1
|
Huang L, Wu BL, He JX, Zhang Y, Chen J, Chen XJ. Molecular characterization and functional analysis of the lysosomal cathepsin D-like gene in red swamp crayfish, Procambarus clarkii. Genome 2021; 64:1041-1051. [PMID: 34323597 DOI: 10.1139/gen-2020-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aspartic proteinases are one of the four families of proteinase enzymes that are widely present in living organisms. They are involved in various physiological events, such as protein degradation, development, and host defense. However, the characterization and functional roles of aspartic proteinases remain to be elucidated in crustaceans. Here, we characterized a fragment of cathepsin D-like cDNA from red swamp crayfish, Procambarus clarkii (Pc-cathepsin D-like). The open reading frame of the Pc-cathepsin D-like gene contained 1152 bp, encoding a protein of 383 amino acid residues. We also evaluated the immunological role of the Pc-cathepsin D-like gene in vivo. Spatial distribution analysis revealed that the Pc-cathepsin D-like mRNA was high in the hepatopancreas, followed by the gut, gills, and hemocytes of P. clarkii. The expression levels of the Pc-cathepsin D-like gene increased following challenge with viral (polyinosinic: polycytidylic acid) and bacterial (lipopolysaccharides, peptidoglycan) PAMPs compared with PBS injection. The suppression of the Pc-cathepsin D-like gene by RNA interference significantly increased the expression of immune-associated genes. These results showed that the Pc-cathepsin D-like gene has an essential biological role in innate immune responses because it regulates the expression of immune-associated genes.
Collapse
Affiliation(s)
- Long Huang
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ben-Li Wu
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ji-Xiang He
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ye Zhang
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jing Chen
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xia-Jun Chen
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| |
Collapse
|
2
|
Liu M, Chen C, Wu QC, Chen JL, Dai LS, Hui Chu S, Liu QN. Chitinase involved in immune regulation by mediated the toll pathway of crustacea Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2021; 110:67-74. [PMID: 33383178 DOI: 10.1016/j.fsi.2020.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Chitinase can degrade chitin and play an essential role in animal immunity and plant defense. The immune functions of Chitinase in Procambarus clarkii (P. clarkii) remain to elucidate. Here, we identified PcChitinase 2 gene sequence from P. clarkii and studied its spatial and temporal expression profiles. The PcChitinase 2 transcribed unequally in different tissues; however, its expression was highest in those of stomach, gut, and hepatopancreas. The challenge with lipolysaccharide or peptidoglycan significantly up-regulated the expression of PcChitinase 2 in hepatopancreas. The knockdown of the PcChitinase 2 gene by double-stranded RNA suppressed most of the Toll-pathway-related immune genes (phospholipase, lectin, sptazle Cactus, serine proteikinase, anti-lipopolysaccharide factor, and Toll) production were significantly increased. Our results suggest PcChitinase 2 may be involved in the innate immune responses of P. clarkii by modulating the toll pathway.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, China; School of Wetlands, Yancheng Teachers University, Yancheng 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chen Chen
- College of Life Science, Anhui Agricultural University, 130 Changjiang West Road 230036, PR China
| | - Qi-Cheng Wu
- School of Wetlands, Yancheng Teachers University, Yancheng 224007, PR China
| | - Jia-Le Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Sheng Hui Chu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, China; School of Wetlands, Yancheng Teachers University, Yancheng 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Qiu-Ning Liu
- School of Wetlands, Yancheng Teachers University, Yancheng 224007, PR China; Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fishery Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
3
|
Dai LS, Kausar S, Gul I, Zhou HL, Abbas MN, Deng MJ. Molecular characterization of a heat shock protein 21 (Hsp21) from red swamp crayfish, Procambarus clarkii in response to immune stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103755. [PMID: 32526290 DOI: 10.1016/j.dci.2020.103755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Small heat shock proteins are a molecular chaperone and implicated in various physiological and stress processes in animals. However, the immunological functions of Hsp genes remain to elucidate in the crustaceans, particularly in red swamp crayfish, Procambarus clarkii. Here we report the cloning of heat shock protein 21 from the P. clarkii (hereafter Pc-Hsp21). The open reading frame of Pc-Hsp21 was 555 base pairs, encoding a protein of 184 amino acid residues with an alpha-crystallin family domain. Quantitative real-time PCR (qRT-PCR) analysis revealed a constitutive transcript expression of Pc-Hsp21 in the tested tissue, with the highest in hepatopancreas. The transcript abundance for this gene enhanced in hepatopancreas following immune challenge with the lipopolysaccharide, peptidoglycan, and poly I:C compared to the control group. The depletion of Pc-Hsp21 by double-stranded RNA altered transcript expression profiles of several genes in hepatopancreas, genes involved in the crucial immunological pathways of P. clarkii. These results suggest that Pc-Hsp21 plays an essential biological role in the microbial stress response by modulating the expression of immune-related genes in P. clarkii.
