1
|
Pirger Z, Urbán P, Gálik B, Kiss B, Tapodi A, Schmidt J, Tóth GK, Koene JM, Kemenes G, Reglődi D, Kiss T, Fodor I. Same same, but different: exploring the enigmatic role of the pituitary adenylate cyclase-activating polypeptide (PACAP) in invertebrate physiology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:909-925. [PMID: 38940930 PMCID: PMC11551080 DOI: 10.1007/s00359-024-01706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/24/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Evidence has been accumulating that elements of the vertebrate pituitary adenylate cyclase-activating polypeptide (PACAP) system are missing in non-chordate genomes, which is at odds with the partial sequence-, immunohistochemical-, and physiological data in the literature. Multilevel experiments were performed on the great pond snail (Lymnaea stagnalis) to explore the role of PACAP in invertebrates. Screening of neuronal transcriptome and genome data did not reveal homologs to the elements of vertebrate PACAP system. Despite this, immunohistochemical investigations with an anti-human PAC1 receptor antibody yielded a positive signal in the neuronal elements in the heart. Although Western blotting of proteins extracted from the nervous system found a relevant band for PACAP-38, immunoprecipitation and mass spectrometric analyses revealed no corresponding peptide fragments. Similarly to the effects reported in vertebrates, PACAP-38 significantly increased cAMP synthesis in the heart and had a positive ionotropic effect on heart preparations. Moreover, it significantly modulated the effects of serotonin and acetylcholine. Homologs to members of Cluster B receptors, which have shared common evolutionary origin with the vertebrate PACAP receptors, PTHRs, and GCGRs, were identified and shown not to be expressed in the heart, which does not support a potential role in the mediation of PACAP-induced effects. Our findings support the notion that the PACAP system emerged after the protostome-deuterostome divergence. Using antibodies against vertebrate proteins is again highlighted to have little/no value in invertebrate studies. The physiological effects of vertebrate PACAP peptides in protostomes, no matter how similar they are to those in vertebrates, should be considered non-specific.
Collapse
Affiliation(s)
- Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, 8237, Hungary
| | - Péter Urbán
- Genomics and Bioinformatics Core Facilities, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Bence Gálik
- Genomics and Bioinformatics Core Facilities, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Bence Kiss
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Antal Tapodi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Joris M Koene
- Ecology & Evolution, Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Dóra Reglődi
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Tibor Kiss
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, 8237, Hungary
| | - István Fodor
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, 8237, Hungary.
| |
Collapse
|
2
|
Capela R, Castro LF, Santos MM, Garric J. Development of a Lymnaea stagnalis embryo bioassay for chemicals hazard assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168061. [PMID: 37926257 DOI: 10.1016/j.scitotenv.2023.168061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/17/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
The validation of high-throughput toxicity tests with invertebrate species is a key priority to improve hazard assessment of new chemicals and increase the available test guidelines with organisms from a representative set of taxa. This work aimed to contribute to the validation of an embryo test with the freshwater gastropod Lymnaea stagnalis, which has been identified by Organization for Economic Co-operation and Development (OECD) as a potential invertebrate test model, and provide the basis for such an endeavor. Recently, a L. stagnalis reproductive test was standardized by the OECD. However, to encompass the entire life cycle, it is crucial to addresses embryogenic development - a phase highly susceptible to various anthropogenic chemicals, which is covered in the proposed methodology. The approach used in the present study is in line with the OECD guidelines and other published studies, namely the Detailed Review Paper (DRP) on Mollusks life-cycle toxicity testing. Here, the assay quality criteria such as basal mortality and abnormality rates, development, growth and hatching rates, the appropriated testing media, and the optimal assay duration were investigated. Cadmium was chosen as the positive test substance, due to the available data and the verified model sensitivity to this compound, namely in the OECD reproductive test validation process. The obtained data demonstrate that L. stagnalis embryogenesis using the developed methodology is highly sensitive to cadmium. High concentration-response correlation was observed using this reference compound, the EC10 and EC50 for growth are 13.57 and 21.84 μg/L, respectively, after 168 h of exposure. The development EC's 10 and 50 were 15.75 and 38.66 μg/L, respectively, after 240 h. This demonstrates the model sensitivity to this compound when compared with other embryo test models, as well as the model sensitivity during the embryogenesis, if compared with the adult stage. Further, given the determined sensitivity parameters, and incubation times, the test can be performed at 240 h as over 95 % of the control embryos were hatched and no further significant changes in the exposure groups were determined. Overall, the findings of the present study demonstrate that the embryo test with L. stagnalis has potential to high-throughput testing and the model has a high sensitivity to cadmium during this life cycle period. The background data provide by this study will be essential to foster the future standardization of this assay.
