the trajectory of age-related diseases and prolong the health span. This study evaluates the protective effects of Musa balbisiana seed on healthy aging using D-galactose-induced accelerated aging rats. The results suggested that the bioactive ethyl acetate fraction of Musa balbisiana seed extract (BF) exhibited protective effects against aging-induced oxidative stress by reducing oxidative DNA damage, advanced glycation end-product formation, and malondialdehyde levels while restoring antioxidant and glyoxalase enzyme activities. BF also ameliorated neurodegeneration by decreasing acetylcholinesterase enzyme activity and amyloid beta plaque formation. Histopathological analysis demonstrated the protective effects of BF against brain aging, liver disruption, renal damage, and intestinal barrier dysfunction. BF further restored intestinal permeability by upregulating the tight junctions (zonula occludens 1 and 2, claudin 1,2,3 and 4, and occludin) and mucin (mucin 2 and mucin 5ac) gene expression while downregulating the expression of inflammatory cytokines (IL-1β, IL-6, and TNF-α). BF significantly induced the phosphorylation of FoxO3a proteins and upregulated the gene expression of SIRT1, PGC-1α, and TFAM in the hippocampus. Next-generation sequencing (NGS) of 16s rRNA amplicons of fecal metagenomics DNA and metabolites profiling showed that BF intervention restructured the gut microbiota and altered core metabolites related to cholesterol metabolism. Overall, our findings demonstrated the multifaceted protective effects of Musa balbisiana seed against D-galactose-induced aging.
Collapse
Affiliation(s)
- Nonibala Gurumayum
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, Assam, India; Department of Zoology, Gauhati University, Guwahati, 781014, India
| | - M Bidyarani Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, Assam, India; Department of Biotechnology, Gauhati University, Guwahati, 781014, India
| | - Puspanjali Khound
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, Assam, India; Department of Zoology, Gauhati University, Guwahati, 781014, India
| | - Anupam Bhattacharya
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, Assam, India
| | - Himangshu Sarma
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, Assam, India
| | - Mojibur R Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, Assam, India.
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, Assam, India; Department of Zoology, Gauhati University, Guwahati, 781014, India.
| |
Collapse
|
6
|
Nam Y, Kim S, Park YH, Kim B, Shin SJ, Leem SH, Park HH, Jung G, Lee J, Kim H, Yoo D, Kim HS, Moon M. Investigating the impact of environmental enrichment on proteome and neurotransmitter-related profiles in an animal model of Alzheimer's disease. Aging Cell 2024; 23:e14231. [PMID: 38952076 PMCID: PMC11488327 DOI: 10.1111/acel.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 07/03/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with behavioral and cognitive impairments. Unfortunately, the drugs the Food and Drug Administration currently approved for AD have shown low effectiveness in delaying the progression of the disease. The focus has shifted to non-pharmacological interventions (NPIs) because of the challenges associated with pharmacological treatments for AD. One such intervention is environmental enrichment (EE), which has been reported to restore cognitive decline associated with AD effectively. However, the therapeutic mechanisms by which EE improves symptoms associated with AD remain unclear. Therefore, this study aimed to reveal the mechanisms underlying the alleviating effects of EE on AD symptoms using histological, proteomic, and neurotransmitter-related analyses. Wild-type (WT) and 5XFAD mice were maintained in standard housing or EE conditions for 4 weeks. First, we confirmed the mitigating effects of EE on cognitive impairment in an AD animal model. Then, histological analysis revealed that EE reduced Aβ accumulation, neuroinflammation, neuronal death, and synaptic loss in the AD brain. Moreover, proteomic analysis by liquid chromatography-tandem mass spectrometry showed that EE enhanced synapse- and neurotransmitter-related networks and upregulated synapse- and neurotransmitter-related proteins in the AD brain. Furthermore, neurotransmitter-related analyses showed an increase in acetylcholine and serotonin concentrations as well as a decrease in polyamine concentration in the frontal cortex and hippocampus of 5XFAD mice raised under EE conditions. Our findings demonstrate that EE restores cognitive impairment by alleviating AD pathology and regulating synapse-related proteins and neurotransmitters. Our study provided neurological evidence for the application of NPIs in treating AD.
Collapse
Affiliation(s)
- Yunkwon Nam
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | - Sujin Kim
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
- Research Institute for Dementia ScienceKonyang UniversityDaejeonSouth Korea
| | - Yong Ho Park
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | - Byeong‐Hyeon Kim
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
- Research Institute for Dementia ScienceKonyang UniversityDaejeonSouth Korea
| | - Seol Hwa Leem
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | | | | | | | - Doo‐Han Yoo
- Research Institute for Dementia ScienceKonyang UniversityDaejeonSouth Korea
- Department of Occupational TherapyKonyang UniversityDaejeonSouth Korea
| | - Hak Su Kim
- Veterans Medical Research InstituteVeterans Health Service Medical CenterSeoulSouth Korea
| | - Minho Moon
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
- Research Institute for Dementia ScienceKonyang UniversityDaejeonSouth Korea
| |
Collapse
|
7
|
Liu S, Geng J, Chen W, Zong Y, Zhao Y, Du R, He Z. Isolation, structure, biological activity and application progress of ginseng polysaccharides from the Araliaceae family. Int J Biol Macromol 2024; 276:133925. [PMID: 39032904 DOI: 10.1016/j.ijbiomac.2024.133925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Phytopolysaccharides are a class of natural macromolecules with a range of biological activities. Ginseng, red ginseng, American ginseng, and Panax notoginseng are all members of the Araliaceae family. They are known to contain a variety of medicinal properties and are typically rich in a wide range of medicinal values. Polysaccharides represent is one of the principal active ingredients in the aforementioned plants. However, there is a paucity of detailed reports on the separation methods, structural characteristics and comparison of various pharmacological effects of these polysaccharides. This paper presents a review of the latest research reports on ginseng, red ginseng, American ginseng and ginseng polysaccharides. The differences in extraction, separation, purification, structural characterization, and pharmacological activities of the four polysaccharides are compared and clarified. Upon examination of the current research literature, it becomes evident that the extraction and separation processes of the four polysaccharides are highly similar. Modern pharmacological studies have corroborated the multiple biological activities of these polysaccharides. These activities encompass a range of beneficial effects, including antioxidant stress injury, fatigue reduction, tumor inhibition, depression alleviation, regulation of intestinal flora, immunomodulation, diabetes management, central nervous system protection, anti-aging, and improvement of skin health. This paper presents a review of studies on the extraction, purification, characterization, and bioactivities of four natural plant ginseng polysaccharides. Furthermore, the review presents the most recent research findings on their pharmacological activities. The information provides a theoretical basis for the future application of natural plant polysaccharides and offers a new perspective for the in-depth development of the medicinal value of ginseng in the clinical practice of traditional Chinese medicine.
