1
|
Xu A, Zheng Y, Zhang X, Xu D, Wang J, Sun J. Effect of food enrichment based on diverse feeding regimes on the immunity of Nibea albiflora by biochemical and RNA-seq analysis of the spleen. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101363. [PMID: 39580873 DOI: 10.1016/j.cbd.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
Nibea albiflora is an economically valuable aquaculture species but suffers from various diseases caused by bacteria and parasites. It is necessary to investigate some novel methods to improve the immunity. In this study, three feeding regimes (A: commercial diet; B: 90 % commercial diet+10 % ice-fresh Exopalaemon carinicauda); C: 90 % commercial diet+5 % ice-fresh Exopalaemon carinicauda + 5 % live Perinereis nuntia, named Control group, Group 1 and Group 2 with similar nutrient and energy content were designed to construct the food enrichment model to investigate their effects on the immunity of this species. The study was focused on spleen tissue where biochemical and RNA-seq analysis were performed to reach our goals. The results showed that fish fed the enriched food showed higher immunity than the Control group fish. Food enrichment feeding also could enhance fish adaptive capacity which contributes to enhancing immunity. Compared to the Control group, the diet B feeding enhanced the fish immunity and adaptive capacity by up-regulating important genes like BAX, ITPR3, NOS1, NLRP3 and down-regulating the gene GOT1. Similarly for the diet C feeding, it improved not only fish immunity but also the neurotransmission activity associated with a good physiological condition by up regulating the genes ADCY5, CACNA1C, SMAD4, NOS1 and RXRB. The diet C feeding was the best in improving fish immunity. Above all, our study revealed the positive effects of such a food enrichment model on the fish and provided evidences and data which support the application of the feeding strategies in the healthy culturing of the fish.
Collapse
Affiliation(s)
- Anle Xu
- Fisheries College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Yuting Zheng
- Fisheries College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Xiumei Zhang
- Fisheries College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Dongdong Xu
- Key Lab Mariculture & Enhancement, Zhejiang Marine Fisheries Research Institute, Zhoushan, Zhejiang 316021, China
| | - Jiaxing Wang
- Research Office of Marine Biological Resources Utilization and Development, Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Jipeng Sun
- Research Office of Marine Biological Resources Utilization and Development, Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| |
Collapse
|
2
|
Yang L, Huang S, Wang ZA, Han D, Gan Y, Geng R, Zuo H, Guo Z, Weng S, He J, Xu X. Oral delivery of bacteria expressing wsv108 gene-specific dsRNA protects shrimp from white spot syndrome virus (WSSV) infection. Int J Biol Macromol 2024; 261:129840. [PMID: 38302014 DOI: 10.1016/j.ijbiomac.2024.129840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Double-stranded RNA (dsRNA) can specifically inhibit gene expression by RNA interference and has important application potential in animal disease control. White spot syndrome virus (WSSV) is one of the most harmful pathogens in shrimp aquaculture, causing huge economic losses every year. In this study, we investigated the function of the WSSV-encoded wsv108 protein. We demonstrated that wsv108 could promote apoptosis by interacting with heat shock protein 70 (HSP70) and enhancing the expression of multiple apoptosis-related genes. Silencing of wsv108 gene by injection with specific dsRNA prepared by in vitro transcription significantly increased the survival rate of WSSV-infected shrimp and reduced the viral load in tissues, suggesting that wsv108 is important for WSSV pathogenicity. Based on this, we expressed the wsv108 specific dsRNA in engineered Escherichia coli. Oral feeding of this bacterium could inhibit the expression of wsv108, increase the survival rate of WSSV-infected shrimp, and decrease the viral load of WSSV in tissues. Therefore, this study developed a new method for treatment of WSSV disease by oral administration of bacterially expressed dsRNA against a novel therapeutic target molecule, which could be a potential candidate strategy for WSSV control in aquaculture.
