1
|
Fu S, Lin X, Lu X, Qu Y, Chen H, Zheng S, Li Z, Jiao Y, Wang Q, Yang C, Deng Y. NF-κB inhibitor PDTC involved in regulating the transplantation immunity in the pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110175. [PMID: 39909120 DOI: 10.1016/j.fsi.2025.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Nuclear factor kappa B (NF-κB) is involved in various important biological processes, such as inflammation, apoptosis, and cell proliferation. Here, we analyzed the function of NF-κB in transplantation immunity and pearl formation using its inhibitor, pyrrolidinedithiocarbamic acid (PDTC), in the pearl oyster Pinctada fucata martensii. The levels of pro-inflammatory factors (IL-17 and TNF-α) were lower and activity of antioxidant-related enzymes was higher in the transplanted pearl oysters pre-treated with PDTC than in transplanted pearl oysters pre-treated with phosphate-buffered saline (PBS). Transcriptomic analysis showed that PDTC pre-treatment alleviated the immune stimulation caused by transplantation, preserved normal expression of ribosome-related genes, and inhibited the activation of apoptosis and the NF-κB signaling pathway induced by transplantation. Additionally, RIG-I-like receptor, MAPK, Toll-like receptor and NOD-like receptor signaling pathways were inhibited after PDTC treatment. A 30-day pearl cultivation experiment demonstrated a significantly higher nucleus retention rate in transplanted pearl oysters that were pre-treated with PDTC compared to the control group. These results indicate that PDTC treatment suppressed immune-related pathways, thereby alleviating the immune rejection response caused by transplantation and potentially optimizing pearl production. Our results provide valuable information for optimizing pearl cultivation in P. f. martensii.
Collapse
Affiliation(s)
- Shirong Fu
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xinyi Lin
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaowen Lu
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Youmei Qu
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hongxi Chen
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shilin Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhihan Li
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| | - Qingheng Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| |
Collapse
|
2
|
Nájera-Martínez M, Lara-Vega I, Avilez-Alvarado J, Pagadala NS, Dzul-Caamal R, Domínguez-López ML, Tuszynski J, Vega-López A. The Generation of ROS by Exposure to Trihalomethanes Promotes the IκBα/NF-κB/p65 Complex Dissociation in Human Lung Fibroblast. Biomedicines 2024; 12:2399. [PMID: 39457711 PMCID: PMC11505202 DOI: 10.3390/biomedicines12102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Disinfection by-products used to obtain drinking water, including halomethanes (HMs) such as CH2Cl2, CHCl3, and BrCHCl2, induce cytotoxicity and hyperproliferation in human lung fibroblasts (MRC-5). Enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) modulate these damages through their biotransformation processes, potentially generating toxic metabolites. However, the role of the oxidative stress response in cellular hyperproliferation, modulated by nuclear factor-kappa B (NF-κB), remains unclear. Methods: In this study, MRC-5 cells were treated with these compounds to evaluate reactive oxygen species (ROS) production, lipid peroxidation, phospho-NF-κB/p65 (Ser536) levels, and the activities of SOD, CAT, and GPx. Additionally, the interactions between HMs and ROS with the IκBα/NF-κB/p65 complex were analyzed using molecular docking. Results: Correlation analysis among biomarkers revealed positive relationships between pro-oxidant damage and antioxidant responses, particularly in cells treated with CH2Cl2 and BrCHCl2. Conversely, negative relationships were observed between ROS levels and NF-κB/p65 levels in cells treated with CH2Cl2 and CHCl3. The estimated relative free energy of binding using thermodynamic integration with the p65 subunit of NF-κB was -3.3 kcal/mol for BrCHCl2, -3.5 kcal/mol for both CHCl3 and O2•, and -3.6 kcal/mol for H2O2. Conclusions: Chloride and bromide atoms were found in close contact with IPT domain residues, particularly in the RHD region involved in DNA binding. Ser281 is located within this domain, facilitating the phosphorylation of this protein. Similarly, both ROS interacted with the IPT domain in the RHD region, with H2O2 forming a side-chain oxygen interaction with Leu280 adjacent to the phosphorylation site of p65. However, the negative correlation between ROS and phospho-NF-κB/p65 suggests that steric hindrance by ROS on the C-terminal domain of NF-κB/p65 may play a role in the antioxidant response.
Collapse
Affiliation(s)
- Minerva Nájera-Martínez
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City 07738, Mexico; (M.N.-M.); (I.L.-V.)
| | - Israel Lara-Vega
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City 07738, Mexico; (M.N.-M.); (I.L.-V.)
| | - Jhonatan Avilez-Alvarado
- Laboratorio de Visión Artificial, Unidad Culhuacán, Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional, Av. Santa Ana 1000, San Francisco Culhuacán CTM V, Mexico City 04440, Mexico;
| | | | - Ricardo Dzul-Caamal
- Instituto EPOMEX, Universidad Autónoma de Campeche, Av. Héroe de Nacozari No. 480, Campeche 24070, Mexico;
| | - María Lilia Domínguez-López
- Laboratorio de Inmunoquímica I, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n, Casco de Santo Tomás, Mexico City 11340, Mexico;
| | - Jack Tuszynski
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Armando Vega-López
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City 07738, Mexico; (M.N.-M.); (I.L.-V.)
| |
Collapse
|
3
|
Yu Z, Qiao X, Yu S, Gu X, Jin Y, Tang C, Niu J, Wang L, Song L. The involvement of interferon regulatory factor 8 in regulating the proliferation of haemocytes in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105172. [PMID: 38537730 DOI: 10.1016/j.dci.2024.105172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 05/03/2024]
Abstract
Interferon regulatory factor 8 (IRF8) is an important transcriptional regulatory factor involving in multiple biological process, such as the antiviral immune response, immune cell proliferation and differentiation. In the present study, the involvement of a previously identified IRF8 homologue (CgIRF8) in regulating haemocyte proliferation of oyster were further investigated. CgIRF8 mRNA transcripts were detectable in all the stages of C. gigas larvae with the highest level in D-veliger (1.76-fold of that in zygote, p < 0.05). Its mRNA transcripts were also detected in all the three haemocyte subpopulations of adult oysters with the highest expression in granulocytes (2.79-fold of that in agranulocytes, p < 0.01). After LPS stimulation, the mRNA transcripts of CgIRF8 in haemocytes significantly increased at 12 h and 48 h, which were 2.04-fold and 1.65-fold (p < 0.05) of that in control group, respectively. Meanwhile, the abundance of CgIRF8 protein in the haemocytes increased significantly at 12 h after LPS stimulation (1.71-fold of that in seawater, p < 0.05). The immunofluorescence assay and Western blot showed that LPS stimulation induced an obvious nucleus translocation of CgIRF8 protein in haemocytes. After the expression of CgIRF8 was inhibited by the injection of CgIRF8 siRNA, the percentage of EdU positive haemocytes, the proportion of granulocytes, and the mRNA expression levels of CgGATA and CgSCL all declined significantly at 12 h after LPS stimulation, which was 0.64-fold (p < 0.05), 0.7-fold (p < 0.05), 0.31-fold and 0.54-fold (p < 0.001) of that in the NC group, respectively. While the expression level of cell proliferation-related protein CgCDK2, CgCDC6, CgCDC45 and CgPCNA were significantly increased (1.99-fold, and 2.41-fold, 3.76-fold and 4.79-fold compared to that in the NC group respectively, p < 0.001). Dual luciferase reporter assay demonstrated that CgIRF8 was able to activate the CgGATA promoter in HEK293T cells after transfection of CgGATA and CgIRF8. These results collectively indicated that CgIRF8 promoted haemocyte proliferation by regulating the expression of CgGATA and other related genes in the immune response of oyster.