Collapse
Affiliation(s)
- Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jianan Geng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education of China, Changchun 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
8
|
Nam Y, Ji YJ, Shin SJ, Park HH, Yeon SH, Kim SY, Son RH, Jang GY, Kim HD, Moon M. Platycodon grandiflorum root extract inhibits Aβ deposition by breaking the vicious circle linking oxidative stress and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 177:117090. [PMID: 38968796 DOI: 10.1016/j.biopha.2024.117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease accompanied by irreversible cognitive impairment. A deleterious feedback loop between oxidative stress and neuroinflammation in early AD exacerbates AD-related pathology. Platycodon grandiflorum root extract (PGE) has antioxidant and anti-inflammatory effects in several organs. However, the mechanisms underlying the effects of PGE in the brain remain unclear, particularly regarding its impact on oxidative/inflammatory damage and Aβ deposition. Thus, we aim to identify the mechanism through which PGE inhibits Aβ deposition and oxidative stress in the brain by conducting biochemical and histological analyses. First, to explore the antioxidant mechanism of PGE in the brain, we induced oxidative stress in mice injected with scopolamine and investigated the effect of PGE on cognitive decline and oxidative damage. We also assessed the effect of PGE on reactive oxygen species (ROS) generation and the expressions of antioxidant enzymes and neurotrophic factor in H2O2- and Aβ-treated HT22 hippocampal cells. Next, we investigated whether PGE, which showed antioxidant effects, could reduce Aβ deposition by mitigating neuroinflammation, especially microglial phagocytosis. We directly verified the effect of PGE on microglial phagocytosis, microglial activation markers, and pro-inflammatory cytokines in Aβ-treated BV2 microglial cells. Moreover, we examined the effect of PGE on neuroinflammation, inducing microglial responses in Aβ-overexpressing 5XFAD transgenic mice. PGE exerts antioxidant effects in the brain, enhances microglial phagocytosis of Aβ, and inhibits neuroinflammation and Aβ deposition, ultimately preventing neuronal cell death in AD. Taken together, our findings indicate that the therapeutic potential of PGE in AD is mediated by its targeting of multiple pathological processes.
Collapse
Affiliation(s)
- Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Yun-Jeong Ji
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Eumsung 27709, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Sung-Hum Yeon
- Healthcare Research Division, HuonsGlobal Bldg., A-dong Pangyo I-Square, 17, Changeop-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do 13449, Republic of Korea
| | - Sang-Yoon Kim
- Healthcare Research Division, HuonsGlobal Bldg., A-dong Pangyo I-Square, 17, Changeop-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do 13449, Republic of Korea
| | - Rak Ho Son
- Healthcare Research Division, HuonsGlobal Bldg., A-dong Pangyo I-Square, 17, Changeop-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do 13449, Republic of Korea
| | - Gwi Yeong Jang
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Eumsung 27709, Republic of Korea
| | - Hyung Don Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Eumsung 27709, Republic of Korea; Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea.
| |
Collapse
|
9
|
Hong GL, Kim KH, Cho SP, Lee HJ, Kim YJ, Jung JY. Korean red ginseng alleviates benign prostatic hyperplasia by dysregulating androgen receptor signaling and inhibiting DRP1-mediated mitochondrial fission. Chin J Nat Med 2024; 22:599-607. [PMID: 39059829 DOI: 10.1016/s1875-5364(24)60671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Indexed: 07/28/2024]
Abstract
Panax ginseng (C.A. Mey.) has been traditionally employed in Korea and China to alleviate fatigue and digestive disorders. In particular, Korean red ginseng (KRG), derived from streamed and dried P. ginseng, is known for its anti-aging and anti-inflammatory properties. However, its effects on benign prostatic hyperplasia (BPH), a representative aging-related disease, and the underlying mechanisms remain unclear. This study aims to elucidate the therapeutic effects of KRG on BPH, with a particular focus on mitochondrial dynamics, including fission and fusion processes. The effects of KRG on cell proliferation, apoptosis, and mitochondrial dynamics and morphology were evaluated in a rat model of testosterone propionate (TP)-induced BPH and TP-treated LNCaP cells, with mdivi-1 as a control. The results revealed that KRG treatment reduced the levels of androgen receptors (AR) and prostate-specific antigens in the BPH group. KRG inhibited cell proliferation by downregulating cyclin D and proliferating cell nuclear antigen (PCNA) levels, and it promoted apoptosis by increasing the ratio of B-cell lymphoma protein 2 (Bcl-2)-associated X protein (Bax) to Bcl-2 expression. Notably, KRG treatment enhanced the phosphorylation of dynamin-related protein 1 (DRP-1, serine 637) compared with that in the BPH group, which inhibited mitochondrial fission and led to mitochondrial elongation. This modulation of mitochondrial dynamics was associated with decreased cell proliferation and increased apoptosis. By dysregulating AR signaling and inhibiting mitochondrial fission through enhanced DRP-1 (ser637) phosphorylation, KRG effectively reduced cell proliferation and induced apoptosis. These findings suggest that KRG's regulation of mitochondrial dynamics offers a promising clinical approach for the treatment of BPH.
