1
|
Kong X, Wang W, Xia S, Zhi Y, Cai Y, Zhang H, Shen X. Molecular and functional characterization of short peptidoglycan recognition proteins in Vesicomyidae clam. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105284. [PMID: 39489409 DOI: 10.1016/j.dci.2024.105284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Within cold seep environments, the Vesicomyidae clam emerges as a prevalent species, distinguished by its symbiotic relationship with microorganisms housed within its organ gill. Given the extreme conditions and the symbiotic nature of this association, investigating the host's immune genes, particularly immune recognition receptors, is essential for understanding their role in facilitating host-symbiotic interactions. Three short peptidoglycan recognition proteins (PGRPs) were identified in the clam. AmPGRP-S1, -S2, and -S3 were found to possess conserved amidase binding sites and Zn2+ binding sites. Quantitative Real-time PCR (qRT-PCR) analysis revealed differential expression patterns among the PGRPs. AmPGRP-S1 and AmPGRP-S2 exhibited elevated expression levels in the gill, while AmPGRP-S3 displayed the highest expression in the adductor muscle. Functional experiments demonstrated that recombinant AmPGRP-S1, -S2, and -S3 (rAmPGRPs) exhibited binding capabilities to both L-PGN and D-PGN (peptidoglycan). Notably, rAmPGRP-S1 and -S2 possessed Zn2+-independent amidase activity, while rAmPGRP-S3 lacked this enzymatic function. rAmPGRPs were shown to bind to five different bacterial species. Among these, rAmPGRP-S1 inhibited Escherichia coli and Bacillus subtilis, while rAmPGRP-S2 and -S3 inhibited Bacillus subtilis in the absence of Zn2+. In the presence of Zn2+, rAmPGRP-S1 and -S2 exhibited enhanced inhibitory activity against Staphylococcus aureus or Bacillus subtilis. These findings suggest that AmPGRPs may play a pivotal role in mediating the interaction between the host and endosymbiotic bacteria, functioning as PGN and microbe receptors, antibacterial effectors, and regulators of host-microbe symbiosis. These results contribute to our understanding of the adaptive mechanisms of deep-sea organisms to the challenging cold seep environments.
Collapse
Affiliation(s)
- Xue Kong
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Wei Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Sunan Xia
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Ying Zhi
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Yuefeng Cai
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xin Shen
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China.
| |
Collapse
|
2
|
Mengal K, Kor G, Siino V, Buřič M, Kozák P, Levander F, Niksirat H. Quantification of proteomic profile changes in the hemolymph of crayfish during in vitro coagulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104760. [PMID: 37331675 DOI: 10.1016/j.dci.2023.104760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Hemolymph is the circulatory fluid that fills the body cavity of crustaceans, analogous to blood in vertebrates. Hemolymph coagulation, similar to blood clotting in vertebrates, plays a crucial role in wound healing and innate immune responses. Despite extensive studies on the clotting process in crustaceans, no comparative quantitative analysis of the protein composition of non-clotted and clotted hemolymph in any decapod has been reported. In this study, we used label-free protein quantification with high-resolution mass spectrometry to identify the proteomic profile of hemolymph in crayfish and quantify significant changes in protein abundances between non-clotted and clotted hemolymph. Our analysis identified a total of two-hundred and nineteen proteins in both hemolymph groups. Furthermore, we discussed the potential functions of the top most high and low-abundant proteins in hemolymph proteomic profile. The quantity of most of the proteins was not significantly changed during coagulation between non-clotted and clotted hemolymph, which may indicate that clotting proteins are likely pre-synthesized, allowing for a swift coagulation response to injury. Four proteins still showed abundance differences (p < 0.05, fold change>2), including C-type lectin domain-containing proteins, Laminin A chain, Tropomyosin, and Reverse transcriptase domain-containing proteins. While the first three proteins were down-regulated, the last one was up-regulated. The down-regulation of structural and cytoskeletal proteins may affect the process of hemocyte degranulation needed for coagulation, while the up-regulation of an immune-related protein might be attributed to the phagocytosis ability of viable hemocytes during coagulation.