Collapse
Affiliation(s)
- Linwei Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Siyou Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Zi-Ang Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Deyu Han
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Yushi Gan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Ran Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China; Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Zhixun Guo
- South China Sea Fisheries Research Institute (CAFS), Guangzhou 510300, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China; Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China; Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China; Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
3
|
Xu A, Han F, Zhang Y, Chen S, Bian L, Gao T. Transcriptomic profiling reveals the immune response mechanism of the Thamnaconus modestus induced by the poly (I:C) and LPS. Gene 2024; 897:148065. [PMID: 38070789 DOI: 10.1016/j.gene.2023.148065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Aquatic animals immune response to pathogenic is a hotspot and related to high-quality development of aquaculture industry and the conservation of fisheries resources. Thamnaconus modestus is an important commercial and economical species which is suffering from various pathogens but by now lack relevant research about revealing the immune response mechanism to the pathogens invasion. In the study, the polyriboinosinic polyribocytidylic acid [poly (I:C)] and Lipopolysaccharides (LPS), respective mimics of viral and bacterial infections, were used to demonstrate the immune response of the species via transcriptome analysis. The results showed that T. modestus had sensitive responses to the viral analog infection at 6 h and 48 h, and at 6 h, the first five major functional genes were NFKBIA, IL1B, JUN, IGH, FOS, and at 48 h, the genes were NFKBIA, IL1B, JUN, IGH, FOS. The genes IL1B, IRF3, PTGS2, THBS1 could helping the fish to fight against the bacterial infection in both the times. Similarly for the bacterial infection, the species had a sensitive response at 6 h, and the first five major functional genes were NFKBIA, JUN, FOS, L1B, GRIN2C. Our study provided an insight about the immune response mechanism of this species and demonstrated that if need for treatment of the virus and bacteria by the biotechnology, the artificial interferential time would be suggested before 6 h since the pathological features occur and the genes NFKBIA, JUN, IL1B, FOS, TRAF2, IL8, SOCS3, PTGS2 should be payed more attention.
Collapse
Affiliation(s)
- Anle Xu
- Fisheries College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Fei Han
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yuan Zhang
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Siqing Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| | - Li Bian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| | - Tianxiang Gao
- Fisheries College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
4
|
Martínez-Ríos M, Martín-Torrijos L, Diéguez-Uribeondo J. Protocols for studying the crayfish plague pathogen, Aphanomyces astaci, and its host-pathogen interactions. J Invertebr Pathol 2023; 201:108018. [PMID: 37940036 DOI: 10.1016/j.jip.2023.108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
The crayfish plague caused by the pathogen Aphanomyces astaci has decimated the European and Asian populations of freshwater crayfish and represents an important threat to the other highly susceptible crayfish species in the world, such as the Australian, Madagascar, and South American species. The development and application of molecular methods addressed to the identification of A. astaci has increased exponentially during the last decades in contrast to a slow trend of the pathogen biology and host interaction. There is still a need for a better comprehension of the A. astaci-crayfish interactions, specifically the resistance and tolerance immune mechanism. These types of studies required a robust basic knowledge on the developmental biology of the pathogen in order to reproduce life stages and to perform infection experiments. A great piece of work in this area was carried out during the 1960 s to 80 s in University of Uppsala. Thus, the purpose of this work was to update previous protocols as well as to generate new guidelines to reproduce key developmental biology stages of A. astaci, to eventually identify crayfish populations with higher resistance and tolerance to this pathogen. This work also refers to other methodologies and guidelines for the diagnosis of crayfish plague, the pathogen isolation, and the in vitro production of zoospores.