Collapse
Affiliation(s)
- Geum-Lan Hong
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Korea; Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Kyung-Hyun Kim
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Korea
| | - Sung-Pil Cho
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Korea
| | - Hui-Ju Lee
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Korea
| | - Yae-Ji Kim
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Korea
| | - Ju-Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
10
|
Siddiqui N, Sharma A, Kesharwani A, Anurag, Parihar VK. Exploring role of natural compounds in molecular alterations associated with brain ageing: A perspective towards nutrition for ageing brain. Ageing Res Rev 2024; 97:102282. [PMID: 38548242 DOI: 10.1016/j.arr.2024.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Aging refers to complete deterioration of physiological integrity and function. By midcentury, adults over 60 years of age and children under 15 years will begin to outnumber people in working age. This shift will bring multiple global challenges for economy, health, and society. Eventually, aging is a natural process playing a vital function in growth and development during pediatric stage, maturation during adult stage, and functional depletion. Tissues experience negative consequences with enhanced genomic instability, deregulated nutrient sensing, mitochondrial dysfunction, and decline in performance on cognitive tasks. As brain ages, its volume decreases, neurons & glia get inflamed, vasculature becomes less developed, blood pressure increases with a risk of stroke, ischemia, and cognitive deficits. Diminished cellular functions leads to progressive reduction in functional and emotional capacity with higher possibility of disease and finally death. This review overviews cellular as well as molecular aspects of aging, biological pathway related to accelerated brain aging, and strategies minimizing cognitive aging. Age-related changes include altered bioenergetics, decreased neuroplasticity and flexibility, aberrant neural activity, deregulated Ca2+ homeostasis in neurons, buildup of reactive oxygen species, and neuro-inflammation. Unprecedented progress has been achieved in recent studies, particularly in terms of how herbal or natural substances affect genetic pathways and biological functions that have been preserved through evolution. Herein, the present work provides an overview of ageing and age-related disorders and explore the molecular mechanisms that underlie therapeutic effects of herbal and natural chemicals on neuropathological signs of brain aging.
Collapse
Affiliation(s)
- Nazia Siddiqui
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India.
| | - Anuradha Kesharwani
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India
| | - Anurag
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India
| | - Vipan Kumar Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| |
Collapse
|
11
|
Lee R, Kim JH, Kim WW, Hwang SH, Choi SH, Kim JH, Cho IH, Kim M, Nah SY. Emerging evidence that ginseng components improve cognition in subjective memory impairment, mild cognitive impairment, and early Alzheimer's disease dementia. J Ginseng Res 2024; 48:245-252. [PMID: 38707644 PMCID: PMC11068985 DOI: 10.1016/j.jgr.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/01/2024] [Accepted: 02/15/2024] [Indexed: 05/07/2024] Open
Abstract
Ginseng is a traditional herbal medicine used for prevention and treatment of various diseases as a tonic. Recent scientific cohort studies on life prolongation with ginseng consumption support this record, as those who consumed ginseng for more than 5 years had reduced mortality and cognitive decline compared to those who did not. Clinical studies have also shown that acute or long-term intake of ginseng total extract improves acute working memory performance or cognitive function in healthy individuals and those with subjective memory impairment (SMI), mild cognitive impairment (MCI), or early Alzheimer's disease (AD) dementia who are taking AD medication(s). Ginseng contains various components ranging from classical ginsenosides and polysaccharides to more recently described gintonin. However, it is unclear which ginseng component(s) might be the main candidate that contribute to memory or cognitive improvements or prevent cognitive decline in older individuals. This review describes recent clinical contributors to ginseng components in clinical tests and introduces emerging evidence that ginseng components could be novel candidates for cognitive improvement in older individuals, as ginseng components improve SMI cognition and exhibits add-on effects when co-administered with early AD dementia drugs. The mechanism behind the beneficial effects of ginseng components and how it improves cognition are presented. Additionally, this review shows how ginseng components can contribute to SMI, MCI, or early AD dementia when used as a supplementary food and/or medicine, and proposes a novel combination therapy of current AD medicines with ginseng component(s).
Collapse
Affiliation(s)
- Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ji-Hun Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Won-Woo Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju, Republic of Korea
| | - Sun-Hye Choi
- Department of Animal Health, College of Health and Medical Services, Osan University, Osan-si, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan City, Jeollabuk-Do, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Kim S, Shin SJ, Nam Y, Park YH, Kim BH, Park HH, Kumar V, Yoo DH, Lee YY, Hoe HS, Moon M. Korean red ginseng polysaccharide as a potential therapeutic agent targeting tau pathology in Alzheimer's disease. Int J Biol Macromol 2024; 263:130516. [PMID: 38423419 DOI: 10.1016/j.ijbiomac.2024.130516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/02/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Tau is a microtubule-associated protein that plays a critical role in the stabilization and modulation of neuronal axons. Tau pathology is stronger associated with cognitive decline in patients with Alzheimer's disease (AD) than amyloid beta (Aβ) pathology. Hence, tau targeting is a promising approach for the treatment of AD. Previous studies have demonstrated that the non-saponin fraction with rich polysaccharide (NFP) from Korean red ginseng (KRG) can modulate tau aggregation and exert a therapeutic effect on AD. Therefore, we investigated the efficacy of NFP isolated from KRG on tau pathology in experimental models of AD. Our results showed that NFP from KRG ameliorated deposition and hyperphosphorylation of tau in the brain of 3xTg mice. Moreover, NFP from KRG modulated the aggregation and dissociation of tau K18 in vitro. We demonstrated the alleviatory effects of NFP from KRG on hyperphosphorylated tau and tau kinase in okadaic acid-treated HT22 cells. Furthermore, NFP from KRG mitigated Aβ deposition, neurodegeneration, and neuroinflammation in 3xTg mice. We revealed the neuroprotective effects of NFP from KRG on tau-induced neuronal loss in HT22 cells. Our results indicate that NFP extracted from KRG is a novel therapeutic agent for the treatment of AD associated with tau pathology.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Byeong-Hyeon Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Doo-Han Yoo
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Department of Occupational Therapy, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Gajeong-ro 30, Shinseong-dong, Yuseong-gu, Daejeon 34128, Republic of Korea.