Collapse
Affiliation(s)
- Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hai-Ling Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Ming-Jie Deng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
4
|
Yu XM, Chen JL, Abbas MN, Gul I, Kausar S, Dai LS. Characterization of the cathepsin D in Procambarus clarkii and its biological role in innate immune responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103766. [PMID: 32525034 DOI: 10.1016/j.dci.2020.103766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Cathepsin D belongs to aspartic protease family, produced in the rough endoplasmic reticulum, and then transported to lysosomes, where it participates in various physiological processes. Despite its importance, only a few reports available on the functional role of cathepsin D in crustaceans. Herein, we cloned a cDNA fragment of cathepsin D from the hepatopancreas of the red swamp crayfish, Procambarus clarkii (Pc-cathepsin D) for the first time. It included 1158 base pairs open reading frame, encoding a protein of 385 amino acids. Multiple alignment analysis confirmed the presence of aspartic proteinase active sites and N glycosylation sites. Pc-cathepsin D mRNA expression was high in the gills followed by gut, heart, hepatopancreas of P. clarkii. At different time points post-infection with lipopolysaccharides, peptidoglycan, or polyinosinic polycytidylic acid, Pc-cathepsin D mRNA expression significantly enhanced compared with the control group. Knockdown of the Pc-cathepsin D by double-stranded RNA, strikingly, changed the expression of all the tested P. clarkii immune-associated genes, including Pc-Toll, Pc-lectin, Pc-cactus, Pc-anti-lipopolysaccharide factor, Pc-phospholipase, and Pc-sptzale. Altogether, these results suggest that Pc-cathepsin D is needed to confer innate immunity against microbial pathogens by modulating the expression of crucial transcripts that encode immune-associated genes.
Collapse
Affiliation(s)
- Xiao-Min Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Jia-Le Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
5
|
Rice-shrimp culture: a better intestinal microbiota, immune enzymatic activities, and muscle relish of crayfish (Procambarus clarkii) in Sichuan Province. Appl Microbiol Biotechnol 2020; 104:9413-9420. [PMID: 32949278 DOI: 10.1007/s00253-020-10797-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Intestinal microbiota play an important role in the intestinal immunity and nutrient absorption, even muscle nutritional components, and the composition and function were affected by environment. In this study, the intestinal microbiota and immune enzyme, nutritional flavor of muscle of crayfish in rice field, and pond cultivation model were compared in summer and autumn. The results of Shannon diversity and Chao 1 index of intestinal microbiota based on 16S sequencing analysis showed that the diversity and abundance in autumn were higher than in summer. And the diversity and abundance of intestinal microbiota of different model in the same season were different. Four dominant phyla (relative abundance > 5% at least in one sample) of the intestinal microbiota were Bacteroidetes, Firmicutes, Proteobacteria, and Tenericutes. From summer to autumn, the intestinal immune enzyme activity of crayfish in both models showed a decreasing trend. In summer, the activity of catalase and alkaline phosphatase of crayfish cultured in the pond was significantly higher than that in rice field (P < 0.05). In autumn, the activity of catalase and lysozyme of crayfish cultured in rice field was significantly higher than that in pond (P < 0.05). The contents of umami and sweetish amino acids of muscle were higher in rice field than in pond, and the percentage of glutamic acid and alanine was significantly higher in rice field than in pond (P < 0.05). Thus, rice field model can make crayfish a more stable intestinal environment and a better intestinal immune enzyme activity and muscular flavor. Key points • The intestinal microbiota of crayfish in rice field had tended to stabilize from summer to autumn. • The crayfish had better nutrient absorption and stronger immune abilities in the rice field. • The crayfish cultured in rice field had higher overall umami concentration than in pond.
