1
|
Lu C, Wang X, Ma J, Wang M, Liu W, Wang G, Ding Y, Lin Z, Li Y. Chemical substances and their activities in sea cucumber Apostichopus japonicus: A review. Arch Pharm (Weinheim) 2024; 357:e2300427. [PMID: 37853667 DOI: 10.1002/ardp.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Apostichopus japonicus, also known as Stichopus japonicus, with medicinal and food homologous figures, is a globally recognized precious ingredient with extremely high nutritional value. There is no relevant review available through literature search, so this article selects the research articles through the keywords "sea cucumber" and "Apostichopus japonicus (Stichopus japonicus)" in six professional databases, such as Wiley, PubMed, ScienceDirect, ACS, Springer, and Web of Science, from 2000 to the present, summarizing the extraction, isolation, and purification methods for the four major categories (polysaccharides, proteins and peptides, saponins, and other components) of the A. japonicus chemical substances and 10 effective biological activities of A. japonicus. Included are anticoagulation, anticancer/antitumor activities, hematopoiesis, regulation of gut microbiota, and immune regulatory activities that correspond to traditional efficacy. Literature support is provided for the development of medicines and functional foods and related aspects that play a leading role in future directions.
Collapse
Affiliation(s)
- Chang Lu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xueyu Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiahui Ma
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengtong Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guangyue Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhe Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
2
|
Cheng CH, Tian Y, Ma HL, Liu GX, Fan SG, Deng YQ, Jiang JJ, Feng J, Guo ZX. Essential role of the HSC70 in the mud crab Scylla paramamosain in response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109078. [PMID: 37716494 DOI: 10.1016/j.fsi.2023.109078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Heat shock proteins play an important role in host defense, and modulate immune responses against pathogen infection. In this study, a novel HSC70 from the mud crab (designated as SpHSC70) was cloned and characterized. The full length of SpHSC70 contained a 58 bp 5'untranslated region (UTR), an open reading frame (ORF) of 2,046 bp and a 3'UTR of 341 bp. The SpHSC70 protein included the conserved DnaK motif. The mRNA of SpHSC70 was highly expressed in the hemocytes, heart and hepatopancreas, and lowly expressed in the intestine. The subcellular localization results indicated that SpHSC70 was localized in both the cytoplasm and the nucleus. Moreover, SpHSC70 was significantly responsive to bacterial challenge. RNA interference experiment was designed to investigate the roles of SpHSC70 in response to bacterial challenge. V. parahaemolyticus infection induced the expression levels of SpPO, SpHSP70, SpSOD and SpCAT. Knocking down SpHSC70 in vivo can decrease the expression of these genes after V. parahaemolyticus infection. These results suggested that SpHSC70 could play a vital role in defense against V. parahaemolyticus infection via activating the immune response and antioxidant defense signaling pathways in the mud crab.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China.
| | - Yu Tian
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Guang-Xin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Si-Gang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Jian-Jun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China.
| |
Collapse
|
3
|
Liu D, Meng S, Xiang Z, He N, Yang G. Antimicrobial mechanism of reaction products of Morus notabilis (mulberry) polyphenol oxidases and chlorogenic acid. PHYTOCHEMISTRY 2019; 163:1-10. [PMID: 30974396 DOI: 10.1016/j.phytochem.2019.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
Herein, five polyphenol oxidases (PPOs) obtained from Morus notabilis (Mn) were characterized. Chlorogenic acid was the most readily oxidized substrate by these MnPPOs, and the products derived from the oxidation of chlorogenic acid by MnPPOs were tested for antimicrobial activity. The results showed that products of the five MnPPOs exhibited good inhibitory effects against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Sclerotinia sclerotiorum, and Botrytis cinerea. Because the products of MnPPO1 exhibited the strongest antimicrobial activity, the antimicrobial mechanism of these products was explored. The results showed that the products of MnPPO1 increased cell membrane permeability and chitinase and β-1,3-glucanase activities.
