1
|
Jiang XX, Tang ZR, Li ZP, Zhang GR, Zhou X, Ma XF, Wei KJ. Molecular characterization, expression analysis and function identification of Pf_IL-12p35, Pf_IL-23p19 and Pf_IL-12p40 genes in yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2024; 150:109623. [PMID: 38750705 DOI: 10.1016/j.fsi.2024.109623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
The interleukin-12 (IL-12) family is a class of heterodimeric cytokines that play crucial roles in pro-inflammatory and pro-stimulatory responses. Although some IL-12 and IL-23 paralogues have been found in fish, their functional activity in fish remains poorly understood. In this study, Pf_IL-12p35a/b, Pf_IL-23p19 and Pf_IL-12p40a/b/c genes were cloned from yellow catfish (Pelteobagrus fulvidraco), four α-helices were found in Pf_IL-12p35a/b and Pf_IL-23p19. The transcripts of these six genes were relatively high in mucus and immune tissues of healthy individuals, and in gill leukocytes. Following Edwardsiella ictaluri infection, Pf_IL-12p35a/b and Pf_IL-23p19 mRNAs were induced in brain and kidney (or head kidney), Pf_IL-12p40a mRNA was induced in gill, and Pf_IL-12p40b/c mRNAs were induced in brain and liver (or skin). The mRNA expression of these genes in PBLs was induced by phytohaemagglutinin (PHA) and polyinosinic-polycytidylic acid (poly I:C), while lipopolysaccharides (LPS) induced the mRNA expression of Pf_IL-12p35a and Pf_IL-12p40b/c in PBLs. After stimulation with recombinant (r) Pf_IL-12 and rPf_IL-23 subunit proteins, either alone or in combination, mRNA expression patterns of genes related to T helper cell development exhibited distinct differences. The results suggest that Pf_IL-12 and Pf_IL-23 subunits may play important roles in regulating immune responses to pathogens and T helper cell development.
Collapse
Affiliation(s)
- Xin-Xin Jiang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zi-Rui Tang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhang-Ping Li
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Gui-Rong Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xu Zhou
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Xu-Fa Ma
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Kai-Jian Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
2
|
Han P, Tang J, Xu X, Meng P, Wu K, Sun B, Song X. Identification of the grass carp interleukin-23 receptor and its proinflammatory role in intestinal inflammation. Int J Biol Macromol 2024; 265:130946. [PMID: 38521334 DOI: 10.1016/j.ijbiomac.2024.130946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
The interleukin 23 receptor (IL-23R) is associated with a variety of inflammatory diseases in humans and other mammals. However, whether IL-23R is involved in inflammatory diseases in teleost fish is less understood. Thus, to investigate the potential involvement of IL-23R in fish inflammatory diseases, the full-length cDNA of IL-23R from grass carp Ctenopharyngodon idella was cloned and used to generate a recombinant protein (rgcIL-23R) containing the extracellular domain of IL-23R, against which a polyclonal antibody (rgcIL-23R pAb) was then developed. qPCR analysis revealed that IL-23R mRNA was significantly upregulated in most grass carp tissues in response to infection with Gram-negative Aeromonas hydrophila. Treatment with rgcIL-23R significantly induced IL-17A/F1 expression in C. idella kidney (CIK) cells. By contrast, knockdown of IL-23R caused significant decreases in IL-23R, STAT3, and IL-17N expression in CIK cells after lipopolysaccharide (LPS) stimulation. Similarly, rgcIL-23R pAb treatment effectively inhibited the LPS-induced increase in the expression of IL-23 subunit genes and those of the IL-23/IL-17 pathway in CIK cells. Furthermore, intestinal symptoms identical to those caused by A. hydrophila were induced by anal intubation with rgcIL-23R, but suppressed by rgcIL-23R pAb. Therefore, these results suggest that IL-23R has a crucial role in the regulation of intestinal inflammation and, thus, is a promising target for controlling inflammatory diseases in farmed fish.