Collapse
|
6
|
Hernández-Pérez A, Noonin C, Söderhäll K, Söderhäll I. Environmental concentrations of sulfamethoxazole increase crayfish Pacifastacus leniusculus susceptibility to White Spot Syndrome Virus. FISH & SHELLFISH IMMUNOLOGY 2020; 102:177-184. [PMID: 32311459 DOI: 10.1016/j.fsi.2020.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics used for humans and livestock are emerging as pollutants in aquatic environments. However, little is known about their effect on aquatic organisms, especially in crustaceans. In the present study, the freshwater crayfish Pacifastacus leniusculus was exposed during 21 days to environmental concentrations of sulfamethoxazole (SMX) (100 ng/L and 1 μg/L). Subsequently, the crayfish susceptibility to infection was evaluated by using White Spot Syndrome Virus (WSSV) challenge, a well-known crustacean pathogen. The median survival time of the infected crayfish exposed to 100 ng/L SMX was one day, whereas the control and the group exposed to 1 μg/L SMX survived for two and three days, respectively. In order to elucidate the effect of SMX upon the crayfish immune response, new sets of crayfish were exposed to the same SMX treatments to evaluate mRNA levels of immune-related genes which are expressed and present in hemocytes and intestine, and to perform total and differential hemocyte counts. These results show a significant down-regulation of the antimicrobial peptide (AMP) Crustin 3 in hemocytes from the 100 ng/L SMX group, as well as a significant up-regulation of the AMP Crustin 1 in intestines from the 1 μg/L SMX group. Semigranular and total hemocyte cell number were observed to be significantly lower after exposure to 100 ng/L SMX in comparison with the control group. The present study demonstrates that environmentally relevant SMX concentrations in the water at 100 ng/L led to an increased WSSV susceptibility, that may have been caused by a reduction of circulating hemocytes. Nevertheless, SMX concentrations of 1 μg/L could marginally and for a few days have an immunostimulatory effect.
Collapse
Affiliation(s)
- Ariadne Hernández-Pérez
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Chadanat Noonin
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Kenneth Söderhäll
- SciLife Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Irene Söderhäll
- SciLife Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden.
| |
Collapse
|
7
|
Li CS, Kausar S, Gul I, Yao XX, Li MY, Chen CC, Abbas MN, Dai LS. Heat shock protein 20 from Procambarus clarkii is involved in the innate immune responses against microbial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103638. [PMID: 32017956 DOI: 10.1016/j.dci.2020.103638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Small heat shock proteins (shsps) are conserved across invertebrate species. They are implicated in the modulation of various biological processes, such as immune responses, abiotic stress tolerance metamorphosis, and embryonic development. Herein, we identified a heat shock protein 20 from the red swamp crayfish, Procambarus clarkii (named as Pc-Hsp20), and performed in vivo studies to elucidate its physiological functions in the innate immunity. The open reading frame of Pc-Hsp20 was 609 base pair, encoding a protein of 202 amino acid residues with a hsp20/alpha crystallin family domain. Pc-Hsp20 was ubiquitously expressed in various tissues; however, it was highest in the hepatopancreas. The challenge with immune elicitors remarkably enhanced the transcript level of Pc-Hsp20 in the hepatopancreas when compared with the control. Administration of double-stranded RNA could significantly reduce expression of the Pc-Hsp20 mRNAs, and most of the immune-related genes expression enhanced with a variable concentration in the hepatopancreas. Altogether, these results suggest that Pc-Hsp20 may participate in innate immunity against microbial pathogens.