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu 41068, Republic of Korea; Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea.
| |
Collapse
|
13
|
Gao J, Liang Y, Liu P. Along the microbiota-gut-brain axis: Use of plant polysaccharides to improve mental disorders. Int J Biol Macromol 2024; 265:130903. [PMID: 38508549 DOI: 10.1016/j.ijbiomac.2024.130903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
With the development of gut microbiota-specific interventions for mental disorders, the interactions between plant polysaccharides and microbiota in the intestinal and their consequent effects are becoming increasingly important. In this review, we discussed the role of plant polysaccharides in improving various mental disorders via the microbiota-gut-brain axis. The chemical and structural characteristics and metabolites of these plant polysaccharides were summarised. Plant polysaccharides and their metabolites have great potential for reshaping gut microbiota profiles through gut microbiota-dependent fermentation. Along the microbiota-gut-brain axis, the consequent pharmacological processes that lead to the elimination of the symptoms of mental disorders include 1) regulation of the central monoamine neurotransmitters, amino acid transmitters and cholinergic signalling system; 2) alleviation of central and peripheral inflammation mainly through the NLRP3/NF-κB-related signalling pathway; 3) inhibition of neuronal apoptosis; and 4) enhancement of antioxidant activities. According to this review, monosaccharide glucose and structure -4-α-Glcp-(1→ are the most potent compositions of the most reported plant polysaccharides. However, the causal structure-activity relationship remains to be extensively explored. Moreover, mechanistic elucidation, safety verification, and additional rigorous human studies are expected to advance plant polysaccharide-based product development targeting the microbiota-gut-brain axis for people with mental disorders.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China.
| | - Ying Liang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, Peking University, Beijing, China.
| | - Pu Liu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China
| |
Collapse
|
14
|
Lee MY, Kim M. Effects of Red ginseng on neuroinflammation in neurodegenerative diseases. J Ginseng Res 2024; 48:20-30. [PMID: 38223824 PMCID: PMC10785270 DOI: 10.1016/j.jgr.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 01/16/2024] Open
Abstract
Red ginseng (RG) is widely used as a herbal medicine. As the human lifespan has increased, numerous diseases have developed, and RG has also been used to treat various diseases. Neurodegenerative diseases are major problems that modern people face through their lives. Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are featured by progressive nerve system damage. Recently, neuroinflammation has emerged as a degenerative factor and is an immune response in which cytokines with nerve cells that constitute the nervous system. RG, a natural herbal medicine with fewer side effects than chemically synthesized drugs, is currently in the spotlight. Therefore, we reviewed studies reporting the roles of RG in treating neuroinflammation and neurodegenerative diseases and found that RG might help alleviate neurodegenerative diseases by regulating neuroinflammation.
Collapse
Affiliation(s)
- Min Yeong Lee
- Department of Chemistry & Life Science, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
| |
Collapse
|
15
|
Tang J, Yousaf M, Wu YP, Li QQ, Xu YQ, Liu DM. Mechanisms and structure-activity relationships of polysaccharides in the intervention of Alzheimer's disease: A review. Int J Biol Macromol 2024; 254:127553. [PMID: 37865357 DOI: 10.1016/j.ijbiomac.2023.127553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease. Despite several decades of research, the development of effective treatments and responses for Alzheimer's disease remains elusive. The utilization of polysaccharides for Alzheimer's disease became more popular due to their beneficial characteristics, notably their multi-target activity and low toxicity. This review mainly focuses on the researches of recent 5 years in the regulation of AD by naturally derived polysaccharides, systematically lists the possible intervention pathways of polysaccharides from different mechanisms, and explores the structure-activity relationship between polysaccharide structural activities, so as to provide references for the intervention and treatment of AD by polysaccharides.
Collapse
Affiliation(s)
- Jun Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Muhammad Yousaf
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Ya-Ping Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Qin-Qin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Yi-Qian Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Dong-Mei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
16
|
Kim S, Hyun DG, Nam Y, Shin SJ, Im D, Kim HS, Leem SH, Park HH, Kim BH, Park YH, Cho E, Goddard WA, Kim DH, Kim HI, Moon M. Genipin and pyrogallol: Two natural small molecules targeting the modulation of disordered proteins in Alzheimer's disease. Biomed Pharmacother 2023; 168:115770. [PMID: 37865990 DOI: 10.1016/j.biopha.2023.115770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the aggregation of disordered proteins, such as amyloid beta (Aβ) and tau, leading to neurotoxicity and disease progression. Despite numerous efforts, effective inhibitors of Aβ and tau aggregates have not been developed. Thus, we aimed to screen natural small molecules from crude extracts that target various pathologies and are prescribed for patients with neurological diseases. In this study, we screened 162 natural small molecules prescribed for neurological diseases and identified genipin and pyrogallol as hit compounds capable of simultaneously regulating the aggregation of Aβ and tau K18. Moreover, we confirmed the dual modulatory effects of these compounds on the reduction of amyloid-mediated neurotoxicity in vitro and the disassembly of preformed Aβ42 and tau K18 fibrils. Furthermore, we observed the alleviatory effects of genipin and pyrogallol against AD-related pathologies in triple transgenic AD mice. Molecular dynamics and docking simulations revealed the molecular interaction dynamics of genipin and pyrogallol with Aβ42 and tau K18, providing insights into their suppression of aggregation. Our findings suggest the therapeutic potential of genipin and pyrogallol as dual modulators for the treatment of AD by inhibiting aggregation or promoting dissociation of Aβ and tau.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea; Research Institute for Dementia Science, Konyang University, Daejeon 35365, the Republic of Korea
| | - Da Gyeong Hyun
- Department of Chemistry, Korea University, Seoul 02841, the Republic of Korea; Center for Proteogenome Research, Korea University, Seoul 02841, the Republic of Korea; Single Cell Analysis Laboratory, Korea University, Seoul 02841, the Republic of Korea; Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United States
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Dongjoon Im
- Department of Chemistry, Korea University, Seoul 02841, the Republic of Korea; Center for Proteogenome Research, Korea University, Seoul 02841, the Republic of Korea; Single Cell Analysis Laboratory, Korea University, Seoul 02841, the Republic of Korea; Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United States
| | - Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Seol Hwa Leem
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Byeong-Hyeon Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Eunbi Cho
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, the Republic of Korea
| | - William A Goddard
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United States
| | - Dong Hyun Kim
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, the Republic of Korea.