Collapse
Affiliation(s)
- Panpan Han
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Jian Tang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Xufang Xu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Pengkun Meng
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Kang Wu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Bingyao Sun
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Xuehong Song
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
3
|
Wang D, Ma X, Hu H, Ren J, Liu J, Zhou H. Functional identification of two HMGB1 paralogues provides insights into autophagic machinery in teleost. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109457. [PMID: 38387685 DOI: 10.1016/j.fsi.2024.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
High mobility group box 1 (HMGB1) is a multifunctional regulator that plays different roles in various physiological and pathological processes including cell development, autophagy, inflammation, tumor metastasis, and cell death based on its cellular localization. Unlike mammalian HMGB1, two HMGB1 paralogues (HMGB1a and HMGB1b) have been found in fathead minnow and other fish species and its function as an inflammatory cytokine has been well investigated. However, the role of fish HMGB1 in autophagy regulation has not been well clarified. In the present study, we generated HMGB1 paralogues single (HMGB1a-/- and HMGB1b-/-) and double knockout (DKO) epithelioma papulosum cyprini (EPC) cells from fathead minnow by CRISPR/Cas9 system, and the knockout efficiency of these genes was verified at both gene and protein levels. In this context, the effects of HMGB1 gene knockout on the protein expression of microtubule-associated protein 1 light chain 3 II (LC3-II), an autophagy marker, were determined, showing that single knockout of two HMGB1 paralogues significantly decreased the expression of LC3-II, and these inhibitory effects were further amplified in HMGB1 DKO cells under both basal and rapamycin treatment conditions, indicating the role of two HMGB1 paralogues in fish autophagy. In agreement with this notion, overexpression of HMGB1a or HMGB1b with Flag-tag markedly upregulated LC3-II protein expression. Interestingly, overexpressing two paralogues distributed in both cytoplasm and nucleus. Finally, the role of HMGB1-mediated autophagy was further explored, finding that HMGB1 could interact with Beclin1, a key initiation factor of autophagy. Taken together, these findings highlighted the role of HMGB1 paralogues as the autophagy regulator and increased our understanding of autophagic machinery in teleost.
Collapse
Affiliation(s)
- Dan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyu Ma
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengyi Hu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingqi Ren
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaxi Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
4
|
Wang X, Zhang A, Qiu X, Yang K, Zhou H. The IL-12 family cytokines in fish: Molecular structure, expression profile and function. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104643. [PMID: 36632929 DOI: 10.1016/j.dci.2023.104643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Interleukin (IL)-12 family cytokines including IL-12, IL-23, IL-27, IL-35 and IL-39 are heterodimeric cytokines composed of two subunits, an α-chain (entitled p35, p19 and p28) and a β-chain (namely p40 and Epstein-Barr virus-induced gene 3, EBI3). Unlike in mammals, specific whole genome duplication events in fish may generate more paralogues of these subunits as the components of IL-12 family cytokines. Although all subunit genes of IL-12 family have been isolated and identified in various fish species, some important issues on fish IL-12 family are needed to be addressed compared to the extensive study in mammals: Whether the expansion of these subunit genes results in the generation of multiple isoforms of the family cytokines; Whether the related receptor genes have similar complex repertoire corresponding to their ligands; How about the expression kinetics of these subunit paralogues particularly under the circumstance of pathogen infection and immune stimulation; How about the functional properties of IL-12 family in fish. In the past ten years, these concerns have received increasing attentions to establish the biological significance of this family cytokines in fish immunity. In this review, we summarized the current understanding of IL-12 family with a special focus on the molecular structures, inducible expression profiles and functions of IL-12 family members in fish.