Collapse
Affiliation(s)
- Zhuo Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoyu Gu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chunyu Tang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jixiang Niu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
4
|
Chen J, Ma J, Cui J, Zhang G, Dong J, Yu T, Zheng Y, Qu Y, Cai S, Lu X, Wang A, Huang B, Wang X. Molecular characterization and functional analysis of a mollusk Rel homologous gene. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109188. [PMID: 37890738 DOI: 10.1016/j.fsi.2023.109188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Members of the nuclear factor-kappa B (NF-κB) family are crucial regulators of physiological processes such as apoptosis, inflammation, and the immune response, acting as vital transcription factors to perform their function. In this study, we identified a NF-κB homologous gene (CfRel1) in Zhikong scallops. The 3006-bp-long open reading frame encodes 1001 amino acids. The N-terminus of the CfRel1 protein harbors a conserved Rel homology domain (RHD) that contains a DNA-binding domain and a dimerization domain. According to the multiple sequence alignment results, both the DNA-binding and dimerization domains are highly conserved. Phylogenetic analysis indicated that CfRel1 is closely related to both the Dorsal protein of Pinctada fucata and the Rel2 protein of Crassostrea gigas. CfRel1 mRNA was expressed in all tissues tested in the quantitative reverse transcription PCR experiments, with hepatopancreatic tissue expressing the highest levels. Furthermore, after stimulation with lipopolysaccharide, peptidoglycan, or polyinosinic:polycytidylic acid, the mRNA expression level of CfRel1 was markedly increased. The co-immunoprecipitation test results showed that CfRel1 interacted with scallop IκB protein through its RHD DNA-binding domain, suggesting that IκB may regulate the activity of Rel1 by binding to this domain. Dual-luciferase reporter gene assays revealed that CfRel1 overexpression in HEK293T cells activated the activator protein 1 (AP-1), NF-κB, interferon (IFN)α, IFNβ, and IFNγ reporter genes, indicating the diverse functions of the protein. In summary, CfRel1 is capable of responding to attacks from pathogen-associated molecular patterns, participating in immune signaling, and activating NF-κB and IFN reporter genes. Our findings contribute to the advancement of invertebrate innate immunity theory, enrich the theory of comparative immunology, and serve as a reference for the future screening of disease-resistant strains in scallops.
Collapse
Affiliation(s)
- Jiwen Chen
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jilv Ma
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jie Cui
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Guoguang Zhang
- Laizhou Marine Development and Fishery Service Center, Yantai, 261499, China
| | - Juan Dong
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, 265899, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, 265899, China
| | - Yifan Qu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Shuai Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, 265899, China
| | - Xiuqi Lu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Anhao Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
5
|
Young T, Gale SL, Ragg NLC, Sander SG, Burritt DJ, Benedict B, Le DV, Villas-Bôas SG, Alfaro AC. Metabolic Regulation of Copper Toxicity during Marine Mussel Embryogenesis. Metabolites 2023; 13:838. [PMID: 37512545 PMCID: PMC10385052 DOI: 10.3390/metabo13070838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The development of new tools for assessing the health of cultured shellfish larvae is crucial for aquaculture industries to develop and refine hatchery methodologies. We established a large-volume ecotoxicology/health stressor trial, exposing mussel (Perna canaliculus) embryos to copper in the presence of ethylenediaminetetraacetic acid (EDTA). GC/MS-based metabolomics was applied to identify potential biomarkers for monitoring embryonic/larval health and to characterise mechanisms of metal toxicity. Cellular viability, developmental abnormalities, larval behaviour, mortality, and a targeted analysis of proteins involved in the regulation of reactive oxygen species were simultaneously evaluated to provide a complementary framework for interpretative purposes and authenticate the metabolomics data. Trace metal analysis and speciation modelling verified EDTA as an effective copper chelator. Toxicity thresholds for P. canaliculus were low, with 10% developmental abnormalities in D-stage larvae being recorded upon exposure to 1.10 μg·L-1 bioavailable copper for 66 h. Sublethal levels of bioavailable copper (0.04 and 1.10 μg·L-1) caused coordinated fluctuations in metabolite profiles, which were dependent on development stage, treatment level, and exposure duration. Larvae appeared to successfully employ various mechanisms involving the biosynthesis of antioxidants and a restructuring of energy-related metabolism to alleviate the toxic effects of copper on cells and developing tissues. These results suggest that regulation of trace metal-induced toxicity is tightly linked with metabolism during the early ontogenic development of marine mussels. Lethal-level bioavailable copper (50.3 μg·L-1) caused severe metabolic dysregulation after 3 h of exposure, which worsened with time, substantially delayed embryonic development, induced critical oxidative damage, initiated the apoptotic pathway, and resulted in cell/organism death shortly after 18 h of exposure. Metabolite profiling is a useful approach to (1) assess the health status of marine invertebrate embryos and larvae, (2) detect early warning biomarkers for trace metal contamination, and (3) identify novel regulatory mechanisms of copper-induced toxicity.
Collapse
Affiliation(s)
- Tim Young
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | | | | | - Sylvia G. Sander
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9010, New Zealand
- Marine Mineral Resources Group, Research Division 4: Dynamics of the Ocean Floor, Magmatic and Hydrothermal Systems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - David J. Burritt
- Department of Botany, University of Otago, 464 Great King St, Dunedin 9016, New Zealand
| | - Billy Benedict
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9010, New Zealand
| | - Dung V. Le
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
- Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi 000084, Vietnam
| | - Silas G. Villas-Bôas
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Andrea C. Alfaro
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
6
|
Boamah GA, Huang Z, Shen Y, Lu Y, Wang Z, Su Y, Xu C, Luo X, Ke C, You W. Transcriptome analysis reveals fluid shear stress (FSS) and atherosclerosis pathway as a candidate molecular mechanism of short-term low salinity stress tolerance in abalone. BMC Genomics 2022; 23:392. [PMID: 35606721 PMCID: PMC9128277 DOI: 10.1186/s12864-022-08611-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Transcriptome sequencing is an effective tool to reveal the essential genes and pathways underlying countless biotic and abiotic stress adaptation mechanisms. Although severely challenged by diverse environmental conditions, the Pacific abalone Haliotis discus hannai remains a high-value aquaculture mollusk and a Chinese predominantly cultured abalone species. Salinity is one of such environmental factors whose fluctuation could significantly affect the abalone's cellular and molecular immune responses and result in high mortality and reduced growth rate during prolonged exposure. Meanwhile, hybrids have shown superiority in tolerating diverse environmental stresses over their purebred counterparts and have gained admiration in the Chinese abalone aquaculture industry. The objective of this study was to investigate the molecular and cellular mechanisms of low salinity adaptation in abalone. Therefore, this study used transcriptome analysis of the gill tissues and flow cytometric analysis of hemolymph of H. discus hannai (DD) and interspecific hybrid H. discus hannai ♀ x H. fulgens ♂ (DF) during low salinity exposure. Also, the survival and growth rate of the species under various salinities were assessed. RESULTS The transcriptome data revealed that the differentially expressed genes (DEGs) were significantly enriched on the fluid shear stress and atherosclerosis (FSS) pathway. Meanwhile, the expression profiles of some essential genes involved in this pathway suggest that abalone significantly up-regulated calmodulin-4 (CaM-4) and heat-shock protein90 (HSP90), and significantly down-regulated tumor necrosis factor (TNF), bone morphogenetic protein-4 (BMP-4), and nuclear factor kappa B (NF-kB). Also, the hybrid DF showed significantly higher and sustained expression of CaM and HSP90, significantly higher phagocytosis, significantly lower hemocyte mortality, and significantly higher survival at low salinity, suggesting a more active molecular and hemocyte-mediated immune response and a more efficient capacity to tolerate low salinity than DD. CONCLUSIONS Our study argues that the abalone CaM gene might be necessary to maintain ion equilibrium while HSP90 can offset the adverse changes caused by low salinity, thereby preventing damage to gill epithelial cells (ECs). The data reveal a potential molecular mechanism by which abalone responds to low salinity and confirms that hybridization could be a method for breeding more stress-resilient aquatic species.