Collapse
Affiliation(s)
- Dan Liu
- Department of State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Shuai Meng
- Department of State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Zhonghuai Xiang
- Department of State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Ningjia He
- Department of State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Guangwei Yang
- Department of State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Liu H, Luo J, Ding T, Gu S, Yang S, Yang M. Speciation Analysis of Trace Mercury in Sea Cucumber Species of Apostichopus japonicus Using High-Performance Liquid Chromatography Conjunction With Inductively Coupled Plasma Mass Spectrometry. Biol Trace Elem Res 2018; 186:554-561. [PMID: 29574672 DOI: 10.1007/s12011-018-1309-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/14/2018] [Indexed: 12/29/2022]
Abstract
In this paper, a simple and cost-effective method using high-performance liquid chromatography in conjunction with inductively coupled plasma mass spectrometry with a rapid ultrasound-assisted extraction was used for analysis speciation of trace mercury in sea cucumber species of Apostichopus japonicus. The effective separation of inorganic mercury, methylmercury, and ethylmercury was achieved within 10 min using Agilent ZORBAX SB-C18 analytical and guard columns with an isocratic mobile phase consisting of 8% methanol and 92% H2O containing 0.12% L-cysteine (m/v) and 0.01 mol/L ammonium acetate. Mercury species were extracted from A. japonicus samples using a solution containing 2-mercaptoethanol, L-cysteine, and hydrochloric acid and sonicating for 0.5 h. The limits of detection of inorganic mercury, methylmercury, and ethylmercury were 0.12, 0.08, and 0.20 μg/L, and the minimum detectable concentrations (measured at 0.500 g sample volume in 10.00 mL) were 2.4, 1.6, and 4.0 μg/kg, respectively. Analysis of a scallop certified reference material (GBW 10024) revealed accordance between the experimental and certified values. This study provides a reference for the evaluation of mercury speciation in sea cucumber and other seafood.
Collapse
Affiliation(s)
- Hao Liu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jiaoyang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Tong Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Shanyong Gu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shihai Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China.
| | - Meihua Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
5
|
Coates CJ, Talbot J. Hemocyanin-derived phenoloxidase reaction products display anti-infective properties. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:47-51. [PMID: 29704519 DOI: 10.1016/j.dci.2018.04.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Hemocyanin is a multi-functional protein located in the hemolymph (blood) of certain arthropods and molluscs. In addition to its well-defined role in oxygen transport, hemocyanin can be converted into a phenoloxidase-like enzyme. Herein, we tested the antimicrobial properties of horseshoe crab (Limulus polyphemus) hemocyanin-derived phenoloxidase reaction products using broad ranges of phenolic substrates (e.g. l-DOPA) and microbial targets (Gram-positive/negative bacteria, yeast). The enzyme-catalysed turnover of several substrates generated (by)products that reduced significantly the number of colony forming units. Microbicidal effects of hemocyanin-derived phenoloxidase were thwarted by the inhibitor phenylthiourea. Data presented here further support a role for hemocyanin in invertebrate innate immunity.
Collapse
Affiliation(s)
- Christopher J Coates
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, Wales UK.