Collapse
Affiliation(s)
- Kifayatullah Mengal
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Golara Kor
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Valentina Siino
- Lund University, Department of Immunotechnology, Medicon Village, House 406, 22387, Lund, Sweden
| | - Miloš Buřič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Pavel Kozák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Fredrik Levander
- Lund University, Department of Immunotechnology, Medicon Village, House 406, 22387, Lund, Sweden; National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, 223 87, Sweden
| | - Hamid Niksirat
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| |
Collapse
|
3
|
Malagoli D, Franchi N, Sacchi S. The Eco-Immunological Relevance of the Anti-Oxidant Response in Invasive Molluscs. Antioxidants (Basel) 2023; 12:1266. [PMID: 37371996 DOI: 10.3390/antiox12061266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are volatile and short-lived molecules playing important roles in several physiological functions, including immunity and physiological adaptation to unsuitable environmental conditions. In an eco-immunological view, the energetic costs associated with an advantageous metabolic apparatus able to cope with wide changes in environmental parameters, e.g., temperature range, water salinity or drought, could be further balanced by the advantages that this apparatus may also represent in other situations, e.g., during the immune response. This review provides an overview of molluscs included in the IUCN list of the worst invasive species, highlighting how their relevant capacity to manage ROS production during physiologically challenging situations can also be advantageously employed during the immune response. Current evidence suggests that a relevant capacity to buffer ROS action and their damaging consequences is advantageous in the face of both environmental and immunological challenges, and this may represent a trait for potential invasiveness. This should be considered in order to obtain or update information when investigating the potential of the invasiveness of emerging alien species, and also in view of ongoing climate changes.
Collapse
Affiliation(s)
- Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Nicola Franchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Sandro Sacchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
4
|
Lattos A, Papadopoulos DK, Giantsis IA, Feidantsis K, Georgoulis I, Karagiannis D, Carella F, Michaelidis B. Investigation of the highly endangered Pinna nobilis' mass mortalities: Seasonal and temperature patterns of health status, antioxidant and heat stress responses. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105977. [PMID: 37043840 DOI: 10.1016/j.marenvres.2023.105977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 06/11/2023]
Abstract
Recently, P. nobilis populations have suffered a tremendous reduction, with pathogens potentially playing a crucial role. Considering its highly endangered status, mechanisms leading to mass mortalities were examined in one or multiple pathogens infected populations. Thus, seasonal antioxidant enzymatic activities, hsp70 and catalase mRNA levels, were investigated in two different Greek populations, during mass mortality events in summer of 2020. Samples were collected from Fthiotis and Lesvos during February (ToC 14 ± 1.2 and 15 ± 1 respectively), April (ToC 18 ± 1.2 and 17 ± 1.3 respectively), and June (ToC 24.5 ± 1.5 and 21.5 ± 1.5 respectively) 2020. In July of the same year (ToC 26.5 ± 1.7 in Fthiotis and 24.5 ± 1.7 in Lesvos), no live specimens were found. All biochemical parameters and phylogenetic analysis suggest that pathogen infection increases P. nobilis sensitivity to water temperature, subsequently leading to mass mortality. The latter was obvious in Fthiotis individuals, in which Haplosporidium pinnae was also observed with Mycobacterium spp., compared to Lesvos individuals.
Collapse
Affiliation(s)
- Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Dimitrios K Papadopoulos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, GR-53100, Florina, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Dimitrios Karagiannis
- National Reference Laboratory for Mollusc Diseases, Ministry of Rural Development and Food, 7 Frixou Street, GR-54627, Thessaloniki, Greece
| | - Francesca Carella
- University of Naples Federico II, Department of Biology, Complesso di MSA, 80126, Naples, Italy
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| |
Collapse
|
5
|
Song HC, Xie CY, Kong Q, Wei L, Wang XT. Daylight ultraviolet B radiation ruptured the cell membrane, promoted nucleotide metabolism and inhibited energy metabolism in the plasma of Pacific oyster. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160729. [PMID: 36496017 DOI: 10.1016/j.scitotenv.2022.160729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The increasing and intensifying ultraviolet B (UVB) radiation in sunlight is an environmental threat to aquatic ecosystems, potentially affecting the entire life cycle of wild or aquacultural Pacific oyster Crassostrea gigas with photoreception. Due to its complex composition, plasma is an important biological specimen for investigating the degree of disturbance from its steady state caused by the external environment in the open-pipe-type hemolymph of mollusks. We performed a multi-omic analysis of C. gigas plasma exposed to daylight UVB radiation. Hub differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were identified using the functional classification of Clusters of Orthologous Groups of proteins (COGs) through the protein-protein interaction (PPI)-based maximal clique centrality (MCC) algorithm. Our results summarize three types of UVB influences (disruption of the cell membrane, promotion of nucleotide metabolism, and inhibition of energy metabolism) on C. gigas based on transcriptomic, proteomic, and metabolomic analyses. The associated hub DEGs, DEPs (e.g., nucleoside diphosphate kinase, malate dehydrogenase, and hydroxyacyl-coenzyme A dehydrogenase), and metabolites (e.g., uridine, adenine, deoxyguanosine, guanosine, and xylitol) in the plasma were identified as biomarkers of mollusk response to UVB radiation, and could be used to evaluate the influence of environmental UVB on mollusks in future studies.