Collapse
Affiliation(s)
- Grace Afumwaa Boamah
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of the Environment and Ecology, Xiamen University, 361102 Xiamen, PR China
| | - Yawei Shen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Yisha Lu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Zhixuan Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Ying Su
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Changan Xu
- Third Institute of Oceanography, MNR, Xiamen, 361005 China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| |
Collapse
|
7
|
Zhu M, Su F, Leng J, Jian S, Yi P, Wen C, Hu B. Two NF-κB subunits are associated with antimicrobial immunity in Hyriopsis cumingii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104336. [PMID: 34921862 DOI: 10.1016/j.dci.2021.104336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The NF-κB pathway activated by bacteria and viruses produces a series of antimicrobial peptides that participate in the innate immune response. In this study, two NF-κB subunits were cloned and identified from Hyriopsis cumingii (named Hcp65 and Hcp105) using RT-PCR and RACE. The predicted Hcp65 protein possessed a N-terminal Rel homology domain (RHD) and an Ig-like/plexins/transcription factors domain (IPT); the Hcp105 contained an RHD, an IPT domain, 6 ankyrin (ANK) domain and a death domain. Quantitative reverse transcription PCR (qRT-PCR) showed that Hcp65 and Hcp105 were constitutively expressed in the detected tissues, and were significantly up-regulated in hemocytes, hepatopancreas and gill of mussels challenged with lipopolysaccharide (LPS), peptidoglycan (PGN) and polyinosinic-polycytidylic acid (poly I: C). The dsRNA-mediated silencing of Hcp65 and Hcp105 caused significant reduction of immune genes such as lysozyme (HcLyso), theromacin (Hcther), whey acid protein (HcWAP), LPS-binding protein/bactericidal permeability protein (HcLBP/BPI) 1 and 2. In addition, subcellular localization experiments showed that Hcp65 and Hcp105 proteins were expressed in both the nucleus and cytoplasm of HEK-293T cells, and Hcp50 proteins (mature peptide of Hcp105) were mainly localized in the nucleus. The recombinant Hcp65 and Hcp50 protein could form homodimer and heterodimer and bind κB site in vitro. These results provide useful information for understanding the role of NF-κB in mollusks.
Collapse
Affiliation(s)
- Mingxing Zhu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Feixiang Su
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Jianghe Leng
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Shaoqing Jian
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Peipei Yi
- Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang Province, 321001, China
| | - Chungen Wen
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Baoqing Hu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China.
| |
Collapse
|
8
|
Leng J, Li Y, Yang W, Sun J, Huang S, Yang C, Liu C, Wang L, Song L. The involvement of CgCaspase-8-2 in regulating the expressions of cytokines, antibacterial peptide and autophagy-related genes in oysters. FISH & SHELLFISH IMMUNOLOGY 2021; 119:145-153. [PMID: 34600117 DOI: 10.1016/j.fsi.2021.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/27/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Caspase-8 has been reported to be involved not only in apoptosis, but also in many other important immune response processes, such as inflammation and autophagy. In the present study, the open reading frame of CgCaspase-8-2 was cloned from the Pacific oyster Crassostrea gigas, which was of 2160 bp encoding 737 amino acids. There were two death effector domains (DEDs) and a cysteine aspartase cysteine structural (CASc) domain in the deduced amino acid sequences of CgCaspase-8-2. The mRNA expressions of CgCaspase-8-2 in haemocytes and gills all increased significantly after Vibrio splendidus stimulation at 3 h, 6 h, and 24 h. The cleaved CgCaspase-8-2 protein was observed in haemocytes at 3 h after V. splendidus stimulation and the expression of CgCaspase-8-2 protein was relatively higher in granulocytes, compared with that in agranulocytes. In CgCaspase-8-2-RNAi oysters, the mRNA expressions of CgIL17s (CgIL17-1, -2, -3, -4, -6), CgTNF, CgIFNLP and CgBigDef1 all decreased significantly at 12 h after V. splendidus stimulation. Meanwhile, the mRNA expressions of CgATG5 and CgBeclin1 decreased significantly at 12 h after V. splendidus stimulation, while CgBcl2 increased significantly. These results indicated that CgCaspase-8-2 was involved in not only the regulation of cytokine and antibacterial peptide production, but also autophagy-related gene expressions.
Collapse
Affiliation(s)
- Jinyuan Leng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Shu Huang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
9
|
Chen X, Liu Z, Gu Y, Zhang Y, Liu Y, Wang L, Song L. A hexokinase from the oyster Crassostrea gigas is involved in immune recognition as a pattern recognition receptor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104083. [PMID: 33930456 DOI: 10.1016/j.dci.2021.104083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Hexokinase (HK) is generally recognized as a crucial enzyme participating in glycolysis. In the present study, a HK (named CgHK) was identified as a potential pattern recognition receptor (PRR) from the Pacific oyster Crassostrea gigas. The open reading frame (ORF) of CgHK was of 1395 bp, encoding a peptide of 464 amino acids with one Hexokinase_1 domain and one Hexokinase_2 domain. The predicted amino acid sequence of CgHK shared 17%-29% similarities with that of other known HKs. The mRNA transcripts of CgHK were constitutively detected in all the examined tissues, with relative high expression level in labial palp and haemocytes. CgHK protein was mainly observed in the cytoplasm of oyster haemocytes. The mRNA expression level of CgHK in haemocytes was significantly up-regulated and peaked at 3 h after Vibrio splendidus (7.64-fold, p < 0.001) and lipopolysaccharide (LPS) (11.86-fold, p < 0.001) stimulations. The recombinant CgHK protein (rCgHK) exhibited Mg2+-dependent adenosine triphosphate (ATP) binding activity in vitro and activity to bind D-(+)-glucose (GLU) and various pathogen-associated molecular pattern (PAMPs) such as LPS and peptidoglycan (PGN) in the absence of Mg2+. It also displayed higher binding activity towards V. splendidus and relatively lower binding activity towards Staphylococcus aureus, Escherichia coli, and Micrococcus luteus. After the mRNA expression of CgHK in haemocytes was knocked down by dsRNA interference, the expression of CgIL17-5 mRNA in haemocytes was considerably down-regulated at 3 h after the stimulation with V. splendidus (0.33-fold, p < 0.001). These results collectively indicated that CgHK was able to recognize various PAMPs and pathogenic bacteria as a PRR apart from being the enzyme to exert ATP binding activity in glycolysis, and activate the anti-bacterial immune response by promoting the expression of pro-inflammatory cytokines CgIL17-5 in oyster haemocytes.
