1
|
Zhang Q, Li L, Qin R, Meng L, Liu D, Tong T, Xu L, Liu Y, Kong W. Effect of Dietary Lactobacillus plantarum Supplementation on the Growth Performance, Intestinal Health, Antioxidant Capacity, and mTOR Signaling Pathway of Juvenile Coho Salmon ( Oncorhynchus kisutch). Int J Mol Sci 2025; 26:907. [PMID: 39940676 PMCID: PMC11816815 DOI: 10.3390/ijms26030907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigates the effect of dietary Lactobacillus plantarum supplementation on juvenile coho salmon (Oncorhynchus kisutch). Four groups of the juveniles (initial weight 103.87 ± 2.65 g) were fed for 10 weeks with four diets containing 0 (control diet), 105 (T1), 107 (T2), and 109 (T3) cfu/g of L. plantarum. The main results are as follows: Compared with the control diet, the final weight, specific growth rate (SGR), and weight gain rate (WGR) of the juveniles fed the T1, T2, and T3 diet significantly (p < 0.05) increased, while the feed coefficient ratio (FCR) expressed an opposite trend. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) in the serum of the juveniles fed the T2 diet significantly (p < 0.05) increased, while the malondialdehyde (MDA) expressed an opposite trend. The expression of phosphatidylinositol 4,5-bisphosphate 3-kinase (pi3k), AKT-interacting protein (akt), mechanistic target of rapamycin kinase (mtor), glucose-6-phosphate dehydrogenase (g6pd), sod, cat, and gsh-px genes in the liver of the juveniles fed the T2 diet significantly (p < 0.05) increased. In conclusion, the T2 diet significantly improved the growth performance, antioxidant capacity, and upregulated key mTOR pathway genes in juvenile coho salmon.
Collapse
Affiliation(s)
- Qin Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (L.L.); (R.Q.); (L.M.); (D.L.); (T.T.)
| | - Lan Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (L.L.); (R.Q.); (L.M.); (D.L.); (T.T.)
| | - Rongxin Qin
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (L.L.); (R.Q.); (L.M.); (D.L.); (T.T.)
| | - Liuqing Meng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (L.L.); (R.Q.); (L.M.); (D.L.); (T.T.)
| | - Dongsheng Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (L.L.); (R.Q.); (L.M.); (D.L.); (T.T.)
| | - Tong Tong
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (L.L.); (R.Q.); (L.M.); (D.L.); (T.T.)
| | - Lixiao Xu
- Guangxi Institute for Drug Control, 9 Qinghu Road, Nanning 530023, China;
| | - Yongqiang Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (L.L.); (R.Q.); (L.M.); (D.L.); (T.T.)
| | - Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan 430064, China
| |
Collapse
|
2
|
Mansour C, Ben Taheur F, Safta Skhiri S, Jridi M, Saidane Mosbahi D, Zouari N. Probiotics from kefir: Evaluating their immunostimulant and antioxidant potential in the carpet shell clam (Ruditapesdecussatus). Microb Pathog 2024; 190:106641. [PMID: 38588925 DOI: 10.1016/j.micpath.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
This study aimed to investigate the impact of incorporating kefir into the diet on biometric parameters, as well as the immune and antioxidant responses of the carpet shell clam (Ruditapes decussatus) after an experimental infection by Vibrio alginolyticus. Clams were divided into a control group and a treated group. The control group was fed on spirulina (Arthrospira platensis) alone. While, the treated group was fed on spirulina supplemented with 10% dried kefir. After 21 days, clams were immersed in a suspension of V. alginolyticus 5 × 105 CFU mL -1 for 30 min. Seven days after experimental infection, survival was 100% in both groups. The obtained results showed a slight increase in weight and condition index in clams fed with kefir-supplemented diet for 21 days compared to control clams. Regarding antioxidant responses, the treated group showed higher superoxide dismutase activity compared to the control group. However, the malondialdehyde level was lower in the treated clams than in the control. In terms of immune parameters, the treated group showed slightly elevated activities of phenoloxidase, lysozyme and alkaline phosphatase, whereas a decreased lectin activity was observed compared to the control group. The obtained results suggest that kefir enhanced both the antioxidant and immune response of infected clams.