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, the Republic of Korea; Center for Proteogenome Research, Korea University, Seoul 02841, the Republic of Korea; Single Cell Analysis Laboratory, Korea University, Seoul 02841, the Republic of Korea; Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United States.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea; Research Institute for Dementia Science, Konyang University, Daejeon 35365, the Republic of Korea.
| |
Collapse
|
17
|
Guo R, Pang J, Zhao J, Xiao X, Li J, Li J, Wang W, Zhou S, Zhao Y, Zhang Z, Chen H, Yuan T, Wu S, Liu Z. Unveiling the neuroprotective potential of dietary polysaccharides: a systematic review. Front Nutr 2023; 10:1299117. [PMID: 38075226 PMCID: PMC10702503 DOI: 10.3389/fnut.2023.1299117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/02/2023] [Indexed: 04/05/2024] Open
Abstract
Central nervous system (CNS) disorders present a growing and costly global health challenge, accounting for over 11% of the diseases burden in high-income countries. Despite current treatments, patients often experience persistent symptoms that significantly affect their quality of life. Dietary polysaccharides have garnered attention for their potential as interventions for CNS disorders due to their diverse mechanisms of action, including antioxidant, anti-inflammatory, and neuroprotective effects. Through an analysis of research articles published between January 5, 2013 and August 30, 2023, encompassing the intervention effects of dietary polysaccharides on Alzheimer's disease, Parkinson's disease, depression, anxiety disorders, autism spectrum disorder, epilepsy, and stroke, we have conducted a comprehensive review with the aim of elucidating the role and mechanisms of dietary polysaccharides in various CNS diseases, spanning neurodegenerative, psychiatric, neurodevelopmental disorders, and neurological dysfunctions. At least four categories of mechanistic bases are included in the dietary polysaccharides' intervention against CNS disease, which involves oxidative stress reduction, neuronal production, metabolic regulation, and gut barrier integrity. Notably, the ability of dietary polysaccharides to resist oxidation and modulate gut microbiota not only helps to curb the development of these diseases at an early stage, but also holds promise for the development of novel therapeutic agents for CNS diseases. In conclusion, this comprehensive review strives to advance therapeutic strategies for CNS disorders by elucidating the potential of dietary polysaccharides and advocating interdisciplinary collaboration to propel further research in this realm.
Collapse
Affiliation(s)
- Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Jingxi Pang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhe Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Xiao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingmeng Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenxiu Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuang Zhou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zilong Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongwang Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian Yuan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Shan Wu
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia, China
- Research and Development Center, Xi'an Yinqiao Dairy Technology Co., Ltd., Xi'an, Shaanxi, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
18
|
Zhang S, Liu F, Li J, Jing C, Lu J, Chen X, Wang D, Cao D, Zhao D, Sun L. A 4.7-kDa polysaccharide from Panax ginseng suppresses Aβ pathology via mitophagy activation in cross-species Alzheimer's disease models. Biomed Pharmacother 2023; 167:115442. [PMID: 37699318 DOI: 10.1016/j.biopha.2023.115442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that progresses with age. Amyloid-β (Aβ) aggregation has been suggested to be a key pathogenic process in Alzheimer's disease. Ginseng polysaccharides (GP), the main biologically active components isolated from Panax ginseng C. A. Meyer (ginseng), may act as neuroprotective agents with potential benefits for AD patients. However, GP effects on Aβ pathology and AD symptoms are still unclear. Here, a 4.7-kDa GP termed GP4 was purified and subjected to basic physicochemical characterization. The biological effects of GP4 to prevent Aβ aggregation were then assessed with cross-species AD models, including Aftin-5-treated SH-SY5Y cells and cerebral organoids, and transgenic C. elegans overexpressing the full-length human Aβ42 peptide. These analyses ultimately demonstrated that GP4 was capable of inhibiting Aβ accumulation both in vivo and vitro, and with early intervention of GP4 being sufficient to alleviate Aβ42-associated aging phenotypes and memory loss in C. elegans model of AD. Furthermore, neuroinflammation was significantly down-regulated in human cells and cerebral organoids. From a mechanistic perspective, the ability of GP4 to inhibit Aβ aggregation was found to be related to its ability to promote neuronal mitophagic activity. This finding offers a robust theoretical foundation for the further development of GP4 as a candidate drugs with the potential to treat AD.
Collapse
Affiliation(s)
- Shuai Zhang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Fangbing Liu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jinmeng Li
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chenxu Jing
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xuenan Chen
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dandan Wang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130117, China
| | - Donghui Cao
- Division of Clinical Research, First Hospital of Jilin University, Changchun 130117, China
| | - Daqing Zhao
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
19
|
Gan Q, Ding Y, Peng M, Chen L, Dong J, Hu J, Ma Y. The Potential of Edible and Medicinal Resource Polysaccharides for Prevention and Treatment of Neurodegenerative Diseases. Biomolecules 2023; 13:biom13050873. [PMID: 37238743 DOI: 10.3390/biom13050873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
As natural medicines in complementary and alternative medicine, edible and medicinal resources are being gradually recognized throughout the world. According to statistics from the World Health Organization, about 80% of the worldwide population has used edible and medicinal resource products to prevent and treat diseases. Polysaccharides, one of the main effective components in edible and medicinal resources, are considered ideal regulators of various biological responses due to their high effectiveness and low toxicity, and they have a wide range of possible applications for the development of functional foods for the regulation of common, frequently occurring, chronic and severe diseases. Such applications include the development of polysaccharide products for the prevention and treatment of neurodegenerative diseases that are difficult to control by a single treatment, which is of great value to the aging population. Therefore, we evaluated the potential of polysaccharides to prevent neurodegeneration by their regulation of behavioral and major pathologies, including abnormal protein aggregation and neuronal damage caused by neuronal apoptosis, autophagy, oxidative damage, neuroinflammation, unbalanced neurotransmitters, and poor synaptic plasticity. This includes multi-target and multi-pathway regulation involving the mitochondrial pathway, MAPK pathway, NF-κB pathway, Nrf2 pathway, mTOR pathway, PI3K/AKT pathway, P53/P21 pathway, and BDNF/TrkB/CREB pathway. In this paper, research into edible and medicinal resource polysaccharides for neurodegenerative diseases was reviewed in order to provide a basis for the development and application of polysaccharide health products and promote the recognition of functional products of edible and medicinal resources.