Collapse
Affiliation(s)
- Hong-Ce Song
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Chao-Yi Xie
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Qing Kong
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China.
| | - Xiao-Tong Wang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China.
| |
Collapse
|
6
|
Gianazza E, Eberini I, Palazzolo L, Miller I. Hemolymph proteins: An overview across marine arthropods and molluscs. J Proteomics 2021; 245:104294. [PMID: 34091091 DOI: 10.1016/j.jprot.2021.104294] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/10/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022]
Abstract
In this compilation we collect information about the main protein components in hemolymph and stress the continued interest in their study. The reasons for such an attention span several areas of biological, veterinarian and medical applications: from the notions for better dealing with the species - belonging to phylum Arthropoda, subphylum Crustacea, and to phylum Mollusca - of economic interest, to the development of 'marine drugs' from the peptides that, in invertebrates, act as antimicrobial, antifungal, antiprotozoal, and/or antiviral agents. Overall, the topic most often on focus is that of innate immunity operated by classes of pattern-recognition proteins. SIGNIFICANCE: The immune response in invertebrates relies on innate rather than on adaptive/acquired effectors. At a difference from the soluble and membrane-bound immunoglobulins and receptors in vertebrates, the antimicrobial, antifungal, antiprotozoal and/or antiviral agents in invertebrates interact with non-self material by targeting some common (rather than some highly specific) structural motifs. Developing this paradigm into (semi) synthetic pharmaceuticals, possibly optimized through the modeling opportunities offered by computational biochemistry, is one of the lessons today's science may learn from the study of marine invertebrates, and specifically of the proteins and peptides in their hemolymph.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria.
| |
Collapse
|
7
|
Castillo-Felipe C, Franco-Martínez L, Tvarijonaviciute A, Lopez-Jornet P, Lamy E. Proteomics-Based Identification of Salivary Changes in Patients with Burning Mouth Syndrome. BIOLOGY 2021; 10:392. [PMID: 34062870 PMCID: PMC8147377 DOI: 10.3390/biology10050392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022]
Abstract
Burning mouth syndrome (BMS) is a chronic oral condition characterized by an intraoral burning sensation, taste alterations, and dry mouth sensations. Although a number of factors have been closely related to the appearance of the symptoms, including anxiety, depression, and sleep disturbances, the etiology of BMS remains unclear. Furthermore, currently no objective diagnostic tools exist, making its diagnosis challenging. Therefore, to contribute to the knowledge about BMS etiology and look for objective tools for its diagnosis, the present study was conducted. Thus, the aim of this study was to analyze the proteomic profile of the resting whole saliva of patients with BMS and age and sex-matched controls using two-dimensional electrophoresis. The results showed evidence of changes in saliva at the level of proteins related to important pathways such as stress (sAA), immune system (Ig), and inflammation (leukocyte elastase inhibitor). While some of our findings have been previously described others, such as the deregulation of the coiled-coin domain containing protein 25 in BMS, are presented here for the first time to our knowledge. Thus, saliva provides us with relevant information about BMS pathophysiology and could be considered a suitable biofluid for its study and/or diagnosis.