| | - James Talbot
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, Wales UK
| |
Collapse
|
6
|
Wang H, Xue Z, Liu Z, Wang W, Wang F, Wang Y, Wang L, Song L. A novel C-type lectin from the sea cucumber Apostichopus japonicus (AjCTL-2) with preferential binding of d-galactose. FISH & SHELLFISH IMMUNOLOGY 2018; 79:218-227. [PMID: 29772373 DOI: 10.1016/j.fsi.2018.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/03/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
C-type lectins (CTLs) are Ca2+ dependent carbohydrate-binding proteins that share structural homology in their carbohydrate-recognition domains (CRDs). In the present study, a novel CTL was identified from sea cucumber Apostichopus japonicus (named as AjCTL-2). The deduced amino acid sequence of AjCTL-2 was homologous to CTLs from other animals with the identities ranging from 33% to 40%. It contained a canonical signal peptide at the N-terminus, a low density lipoprotein receptor class A (LDLa), a C1r/C1s/Uegf/bone morphogenetic protein 1 (CUB), and a CRD with two motifs Glu-Pro-Asn (EPN) and Trp-Asn-Asp (WND) in Ca2+ binding site 2. The mRNA transcripts of AjCTL-2 were extensively expressed in all the tested tissues including respiratory tree, muscle, gut, coelomocyte, tube-foot, body wall and gonad, and the highest expression level of AjCTL-2 in coelomocyte was about 4.2-fold (p < 0.05) of that in body wall. The mRNA expression level of AjCTL-2 in coelomocyte increased significantly after Vibrio splendidus stimulation, and dramatically peaked at 12 h, which was 206.4-fold (p < 0.05) of that in control group. AjCTL-2 protein was mainly detected in cytoplasm of coelomocyte by immunofluorescence. The recombinant AjCTL-2 (rAjCTL-2) displayed binding activity to d-galactose independent of Ca2+, while the binding activity to other tested pathogen-associated molecular patterns (PAMPs) including lipopolysaccharide (LPS), peptidoglycan (PGN), and mannose (Man) could not be detected. Surface plasmon resonance (SPR) analysis further revealed the high binding specificity and moderate binding affinity of rAjCTL-2 to d-galactose (KD = 4.093 × 10-6 M). After rAjCTL-2 was blocked by its polyclonal antibody, the binding activity to d-galactose could not be detected by using a blocking ELISA (B-ELISA). Moreover, rAjCTL-2 could bind various microorganisms including V. splendidus, V. anguillarum, Staphylococcus aureus, Bifidobacterium breve and Yarrowia lipolytica with the strongest binding activity to B. breve. These results collectively suggested that AjCTL-2 was a member of CTL superfamily (CTLs) with preferential binding of d-galactose and participated in the immune response of sea cucumber.
Collapse
Affiliation(s)
- Hui Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Zhuang Xue
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Feifei Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Ying Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
7
|
Laccases from Marine Organisms and Their Applications in the Biodegradation of Toxic and Environmental Pollutants: a Review. Appl Biochem Biotechnol 2018; 187:583-611. [DOI: 10.1007/s12010-018-2829-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
8
|
Ishwarya R, Jayanthi S, Muthulakshmi P, Anjugam M, Jayakumar R, Khudus Nazar A, Vaseeharan B. Immune indices and identical functions of two prophenoloxidases from the haemolymph of green tiger shrimp Penaeus semisulcatus and its antibiofilm activity. FISH & SHELLFISH IMMUNOLOGY 2016; 51:220-228. [PMID: 26899630 DOI: 10.1016/j.fsi.2016.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
In the present study, we purified two prophenoloxidases (proPO) from haemolymph of green tiger shrimp, Penaeus semisulcatus by gel fermentation chromatography using blue Sepharose matrix. The two purified prophenoloxidase macromolecules are of about 76 and 75 kDa determined through SDS-PAGE and named as Penaeus semisulcatus prophenoloxidase I (PSproPO I) and Penaeus semisulcatus prophenoloxidase II (PSproPO II). It was further characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Circular Dichroism (CD) and High Performance Liquid Chromatography (HPLC) analysis. The purified PSproPO I and PSproPO II showed the strongest agglutination titre against human erythrocytes compared to goat RBC. The PSproPO I and PSproPO II showed phagocytic activity against yeast Saccharomyces cerevisiae and encapsulation activity against Sepharose CL 6B beads compared to CM Sepharose and Sodium alginate beads. The functional analysis of purified PSproPO I and PSproPO II showed enhanced PO activity when added with the triggering molecules such as pathogen associated molecular patterns (PAMPs), metals and chemicals. In addition, eluted fraction containing PSproPO I and PSproPO II showed antibiofilm activity against Gram positive and Gram negative bacteria. The above results concluded that no significant differences were found between the purified PSproPO I and PSproPO II immune indices and functions. This study might provide a sensitive platform to understand more about the critical roles of PSproPO I and PSproPO II in crustacean immune system.