Collapse
Affiliation(s)
- Qingxia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Yugang Ding
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Maoyao Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Linlin Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Jijing Dong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Jiaxi Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuntong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| |
Collapse
|
20
|
Qiao J, Wang C, Chen Y, Yu S, Liu Y, Yu S, Jiang L, Jin C, Wang X, Zhang P, Zhao D, Wang J, Liu M. Herbal/Natural Compounds Resist Hallmarks of Brain Aging: From Molecular Mechanisms to Therapeutic Strategies. Antioxidants (Basel) 2023; 12:antiox12040920. [PMID: 37107295 PMCID: PMC10136184 DOI: 10.3390/antiox12040920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Aging is a complex process of impaired physiological integrity and function, and is associated with increased risk of cardiovascular disease, diabetes, neurodegeneration, and cancer. The cellular environment of the aging brain exhibits perturbed bioenergetics, impaired adaptive neuroplasticity and flexibility, abnormal neuronal network activity, dysregulated neuronal Ca2+ homeostasis, accumulation of oxidatively modified molecules and organelles, and clear signs of inflammation. These changes make the aging brain susceptible to age-related diseases, such as Alzheimer's and Parkinson's diseases. In recent years, unprecedented advances have been made in the study of aging, especially the effects of herbal/natural compounds on evolutionarily conserved genetic pathways and biological processes. Here, we provide a comprehensive review of the aging process and age-related diseases, and we discuss the molecular mechanisms underlying the therapeutic properties of herbal/natural compounds against the hallmarks of brain aging.
Collapse
Affiliation(s)
- Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Chen
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuang Yu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiawen Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
21
|
Wang Z, Zhang Z, Liu J, Guo M, Li H. Panax Ginseng in the treatment of Alzheimer's disease and vascular dementia. J Ginseng Res 2023. [DOI: 10.1016/j.jgr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
22
|
Zhang Q, Liu J, Chen L, Zhang M. Promoting Endogenous Neurogenesis as a Treatment for Alzheimer's Disease. Mol Neurobiol 2023; 60:1353-1368. [PMID: 36445633 DOI: 10.1007/s12035-022-03145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most universal neurodegenerative disorder characterized by memory loss and cognitive impairment. AD is biologically defined by production and aggregation of misfolded protein including extracellular amyloid β (Aβ) peptide and intracellular microtubule-associated protein tau tangles in neurons, leading to irreversible neuronal loss. At present, regulation of endogenous neurogenesis to supplement lost neurons has been proposed as a promising strategy for treatment of AD. However, the exact underlying mechanisms of impaired neurogenesis in AD have not been fully explained and effective treatments targeting neurogenesis for AD are limited. In this review, we mainly focus on the latest research of impaired neurogenesis in AD. Then we discuss the factors affecting stages of neurogenesis and the interplay between neural stem cells (NSCs) and neurogenic niche under AD pathological conditions. This review aims to explore potential therapeutic strategies that promote endogenous neurogenesis for AD treatments.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jingyue Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China. .,School of Nursing, Jilin University, Changchun, China.
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
23
|
Kim S, Nam Y, Kim MJ, Kwon SH, Jeon J, Shin SJ, Park S, Chang S, Kim HU, Lee YY, Kim HS, Moon M. Proteomic analysis for the effects of non-saponin fraction with rich polysaccharide from Korean Red Ginseng on Alzheimer's disease in a mouse model. J Ginseng Res 2023; 47:302-310. [PMID: 36926613 PMCID: PMC10014184 DOI: 10.1016/j.jgr.2022.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Background The most common type of dementia, Alzheimer's disease (AD), is marked by the formation of extracellular amyloid beta (Aβ) plaques. The impairments of axons and synapses appear in the process of Aβ plaques formation, and this damage could cause neurodegeneration. We previously reported that non-saponin fraction with rich polysaccharide (NFP) from Korean Red Ginseng (KRG) showed neuroprotective effects in AD. However, precise molecular mechanism of the therapeutic effects of NFP from KRG in AD still remains elusive. Methods To investigate the therapeutic mechanisms of NFP from KRG on AD, we conducted proteomic analysis for frontal cortex from vehicle-treated wild-type, vehicle-treated 5XFAD mice, and NFP-treated 5XFAD mice by using nano-LC-ESI-MS/MS. Metabolic network analysis was additionally performed as the effects of NFP appeared to be associated with metabolism according to the proteome analysis. Results Starting from 5,470 proteins, 2,636 proteins were selected for hierarchical clustering analysis, and finally 111 proteins were further selected for protein-protein interaction network analysis. A series of these analyses revealed that proteins associated with synapse and mitochondria might be linked to the therapeutic mechanism of NFP. Subsequent metabolic network analysis via genome-scale metabolic models that represent the three mouse groups showed that there were significant changes in metabolic fluxes of mitochondrial carnitine shuttle pathway and mitochondrial beta-oxidation of polyunsaturated fatty acids. Conclusion Our results suggested that the therapeutic effects of NFP on AD were associated with synaptic- and mitochondrial-related pathways, and they provided targets for further rigorous studies on precise understanding of the molecular mechanism of NFP.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Republic of Korea.,Research Institute for Dementia Science, Konyang University, Daejeon, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Min-Jeong Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Seung-Hyun Kwon
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Junhyeok Jeon
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Soyoon Park
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, California, United States
| | - Sungjae Chang
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Hak Su Kim
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Republic of Korea.,Research Institute for Dementia Science, Konyang University, Daejeon, Republic of Korea
| |
Collapse
|
24
|
Wang Q, Adil MZ, Xie X, Zhao S, Zhang J, Huang Z. Therapeutic targeting of mitochondria–proteostasis axis by antioxidant polysaccharides in neurodegeneration. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023. [PMID: 37437985 DOI: 10.1016/bs.apcsb.2023.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Aging is a major risk factor for many age-associated disorders, including neurodegenerative diseases. Both mitochondrial dysfunction and proteostatic decline are well-recognized hallmarks of aging and age-related neurodegeneration. Despite a lack of therapies for neurodegenerative diseases, a number of interventions promoting mitochondrial integrity and protein homeostasis (proteostasis) have been shown to delay aging-associated neurodegeneration. For example, many antioxidant polysaccharides are shown to have pharmacological potentials in Alzheimer's, Parkinson's and Huntington's diseases through regulation of mitochondrial and proteostatic pathways, including oxidative stress and heat shock responses. However, how mitochondrial and proteostatic mechanisms work together to exert the antineurodegenerative effect of the polysaccharides remains largely unexplored. Interestingly, recent studies have provided a growing body of evidence to support the crosstalk between mitostatic and proteostatic networks as well as the impact of the crosstalk on neurodegeneration. Here we summarize the recent progress of antineurodegenerative polysaccharides with particular attention in the mitochondrial and proteostatic context and provide perspectives on their implications in the crosstalk along the mitochondria-proteostasis axis.