Collapse
Affiliation(s)
- Xiaowei Chen
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yifan Gu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yukun Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
10
|
Huang Y, Song J, Soyano K, Ren Q. Dorsal regulates the expression of two phage lysozymes acquired via horizontal gene transfer in triangle sail mussel Hyriopsis cumingii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104068. [PMID: 33713707 DOI: 10.1016/j.dci.2021.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Dorsal is a Rel/NF-κB transcription factor, which forms a key part of the Toll pathway. Lysozyme is a ubiquitous enzyme that degrades bacterial cell walls. In this study, a Dorsal homolog was cloned and characterized from triangle sail mussel Hyriopsis cumingii, namely, HcDorsal. Dorsal consisted of 3041 bp, including a 1938 bp open reading frame encoding a 645 amino acid protein. The deduced HcDorsal protein contained a Rel homology domain and an Ig-like, plexin, transcription factor domain. Analysis of expression patterns showed that HcDorsal was highly expressed in the hepatopancreas of H. cumingii. The expression level of HcDorsal continuously increased after Vibrio parahaemolyticus stimulation. When HcDorsal was knocked down by siRNA interference, two phage lysozyme genes (HcLyso1 and HcLyso2) obtained by horizontal gene transfer were significantly downregulated in hemocytes of mussels. Furthermore, knockdown of HcLyso1 and HcLyso2 could weaken V. parahaemolyticus clearance ability. Recombinant HcLyso1 and HcLyso2 proteins accelerated the bacterial clearance in vivo in mussels and evidently inhibited the growth of V. parahaemolyticus. These results suggested that HcDorsal could be activated after V. parahaemolyticus stimulation and then modulate the immune response through the transcriptional regulation of HcLyso1 and HcLyso2, thereby playing a protective role in mussels.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Jing Song
- Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in University of Anhui Province, College of Life Science, Anqing Normal University, 1318 Jixian North Road, Anqing, Anhui, 246133, China; Graduate School of Fisheries and Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan; Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, 1551-7 Taira-machi, Nagasaki, 851-2213, Japan
| | - Kiyoshi Soyano
- Graduate School of Fisheries and Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan; Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, 1551-7 Taira-machi, Nagasaki, 851-2213, Japan
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
11
|
Sun J, Wang L, Yang W, Wang L, Fu Q, Song L. IgIT-Mediated Signaling Inhibits the Antimicrobial Immune Response in Oyster Hemocytes. THE JOURNAL OF IMMUNOLOGY 2020; 205:2402-2413. [PMID: 32989090 DOI: 10.4049/jimmunol.2000294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
The long-term evolutionary interaction between the host and symbiotic microbes determines their cooperative relationship. It is well known that the symbiotic microbes have evolved various mechanisms to either benefit or exploit the mammalian host immune system to maintain homeostasis. However, the strategies employed by the symbiotic microbes to overcome host immune responses in invertebrates are still not clear. In the current study, the hemolymph microbes in oyster Crassostrea gigas were found to be able to directly bind an oyster Ig superfamily member (IgSF) (designated as CgIgIT) to inhibit the immune responses of hemocytes. The mRNA transcripts of CgIgIT in hemocytes increased significantly after the stimulation with hemolymph microbes. CgIgIT was found to be located on the hemocyte membrane and it was able to directly bind the hemolymph microbes and polysaccharides via its three Ig domains and recruited the protein tyrosine phosphatase CgSHP2 through its ITIM. The recruited CgSHP2 inhibited the activities of CgERK, CgP38 and CgJNK proteins to reduce the productions of dual oxidase 2 (CgDuox2) and defensin 2 (CgDef2), which eventually protected the hemolymph microbes from CgDuox2/CgDef2-mediated elimination. Collectively, the results suggest that the oyster IgIT-SHP2 signaling pathway can recognize bacteria capable of residing in oyster hemolymph and inhibit innate immune responses, which contributes to the maintenance, colonization, and survival of hemolymph microbes.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; and.,Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Liyan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qiang Fu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; .,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; and
| |
Collapse
|
12
|
Li Y, Sun J, Zhang Y, Wang M, Wang L, Song L. CgRel involved in antibacterial immunity by regulating the production of CgIL17s and CgBigDef1 in the Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2020; 97:474-482. [PMID: 31743759 DOI: 10.1016/j.fsi.2019.11.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The NF-κB/Rel transcription factors play essential roles in the induction and regulation of innate immune responses. In the present study, the full-length cDNA of CgRel from the Pacific oyster Crassostrea gigas was of 2,647 bp with an RHD and an IPT domain. The mRNA of CgRel was found to be constitutively expressed in all the tested tissues including gills, hepatopancreas, gonad, adductor muscle, labial palps, mantle, hemocytes, and ganglion. After lipopolysaccharide (LPS) stimulation, the expression level of CgRel mRNA in hemocytes was up-regulated to the first peak at 3 h (3.06-fold compared to the control group, p < 0.001) and second peak at 48 h (1.96-fold, p < 0.05). It increased significantly at 3 h (7.68-fold compared to the control group, p < 0.001), 24 h (3.63-fold, p < 0.05) and 48 h (1.99-fold, p < 0.05) post Vibrio splendidus stimulation, respectively. The protein of CgRel was translocated from cytoplasm into nucleus of oyster hemocytes after LPS stimulation. The mRNA expression levels of interleukin17s (CgIL17s) and big defensin (CgBigDef1) in hemocytes were examined after the expression of CgRel was silenced by RNAi. The transcripts of CgIL17-1 (0.25-fold of the control group, p < 0.01), CgIL17-2 (0.12-fold, p < 0.01), CgIL17-4 (0.33-fold, p < 0.01), CgIL17-6 (0.27-fold, p < 0.05) and CgBigDef1 (0.38-fold, p < 0.01) in CgRel-knockdown oysters decreased significantly at 12 h after LPS stimulation. The results indicated that CgRel played important roles in the immune defense against bacteria by regulating the expression of CgIL17 and CgBigDef1.
Collapse
Affiliation(s)
- Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yukun Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Min Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
13
|
Sun J, Wang L, Huang M, Li Y, Wang W, Song L. CgCLec-HTM–Mediated Signaling Pathway Regulates Lipopolysaccharide-Induced CgIL-17 and CgTNF Production in Oyster. THE JOURNAL OF IMMUNOLOGY 2019; 203:1845-1856. [DOI: 10.4049/jimmunol.1900238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/01/2019] [Indexed: 01/29/2023]
|
14
|
Lu M, Yang C, Li M, Yi Q, Lu G, Wu Y, Qu C, Wang L, Song L. A conserved interferon regulation factor 1 (IRF-1) from Pacific oyster Crassostrea gigas functioned as an activator of IFN pathway. FISH & SHELLFISH IMMUNOLOGY 2018; 76:68-77. [PMID: 29458094 DOI: 10.1016/j.fsi.2018.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/04/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Interferon regulatory factors (IRFs), a family of transcription factors with a novel helix-turn-helix DNA-binding motif, play important roles in regulating the expression of interferons (IFNs) and IFN-stimulated genes. In the present study, an interferon regulation factor 1 was identified from oyster Crassostrea gigas (designated CgIRF-1), and its immune function was characterized to understand the regulatory mechanism of interferon system against viral infection in invertebrates. The open reading frame (ORF) of CgIRF-1 was 990 bp, encoding a polypeptide of 329 amino acids with a typical IRF domain (also known as DNA-binding domain). The mRNA transcripts of CgIRF-1 were detected in all the tested tissues with the highest expression level in hemocyte. CgIRF-1 protein was distributed in both nucleus and cytoplasm of the oyster hemocyte. The mRNA expression of CgIRF-1 in hemocytes was significantly up-regulated at 48 h after poly (I:C) stimulation (p < 0.05). The recombinant CgIRF-1 (rCgIRF-1) could interact with classically IFN-stimulated response elements (ISRE) in vitro. The relative luciferase activity of interferon-like protein promotor reporter gene (pGL-CgIFNLP promotor) was significantly (p < 0.05) enhanced in HEK293T cell after transfection of CgIRF-1. These results indicated that CgIRF-1 could bind ISRE and regulate the expression of CgIFNLP as a transcriptional regulatory factor, and participated in the antiviral immune response of oysters.
Collapse
Affiliation(s)
- Mengmeng Lu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Guangxia Lu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Yichen Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
15
|
Wang M, Wang L, Jia Z, Yi Q, Song L. The various components implied the diversified Toll-like receptor (TLR) signaling pathway in mollusk Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2018; 74:205-212. [PMID: 29305991 DOI: 10.1016/j.fsi.2017.12.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/25/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
Toll-like receptor (TLR) signaling pathway, composed of various components, plays pivotal roles in host innate immune defense mechanism. In the present study, twenty-nine TLR signaling pathway components, including receptors, adaptors, transduction molecules and immune effectors, were identified in Zhikong scallop Chlamys farreri via assembling and screening public available transcriptomic data and expression sequence tags (ESTs). These identified TLR signaling pathway components were constitutively expressed and detectable in various tissues, and almost all of them were highly expressed in gill and hepatopancreas. These results indicated the presence of TLR signaling pathways in both MyD88-dependent and MyD88-independent forms in scallop, and implied the diversified TLR signaling pathway in mollusk C. farreri.