Collapse
Affiliation(s)
- Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
5
|
Qiu X, Wang D, Lv M, Sun H, Ren J, Wang X, Zhou H. Identification and functional characterization of interleukin-12 receptor beta 1 and 2 in grass carp (Ctenopharyngodon idella). Mol Immunol 2022; 143:58-67. [PMID: 35042118 DOI: 10.1016/j.molimm.2022.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
Interleukin 12 (IL-12) binds its receptor complex of IL-12 receptor beta 1 (IL-12Rβ1) and IL-12Rβ2 to transduce cellular signaling in mammals. In teleosts, the function of Il-12 is drawing increasing attention, but molecular and functional features of Il-12 receptors remain obscure. Especially, the existence of multiple Il-12 isoforms in some fish species elicits the requirement to clarify their receptors. In this study, we isolated three cDNA sequences as Il-12 receptor candidates from grass carp, entitled as grass carp Il-12rβ1 (gcIl-12rβ1), gcIl-12rβ2a and gcIl-12rβ2b. In silico analysis showed that gcIl-12rβ1 and gcIl-12rβ2a shared the conserved gene locus and similar structure characteristics with their orthologues of zebrafish, frog, chicken, mouse and human, respectively. However, the Il-12rβ2b of grass carp and zebrafish was similar to IL-27Ra in non-fish species. Further locally installed BLAST and gene synteny analysis uncovered three gcIl-12 receptors being single copied genes. Tissue distribution assay revealed that gcil12rβ1 and gcil12rβ2a transcripts were predominantly expressed in head kidney, differing from the even distribution of gcil12rβ2b transcripts in all detected tissues. Subsequently, the binding ability and antagonistic effects of recombinant extracellular region of gcIl-12rβ1 with recombinant grass carp Il-12 (rgcIl-12) isoforms were explored, providing functional evidence of the newly cloned gcIl-12rβ1 being genuine orthologues of mammalian IL-12Rβ1. Moreover, our data showed that gcIl-12rβ1 and gcIl-12rβ2a but not gcIl-12rβ1 and gcIl-12rβ2b mediated the effects of rgcIl-12 isoforms on ifn-γ promoter activity, thereby revealing Il-12 receptor signaling in fish. These results identified grass carp Il-12 receptors, thereby advancing our understanding of Il-12 isoform signaling in fish.
Collapse
Affiliation(s)
- Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Dan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Mengyuan Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hao Sun
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jingqi Ren
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
6
|
Qiu X, Sun H, Wang D, Ren J, Wang X, Zhang A, Yang K, Zhou H. Stimulus-Specific Expression, Selective Generation and Novel Function of Grass Carp ( Ctenopharyngodon idella) IL-12 Isoforms: New Insights Into the Heterodimeric Cytokines in Teleosts. Front Immunol 2021; 12:734535. [PMID: 34603315 PMCID: PMC8481787 DOI: 10.3389/fimmu.2021.734535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
Interleukin-12 (IL-12) is a heterodimeric cytokine composed of a p35 subunit specific to IL-12 and a p40 subunit shared with IL-23. In this study, we unveiled the existence of two p35 paralogues in grass carp (named gcp35a and gcp35b). Notably, gcp35a and gcp35b displayed distinct inducible expression patterns, as poly I:C merely induced the gene expression of gcp35a but not gcp35b, while recombinant grass carp interferon-gamma (rgcIfn-γ) only enhanced the transcription of gcp35b but not gcp35a. Moreover, the signaling mechanisms responsible for the inducible expression of gcp35a and gcp35b mRNA were elucidated. Because of the existence of three grass carp p40 genes (gcp40a, gcp40b and gcp40c) and two p35 paralogues, six gcIl-12 isoforms were predicted by 3D modeling. Results showed that gcp40a and gcp40b but not gcp40c had the potential for forming heterodimers with both gcp35 paralogues via the disulfide bonds. Non-reducing electrophoresis experiments further disclosed that only gcp40b but not gcp40a or gcp40c could form heterodimers with gcp35 to produce secretory heterodimeric gcp35a/gcp40b (gcIl-12AB) and gcp35b/gcp40b (gcIl-12BB), which prompted us to prepare their recombinant proteins. These two recombinant proteins exhibited their extensive regulation on Ifn-γ production in various immune cells. Intriguingly, both gcIl-12 isoforms significantly enhanced the transcription of il-17a/f1 and il-22 in lymphocytes, and their regulation on il-17a/f1 expression was mediated by Stat3/Rorγt signaling, supporting the potential of gcIl-12 isoforms for inducing Th17-like responses. Additionally, stimulatory effects of gcIl-12 isoforms on il-17a/f1 and ifn-γ expression were attenuated by gcTgf-β1 via suppressing the activation of Stat3 signaling, implying that their signaling could be manipulated. In brief, our works provide new insights into the inducible expression pattern, heterodimeric generation and functional novelty of Il-12 isoforms in teleosts.