Collapse
|
25
|
Panossian A, Abdelfatah S, Efferth T. Network Pharmacology of Ginseng (Part III): Antitumor Potential of a Fixed Combination of Red Ginseng and Red Sage as Determined by Transcriptomics. Pharmaceuticals (Basel) 2022; 15:ph15111345. [PMID: 36355517 PMCID: PMC9696821 DOI: 10.3390/ph15111345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/30/2022] Open
Abstract
Background: This study aimed to assess the effect of a fixed combination of Red Ginseng and Red Sage (RG–RS) on the gene expression of neuronal cells to evaluate the potential impacts on cellular functions and predict its relevance in the treatment of stress and aging-related diseases and disorders. Methods: Gene expression profiling was conducted by transcriptome-wide mRNA microarray analyses of murine HT22 hippocampal cell culture after treatment with RG–RS preparation. Ingenuity pathway analysis (IPA) was performed with datasets of significantly upregulated or downregulated genes and the expected effects on the physiological and cellular function and the diseases were identified. Results: RG–RS deregulates 1028 genes associated with cancer and 139 with metastasis, suggesting a predicted decrease in tumorigenesis, the proliferation of tumor cells, tumor growth, metastasis, and an increase in apoptosis and autophagy by their effects on the various signaling and metabolic pathways, including the inhibition of Warburg’s aerobic glycolysis, estrogen-mediated S-phase entry signaling, osteoarthritis signaling, and the super-pathway of cholesterol biosynthesis. Conclusion: The results of this study provide evidence of the potential efficacy of the fixed combination of Red Ginseng (Panax ginseng C.A. Mey.) and Red Sage/Danshen (Salvia miltiorrhiza Bunge) in cancer. Further clinical and experimental studies are required to assess the efficacy and safety of RG–RS in preventing the progression of cancer, osteoarthritis, and other aging-related diseases.
Collapse
Affiliation(s)
- Alexander Panossian
- EuroPharma USA Inc., Green Bay, WI 54311, USA
- Phytomed AB, 58344 Vastervick, Sweden
- Correspondence: (A.P.); (T.E.)
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55131 Mainz, Germany
- Correspondence: (A.P.); (T.E.)
| |
Collapse
|
26
|
Hao M, Ding C, Peng X, Chen H, Dong L, Zhang Y, Chen X, Liu W, Luo Y. Ginseng under forest exerts stronger anti-aging effects compared to garden ginseng probably via regulating PI3K/AKT/mTOR pathway, SIRT1/NF-κB pathway and intestinal flora. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154365. [PMID: 35930860 DOI: 10.1016/j.phymed.2022.154365] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ginseng is deemed to be an effective anti-aging therapy. Evidence for differences in representative active ingredients and anti-aging effects between garden ginseng (GG) and ginseng under forest (FG) is insufficient. PURPOSE The study was designed to systematically analyze the differences in the mechanistic protective effects of GG and FG on aging mice based on their compositional differences. METHODS The chemical ingredients in GG and FG were first determined. In vivo, D-galactose-induced aging mice were orally administered GG or FG (400 mg/kg/day) for 6 weeks. Behavioral parameters of mice were measured by the radial 8-arm maze, and the changes in body weight and organ indices were recorded. Blood, brain tissue, and feces were collected for biochemical analysis, histopathological staining, Western blotting, and 16S rDNA intestinal flora sequencing, respectively. RESULTS The absolute contents of total ginsenosides, polyphenols, crude polysaccharides, starch, and protein in GG were 0.71, 0.68, 1.15, 2.27, and 1.08 folds higher than those in FG, respectively; while FG exhibited a higher relative abundance of representative active ingredients (total ginsenosides, polyphenols, crude polysaccharides, and protein) but lower relative content of starch than GG. GG and FG improved hippocampal lesions and poor weight gain, organ indices, and behavioral indices, and prevented excessive oxidative stress and acetylcholinesterase activity in aging mice. What's more, GG and FG treatment ameliorated excessive apoptosis and inflammatory reaction in the aging brain by modulating apoptosis-related proteins, PI3K/AKT/mTOR pathway, and SIRT1/NF-κB pathway. GG and FG also restored the diversity and structure of gut microbiota, up-regulated the relative abundance of beneficial bacteria (e.g., Lactobacillus), and tended to exert key anti-aging effects via the microbiota-gut-brain axis. Notably, in vivo experiments confirmed that FG had a stronger anti-aging activity than GG. CONCLUSION FG exerts a more powerful anti-aging effect than GG by regulating oxidative stress, apoptosis, inflammation, and the microbe-gut-brain axis, possibly relying on the higher relative abundance of representative active ingredients (total ginsenosides, polyphenols, crude polysaccharides, and protein) in FG.
Collapse
Affiliation(s)
- Mingqian Hao
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China; School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China.
| | - Xiaojuan Peng
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Huiying Chen
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ling Dong
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yue Zhang
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Xueyan Chen
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Wencong Liu
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; College of Resources and Environment Sciences, Jilin Agricultural University, Changchun, China.
| | - Yunqing Luo
- College of Resources and Environment Sciences, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
27
|
Advances in polysaccharides of natural source of the anti-Alzheimer's disease effect and mechanism. Carbohydr Polym 2022; 296:119961. [DOI: 10.1016/j.carbpol.2022.119961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022]
|
28
|
Wang Y, Chen R, Yang Z, Wen Q, Cao X, Zhao N, Yan J. Protective Effects of Polysaccharides in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:917629. [PMID: 35860666 PMCID: PMC9289469 DOI: 10.3389/fnagi.2022.917629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive degeneration and necrosis of neurons, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease and others. There are no existing therapies that correct the progression of these diseases, and current therapies provide merely symptomatic relief. The use of polysaccharides has received significant attention due to extensive biological activities and application prospects. Previous studies suggest that the polysaccharides as a candidate participate in neuronal protection and protect against NDs. In this review, we demonstrate that various polysaccharides mediate NDs, and share several common mechanisms characterized by autophagy, apoptosis, neuroinflammation, oxidative stress, mitochondrial dysfunction in PD and AD. Furthermore, this review reveals potential role of polysaccharides in vitro and in vivo models of NDs, and highlights the contributions of polysaccharides and prospects of their mechanism studies for the treatment of NDs. Finally, we suggest some remaining questions for the field and areas for new development.