Collapse
Affiliation(s)
- Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
16
|
Yang C, Wang L, Zhang H, Yi Q, Wang L, Wang H, Song L. The first CUB-domain containing serine protease from Chlamys farreri which might be involved in larval development and immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:163-168. [PMID: 28619282 DOI: 10.1016/j.dci.2017.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Serine proteases (SPs) are one of the most well understood enzyme families, which play an important role in regulating many physiological events. In the present study, one CUB-domain containing serine protease was identified from Chlamys farreri (designated as CfCUBSP). The full-length cDNA of CfCUBSP was of 3181 bp with an open reading frame of 2688 bp encoding a polypeptide of 896 amino acids. CfCUBSP shared closer phylogenetic relationship with those multi-domain SPs which consisted of one SP domain, and different numbers of CUB domain and LDLa domain than other SPs. The mRNA transcripts of CfCUBSP were detected in all developmental stages with the highest expression level in fertilized eggs and the lowest in trochophore larvae. In adult scallop, the CfCUBSP mRNA could be detected in all examined tissues with the highest level in hepatopancreas, and CfCUBSP protein was dominantly located in the gills, hepatopancreas, gonad and kidney. The mRNA expression of CfCUBSP in hemocytes was significantly up-regulated after the stimulation of lipopolysaccharide (LPS), peptidoglycan (PGN) and β-glucan (GLU) (P < 0.05). All the results collectively indicated that CfCUBSP was a primitive member of the invertebrate SPs which might be involved in larval development and immune response against Gram-negative (G-) and Gram-positive (G+) bacteria and fungus in scallop.
Collapse
Affiliation(s)
- Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Leilei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
17
|
Yang C, Wang L, Jia Z, Yi Q, Xu Q, Wang W, Gong C, Liu C, Song L. Two short peptidoglycan recognition proteins from Crassostrea gigas with similar structure exhibited different PAMP binding activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:9-18. [PMID: 28042081 DOI: 10.1016/j.dci.2016.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Peptidoglycan recognition protein (PGRP) is an essential molecule in innate immunity for both invertebrates and vertebrates, owing to its prominent ability in specifically recognizing bacterial peptidoglycan (PGN) and eliminating the invading bacteria. In the present study, the full length cDNA of two PGRP genes, CgPGRPS2 and CgPGRPS4, were cloned from oyster Crassostrea gigas. Their amino acid sequences both contained one signal peptide, one typical PGRP/amidase domain with conserved catalytic residues responsible for amidase activity (55H, 90Y, 164H, 172C in CgPGRPS2, and 98H, 133Y, 207H, 215C in CgPGRPS4), and specific PGN recognition (84R, 85W, 104R, 109V in CgPGRPS2, and 127G, 128W, 147R, 152V in CgPGRPS4), and they shared 55.9% sequence similarity. The mRNA transcripts of CgPGRPS2 and CgPGRPS4 were constitutively expressed in all the examined tissues, including haemocytes, hepatopancreas, mantle, gonad, heart, adductor muscle and gill, with the highest expression level in adductor muscle and hepatopancreas, respectively. Both CgPGRPS2 and CgPGRPS4 proteins were mainly localized in the cytoplasma. The recombinant protein of CgPGRPS2 (rCgPGRPS2) could bind lipopolysaccharide (LPS), PGN and mannan (Man), as well as various microorganisms including Gram-negative bacteria Escherichia coli, Vibrio anguillarum, Gram-positive bacteria Staphylococcus aureus and fungi Yarrowia lipolytica. The recombinant protein of CgPGRPS4 (rCgPGRPS4) exhibited higher binding affinity to PGN, lower binding affinity to LPS, while no binding activity to Man and Y. lipolytica. The results indicated that CgPGRPS2 and CgPGRPS4 could function as pattern recognition receptors (PRR) in the innate immune response of oyster, and they exhibited a certain degree of functional differentiation in recognition of Man.
Collapse
Affiliation(s)
- Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qingsong Xu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Changhao Gong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Conghui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
18
|
Cheng J, Wang J, Wang S, Li R, Ning X, Xing Q, Ma X, Zhang L, Wang S, Hu X, Bao Z. Characterization of the TRAF3IP1 gene in Yesso scallop (Patinopecten yessoensis) and its expression in response to bacterial challenge. Genes Genet Syst 2017; 91:267-276. [PMID: 27990012 DOI: 10.1266/ggs.16-00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor 3 (TRAF3) is an important adaptor that transmits upstream activation signals to induce innate immune responses. TRAF3 interacting protein 1 (TRAF3IP1) interacts specifically with TRAF3, but its function in innate immunity remains unclear, especially in marine invertebrates. In this study, to better understand the functions of TRAFs in innate immune responses, we identified and characterized the first bivalve TRAF3IP1 gene, PyTRAF3IP1, from Yesso scallop (Patinopecten yessoensis), one of the most important mollusk species for aquaculture. The PyTRAF3IP1 cDNA is 2,367 bp, with an open reading frame of 1,629 bp encoding 542 amino acids. Phylogenetic and protein structural analysis confirmed the gene's identity and revealed that PyTRAF3IP1 was more similar to vertebrate TRAF3IP1s than to those of invertebrates. PyTRAF3IP1 was expressed in all the adult tissues and developmental stages sampled, implying that it plays versatile roles in many biological processes. Furthermore, PyTRAF3IP1 expression was dramatically induced in the acute phase (3-6 h) after infection with both Gram-positive (Micrococcus luteus) and Gram-negative (Vibrio anguillarum) bacteria, even stronger induction being observed after V. anguillarum challenge. This is the first report of the characterization and immune response involvement of TRAF3IP1 in marine invertebrates, and suggests that TRAF3IP1 contributes to innate immunity in bivalves.
Collapse
Affiliation(s)
- Jie Cheng
- Key Laboratory of Marine Genetics and Breeding (Ocean Univeristy of China), Ministry of Education
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gao S, Ren Y, Zhang H, Pan B, Gao H. Identification and expression analysis of IκB and NF-κB genes from Cyclina sinensis. FISH & SHELLFISH IMMUNOLOGY 2016; 56:427-435. [PMID: 27492119 DOI: 10.1016/j.fsi.2016.07.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 06/06/2023]
Abstract
With the increasing economic importance of Cyclina sinensis aquaculture, interest in its defense mechanisms against pathogenic infection has grown in recent years. Inhibitor of nuclear factor-kappaB (IκB) and nuclear factor-kappaB (NF-κB) are proteins with central roles in many important physiological and pathological processes, such as innate immune responses. In this study, we identified CsIκB and CsNF-κB genes from a C. sinensis transcriptome library. In healthy adult clams, CsIκB and CsNF-κB genes were widely expressed in various tissues and highly expressed in hemocytes. Further, the expression levels of these genes were significantly increased in hemocytes challenged by Vibrio anguillarum, Micrococcus luteus and poly I:C. Inhibition of CsMyD88 expression by RNAi technology significantly altered the mRNA expression patterns of CsIκB and CsNF-κB as measured using quantitative real-time PCR. These results collectively indicated that the NF-κB signaling pathway, including CsIκB and CsNF-κB genes, might be involved in early innate immune responses and may be regulated by a MyD88-dependent signaling pathway in C. sinensis.