Collapse
Affiliation(s)
- María Martínez-Ríos
- Mycology Department, Real Jardín Botánico-CSIC, Plaza Murillo 2, 28014 Madrid, Spain.
| | - Laura Martín-Torrijos
- Mycology Department, Real Jardín Botánico-CSIC, Plaza Murillo 2, 28014 Madrid, Spain.
| | | |
Collapse
|
5
|
Jia R, Dai X, Li Y, Yang X, Min X, Quan D, Liu P, Huang X, Ge J, Ren Q. Duox mediated ROS production inhibited WSSV replication in Eriocheir sinensis under short-term nitrite stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106575. [PMID: 37196508 DOI: 10.1016/j.aquatox.2023.106575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Nitrite stress and white spot syndrome virus (WSSV) infection are major problems threatening the sustainable and healthy development of Eriocheir sinensis. Some studies have found that nitrite stress can lead to the production of reactive oxygen species (ROS), whereas synthetic ROS plays a vital role in the signaling pathway. However, whether nitrite stress influences the infection of crabs by WSSV remains unclear. NADPH oxidases, including NOX1-5 and Duox1-2, are important for ROS production. In the present study, a novel Duox gene (designated as EsDuox) was identified from E. sinensis. The studies found that nitrite stress could increase the expression of EsDuox during WSSV infection and decrease the transcription of the WSSV envelope protein VP28. Moreover, nitrite stress could increase the production of ROS, and the synthesis of ROS relied on EsDuox. These results indicated a potential "nitrite stress-Duox activation-ROS production" pathway that plays a negative role in WSSV infection in E. sinensis. Further studies found that nitrite stress and EsDuox could promote the expression of EsDorsal transcriptional factor and antimicrobial peptides (AMPs) during WSSV infection. Moreover, the synthesis of AMPs was positively regulated by EsDorsal in the process of WSSV infection under nitrite stress. Furthermore, EsDorsal played an inhibitory role in the replication of WSSV under nitrite stress. Our study reveals a new pathway for "nitrite stress-Duox activation-ROS production-Dorsal activation-AMP synthesis" that is involved in the defense against WSSV infection in E. sinensis during short-term nitrite stress.
Collapse
Affiliation(s)
- Rui Jia
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yanfang Li
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xintong Yang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiuwen Min
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Derun Quan
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Peng Liu
- Nanjing Forestry University, Nanjing 210037, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Jiachun Ge
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu 210017, China.
| | - Qian Ren
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China.
| |
Collapse
|
6
|
Chen C, Liu J, Li B, Wang T, Wang E, Wang G. Isoferulic acid affords the antiviral potential and restrains white spot syndrome virus proliferation in crayfish (Procambarus clarkii). AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
First Discovery of Beta-Sitosterol as a Novel Antiviral Agent against White Spot Syndrome Virus. Int J Mol Sci 2022; 23:ijms231810448. [PMID: 36142360 PMCID: PMC9499679 DOI: 10.3390/ijms231810448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
The outbreak of white spot syndrome (WSS) is a looming challenge, due to dramatic losses to the crustacean aquaculture industry. However, at present, there are no prophylactic or therapeutic means to control this infectious viral disease. Here, we screened fifteen medicinal plants for their inhibitory activity on the white spot syndrome virus (WSSV), using red swamp crayfish (Procambarus clarkii) as a model species. The results showed that the crude extracts of Pinellia ternata (Thunb.) Breit. had the highest inhibitory effect (91.59%, 100 mg/kg) on WSSV proliferation, and its main component, beta-sitosterol, showed a much higher activity (95.79%, 50 mg/kg). Further, beta-sitosterol potently reduced (p < 0.01) viral loads and viral gene transcription levels in a concentration-dependent fashion, and significantly promoted the survival rate of WSSV-challenged crayfish (57.14%, 50 mg/kg). The co-incubation assay indicated that beta-sitosterol did not influence the infectivity of WSSV particles. Both pre- and post-treatment of beta-sitosterol exerted a significant inhibitory effect (p < 0.01) on the viral load in vivo. Mechanistically, beta-sitosterol not only interfered with the expression of viral genes (immediate early gene 1, ie1; DNA polymerase, DNApol) that are important in initiating WSSV transcription, but it also attenuated the hijacking of innate immune signaling pathways (Toll, IMD, and JAK/STAT pathways) by viral genes to block WSSV replication. Moreover, the expression of several antiviral immune, antioxidant, pro-inflammatory, and apoptosis-related genes changed significantly in beta-sitosterol-treated crayfish. Beta-sitosterol is a potent WSSV inhibitor and has the potential to be developed as an effective anti-WSSV agent against a WSS outbreak in crustacean aquaculture.