Collapse
Affiliation(s)
- Yinying Wang
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Rongsha Chen
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Zhongshan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sino Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Qian Wen
- The Neurosurgery Department of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xia Cao
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Ninghui Zhao
- The Neurosurgery Department of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jinyuan Yan
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
29
|
Rang Y, Liu H, Liu C. Potential for non-starch polysaccharides in the prevention and remediation of cognitive impairment: A comprehensive review. Int J Biol Macromol 2022; 208:182-195. [PMID: 35301004 DOI: 10.1016/j.ijbiomac.2022.03.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/05/2022]
Abstract
Non-starch polysaccharides (NSPs) are food ingredients proven to be beneficial in a large number of health issues. However, there is no literature systematic review about the effects and corresponding mechanisms of NSPs on the prevention and remediation of cognitive impairment. In this review, studies on prevention and remediation of NSPs for cognitive deficit caused by diseases, menopause, ageing, chronic stress and environmental pollutants were summarized and the corresponding mechanisms were established. The anti-cognitive deficit effects of NSPs were associated with the modulation of amyloid β (Aβ) deposition, p-Tau aggregation, oxidative stress, inflammation, neuron apoptosis, neurogenesis, neurotransmitters, synaptic plasticity, autophagy and gut microbiota. Although the structure-function relationship has not been elucidated, several structural properties of NSPs such as molecular weight, sulfate content, hydroxyl group content, monosaccharide composition and molecular chain linkage might be crucial for the anti-cognitive deficit property. Notably, this review revealed that NSPs had a positive effect on cognitive impairment and proposed the future perspectives for further research on the anti-cognitive dysfunction effects of NSPs.
Collapse
Affiliation(s)
- Yifeng Rang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Huan Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
30
|
Min JH, Cho HJ, Yi YS. A novel mechanism of Korean red ginseng-mediated anti-inflammatory action via targeting caspase-11 non-canonical inflammasome in macrophages. J Ginseng Res 2021; 46:675-682. [PMID: 36090677 PMCID: PMC9459075 DOI: 10.1016/j.jgr.2021.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 01/05/2023] Open
Abstract
Background Korean Red Ginseng (KRG) was reported to play an anti-inflammatory role, however, previous studies largely focused on the effects of KRG on priming step, the inflammation-preparing step, and the anti-inflammatory effect of KRG on triggering, the inflammation-activating step has been poorly understood. This study demonstrated anti-inflammatory role of KRG in caspase-11 non-canonical inflammasome activation in macrophages during triggering of inflammatory responses. Methods Caspase-11 non-canonical inflammasome-activated J774A.1 macrophages were established by priming with Pam3CSK4 and triggering with lipopolysaccharide (LPS). Cell viability and pyroptosis were examined by MTT and lactate dehydrogenase (LDH) assays. Nitric oxide (NO)-inhibitory effect of KRG was assessed using a NO production assay. Expression and proteolytic cleavage of proteins were examined by Western blotting analysis. In vivo anti-inflammatory action of KRG was evaluated with the LPS-injected sepsis model in mice. Results KRG reduced LPS-stimulated NO production in J774A.1 cells and suppressed pyroptosis and IL-1β secretion in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Mechanistic studies demonstrated that KRG suppressed the direct interaction between LPS and caspase-11 and inhibited proteolytic processing of both caspase-11 and gasdermin D in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Furthermore, KRG significantly ameliorated LPS-mediated lethal septic shock in mice. Conclusion The results demonstrate a novel mechanism of KRG-mediated anti-inflammatory action that operates through targeting the caspase-11 non-canonical inflammasome at triggering step of macrophage-mediated inflammatory response.
Collapse
|
31
|
Quality Distinguish of Red Ginseng from Different Origins by HPLC–ELSD/PDA Combined with HPSEC–MALLS–RID, Focus on the Sugar-Markers. SEPARATIONS 2021. [DOI: 10.3390/separations8110198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Red ginseng (RG) has been extensively utilized in Asian countries due to its pharmacological effects. For the quality evaluation of RG, small molecules, such as ginsenosides, have been widely considered as candidates of its quality markers (Q-markers), and various analytical techniques have been developed in order to identify these compounds. However, despite the efforts to analyze the hydrophobic constituents, it is worth pointing out that about 60% of the mass of RG is made of carbohydrates, including mono-, oligo- and polysaccharides. Consequently, the quality differentiation and identification of RG from the perspective of sugar-markers should be focused. High performance liquid chromatography and evaporative light scattering detector (HPLC–ELSD) method for the determination of disaccharides in RG was established. Furthermore, high performance size exclusion chromatography–multi-angle laser light scattering–refractive index detector (HPSEC–MALLS–RID) for the determination of molecular weight and high performance liquid chromatography photodiode array (HPLC–PDA) for the determination of compositional monosaccharides in RG polysaccharides were also established. HPLC–ELSD/PDA combined with HPSEC–MALLS–RID could be used to determine the contents of disaccharides, molecular weights, and compositional monosaccharides of RG polysaccharides, which could be used for quality control, and this is a new view on the sugar marker to quality differentiation of various origins of RG.
Collapse
|
32
|
Li J, Huang Q, Chen J, Qi H, Liu J, Chen Z, Zhao D, Wang Z, Li X. Neuroprotective Potentials of Panax Ginseng Against Alzheimer's Disease: A Review of Preclinical and Clinical Evidences. Front Pharmacol 2021; 12:688490. [PMID: 34149431 PMCID: PMC8206566 DOI: 10.3389/fphar.2021.688490] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is a major health concern in the increasingly aged population worldwide. Currently, no clinically effective drug can halt the progression of AD. Panax ginseng C.A. Mey. is a well-known medicinal plant that contains ginsenosides, gintonin, and other components and has neuroprotective effects against a series of pathological cascades in AD, including beta-amyloid formation, neuroinflammation, oxidative stress, and mitochondrial dysfunction. In this review, we summarize the effects and mechanisms of these major components and formulas containing P. ginseng in neuronal cells and animal models. Moreover, clinical findings regarding the prevention and treatment of AD with P. ginseng or its formulas are discussed. This review can provide new insights into the possible use of ginseng in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|