Collapse
Affiliation(s)
- Ricardo Capela
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; INRAE - National Research Institute for Agriculture, Food and the Environment - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France
| | - Luís Filipe Castro
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Miguel Machado Santos
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Jeanne Garric
- INRAE - National Research Institute for Agriculture, Food and the Environment - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France.
| |
Collapse
|
3
|
Wang T, Marle P, Slaveykova VI, Schirmer K, Liu W. Comparative study of the sensitivity of two freshwater gastropods, Lymnaea stagnalis and Planorbarius corneus, to silver nanoparticles: bioaccumulation and toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119999. [PMID: 36030959 DOI: 10.1016/j.envpol.2022.119999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Metal-based nanoparticles (NPs) are considered detrimental to aquatic organisms due to their potential accumulation. However, little is known about the mechanisms underlying these effects and their species-specificity. Here we used stable silver (Ag) NPs (20 nm, from 10 to 500 μg/L) with a low dissolution rate (≤2.4%) to study the bioaccumulation and biological impacts in two freshwater gastropods: Lymnaea stagnalis and Planorbarius corneus. No mortality was detected during the experiments. Ag bioaccumulation showed a dose-related increase with an enhanced concentration in both species after 7d exposure. L. stagnalis displayed a higher accumulation for AgNPs than P. corneus (e.g., up to 18- and 15-fold in hepatopancreas and hemolymph, respectively) which could be due to the more active L. stagnalis having greater contact with suspended AgNPs. Furthermore, the hepatopancreas and stomach were preferred organs for bioaccumulation compared to the kidney, mantle and foot. Regarding biological responses, the hemolymph rather than hepatopancreas appeared more susceptible to oxidative stress elicited by AgNPs, as shown by significantly increasing lipid peroxidation (i.e., formation of malondialdehyde). Neurotoxicity was detected in L. stagnalis when exposed to high concentrations (500 μg/L). Comparison with impacts elicited by dissolved Ag revealed that the effects observed on AgNPs exposure were mainly attributable to NPs. These results highlighted the relationship between the physiological traits, bioaccumulation, and toxicity responses of these two species to AgNPs and demonstrated the necessity of species-specificity considerations when assessing the toxicity of NPs.
Collapse
Affiliation(s)
- Ting Wang
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmenatal Biogeochemistry and Ecotoxicology, CH-1211Geneva, Switzerland
| | - Pierre Marle
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmenatal Biogeochemistry and Ecotoxicology, CH-1211Geneva, Switzerland; University of Lyon, CNRS UMR5023 LEHNA, Villeurbanne Cedex 69622, France
| | - Vera I Slaveykova
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmenatal Biogeochemistry and Ecotoxicology, CH-1211Geneva, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, CH-8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland; School of Architecture, Civil and Environmental Engineering, EPFL Lausanne, Lausanne, Switzerland
| | - Wei Liu
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmenatal Biogeochemistry and Ecotoxicology, CH-1211Geneva, Switzerland.