Collapse
Affiliation(s)
- Shan Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China
| | - Yipeng Ren
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China; Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Haijing Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China
| | - Baoping Pan
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China.
| | - Hong Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China
| |
Collapse
|
20
|
Sun Y, Zhang L, Zhang M, Li R, Li Y, Hu X, Wang S, Bao Z. Characterization of three mitogen-activated protein kinases (MAPK) genes reveals involvement of ERK and JNK, not p38 in defense against bacterial infection in Yesso scallop Patinopecten yessoensis. FISH & SHELLFISH IMMUNOLOGY 2016; 54:507-515. [PMID: 27155450 DOI: 10.1016/j.fsi.2016.04.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 06/05/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are protein Ser/Thr kinases that play a vital role in innate immune responses by converting extracellular stimuli into a wide range of cellular responses. Although MAPKs have been extensively studied in various vertebrates and invertebrates, our current understanding of MAPK signaling cascade in scallop is in its infancy. In this study, three MAPK genes (PyERK, PyJNK, and Pyp38) were identified from Yesso scallop Patinopecten yessoensis. The open reading frame of PyERK, PyJNK, and Pyp38 was 1104, 1227, and 1104 bp, encoding 367, 408, and 367 amino acids, respectively. Conservation in some splicing sites was revealed across the three PyMAPKs, suggesting the common descent of MAPKs genes. The expression profiles of PyMAPKs over the course of ten different developmental stages showed that they had different expression patterns. In adult scallops, PyMAPKs were primarily expressed in muscles, hemocytes, gill, and mantle. To gain insights into their role in innate immunity, we investigated their expression profiles after infection with Gram-positive bacteria (Micrococcus luteus) and Gram-negative bacteria (Vibrio anguillarum). Significant difference in gene expression was only found in PyERK and PyJNK, but not Pyp38, suggesting Pyp38 may not participate in immune response to bacterial infection. Besides, PyERK and PyJNK exhibited more drastic change against the invasion of V. anguillarum than M. luteus, suggesting they could be more sensitive to Gram-negative bacteria than Gram-positive bacteria. This study provides valuable resource for elucidating the role of MAPK signal pathway in bivalve innate immune response.
Collapse
Affiliation(s)
- Yan Sun
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lingling Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Meiwei Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ruojiao Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yangping Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoli Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
21
|
Oyanedel D, Gonzalez R, Flores-Herrera P, Brokordt K, Rosa RD, Mercado L, Schmitt P. Molecular characterization of an inhibitor of NF-κB in the scallop Argopecten purpuratus: First insights into its role on antimicrobial peptide regulation in a mollusk. FISH & SHELLFISH IMMUNOLOGY 2016; 52:85-93. [PMID: 26993612 DOI: 10.1016/j.fsi.2016.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
Inhibitors of nuclear factor kappa B (IκBs) are major control components of the Rel/NF-κB signaling pathway, a key regulator in the modulation of the expression of immune-related genes in vertebrates and invertebrates. The activation of the Rel/NF-κB signaling pathway depends largely in the degradation of IκB proteins and thus, IκBs are a main target for the identification of genes whose expression is controlled by Rel/NF-κB pathway. In order to identify such regulation in bivalve mollusks, the cDNA sequence encoding an IκB protein was characterized in the scallop Argopecten purpuratus, ApIκB. The cDNA sequence of ApIκB is comprised of 1480 nucleotides with a 1086 bp open reading frame encoding for 362 amino acids. Bioinformatics analysis showed that ApIκB displays the conserved features of IκB proteins. The deduced amino acid sequence consists of a 39.7 kDa protein, which has an N-terminal degradation motif, six ankyrin repeats and a C-terminal phosphorylation site motif. Phylogenetic analysis revealed a high degree of identity between ApIκB and other IκBs from mollusks, but also to arthropod cactus proteins and vertebrate IκBs. Tissue expression analysis indicated that ApIκB is expressed in all examined tissues and it is upregulated in circulating hemocytes from scallops challenged with the pathogenic Gram-negative bacterium Vibrio splendidus. After inhibiting ApIκB gene expression using the RNA interference technology, the gene expression of the antimicrobial peptide big defensin was upregulated in hemocytes from non-challenged scallops. Results suggest that ApIκB may control the expression of antimicrobial effectors such as big defensin via a putative Rel/NF-κB signaling pathway. This first evidence will help to deepen the knowledge of the Rel/NF-κB conserved pathway in scallops.
Collapse
Affiliation(s)
- D Oyanedel
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2373223 Valparaíso, Chile
| | - R Gonzalez
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas, Universidad Católica Del Norte, 1781421 Coquimbo, Chile
| | - P Flores-Herrera
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2373223 Valparaíso, Chile
| | - K Brokordt
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas, Universidad Católica Del Norte, 1781421 Coquimbo, Chile
| | - R D Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - L Mercado
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2373223 Valparaíso, Chile
| | - P Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2373223 Valparaíso, Chile.
| |
Collapse
|
22
|
Shi L, Feng L, Jiang WD, Liu Y, Jiang J, Wu P, Zhao J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Folic acid deficiency impairs the gill health status associated with the NF-κB, MLCK and Nrf2 signaling pathways in the gills of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2015; 47:289-301. [PMID: 26381932 DOI: 10.1016/j.fsi.2015.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to investigate the effect of dietary folic acid on fish growth, the immune and barrier functions of fish gills, and the potential mechanisms of these effects. Young grass carp (Ctenopharyngodon idella) were fed diets containing graded levels of folic acid at 0.10 (basal diet), 0.47, 1.03, 1.48, 1.88 and 3.12 mg kg(-1) diet for 8 weeks. The results showed that acid phosphatase and lysozyme activities and the complement component 3 content in fish gills decreased with folic acid deficiency (P < 0.05). Folic acid deficiency up-regulated liver-expressed antimicrobial peptide 1, interleukin 1β, interleukin 8, tumor necrosis factor α, nuclear factor κB p65, IκB kinase α (IKK-α), IKK-β and IKK-γ gene expression. Folic acid deficiency down-regulated interleukin 10, transforming growth factor β, IκB and target of rapamycin gene expression in fish gills (P < 0.05). These results showed that limited folic acid decreased fish gill immune status. Furthermore, folic acid deficiency down-regulated claudin-b, claudin-c, claudin-3, occludin and zonula occludens 1 gene expression, whereas folic acid deficiency up-regulated claudin-12, claudin-15, myosin light chain kinase and p38 mitogen activated protein kinase gene expression in fish gills (P < 0.05). These results suggested that folic acid deficiency disrupted tight junction-mediated fish gill barrier function. Additionally, folic acid deficiency increased the content of reactive oxygen species, protein carbonyl and malondialdehyde (MDA); Mn superoxide dismutase activity and gene expression; and Kelch-like-ECH-associated protein 1a (Keap1a) and Keap1b gene expression (P < 0.05). Conversely, folic acid deficiency decreased Cu/Zn superoxide dismutase, catalase, glutathione peroxidase, glutathione s-transferases and glutathione reductase activities and gene expression as well as NF-E2-related factor 2 gene expression in fish gills (P < 0.05). All of these results indicated that folic acid deficiency impaired fish gill health status via regulating gene expression of cytokines, tight junction proteins, antioxidant enzymes, NF-κB p65, MLCK and Nrf2. Based on percent weight gain, LZ activity and MDA content in the gills, the dietary folic acid requirements for young grass carp were 1.60, 2.07 and 2.08 mg kg(-1), respectively.