Collapse
Affiliation(s)
- Ramachandran Ishwarya
- Crustacean Molecular Biology and Genomics Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi, 630004, Tamil Nadu, India
| | - Sangily Jayanthi
- Crustacean Molecular Biology and Genomics Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi, 630004, Tamil Nadu, India
| | - Perumal Muthulakshmi
- Crustacean Molecular Biology and Genomics Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi, 630004, Tamil Nadu, India
| | - Mahalingam Anjugam
- Crustacean Molecular Biology and Genomics Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi, 630004, Tamil Nadu, India
| | - Rengarajan Jayakumar
- Mandapam Regional Centre, Central Marine Fisheries Research Institute, Mandapam, Tamil Nadu, India
| | - Abdul Khudus Nazar
- Mandapam Regional Centre, Central Marine Fisheries Research Institute, Mandapam, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi, 630004, Tamil Nadu, India.
| |
Collapse
|
9
|
Sun H, Zhou Z, Dong Y, Yang A, Jiang J, Chen Z, Guan X, Wang B, Gao S, Jiang B. Expression analysis of microRNAs related to the skin ulceration syndrome of sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2016; 49:205-212. [PMID: 26723265 DOI: 10.1016/j.fsi.2015.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are involved in many biological processes. To investigate the miRNAs related to skin ulceration syndrome (SUS) of Apostichopus japonicus, small RNA libraries of body wall, intestine, respiratory tree and coelomocytes from healthy and diseased A. japonicus were sequenced on Illumina Hiseq 2000 platform. A total of 247 conserved and 10 novel miRNAs were identified across all libraries. After pair-wise comparisons, 215 miRNAs in body wall, 36 in intestine, 2 in respiratory tree and 38 in coelomocytes showed significant expression differences. Further analyses were conducted on some tissue-specific differentially expressed miRNAs: miR-8 and miR-486-5p in body wall, miR-200-3p, let-7-5p and miR-125 in intestine, miR-278a-3p and bantam in respiratory, miR-10a and miR-184 in coelomocytes. Notably, these miRNAs in some species were reported to function in various physiological or pathological processes associated with immune regulations. Using stem-loop quantitative real time PCR, six representative miRNAs in four tissues were selected to validate the sequencing results. The Pearson's correlation coefficient (R) of the six miRNAs ranged from 0.777 to 0.948, which confirmed the consistency and accuracy between these two approaches. This study provides comprehensive expression and regulation patterns of functional miRNAs in different tissues and gives insights into the tissue-specific immune response mechanisms in SUS-infected A. japonicus.
Collapse
Affiliation(s)
- Hongjuan Sun
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| | - Ying Dong
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Aifu Yang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zhong Chen
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xiaoyan Guan
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Bai Wang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shan Gao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Bei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| |
Collapse
|
10
|
Anjugam M, Iswarya A, Vaseeharan B. Multifunctional role of β-1, 3 glucan binding protein purified from the haemocytes of blue swimmer crab Portunus pelagicus and in vitro antibacterial activity of its reaction product. FISH & SHELLFISH IMMUNOLOGY 2016; 48:196-205. [PMID: 26611720 DOI: 10.1016/j.fsi.2015.11.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/28/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
β-1, 3 glucan binding protein (β-GBP) was isolated from the haemocytes of blue swimmer crab, Portunus pelagicus and purified by laminarin coupled Sephadex G-100 affinity column chromatography. The purified β-GBP has the molecular mass of 100 kDa, confirmed by SDS-PAGE. The X-ray diffraction analysis of purified β-GBP indicates the crystalline nature of the protein and also the presence of single peak confirming the existence of β-glucan molecule. The results of agglutination assay showed that the purified β-GBP had the ability to agglutinate with yeast cell, Saccharomyces cerevisiae and mammalian erythrocytes. β-GBP can agglutinate with yeast cells at the concentration of 50 μg/ml. The phagocytic and encapsulation activity of purified β-GBP from P. pelagicus was determined with yeast cell S. cerevisiae and sepharose bead suspension respectively. This reveals that, β-GBP have the ability to detect the pathogen associated molecular patterns (PAMP) found on the surface of fungi and bacteria. The recognition of invading foreign substances and in the involvement of functional activities induces the activation of prophenoloxidase. This revealed that β-GBP play a major role in the innate immune system of crustaceans by stimulating the prophenoloxidase system. Moreover, it was obvious to note that β-GBP reaction product exhibited antibacterial and antibiofilm activity against Gram positive and Gram negative bacteria. This study concludes the functional aspects of β-GBP purified from P. pelagicus and its vital role in the stimulation of prophenoloxidase cascade during the pathogenic infection.