Collapse
Affiliation(s)
- Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Sun
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingqi Ren
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Feng S, Zhou H, Wang Y, Qiu X, Zhang A, Wang X. Novel functions of grass carp three p40 isoforms as modulators of Th17 signature cytokine expression in head kidney leukocytes. FISH & SHELLFISH IMMUNOLOGY 2020; 98:995-1000. [PMID: 31734285 DOI: 10.1016/j.fsi.2019.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Interleukin (IL)-12p40, a component of IL-12 and IL-23, can be secreted as monomer and homodimer in mammals. Our previous study has proved the existence of natural three p40 isoforms and their proinflammatory properties in grass carp. In the present study, we unexpectedly found that recombinant grass carp p40a/b/c (rgcp40a, rgcp40b and rgcp40c) were able to enhance the mRNA levels of grass carp il-17a/f1 (gcil-17a/f1) in a dose- and time-dependent manner in head kidney leukocytes (HKLs). In agreement with these findings, the enzyme-linked immunosorbent assay (ELISA) showed that rgcp40a, rgcp40b and rgcp40c markedly stimulated gcIl-17a/f1 secretion from the HKLs. Together with their stimulatory effects on grass carp gcil-22 and gcil-26 expression, our data suggested their potential to mediate Th17-like response in grass carp. To support this notion, we investigated the underlying mechanisms for the regulation of rgcp40 isoforms on gcil-17a/f1 expression, and found that three rgcp40 isoforms significantly induced the activation of Erk, Jnk and Stat3 pathways in a time-dependent oscillation in the same cell model. Moreover, three rgcp40 isoforms-induced gcil-17a/f1 mRNA expression was suppressed by the inhibition on Erk, Jnk and Stat3 pathways, suggesting the signaling pathways in the p40 isoforms-mediating il-17a/f1 transcription. These studies for the first time proved the involvement of three gcp40 isoforms in mediating Th17 signature cytokine expression in fish immune cells, therefore providing new insights into the roles of p40 in teleost immunity.
Collapse
Affiliation(s)
- Shiyu Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| | - Yanyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
8
|
Yin L, Ren J, Wang D, Feng S, Qiu X, Lv M, Wang X, Zhou H. Functional characterization of three fish-specific interleukin-23 isoforms as regulators of Th17 signature cytokine expression in grass carp head kidney leukocytes. FISH & SHELLFISH IMMUNOLOGY 2019; 92:315-321. [PMID: 31202965 DOI: 10.1016/j.fsi.2019.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Mammalian Interleukin (IL)-23 is a heterodimeric cytokine with an IL-23-specific P19 subunit and a P40 subunit shared with IL-12, and plays a key role in the regulation of cell differentiation as well as inflammation. We previously demonstrated the existence of three soluble fish Interleukin (Il)-23 isoforms consist of a single P19 and one of three P40 isoforms (P40a/b/c) in grass carp. In the present study, three recombinant grass carp Il-23 (rgcIl-23) isoforms were prepared by linking gcP19 and gcP40a/b/c in a prokaryotic expression system, and then their functional properties were verified in grass carp head kidney leukocytes (HKLs). All three rgcIl-23 isoforms showed the bioactivities to divergently upregulate the mRNA expression of Th17 signature cytokines (il17a/f1, il21, il22 and il26) as well as Il-23 receptor (il23r) in HKLs. Moreover, they also promoted gcIl-17a/f1 secretion in a dose-dependent manner, strengthening their roles in Th17-like response. Furthermore, induction of il17a/f1 and il23r transcription by rgcIl-23 was blocked by a STAT3 inhibitor in grass carp HKLs, suggesting the involvement of STAT3 signaling in these inductions. Taken together, we for the first time identified the bioactivities of fish Il-23 isoforms and particularly revealed the existence of Il-23/Il-17a/f1 axis in fish, thereby advancing our understanding of Th17-like responses in fish immunity.