Collapse
Affiliation(s)
- Lei Shi
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
23
|
Ning X, Wang R, Li X, Wang S, Zhang M, Xing Q, Sun Y, Wang S, Zhang L, Hu X, Bao Z. Genome-wide identification and characterization of five MyD88 duplication genes in Yesso scallop (Patinopecten yessoensis) and expression changes in response to bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2015; 46:181-191. [PMID: 26115632 DOI: 10.1016/j.fsi.2015.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 06/04/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a pivotal adaptor in the TLR/IL-1R signaling pathway, which plays an important role in activating the innate immune system. Although MyD88 genes have been identified in a variety of species, they have not been systematically characterized in scallops. In this study, five MyD88 genes were identified in Yesso scallop (Patinopecten yessoensis), PyMyD88-1, PyMyD88-2a, PyMyD88-2b, PyMyD88-3 and PyMyD88-4, which consisted of two pairs of tandem duplications located on the same chromosome. To our knowledge, this is the largest number of MyD88 genes found in an invertebrate. Phylogenetic and protein structural analyses were carried out to determine the identities and evolutionary relationships of these genes. PyMyD88s have highly conserved structures compared to MyD88 genes from other invertebrate species, except for PyMyD88-4, which contains only a DD domain, suggesting the evolutionarily conserved form of this particular gene member. We investigated the expression profiles of PyMyD88 genes at different developmental stages and in healthy adult tissues and hemocytes after Micrococcus luteus and Vibrio anguillarum infection using quantitative real-time PCR (qRT-PCR). The expression of most PyMyD88s was significantly induced in the acute phase (3-6 h) after infection with both gram-positive (M. luteus) and gram-negative (V. anguillarum) bacteria, with much more dramatic changes in PyMyD88 expression being observed after V. anguillarum challenge. Collectively, the abundance of MyD88s and their specific expression patterns provide insight into their versatile roles in the response of the bivalve innate immune system to gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Xianhui Ning
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ruijia Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Xue Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shuyue Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Mengran Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qiang Xing
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yan Sun
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shi Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingling Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoli Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
24
|
Identification and molecular characterization of dorsal and dorsal-like genes in the cyclopoid copepod Paracyclopina nana. Mar Genomics 2015; 24 Pt 3:319-27. [PMID: 26297599 DOI: 10.1016/j.margen.2015.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/08/2015] [Accepted: 08/07/2015] [Indexed: 01/18/2023]
Abstract
To date, knowledge of the immune system in aquatic invertebrates has been reported in only a few model organisms, even though all metazoans have an innate immune system. In particular, information on the copepod's immunity and the potential role of key genes in the innate immune systems is still unclear. In this study, we identified dorsal and dorsal-like genes in the cyclopoid copepod Paracyclopina nana. In silico analyses for identifying conserved domains and phylogenetic relationships supported their gene annotations. The transcriptional levels of both genes were slightly increased from the nauplius to copepodid stages, suggesting that these genes are putatively involved in copepodid development of P. nana. To examine the involvement of both genes in the innate immune response and under stressful conditions, the copepods were exposed to lipopolysaccharide (LPS), different culture densities, salinities, and temperatures. LPS significantly upregulated mRNA expressions of dorsal and dorsal-like genes, suggesting that both genes are transcriptionally sensitive in response to immune modulators. Exposure to unfavorable culture conditions also increased mRNA levels of dorsal and dorsal-like genes. These findings suggest that transcriptional regulation of the dorsal and dorsal-like genes would be associated with environmental changes in P. nana.
Collapse
|
25
|
Yang G, Tian X, Dong S, Peng M, Wang D. Effects of dietary Bacillus cereus G19, B. cereus BC-01, and Paracoccus marcusii DB11 supplementation on the growth, immune response, and expression of immune-related genes in coelomocytes and intestine of the sea cucumber (Apostichopus japonicus Selenka). FISH & SHELLFISH IMMUNOLOGY 2015; 45:800-807. [PMID: 26052012 DOI: 10.1016/j.fsi.2015.05.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/18/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Probiotics have positive effects on the nutrient digestibility and absorption, immune responses, and growth of aquatic animals, including the sea cucumber (Apostichopus japonicus Selenka). A 60-day feeding trial was conducted to evaluate the effects of Bacillus cereus G19, B. cereus BC-01 and Paracoccus marcusii DB11 supplementation on the growth, immune response, and expression level of four immune-related genes (Aj-p105, Aj-p50, Aj-rel, and Aj-lys) in coelomocytes and the intestine of juvenile sea cucumbers. One group was fed the basal diet (control group), while three other groups were fed the basal diet supplemented with B. cereus G19 (G19 group), B. cereus BC-01 (BC group), or P. marcusii DB11 (PM group). The growth rate of sea cucumbers fed diets with probiotics supplementation was significantly higher than that of the control group (P < 0.05). Sea cucumbers in the G19 and PM groups had a significantly greater phagocytic activity of coelomocytes compared to the control group (P < 0.05), while those in the G19 and BC groups had a greater respiratory burst activity (P < 0.05). The alkaline phosphatase (AKP) activity of coelomocytes in sea cucumbers fed diets with probiotics supplementation was significantly higher than the control group (P < 0.05). Comparatively, superoxide dismutase (SOD) activity of coelomocytes for sea cucumber in the PM group was significantly greater (P < 0.05). As for the immune-related genes, B. cereus G19 supplementation significantly increased the expression level of the Aj-rel gene in coelomocytes (P < 0.05), while B. cereus BC-01 supplementation significantly increased that of the Aj-p50 gene as compared to the control group (P < 0.05). In the intestine, the relative expression level of Aj-p105, Aj-p50, and Aj-lys genes in the PM group was significantly higher than that in the control group (P < 0.05). These results suggested that B. cereus G19 and B. cereus BC-01 supplementation could improve the growth performance and the immune response in coelomocytes, while P. marcusii DB11 supplementation could have a positive effect on the growth performance and immune response in coelomocytes and the intestine of sea cucumbers.
Collapse
Affiliation(s)
- Gang Yang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| | - Xiangli Tian
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China.
| | - Shuanglin Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| | - Mo Peng
- School of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Dongdong Wang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
26
|
Li R, Zhang R, Zhang L, Zou J, Xing Q, Dou H, Hu X, Zhang L, Wang R, Bao Z. Characterizations and expression analyses of NF-κB and Rel genes in the Yesso scallop (Patinopecten yessoensis) suggest specific response patterns against Gram-negative infection in bivalves. FISH & SHELLFISH IMMUNOLOGY 2015; 44:611-621. [PMID: 25842178 DOI: 10.1016/j.fsi.2015.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
Rel/NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) genes are evolutionarily conserved and play a pivotal role in several physiological events. They have been extensively studied from various species, including both vertebrates and invertebrates. However, the Rel/NF-κB genes have not been systematically characterized in bivalves. In this study, we identified and characterized PyNF-κB and PyRel in the Yesso scallop (Patinopecten yessoensis). Phylogenetic and protein structural analyses were conducted to determine the identities and evolutionary relationships of Rel/NF-κB genes in Yesso scallop. Compared with the Rel/NF-κB genes from vertebrate species, the PyNF-κB and PyRel are relatively conserved in their structural features, but there were no paralogs found in P. yessoensis or other invertebrates. To gain insights into the roles of Rel/NF-κB genes during the innate immune response in scallop, quantitative real-time PCR was used to investigate the expression profiles of these genes at different developmental stages, in healthy adult tissues and in the hemolymph after bacterial infection with Micrococcus luteus and Vibrio anguillarum. The real-time PCR results indicated the abundance of PyNF-κB in the first four embryonic stages, including oocytes, fertilized eggs, morulae and blastulae. By contrast, PyRel was abundantly expressed in blastulae, trochophores and D-shaped larvae. In adult scallops, PyNF-κB and PyRel were ubiquitously expressed in most healthy tissues and highly expressed in most of the immune related tissues. Both genes were significantly up-regulated during the acute phase (3 h) after infection with Gram-positive (M. luteus) and negative (V. anguillarum) bacteria, while the much higher expression level of PyNF-κB suggested the involvement of the extra immune deficiency (IMD)-like pathway against the Gram-negative bacterial infection. The complex pattern of Rel/NF-κB induced expression suggested that PyNF-κB and PyRel both have specific and cooperative roles in the acute immune responses to bacterial infection.