Collapse
Affiliation(s)
- Mahalingam Anjugam
- Crustacean Molecular Biology and Genomics Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India
| | - Arokiadhas Iswarya
- Crustacean Molecular Biology and Genomics Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India.
| |
Collapse
|
11
|
Lv Z, Li C, Zhang P, Wang Z, Zhang W, Jin CH. MiR-200 modulates coelomocytes antibacterial activities and LPS priming via targeting Tollip in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2015; 45:431-436. [PMID: 25910848 DOI: 10.1016/j.fsi.2015.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/12/2015] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
In order to explore the potential roles of microRNAs (miRNAs) in regulating Toll-like receptor (TLR) pathways, we identified Toll interacting protein as a putative target of miR-200 in Apostichopus japonicus coelomocytes by RNA-seq screening (denoted as AjTollip). The positive expression profiles of miR-200 and AjTollip were detected in both LPS exposure primary coelomocytes and Vibrio splendidus challenge sea cucumber. Co-infection miR-200 mimics significantly elevated the expression of AjTollip and its down-stream molecules. In contrast, miR-200 inhibitor significantly repressed the expression of these TLR-pathway members. More importantly, miR-200 displayed not only to enhance coelomocytes antibacterial activities, but to suppress LPS priming in vitro. Overall, all these results will enhance our understanding on miR-200 regulatory roles in anti-bacterial process in sea cucumber.
Collapse
Affiliation(s)
- Zhimeng Lv
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China.
| | - Pengjuan Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Zhenhui Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Chun-Hua Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| |
Collapse
|
12
|
Wei X, Liu X, Yang J, Wang S, Sun G, Yang J. Critical roles of sea cucumber C-type lectin in non-self recognition and bacterial clearance. FISH & SHELLFISH IMMUNOLOGY 2015; 45:791-799. [PMID: 26052017 DOI: 10.1016/j.fsi.2015.05.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/13/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
C-type lectin is one important pattern recognition receptor (PRR) that plays crucial roles in multiple immune responses. A C-type lectin from sea cucumber Apostichopus japonicus (AjCTL-1) was characterized in the present study. The amino acid sequence of AjCTL-1 shared high similarities with other C-type lectins from invertebrates and vertebrates. The C-type lectin domain (CTLD) of AjCTL-1 contained a Ca(2+)-binding site 2 and four conserved cysteine residues. AjCTL-1 mRNA expression patterns in tissues and after bacterial challenge were then analysed. Quantitative PCR revealed that AjCTL-1 mRNA was widely expressed in the tested tissues of healthy sea cucumber. The highest expression level occurred in gonad followed by body wall, coelomocytes, tentacle, intestinum and longitudinal muscle, and the lowest expression level was in respiratory tree. AjCTL-1 mRNA expression in coelomocytes was significantly induced by gram-negative Listonella anguillarum and gram-positive Micrococcus luteus, with different up-regulation patterns post-challenge. Recombinant AjCTL-1 exhibited the ability to bind peptidoglycan directly, agglutinate M. luteus, Staphylococcus aureus and Escherichia coli, in a Ca(2+)-dependant manner, and enhance the phagocytosis of coelomocytes against E. coli in vitro. The results indicated that AjCTL-1 could act as a PRR in Apostichopus japonicus and had critical roles in non-self recognition and bacterial clearance against invading microbes.
Collapse
Affiliation(s)
- Xiumei Wei
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Xiangquan Liu
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Jianmin Yang
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Sheng Wang
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Guohua Sun
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Jialong Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|