Collapse
|
8
|
Sun ZC, Chen C, Xu FF, Li BK, Shen JL, Wang T, Jiang HF, Wang GX. Evaluation of the antiviral activity of naringenin, a major constituent of Typha angustifolia, against white spot syndrome virus in crayfish Procambarus clarkii. JOURNAL OF FISH DISEASES 2021; 44:1503-1513. [PMID: 34227114 DOI: 10.1111/jfd.13472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
White spot syndrome virus (WSSV) is a serious pathogen threatening global crustacean aquaculture with no commercially available drugs. Herbal medicines widely used in antiviral research offer a rich reserve for drug discovery. Here, we investigated the inhibitory activity of 13 herbal medicines against WSSV in crayfish Procambarus clarkii and discovered that naringenin (NAR) has potent anti-WSSV activity. In the preliminary screening, the extracts of Typha angustifolia displayed the highest inhibitory activity on WSSV replication (84.62%, 100 mg/kg). Further, NAR, the main active compound of T. angustifolia, showed a much higher inhibition rate (92.85%, 50 mg/kg). NAR repressed WSSV proliferation followed a dose-dependent manner and significantly improved the survival of WSSV-challenged crayfish. Moreover, pre- or post-treatment of NAR displayed a comparable inhibition on the viral loads. NAR decreased the transcriptional levels of vital genes in viral life cycle, particularly for the immediately early-stage gene ie1. Further results showed that NAR could decrease the STAT gene expression to block ie1 transcription. Besides, NAR modulated immune-related gene Hsp70, antioxidant (cMnSOD, mMnSOD, CAT, GST), anti-inflammatory (COX-1, COX-2) and pro-apoptosis-related factors (Bax and BI-1) to inhibit WSSV replication. Overall, these results suggest that NAR may have the potential to be developed as preventive or therapeutic agent against WSSV.
Collapse
Affiliation(s)
- Zhong-Chen Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Cheng Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fei-Fan Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bing-Ke Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jing-Lei Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hai-Feng Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Liang CS, Chen C, Lin ZY, Shen JL, Wang T, Jiang HF, Wang GX. Acyclovir inhibits white spot syndrome virus replication in crayfish Procambarus clarkii. Virus Res 2021; 305:198570. [PMID: 34555435 DOI: 10.1016/j.virusres.2021.198570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
White spot syndrome virus (WSSV) is a fatal pathogen threatening global crustacean industry with no commercially available drugs to control WSSV. To address the urgent need for finding effective antiviral agents against WSSV, we examined the anti-WSSV activities of 11 common antiviral agents in crayfish Procambarus clarkia. The results showed that acyclovir displayed the highest inhibition on WSSV replication in vivo (92.59%, 50 mg/kg). Acyclovir repressed WSSV proliferation followed a dose-dependent fashion and pre- or post-treatment of acyclovir exerted strong inhibition on the viral loads. Further, we observed a markedly reduced expression levels of WSSV genes (immediate-early IE gene ie1, DNA polymerase gene DNApol and envelope protein gene Vp28) that are crucial in viral life cycle with the acyclovir treatment during the early infection. Meantime, we also found a significantly increased expressions of anti-oxidative as well as apoptosis related genes, suggesting that acyclovir could effectively suppress WSSV replication in vivo. Finally, acyclovir treatment could significantly improve the survival rate of WSSV-challenged crayfish by 56%. Taken together, acyclovir has the potential to be developed as a promising preventive or therapeutic agent against WSSV infection, and this finding may provide a reference for rapid discovery anti-WSSV agent in crustacean aquaculture.