| |
Collapse
|
4
|
Langeloh L, Jokela J, Seppälä K, Seppälä O. Ecological determinants of variation in phenotypic selection on quantitative immune defence traits. OIKOS 2022. [DOI: 10.1111/oik.09506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Laura Langeloh
- Dept of Aquatic Ecology, Eawag, Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
- Inst. of Integrative Biology, ETH Zürich Zürich Switzerland
| | - Jukka Jokela
- Dept of Aquatic Ecology, Eawag, Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
- Inst. of Integrative Biology, ETH Zürich Zürich Switzerland
| | - Katri Seppälä
- Dept of Aquatic Ecology, Eawag, Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
- Research Dept of Limnology, Univ. of Innsbuck Mondsee Austria
| | - Otto Seppälä
- Dept of Aquatic Ecology, Eawag, Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
- Inst. of Integrative Biology, ETH Zürich Zürich Switzerland
- Research Dept of Limnology, Univ. of Innsbuck Mondsee Austria
| |
Collapse
|
5
|
Moyen NE, Bump PA, Somero GN, Denny MW. Establishing typical values for hemocyte mortality in individual California mussels, Mytilus californianus. FISH & SHELLFISH IMMUNOLOGY 2020; 100:70-79. [PMID: 32135339 DOI: 10.1016/j.fsi.2020.02.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Hemocytes are immune cells in the hemolymph of invertebrates that play multiple roles in response to stressors; hemocyte mortality can thus serve as an indicator of overall animal health. However, previous research has often analyzed hemolymph samples pooled from several individuals, which precludes tracking individual responses to stressors over time. The ability to track individuals is important, however, because large inter-individual variation in response to stressors can confound the interpretation of pooled samples. Here, we describe protocols for analysis of inter- and intra-individual variability in hemocyte mortality across repeated hemolymph samples of California mussels, Mytilus californianus, free from typical abiotic stressors. To assess individual variability in hemocyte mortality with serial sampling, we created four groups of 15 mussels each that were repeatedly sampled four times: at baseline (time zero) and three subsequent times separated by either 24, 48, 72, or 168 h. Hemocyte mortality was assessed by fluorescence-activated cell sorting (FACS) of cells stained with propidium iodide. Our study demonstrates that hemolymph can be repeatedly sampled from individual mussels without mortality; however, there is substantial inter- and intra-individual variability in hemocyte mortality through time that is partially dependent on the sampling interval. Across repeated samples, individual mussels' hemocyte mortality had, on average, a range of ~6% and a standard deviation of ~3%, which was minimized with sampling periods ≥72 h apart. Due to this intra-individual variability, obtaining ≥2 samples from a specimen will more accurately establish an individual's baseline. Pooled-sample means were similar to individual-sample means; however, pooled samples masked the individual variation in each group. Overall, these data lay the foundation for future work exploring individual mussels' temporal responses to various stressors on a cellular level.
Collapse
Affiliation(s)
- Nicole E Moyen
- Hopkins Marine Station, Department of Biology, Stanford University, United States.
| | - Paul A Bump
- Hopkins Marine Station, Department of Biology, Stanford University, United States
| | - George N Somero
- Hopkins Marine Station, Department of Biology, Stanford University, United States
| | - Mark W Denny
- Hopkins Marine Station, Department of Biology, Stanford University, United States
| |
Collapse
|
6
|
Alba A, Duval D, Sánchez J, Pérez AB, Pinaud S, Galinier R, Vázquez AA, Gourbal B. The immunobiological interplay between Pseudosuccinea columella resistant/susceptible snails with Fasciola hepatica: Hemocytes in the spotlight. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103485. [PMID: 31461636 DOI: 10.1016/j.dci.2019.103485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/18/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
The Fasciola hepatica/Pseudosuccinea columella interaction in Cuba involves a unique pattern of phenotypes; while most snails are susceptible, some field populations are naturally resistant to infection and parasites are encapsulated by snail hemocytes. Thus, we investigated the hemocytes of resistant (R) and susceptible (S) P. columella, in particular morphology, abundance, proliferation and in vitro encapsulation activity following exposure to F. hepatica. Compared to susceptible P. columella, hemocytes from exposed resistant snails showed increased levels of spreading and aggregation (large adherent cells), proliferation of circulating blast-like cells and encapsulation activity of the hemocytes, along with a higher expression of the cytokine granulin. By contrast, there was evidence of a putative F. hepatica-driven inhibition of host immunity, only in susceptible snails. Additionally, (pre-)incubation of naïve hemocytes from P. columella (R and S) with different monosaccharides was associated with lower encapsulation activity of F. hepatica larvae. This suggests the involvement in this host-parasite interaction of lectins and lectins receptors (particularly related to mannose and fucose sensing) in association with hemocyte activation and/or binding to F. hepatica.