Collapse
Affiliation(s)
- Licheng Yin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jingqi Ren
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Dan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Shiyu Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Mengyuan Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
9
|
Feng S, Qiu X, Wang Y, Zhang N, Liao B, Wang X, Zhang A, Yang K, Zhou H. Production and functional insights into the potential regulation of three isoforms of grass carp p40 subunit in inflammation. FISH & SHELLFISH IMMUNOLOGY 2019; 89:403-410. [PMID: 30978447 DOI: 10.1016/j.fsi.2019.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
The p40 subunit is known as a component of Interleukin (IL)-12 and IL-23. In mammals, p40 can be secreted as a monomer or homodimer and acts independently to mediate cellular responses. Recently, three p40 paralogues were isolated and identified from grass carp and other fish species, but whether they exist independently as well as their functional consequences and significance remain unclear. In the present study, using grass carp as the model, we for the first time demonstrated the existence of natural fish p40a, p40b and p40c (gcp40a, gcp40b and gcp40c) mainly as a monomer in culture supernatant of head kidney leukocytes (HKLs). Particularly, their excessive secretion induced by various immune stimuli suggests possible involvement of free p40s in fish immune responses. To define their functions, recombinant grass carp p40a/b/c (rgcp40a, rgcp40b and rgcp40c) were prepared by Pichia pastoris expression system, and they possessed the activities to enhance the secretion of pro-inflammatory cytokines including Il-1β and tumor necrosis factor-α (Tnf-α) in grass carp HKLs. These pro-inflammatory properties of p40 isoforms prompted us to investigate their roles during the inflammatory process. In line with this, in vivo study revealed the pathogenic effect of rgcp40a on intestinal inflammation, whereas gcp40a polyclonal antibodies remarkably ameliorated Aeromonas hydrophila-induced intestinal histopathological changes. Taken together, our results uncover the biological significance of free p40s in teleost, and provide new clue for targeting fish intestinal inflammation.
Collapse
Affiliation(s)
- Shiyu Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yanyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Na Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Bohua Liao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
10
|
Song XH, Tang J, Gao TT, Xu XF, Yang HX, Wu K, Yang CG, Cheng ZQ, Sun BY. Interleukin-12 receptor β2 from grass carp: Molecular characterization and its involvement in Aeromonas hydrophila-induced intestinal inflammation. FISH & SHELLFISH IMMUNOLOGY 2019; 87:226-234. [PMID: 30641187 DOI: 10.1016/j.fsi.2019.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Interleukin-12 receptor β2 (IL-12Rβ2) is a signaling subunit of heterodimeric receptors for IL-12 and IL-35. It plays important regulatory functions in the development of Th1 cells and in the expression of inflammatory cytokines in mammals and other higher vertebrates. However, little is known about IL-12Rβ2 in teleost fish. In this work, we have cloned and characterized IL-12Rβ2 from grass carp (Ctenopharyngodon idella). The full-length cDNA of grass carp IL-12Rβ2 is 2875 bp, which encodes a mature protein with 741 amino acids. This mature protein contains three fibronectin type III domains, a transmembrane helix, and CXW and WSXWS-like motifs that are characteristic of the type I cytokine receptor family. Phylogenetic analysis revealed that cyprinid fish IL-12Rβ2 formed a single branch, clearly separated from those of other vertebrates. We expressed and purified a recombinant grass carp IL-12Rβ2 protein containing major antigenic regions, which was used to raise a polyclonal antibody. The specificity of the antibody was assessed by Western blotting analysis of whole cell lysates from Escherichia coli cells expressing the recombinant IL-12Rβ2, grass carp intestinal intraepithelial lymphocytes, and cultured C. idella kidney cells. To explore the potential regulatory role of IL-12Rβ2 in inflammation, we generated an intestinal inflammation model by anal intubation of fish with Aeromonas hydrophila. Immunohistochemical staining of the inflamed intestines revealed that IL-12Rβ2 expression is consistent with inflammatory cell recruitment during intestinal inflammation. Real-time quantitative PCR revealed that IL-12Rβ2 is widely expressed in normal tissues and is up-regulated in most tissues after infecting with A. hydrophila. We found that IL-12Rβ2, IL-12p35, and interferon-γ were expressed in similar patterns in the intestines during inflammation. Taken together, our results suggest that IL-12Rβ2 is involved in the regulation of intestinal inflammation.