Collapse
Affiliation(s)
- Candela Castillo-Felipe
- Faculty of Medicine and Odontology, Hospital Morales Meseguer, Clínica Odontológica, 30008 Murcia, Spain;
| | - Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Pia Lopez-Jornet
- Faculty of Medicine and Odontology, Biomedical Research Institute (IMIB-Arrixaca) Hospital Morales Meseguer, Clínica Odontológica, 30008 Murcia, Spain;
| | - Elsa Lamy
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, University of Evora, 7006-554 Evora, Portugal;
| |
Collapse
|
8
|
Barranger A, Langan LM, Sharma V, Rance GA, Aminot Y, Weston NJ, Akcha F, Moore MN, Arlt VM, Khlobystov AN, Readman JW, Jha AN. Antagonistic Interactions between Benzo[a]pyrene and Fullerene (C 60) in Toxicological Response of Marine Mussels. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E987. [PMID: 31288459 PMCID: PMC6669530 DOI: 10.3390/nano9070987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to assess the ecotoxicological effects of the interaction of fullerene (C60) and benzo[a]pyrene (B[a]P) on the marine mussel, Mytilus galloprovincialis. The uptake of nC60, B[a]P and mixtures of nC60 and B[a]P into tissues was confirmed by Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) and Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Biomarkers of DNA damage as well as proteomics analysis were applied to unravel the interactive effect of B[a]P and C60. Antagonistic responses were observed at the genotoxic and proteomic level. Differentially expressed proteins (DEPs) were only identified in the B[a]P single exposure and the B[a]P mixture exposure groups containing 1 mg/L of C60, the majority of which were downregulated (~52%). No DEPs were identified at any of the concentrations of nC60 (p < 0.05, 1% FDR). Using DEPs identified at a threshold of (p < 0.05; B[a]P and B[a]P mixture with nC60), gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that these proteins were enriched with a broad spectrum of biological processes and pathways, including those broadly associated with protein processing, cellular processes and environmental information processing. Among those significantly enriched pathways, the ribosome was consistently the top enriched term irrespective of treatment or concentration and plays an important role as the site of biological protein synthesis and translation. Our results demonstrate the complex multi-modal response to environmental stressors in M. galloprovincialis.
Collapse
Affiliation(s)
- Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Vikram Sharma
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Graham A Rance
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Yann Aminot
- Centre for Chemical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Nicola J Weston
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Farida Akcha
- Ifremer, Laboratory of Ecotoxicology, F-44311, CEDEX 03 Nantes, France
| | - Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3HD, UK
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Cornwall TR1 3LJ, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, King's College London, MRC-PHE Centre for Environmental & Health, London SE1 9NH, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England and Imperial College London, London SE1 9NH, UK
| | - Andrei N Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - James W Readman
- Centre for Chemical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| |
Collapse
|
9
|
Xue Q, Beguel JP, La Peyre J. Dominin and Segon Form Multiprotein Particles in the Plasma of Eastern Oysters ( Crassostrea virginica) and Are Likely Involved in Shell Formation. Front Physiol 2019; 10:566. [PMID: 31156455 PMCID: PMC6530089 DOI: 10.3389/fphys.2019.00566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/24/2019] [Indexed: 12/14/2022] Open
Abstract
Dominin and segon are two proteins purified and characterized from the plasma of eastern oysters Crassostrea virginica, making up about 70% of the total plasma proteins. Their proposed functions are in host defense based on their pathogen binding properties and in metal metabolism based on their metal binding abilities. In the present study, the two proteins were further studied for their native states in circulation and extrapallial fluid and their possible involvement in shell formation. Two-dimensional electrophoresis confirmed that the oyster plasma was dominated by a few major proteins and size exclusion chromatography indicated that these proteins were present in circulation in a morphologically homogenous form. Density gradient ultracentrifugation in Cesium Chloride isolated morphologically homogenous particles of about 25 nm in diameter from the plasma and extrapallial fluids. Polyacrylamide gel electrophoresis identified dominin, segon and an unidentified protein as the principal components of the particles and the three proteins likely formed a multiprotein complex that associated to form the particle. Additionally, three major proteins extracted from shell organic matrix were identified based on the apparent molecular weight in SDS-PAGE to correspond to the three major proteins of plasma and protein particles. Moreover, the hemocyte expression of dominin and segon genes measured by real-time RT-PCR increased significantly upon the initiation of shell repair and were significantly greater in younger oysters. These findings suggest that dominin and segon form protein particles by association with each other and perhaps some other major plasma proteins and play a significant role in oyster shell formation.