Collapse
Affiliation(s)
- Ruojiao Li
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ru Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lu Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiajun Zou
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qiang Xing
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Huaiqian Dou
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingling Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Ruijia Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
27
|
Qu F, Xiang Z, Wang F, Qi L, Xu F, Xiao S, Yu Z. Prostaglandin E receptor 4 (PTGER4) involved in host protection against immune challenge in oyster, Crassostrea hongkongensis. FISH & SHELLFISH IMMUNOLOGY 2015; 42:316-324. [PMID: 25463295 DOI: 10.1016/j.fsi.2014.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
Prostaglandin E receptor 4 (PTGER4) is an essential receptor that can detect various physiological and pathological stimuli and has been implicated in a wide variety of biological processes, including the regulation of immune responses, cytokine production, and apoptosis. In this report, the first mollusk PTGER4, referred to as ChPTGER4, was cloned and characterized from the Hong Kong oyster Crassostrea hongkongensis. Its full-length cDNA is 1734 bp in length, including 5'- and 3'-untranslated region (UTRs) of 354 bp and 306 bp, respectively, and an open reading frame (ORF) of 1074 bp. ChPTGER4 comprises 357 amino acids and shares significant homology with its vertebrate homologs. The results of phylogenetic analysis revealed that ChPTGER4 clusters with PTGER4 from the Pacific oyster. In addition, quantitative real-time PCR analysis revealed that ChPTGER4 was constitutively expressed in all tissues examined and that its expression was significantly up-regulated in hemocytes and gills following challenge by pathogens (Vibrio alginolyticus, Staphylococcus haemolyticus and Saccharomyces cerevisiae) and pathogen-associated molecular patterns (PAMPs: lipopolysaccharide (LPS) and peptidoglycan (PGN). Moreover, fluorescence microscopy analysis revealed that ChPTGER4 localized to the membrane, and its overexpression significantly enhanced NF-κB reporter gene activation in the HEK293T cell line. In summary, this study provides the first experimental evidence of a functional PTGER4 in mollusks, which suggests its involvement in the innate immune response in oyster.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cloning, Molecular
- Crassostrea/genetics
- Crassostrea/immunology
- Crassostrea/metabolism
- Crassostrea/microbiology
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Immunity, Innate
- Lipopolysaccharides/pharmacology
- Molecular Sequence Data
- Peptidoglycan/pharmacology
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Random Allocation
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Saccharomyces cerevisiae/physiology
- Sequence Alignment
- Staphylococcus haemolyticus/physiology
- Vibrio alginolyticus/physiology
Collapse
Affiliation(s)
- Fufa Qu
- Key Laboratory of Marine Bio-resource Sustainable Utilization, Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhiming Xiang
- Key Laboratory of Marine Bio-resource Sustainable Utilization, Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Fuxuan Wang
- Key Laboratory of Marine Bio-resource Sustainable Utilization, Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Lin Qi
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fengjiao Xu
- Key Laboratory of Marine Bio-resource Sustainable Utilization, Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Shu Xiao
- Key Laboratory of Marine Bio-resource Sustainable Utilization, Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Ziniu Yu
- Key Laboratory of Marine Bio-resource Sustainable Utilization, Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
28
|
Zahoor Z, Lockyer AE, Davies AJ, Kirk RS, Emery AM, Rollinson D, Jones CS, Noble LR, Walker AJ. Differences in the gene expression profiles of haemocytes from schistosome-susceptible and -resistant biomphalaria glabrata exposed to Schistosoma mansoni excretory-secretory products. PLoS One 2014; 9:e93215. [PMID: 24663063 PMCID: PMC3963999 DOI: 10.1371/journal.pone.0093215] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/27/2014] [Indexed: 11/18/2022] Open
Abstract
During its life cycle, the helminth parasite Schistosoma mansoni uses the freshwater snail Biomphalaria glabrata as an intermediate host to reproduce asexually generating cercariae for infection of the human definitive host. Following invasion of the snail, the parasite develops from a miracidium to a mother sporocyst and releases excretory-secretory products (ESPs) that likely influence the outcome of host infection. To better understand molecular interactions between these ESPs and the host snail defence system, we determined gene expression profiles of haemocytes from S. mansoni-resistant or -susceptible strains of B. glabrata exposed in vitro to S. mansoni ESPs (20 μg/ml) for 1 h, using a 5K B. glabrata cDNA microarray. Ninety-eight genes were found differentially expressed between haemocytes from the two snail strains, 57 resistant specific and 41 susceptible specific, 60 of which had no known homologue in GenBank. Known differentially expressed resistant-snail genes included the nuclear factor kappa B subunit Relish, elongation factor 1α, 40S ribosomal protein S9, and matrilin; known susceptible-snail specific genes included cathepsins D and L, and theromacin. Comparative analysis with other gene expression studies revealed 38 of the 98 identified genes to be uniquely differentially expressed in haemocytes in the presence of ESPs, thus identifying for the first time schistosome ESPs as important molecules that influence global snail host-defence cell gene expression profiles. Such immunomodulation may benefit the schistosome, enabling its survival and successful development in the snail host.
Collapse
Affiliation(s)
- Zahida Zahoor
- Molecular Parasitology Laboratory, School of Life Science, Kingston University, Kingston upon Thames, Surrey, United Kingdom
- Wolfson Wellcome Biomedical Laboratory, Natural History Museum, London, United Kingdom
| | - Anne E. Lockyer
- Wolfson Wellcome Biomedical Laboratory, Natural History Museum, London, United Kingdom
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Aberdeen University, Aberdeen, United Kingdom
| | - Angela J. Davies
- Molecular Parasitology Laboratory, School of Life Science, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Ruth S. Kirk
- Molecular Parasitology Laboratory, School of Life Science, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Aidan M. Emery
- Wolfson Wellcome Biomedical Laboratory, Natural History Museum, London, United Kingdom
| | - David Rollinson
- Wolfson Wellcome Biomedical Laboratory, Natural History Museum, London, United Kingdom
| | - Catherine S. Jones
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Aberdeen University, Aberdeen, United Kingdom
| | - Leslie R. Noble
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Aberdeen University, Aberdeen, United Kingdom
| | - Anthony J. Walker
- Molecular Parasitology Laboratory, School of Life Science, Kingston University, Kingston upon Thames, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Kim BM, Jeong CB, Rhee JS, Lee JS. Transcriptional profiles of Rel/NF-κB, inhibitor of NF-κB (IκB), and lipopolysaccharide-induced TNF-α factor (LITAF) in the lipopolysaccharide (LPS) and two Vibrio sp.-exposed intertidal copepod, Tigriopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:229-239. [PMID: 24096153 DOI: 10.1016/j.dci.2013.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 06/02/2023]
Abstract
The immune system and the role of immunity-related genes have rarely been studied in copepods, even though copepods have a primitive immune response system and also have a potential in pathogen transport higher trophic levels. In this study, we firstly cloned and characterized three core immune genes such as nuclear factor κB (NF-κB), inhibitor of NF-κB (IκB), and lipopolysaccharide-induced TNF-α factor (LITAF) genes in the intertidal copepod Tigriopus japonicus. Several in silico analyses based on conserved domains, motifs, and phylogenetic relationships were supporting their annotations. To investigate the immune-related role of three genes, we exposed lipopolysaccharide (LPS) and two Vibrio sp. to T. japonicus. After exposure of different concentrations of LPS and two Vibrio sp., transcripts of TJ-IκB and TJ-LITAF genes were significantly elevated during the time course in a dose-dependent manner, while TJ-NF-κB transcripts were not significantly changed during exposure. These findings demonstrated that the copepod T. japonicus has a conserved immunity against infection.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | | | | | | |
Collapse
|