Collapse
Affiliation(s)
- Xue-Hong Song
- School of Biology and Basic Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jian Tang
- School of Biology and Basic Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Tian-Tian Gao
- School of Biology and Basic Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Xu-Fang Xu
- School of Biology and Basic Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Hui-Xing Yang
- School of Biology and Basic Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Kang Wu
- School of Biology and Basic Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Cai-Gen Yang
- School of Biology and Basic Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Zhong-Qin Cheng
- School of Biology and Basic Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Bing-Yao Sun
- School of Biology and Basic Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
11
|
Wang L, Jiang L, Wu C, Lou B. Molecular characterization and expression analysis of large yellow croaker (Larimichthys crocea) interleukin-12A, 16 and 34 after poly I:C and Vibrio anguillarum challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 74:84-93. [PMID: 29292198 DOI: 10.1016/j.fsi.2017.12.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/11/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Interleukin-12, 16 and 34 are important pro-inflammatory cytokines, some of the most important components of the innate immunity system. Herein, we identified interleukin-12A (lcIL12A), 16 (lcIL16) and 34 (lcIL34) in large yellow croaker (Larimichthys crocea), and determined their expression profile in unchallenged and challenged tissues. The coding sequence (CDS) of lcIL12A comprised 600 bp long encoding a protein of 199 amino acids (aa), the CDS of lcIL16 was 2454 bp encoding a protein of 817 aa, and the CDS of lcIL34 was 657 bp encoding a protein of 267 aa. Phylogenetic analysis revealed similar results to homology comparison that lcIL12A was closest to IL12A of Dicentrarchus labrax (73%) and Serola dumerili (73%), while lcIL16 had the closest relation to Lates calcarofer (72.6%), and lcIL34 to Sparus aurata (88.9%). Multiple sequence alignment showed these interleukins were highly conserved with other vertebrate interleukins in their functional domains. Further, quantitative real time PCR (qPCR) analysis revealed that lcIL12A, lcIL16 and lcIL34 were constitutively expressed in all examined tissues, with significantly higher expression in spleen, liver and kidney. This was especially true for lcIL34 gene. Importantly, when challenged with polyinosinic:polycytidylic acid (poly I:C) and Vibrio anguillarum (V. anguillarum), the mRNA expressions of these interleukins were up-regulated in liver, spleen and kidney. Their top values got over 4 folds at least relative to their expression at time 0, and even lcIL12 reached 13.37 fold at 12-h point in spleen. These suggested their anti-viral and anti-bacterial roles and their involvement in the innate immune response of Larimichthys crocea. These results would have major implications in improving our understanding of the functions of interleukins to defend against pathogen infections in teleost species.
Collapse
Affiliation(s)
- Luping Wang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province 316022, China
| | - Lihua Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province 316022, China.
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province 316022, China
| | - Bao Lou
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province 316022, China
| |
Collapse
|