Collapse
Affiliation(s)
- Annia Alba
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba; University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - David Duval
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Jorge Sánchez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba
| | - Ana B Pérez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba
| | - Silvain Pinaud
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Richard Galinier
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Antonio A Vázquez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Benjamin Gourbal
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| |
Collapse
|
7
|
Boisseaux P, Noury P, Delorme N, Perrier L, Thomas-Guyon H, Garric J. Immunocompetence analysis of the aquatic snail Lymnaea stagnalis exposed to urban wastewaters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16720-16728. [PMID: 29611123 DOI: 10.1007/s11356-018-1790-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Wastewater treatment plant effluents from urban area are a well-known source of chronic multiple micropollution to the downstream living organisms. In this study, ecologically relevant laboratory-bred freshwater gastropods, Lymnaea stagnalis, were exposed for 29 days to raw effluents of a wastewater treatment plant in Lyon area (France). A time-course analysis of individual markers of immunocompetence (hemocyte density and viability, hemocyte NADPH activity, phenol oxidase activity, and capacity of phagocytosis) has shown slight trends of inflammatory-like responses induced by the 100% effluents. So far, no short-term hazard for L. stagnalis can be revealed. However, over the long term, such environmental stress-stimulating immune responses could provoke deleterious life history trade-offs because the immune system is known to be highly energy-consuming.
Collapse
Affiliation(s)
- Paul Boisseaux
- Irstea, UR RIVERLY, Laboratory of Ecotoxicology, Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS 20244, 69625, Villeurbanne Cedex, France
| | - Patrice Noury
- Irstea, UR RIVERLY, Laboratory of Ecotoxicology, Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS 20244, 69625, Villeurbanne Cedex, France
| | - Nicolas Delorme
- Irstea, UR RIVERLY, Laboratory of Ecotoxicology, Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS 20244, 69625, Villeurbanne Cedex, France
| | - Lucile Perrier
- Irstea, UR RIVERLY, Laboratory of Ecotoxicology, Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS 20244, 69625, Villeurbanne Cedex, France
| | - Helene Thomas-Guyon
- LIttoral Environnement et Sociétés (LIENSs) - UMR 7266, Bâtiment ILE 2, Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Jeanne Garric
- Irstea, UR RIVERLY, Laboratory of Ecotoxicology, Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS 20244, 69625, Villeurbanne Cedex, France.
| |
Collapse
|
8
|
Penagos-Tabares F, Lange MK, Seipp A, Gärtner U, Mejer H, Taubert A, Hermosilla C. Novel approach to study gastropod-mediated innate immune reactions against metastrongyloid parasites. Parasitol Res 2018; 117:1211-1224. [PMID: 29441415 DOI: 10.1007/s00436-018-5803-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
Abstract
The anthropozoonotic metastrongyloid nematodes Angiostrongylus cantonensis and Angiostrongylus costaricensis, as well as Angiostrongylus vasorum, Crenosoma vulpis, Aelurostrongylus abstrusus and Troglostrongylus brevior are currently considered as emerging gastropod-borne parasites and have gained growing scientific attention in the last years. However, the knowledge on invertebrate immune responses and on how metastrongyloid larvae are attacked by gastropod immune cells is still limited. This work aims to describe an in vitro system to investigate haemocyte-derived innate immune responses of terrestrial gastropods induced by vital axenic metastrongyloid larvae. We also provide protocols on slug/snail management and breeding under standardized climate conditions (circadian cycle, temperature and humidity) for the generation of parasite-free F0 stages which are essential for immune-related investigations. Adult slug species (Arion lusitanicus, Limax maximus) and giant snails (Achatina fulica) were maintained in fully automated climate chambers until mating and production of fertilized eggs. Newly hatched F0 juvenile specimens were kept under parasite-free conditions before experimental use. An improved protocol for gastropod haemolymph collection and haemocyte isolation was established. Giemsa-stained haemolymph preparations showed adequate haemocyte isolation in all three gastropod species. Additionally, a protocol for the production of axenic first and third stage larvae (L1, L3) was established. Haemocyte functionality was tested in haemocyte-nematode-co-cultures. Scanning electron microscopy (SEM) and light microscopy analyses revealed that gastropod-derived haemocytes formed clusters as well as DNA-rich extracellular aggregates catching larvae and decreasing their motility. These data confirm the usefulness of the presented methods to study haemocyte-mediated gastropod immune responses to better understand the complex biology of gastropod-borne diseases.