Collapse
Affiliation(s)
- Qinggang Xue
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, Zhejiang Wanli University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Jean-Philipe Beguel
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Jerome La Peyre
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
10
|
Rey-Campos M, Moreira R, Valenzuela-Muñoz V, Gallardo-Escárate C, Novoa B, Figueras A. High individual variability in the transcriptomic response of Mediterranean mussels to Vibrio reveals the involvement of myticins in tissue injury. Sci Rep 2019; 9:3569. [PMID: 30837561 PMCID: PMC6401078 DOI: 10.1038/s41598-019-39870-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/30/2019] [Indexed: 12/26/2022] Open
Abstract
Mediterranean mussels (Mytilus galloprovincialis) are sessile filter feeders that live in close contact with numerous marine microorganisms. As all invertebrates, they lack an adaptive immune response and how these animals are able to respond to a bacterial infection and discriminate it from their normal microbiome is difficult to understand. In this work, we conducted Illumina sequencing of the transcriptome of individual mussels before and after being infected with Vibrio splendidus. The control mussels were injected with filtered seawater. We demonstrate that a great variability exists among individual transcriptomes and that each animal showed an exclusive repertoire of genes not shared with other individuals. The regulated genes in both the control and infected mussels were also analyzed and, unexpectedly, the sampling before the injection was considered a stress stimulus strong enough to trigger and modulate the response in hemocytes, promoting cell migration and proliferation. We found a clear response against the injection of filtered seawater, suggesting a reaction against a tissue injury in which the myticins, the most expressed antimicrobial peptides in mussel, appeared significantly up regulated. Functional experiments with flow cytometry confirmed the transcriptomic results since a significant alteration of hemocyte structures and a decrease in the number of hemocytes positive for myticin C were found only after a Vibrio infection and not observed when mussels were bled before, generating a tissue injury. Therefore, we report the involvement of myticins in the response to a danger signal such as a simple injection in the adductor muscle.
Collapse
Affiliation(s)
- Magalí Rey-Campos
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - Rebeca Moreira
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - Valentina Valenzuela-Muñoz
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain.
| |
Collapse
|
11
|
Gajbhiye DS, Khandeparker L. Immunoecology of the short neck clam Paphia malabarica (Chemnitz, 1782) in a tropical monsoon-influenced estuary. MARINE ENVIRONMENTAL RESEARCH 2019; 143:60-70. [PMID: 30466887 DOI: 10.1016/j.marenvres.2018.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Understanding the variability in organism's immunological response is crucial for predicting changes at population or community level. The present study investigated the immunoecology of a commercially valuable clam Paphia malabarica in a tropical monsoon-influenced estuary. Clams were collected monthly during a year cycle, which coincided with pre-monsoon (February-May), monsoon (June-September) and post-monsoon seasons (October-January). For assessment of immune functioning, selected hemocyte parameters (total hemocyte concentration, hemocyte mortality, lysosomal content, esterase activity, reactive oxygen species production, and phagocytic activity) were analyzed using flow cytometry. Simultaneously, clam's condition index, nutrients, chlorophyll a, dissolved oxygen, pH, temperature and bacterial density were also measured at the sampling site. Our results exhibited seasonal patterns in hemocyte functioning with the highest activity during the pre-monsoon season (suggestive of a suitable harvesting period) and lowest during monsoon (suggestive of a critical biological period). The critical biological period for P. malabarica was marked with compromised immune parameters inflicted by low salinity, food availability, and possibly high bacterial abundance. Also, the involvement of reproductive stress altering the hematological functioning in P. malabarica cannot be ruled out. Nutrients, dissolved oxygen, pH and temperature could not explain much of the hemocyte variability. The present study has further validated the usefulness of hemocyte as a suitable marker for understanding immunoecology of P. malabarica which is of prime importance, especially in a monsoon-influenced tropical estuarine environment. The findings of our research will be constructive in monitoring natural as well as cultivated bivalve populations of economic and ecological relevance.
Collapse
Affiliation(s)
- Deodatta S Gajbhiye
- Academy of Scientific and Innovative Research (AcSIR), CSIR- National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Lidita Khandeparker
- Academy of Scientific and Innovative Research (AcSIR), CSIR- National Institute of Oceanography, Dona Paula, Goa, 403 004, India.
| |
Collapse
|