Collapse
Affiliation(s)
- Chang-Sheng Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China; School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, PR China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, PR China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Xiao-Xiao Yao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Meng-Yi Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Cheng-Chun Chen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, PR China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
8
|
Xu X, Duan H, Shi Y, Xie S, Song Z, Jin S, Li F, Xiang J. Development of a primary culture system for haematopoietic tissue cells from Cherax quadricarinatus and an exploration of transfection methods. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:45-54. [PMID: 30003889 DOI: 10.1016/j.dci.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/03/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
Various known and unknown viral diseases can threaten crustacean aquaculture. To develop prophylactic and therapeutic strategies against viruses, crustacean cell lines are urgently needed for immunology and virology studies. However, there are currently no permanent crustacean cell lines available. In this study, we developed a new method for preparing crayfish plasma (CP) and found that CP enhanced the proliferative capacity of haematopoietic tissue (hpt) cells from Cherax quadricarinatus by an EdU (5-ethynyl-2'-deoxyuridine) assay. The optimal CP concentration for hpt cell culture and the optimal subculture method are discussed. To achieve efficient expression of a foreign gene in hpt cells cultured in vitro, different transfection methods and vectors were analysed. We found that Lipofectamine 2000 could be used to efficiently transfect a foreign vector into hpt cells and exhibited a lower level of cytotoxicity than the other methods tested, and transfection of pEGFP-N1/w249 and pDHsp70-EGFP-FLAG resulted in high EGFP expression. By transmission electron microscopy (TEM) and virus copy number analysis, we found that white spot syndrome virus (WSSV) could infect hpt cells and multiply efficiently. Our results implied that the crayfish hpt cell culture system we improved could be used as a replacement for immortal crustacean cell lines in viral infection studies. Our findings provide a solid foundation for future immortalization and gene function studies in crustacean cells.
Collapse
Affiliation(s)
- Xiaohui Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hu Duan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yingli Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shijun Xie
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhan Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Songjun Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
9
|
Apitanyasai K, Amparyup P, Charoensapsri W, Sangsuriya P, Tassanakajon A. Shrimp hemocyte homeostasis-associated protein (PmHHAP) interacts with WSSV134 to control apoptosis in white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2018; 76:174-182. [PMID: 29501484 DOI: 10.1016/j.fsi.2018.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
Hemocyte homeostasis-associated protein (PmHHAP) was first identified as a viral-responsive gene, due to a high upregulation in transcription following white spot syndrome virus (WSSV) infection. Functional studies using RNA interference have suggested that PmHHAP is involved in hemocyte homeostasis by controlling apoptosis during WSSV infection. In this study, the role of PmHHAP in host-viral interactions was further investigated. Yeast two-hybrid assay and co-immunoprecipitation revealed that PmHHAP binds to an anti-apoptosis protein, WSSV134. The viral protein WSSV134 is a late protein of WSSV, expressed 24 h post infection (hpi). Gene silencing of WSSV134 in WSSV-infected shrimp resulted in a reduction of the expression level of the viral replication marker genes VP28, wsv477, and ie-1, which suggests that WSSV134 is likely involved in viral propagation. However, co-silencing of PmHHAP and WSSV134 counteracted the effects on WSSV infection, which implies the importance of the host-pathogen interaction between PmHHAP and WSSV134 in WSSV infection. In addition, caspase 3/7 activity was noticeably induced in the PmHHAP and WSSV134 co-silenced shrimp upon WSSV infection. Moreover, PmHHAP and WSSV134 inhibited caspase-induced activation of PmCasp in vitro in a non-competitive manner. Taken together, these results suggest that PmHHAP and WSSV134 play a role in the host-pathogen interaction and work concordantly to control apoptosis in WSSV infection.
Collapse
Affiliation(s)
- Kantamas Apitanyasai
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Piti Amparyup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand
| | - Walaiporn Charoensapsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pakkakul Sangsuriya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
10
|
Cerenius L, Söderhäll K. Crayfish immunity - Recent findings. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:94-98. [PMID: 28502650 DOI: 10.1016/j.dci.2017.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Freshwater crayfish is an important commodity as well as a successful model for studies on crustacean immunity. Due to the ease with which they are kept and the available methods for hemocyte separation and culture they have proven to be very useful. Here, recent progress regarding pattern recognition, immune effector production and antiviral mechanisms are discussed. Several cases of functional resemblance between vertebrate complement and the crayfish immune reactions are highlighted.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| |
Collapse
|