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany. .,CIBAV Research Group, Veterinary Medicine School, University of Antioquia, Medellín, Colombia.
| | - Malin K Lange
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Anika Seipp
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
9
|
Boisseaux P, Noury P, Thomas H, Garric J. Immune responses in the aquatic gastropod Lymnaea stagnalis under short-term exposure to pharmaceuticals of concern for immune systems: Diclofenac, cyclophosphamide and cyclosporine A. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:358-366. [PMID: 28189777 DOI: 10.1016/j.ecoenv.2017.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
This is a pioneering study in the ecotoxicological assessment of immunotoxic effects of the three selected drugs of concern to a freshwater gastropod species. Lymnaea stagnalis was exposed in the laboratory for 3 days to three drugs used for immune systems: diclofenac (nonsteroidal anti-inflammatory drug), cyclophosphamide (anti-cancer immunosuppressive drug) or cyclosporine A (anti-xenograft immunosuppressive drug). Exposure ranges included environmental realistic (1-10μgL-1) and therapeutic concentrations (100-1000μgL-1). At the end of exposure times, the immune parameters of individual snails were measured: hemocyte density and viability, hemocyte phagocytosis capacity and hemocyte-related oxidative activities (basal and NADPH-oxidase stimulated with zymosan particles). Diclofenac and cyclosporine A induced immune responses, although the effects were not strong. No immunosuppression was observed. Such subtle immunomodulations bring further interrogations regarding their long-term immunotoxicity and possible resulting tradeoffs with life-history traits. On the other hand, the prodrug cyclophosphamide did not induce significant immune responses. Since metabolism pathways differ greatly between vertebrates and invertebrates, this study also suggests that relevant vertebrate metabolites should be included in the immunotoxicity assessment of pharmaceuticals in non-target invertebrate species. Finally, the possible interactive effects of these pharmaceuticals sharing similar modes of action or effects features should also be explored.
Collapse
Affiliation(s)
- P Boisseaux
- Irstea, UR MALY, centre de Lyon-Villeurbanne, 5 rue de la Doua, 69616 Villeurbanne, Cedex, France
| | - P Noury
- Irstea, UR MALY, centre de Lyon-Villeurbanne, 5 rue de la Doua, 69616 Villeurbanne, Cedex, France
| | - H Thomas
- LIttoral ENvironnement et Sociétés (LIENSs) - UMR 7266, Avenue Michel Crépeau, 17 042 La Rochelle, France
| | - J Garric
- Irstea, UR MALY, centre de Lyon-Villeurbanne, 5 rue de la Doua, 69616 Villeurbanne, Cedex, France.
| |
Collapse
|
10
|
Boisseaux P, Noury P, Delignette-Muller ML, Thomas H, Garric J. Recommendations for the Analysis of Hemocyte-related Immunocompetent Oxidative Activity in the Freshwater Snail Activity in the Freshwater Snail Lymnaea Stagnalis. J Xenobiot 2016; 6:6585. [PMID: 30701051 PMCID: PMC6324471 DOI: 10.4081/xeno.2016.6585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Not available
Collapse
Affiliation(s)
- P Boisseaux
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, Villeurbanne, France
| | - P Noury
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, Villeurbanne, France
| | - M-L Delignette-Muller
- Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France.,Université de Lyon, VetAgro Sup Campus Vétérinaire de Lyon, Marcy l'Etoile, France
| | - H Thomas
- LIttoral ENvironnement et Sociétés (LIENSs) - UMR 7266, La Rochelle, France
| | - J Garric
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, Villeurbanne, France
| |
Collapse
|