Collapse
Affiliation(s)
- Chang-Shuai Liang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Cheng Chen
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Zhi-Yang Lin
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Jing-Lei Shen
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Tao Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Hai-Feng Jiang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Mao MG, Xu J, Liu RT, Ye L, Wang R, Jiang JL. Fas/FasL of pacific cod mediated apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104022. [PMID: 33482239 DOI: 10.1016/j.dci.2021.104022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Fas and Fas ligand (FasL) pathway plays important roles in virus defense and cell apoptosis. In our previous work, nervous necrosis virus (NNV) was discovered in Pacific cod (Gadus macrocephalus), and the Fas ligand (PcFasL) was up-regulated when NNV outbreak, however, signal transmission of Fas/FasL in fish are still unclear. In the present study, Pacific cod Fas (PcFas), PcFasL and Fas-associating protein with a novel death domain (PcFADD) were characterized. The predicted protein of PcFas, PcFasL and PcFADD includes 333 aa, 90 aa and 93 aa, separately. 3-D models of PcFas, PcFasL and PcFADD were well constructed based on reported templates, respectively, even though the sequence homology with other fish is very low. The transcript levels of PcFas increased gradually from 15 day-post hatching (dph) to 75dph. PcFas was significantly up-regulated when cod larvae had NNV symptoms at 24dph, 37dph, 46dph, 69dph, and 77dph. Subcellular localization revealed that PcFasL was located in the cytoplasm, while PcFas was mainly located in the cell membrane. Exogenous expressed PcFasL of 900 μg/mL could kill the Epithelioma papulosum cyprinid (EPC) cells by MTT test, but low concentration has no effect on the cells. qPCR analysis showed that overexpression of PcFas could significantly up-regulate the expression of genes related to Fas/FasL signaling pathway, including bcl-2, bax, and RIP3, while overexpression of PcFasL significantly up-regulate the expression of caspase-3, caspase-9, and MLKL. Overexpression of PcFas or PcFasL could induce EPC apoptosis significantly by flow cytometry, which was consistent with the results of caspase-3 mRNA level increasing. The results indicated that NNV could induce apoptosis through Fas/FasL signal pathway.
Collapse
Affiliation(s)
- Ming-Guang Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Sciences, Dalian Ocean University, Dalian, 116023, China.
| | - Jia Xu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Sciences, Dalian Ocean University, Dalian, 116023, China.
| | - Rui-Ting Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Sciences, Dalian Ocean University, Dalian, 116023, China.
| | - Lin Ye
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Sciences, Dalian Ocean University, Dalian, 116023, China.
| | - Rui Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Sciences, Dalian Ocean University, Dalian, 116023, China.
| | - Jie-Lan Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, College of Fisheries and Life Sciences, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
11
|
Swathi A, Shekhar MS, Katneni VK, Vijayan KK. Flow cytometry analysis of apoptotic progression and expression analysis of four apoptosis-related genes in Penaeus vannamei in response to white spot syndrome virus infection. Virusdisease 2021; 32:244-250. [PMID: 34350314 DOI: 10.1007/s13337-021-00652-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/18/2021] [Indexed: 10/21/2022] Open
Abstract
Flow cytometry analysis was carried out to detect the progression of apoptosis in haemocytes of WSSV infected Penaeus vannamei at different time-points (1.5 hpi, 18 hpi and 56 hpi). Apoptosis in haemocytes was found to increase with time of infectivity from 5.06 to 69.63%. Quantitative real-time PCR (qPCR) was used for the expression analysis of four apoptosis-related genes such as Death-associated protein 1, caspase-5, translationally controlled tumor protein, and cathepsin D. The evidence of apoptosis in haemocytes of P. vannamei was established as shown by significant increase in the percentage of late apoptotic cells due to WSSV infection in shrimp. The present study gives an insight to the apoptosis rate in a WSSV infected shrimp during the course of infection and the role of apoptosis related genes.
Collapse
Affiliation(s)
- A Swathi
- Genetics and Biotechnology Unit, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028 India
| | - M S Shekhar
- Genetics and Biotechnology Unit, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028 India
| | - Vinaya Kumar Katneni
- Genetics and Biotechnology Unit, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028 India
| | - K K Vijayan
- Genetics and Biotechnology Unit, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028 India
| |
Collapse
|
12
|
Wang K, Ren Q, Shen XL, Li B, Du J, Yu XD, Du ZQ. Molecular characterization and expression analysis of dopa decarboxylase involved in the antibacterial innate immunity of the freshwater crayfish, Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2019; 91:19-28. [PMID: 31077848 DOI: 10.1016/j.fsi.2019.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Dopa decarboxylase (DDC) is responsible for the synthesis of dopamine, which acts as an important modulator in the nervous systems of vertebrates and invertebrates. Recent studies have indicated that DDC also plays crucial roles in the insect innate immune system. However, the functions of DDC in immunomodulation in crustaceans have not been thoroughly elucidated to date. In this study, a new full-length cDNA of the DDC protein was identified from red swamp crayfish, Procambarus clarkii (named Pc-ddc). The ORF of Pc-ddc encoded 474 amino acids, which possessed a 377-amino-acid domain. Pc-ddc was expressed at a relatively high level in the hemocytes and gills of crayfish. This protein was expressed at a relatively low level in the hepatopancreas and intestine. The expression level of Pc-ddc was clearly upregulated in hemocytes, hepatopancreas, gills, and intestine tissues after challenge with S. aureus or E. ictaluri. The results of the enzyme catalysis assay showed that the enzyme catalysis activity of rPc-DDC was 35 ± 2.8 ng h-1 mg-1 (n = 3). In addition, the results of the mimetic crayfish hemocytes encapsulation assay showed that the encapsulation rate of beads coated with rPc-DDC was clearly increased. The results of the bacterial binding assay showed that rPc-DDC strongly binds to S. aureus and E. ictaluri. Finally, when Pc-ddc was knocked down, the number of surviving crayfish clearly decreased after S. aureus or E. ictaluri was injected. All of these results indicate that Pc-DDC is an important immunomodulating enzyme in the neuroendocrine-immune (NEI) system of crayfish.
Collapse
Affiliation(s)
- Kai Wang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Xiu-Li Shen
- Library, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Bo Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Jie Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Xiao-Dong Yu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Zhi-Qiang Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China.
| |
Collapse
|
13
|
Yang H, Li X, Ji J, Yuan C, Gao X, Zhang Y, Lu C, Li F, Zhang X. Changes of microRNAs expression profiles from red swamp crayfish (Procambarus clarkia) hemolymph exosomes in response to WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2019; 84:169-177. [PMID: 30291984 DOI: 10.1016/j.fsi.2018.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
MicroRNAs (miRNAs) as short noncoding RNAs play important regulatory roles in diverse biological processes by degrading the target mRNAs, and could be delivered by exosomes. WSSV is a highly pathogenic and prevalent virus, and has brought high mortality of P. clarkia. Till present, no studies focus on the miRNAs changes in exosomes during WSSV infection. To understand the different virulence of WSSV on miRNAs expression in P. clarkia hemolymph exosome, the deep sequencing was performed to compare the small RNA libraries from the hemolymph exosome of P. clarkia individuals with or without WSSV infections. From the TEM observations, NTA and Western Blot analysis, the extracted exosomes were well identified with classic characteristics. The 209 conserved miRNAs and 250 novel miRNAs were identified from the small RNA libraries. In response to WSSV infection, there were about 98 miRNAs significantly up-regulated and 59 miRNAs significantly down-regulated. The target genes prediction, GO and KEGG enrichment analysis revealed that some target genes of P. clarkia miRNAs were grouped mainly into the categories of biological regulation, immune system process, signal pathway and other more functions. This is the first report of comprehensive identification of P. clarkia hemolymph exosome miRNAs being differentially regulated in response to WSSV infection. These results will help to understand the hemolymph exosome miRNAs response to different virulence WSSV infection.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Xixi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jiaojun Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Chunyou Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Cheng Lu
- Aquaculture Technical Guidance Station, Taizhou, 225300, China
| | - Fenggang Li
- Yellow River Fisheries Research Institute, Chinese Academy of Fishery Science, Xi'an, Shaanxi, 710086, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
14
|
Wang K, Shen XL, Jia JS, Yu XD, Du J, Lin SH, Du ZQ. High-throughput sequencing analysis of microRNAs in gills of red swamp crayfish, Procambarus clarkii infected with white spot syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2018; 83:18-25. [PMID: 30195906 DOI: 10.1016/j.fsi.2018.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/27/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
MicroRNAs (miRNAs) are important posttranscriptional regulators. They play an important role in the antiviral innate immunity of invertebrates. In the present study, high-throughput small RNAs Illumina sequencing systems were carried out to identify differentially expressed miRNAs (DEMs) in the gills of Procambarus clarkii, which was challenged with white spot syndrome virus (WSSV). Our results identified 11,617 known and 6 novel miRNAs in normal group (NG) and WSSV-challenged group (WG) small RNA libraries. Additionally, 27 DEMs were shown to participate in the antiviral innate immunity of P. clarkii and were significantly upregulated or downregulated. In addition, the results of the KEGG pathway prediction of the DEMs target genes showed that putative target genes of these 27 DEMs were related mainly to the RNA transport pathway, tight junction pathway, mRNA surveillance pathway, regulation actin cytoskeleton pathway, focal adhesion pathway, and MAPK signaling pathway. These results provide important information for future studies about the antiviral innate immunity of crustaceans.
Collapse
Affiliation(s)
- Kai Wang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Xiu-Li Shen
- Library, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Jin-Sheng Jia
- Shenyang Entry-Exit Inspection and Quaranting Bureau, Shenyang, Liaoning, 110016, China
| | - Xiao-Dong Yu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Jie Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Si-Han Lin
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Zhi-Qiang Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China.
| |
Collapse
|
15
|
Cerenius L, Söderhäll K. Crayfish immunity - Recent findings. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:94-98. [PMID: 28502650 DOI: 10.1016/j.dci.2017.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Freshwater crayfish is an important commodity as well as a successful model for studies on crustacean immunity. Due to the ease with which they are kept and the available methods for hemocyte separation and culture they have proven to be very useful. Here, recent progress regarding pattern recognition, immune effector production and antiviral mechanisms are discussed. Several cases of functional resemblance between vertebrate complement and the crayfish immune reactions are highlighted.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| |
Collapse
|
16
|
Chen X, Zhu X, Liu Y, Lv Q, Ma J. Silencing of phospholipase C gamma 2 promotes proliferation of rat hepatocytes in vitro. J Cell Biochem 2017; 119:4085-4096. [PMID: 29236324 DOI: 10.1002/jcb.26592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/07/2017] [Indexed: 11/10/2022]
Abstract
The management of hepatic failure is undoubtedly difficult, and poor results have led to the search for novel therapeutic approaches. Nowadays, anti-apoptotic gene therapy is considered as an ideal approach. It has been proved that phospholipase Cγ2 (PLCγ2) is involved in the apoptosis of immune cells and tumor cells; however, whether this gene is related to hepatocyte death is still unclear. This study examined the role of PLCγ2 by inhibiting its expression in rat hepatocytes with siRNA. We also further analyzed the cellular mechanism by which the expression inhibition of PLCγ2 induces cell death. Silencing PLCγ2 gene by adenovirus vector expressing PLCγ2-targeted siRNA caused the great decline in the number of G1- and G2/M phase cells, the significant increase in the number of S phase cells, and the obvious reduction in apoptosis index. In addition, silencing PLCγ2 gene relieved the rat hepatocyte damage, such as the cell shrinkage and chromatin condensation, nuclear fragmentation. Further analysis of Ad-PLCγ2 siRNA-transfected hepatocytes demonstrated that suppression of PLCγ2 gene expression could cause the caspase dependent cell death by inhibiting the signal pathway MEKK1/MKK4/JNK1/2/c-Jun. In conclusion, these findings suggest that interference with PLCγ2 expression could relieve the inhibitory effect of PLCγ2 on hepaocyte apoptosis, thus, promote proliferation through inactivating PKCδ-mediated JNK1/2 signaling pathway.
Collapse
Affiliation(s)
- Xiaoguang Chen
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| | - Xuemin Zhu
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| | - Yumei Liu
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| | - Qiongxia Lv
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| | - Jun Ma
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
17
|
Identification and characterization of intestine microRNAs and targets in red swamp crayfish, Procambarus clarkii infected with white spot syndrome virus. PLoS One 2017; 12:e0187760. [PMID: 29121070 PMCID: PMC5679607 DOI: 10.1371/journal.pone.0187760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/25/2017] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding endogenous RNA molecules that play important roles in the innate immunity system of invertebrates, especially in the aspect of antivirus. In the present study, high-throughput small RNA Illumina sequencing systems were used to identify differentially expressed miRNAs (DEMs) from the intestines of Procambarus clarkii that were infected with white spot syndrome virus (WSSV). As a result, 39 known and 12 novel miRNAs were identified in both NG and WG small RNA libraries. Seven DEMs were determined to be involved in the antiviral innate immunity in the intestines of P. clarkii. The results of the target gene predictions of the DEMs showed that the putative target genes of these 7 DEMs are related to tight junctions, vascular smooth muscle contraction regulation of the actin cytoskeleton, focal adhesion, RNA transport, mRNA surveillance, viral carcinogenesis, and Salmonella infection. These results provide theoretical insights for future studies on the antiviral immunity of crustaceans.
Collapse
|
18
|
Du ZQ, Leng XY, Shen XL, Jin YH, Li XC. Identification and characterization of lymph organ microRNAs in red swamp crayfish, Procambarus clarkii infected with white spot syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2017; 69:78-84. [PMID: 28803958 DOI: 10.1016/j.fsi.2017.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) were important post-transcriptional regulators and played vital roles in innate immunity system of invertebrates, especially in the aspect of antivirus. In this study, using high-throughput small RNAs Illumina sequencing system, differentially expressed miRNAs (DEMs) from lymph organs in red swamp crayfish, Procambarus clarkii, infected with white spot syndrome virus, were identified. As a result, 32 known miRNAs and 7 novel miRNAs were identified in crayfish lymph organ small RNAs library of NG and WG. Among them, 7 differentially expressed miRNAs (DEMs) were predicted to be involved in the lymph organ antiviral innate immunity of P. clarkii. Besides, the results showed that putative target genes of these DEMs were related with tight junction, RNA transport, regulation of actin cytoskeleton, focal adhesion, vascular smooth muscle contraction, mRNA surveillance pathway, NOD-like receptor signaling pathway, leukocyte transendothelial migration, and protein processing in endoplasmic reticulum. These results might provide the guiding theoretical foundation for future studies about crustaceans' antiviral innate immunity.
Collapse
Affiliation(s)
- Zhi-Qiang Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, China
| | - Xiao-Yun Leng
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, China
| | - Xiu-Li Shen
- Library, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, China
| | - Yan-Hui Jin
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, China
| | - Xin-Cang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China.
| |
Collapse
|