Collapse
Affiliation(s)
- Chalbia Mansour
- University of Monastir, Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir, 5000, Tunisia; Higher Institute of Biotechnology of Beja (ISBB), University of Jandouba, Beja, 9000, Tunisia
| | - Fadia Ben Taheur
- University of Monastir, Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir, 5000, Tunisia; Higher Institute of Applied Biology of Medenine (ISBAM), University of Gabes, Medenine, 4119, Tunisia
| | - Sihem Safta Skhiri
- ABCDF Laboratory, Faculty of Dental Medicine, University of Monastir, Monastir, 5000, Tunisia
| | - Mourad Jridi
- Higher Institute of Biotechnology of Beja (ISBB), University of Jandouba, Beja, 9000, Tunisia
| | - Dalila Saidane Mosbahi
- University of Monastir, Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir, 5000, Tunisia
| | - Nacim Zouari
- Higher Institute of Applied Biology of Medenine (ISBAM), University of Gabes, Medenine, 4119, Tunisia.
| |
Collapse
|
3
|
Mathan Muthu CM, Vickram AS, Bhavani Sowndharya B, Saravanan A, Kamalesh R, Dinakarkumar Y. A comprehensive review on the utilization of probiotics in aquaculture towards sustainable shrimp farming. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109459. [PMID: 38369068 DOI: 10.1016/j.fsi.2024.109459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Probiotics in shrimp aquaculture have gained considerable attention as a potential solution to enhance production efficiency, disease management, and overall sustainability. Probiotics, beneficial microorganisms, have shown promising effects when administered to shrimp as dietary supplements or water additives. Their inclusion has been linked to improved gut health, nutrient absorption, and disease resistance in shrimp. Probiotics also play a crucial role in maintaining a balanced microbial community within the shrimp pond environment, enhancing water quality and reducing pathogen prevalence. This article briefly summarizes the many ways that probiotics are used in shrimp farming and the advantages that come with them. Despite the promising results, challenges such as strain selection, dosage optimization, and environmental conditions are carefully addressed for successful probiotic integration in shrimp aquaculture. The potential of probiotics as a sustainable and ecologically friendly method of promoting shrimp development and health while advancing environmentally friendly shrimp farming techniques is highlighted in this analysis. Further research is required to fully exploit probiotics' benefits and develop practical guidelines for their effective implementation in shrimp aquaculture.
Collapse
Affiliation(s)
- C M Mathan Muthu
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - B Bhavani Sowndharya
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Yuvaraj Dinakarkumar
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| |
Collapse
|
4
|
Čanak I, Kostelac D, Jakopović Ž, Markov K, Frece J. Lactic Acid Bacteria of Marine Origin as a Tool for Successful Shellfish Farming and Adaptation to Climate Change Conditions. Foods 2024; 13:1042. [PMID: 38611348 PMCID: PMC11011843 DOI: 10.3390/foods13071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Climate change, especially in the form of temperature increase and sea acidification, poses a serious challenge to the sustainability of aquaculture and shellfish farming. In this context, lactic acid bacteria (LAB) of marine origin have attracted attention due to their ability to improve water quality, stimulate the growth and immunity of organisms, and reduce the impact of stress caused by environmental changes. Through a review of relevant research, this paper summarizes previous knowledge on this group of bacteria, their application as protective probiotic cultures in mollusks, and also highlights their potential in reducing the negative impacts of climate change during shellfish farming. Furthermore, opportunities for further research and implementation of LAB as a sustainable and effective solution for adapting mariculture to changing climate conditions were identified.
Collapse
Affiliation(s)
| | | | | | | | - Jadranka Frece
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (I.Č.); (D.K.); (K.M.)
| |
Collapse
|
5
|
Li A, Ding J, Shen T, Liang Y, Wei F, Wu Y, Iqbal M, Kulyar MFEA, Li K, Wei K. Radix paeoniae alba polysaccharide attenuates lipopolysaccharide-induced intestinal injury by regulating gut microbiota. Front Microbiol 2023; 13:1064657. [PMID: 36713189 PMCID: PMC9878331 DOI: 10.3389/fmicb.2022.1064657] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence indicated that oxidative stress is closely related to inflammation and the progression of multiple chronic diseases, which seriously threaten the host health. Currently, multiple plant-derived polysaccharides have been demonstrated to ameliorate the negative effects of oxidative stress on the host, but the potential protective effect of radix paeoniae alba polysaccharide (RPAP) on host have not been well characterized. Here, we investigated whether different doses of RPAP administration could alleviate lipopolysaccharide (LPS)-induced intestinal injury and gut microbial dysbiosis in mice. Results indicated that RPAP administration effectively alleviated LPS-induced intestinal damage in dose dependent. Additionally, amplicon sequencing showed that RPAP administration reversed the significant decrease in gut microbial diversity caused by LPS exposure and restored the alpha-diversity indices to normal levels. Microbial taxonomic investigation also indicated that LPS exposure resulted in significant changes in the gut microbial composition, characterized by a decrease in the abundances of beneficial bacteria (Lactobacillus, Alistipes, Bacillus, Rikenellaceae_RC9_gut_group, etc.) and an increase in the contents of pathogenic bacteria (Klebsiella, Helicobacter, Enterococcus, etc.). However, RPAP administration, especially in high doses, could improve the composition of the gut microbiota by altering the abundance of some bacteria. Taken together, this study demonstrated that RPAP administration could ameliorate LPS-induced intestinal injury by regulating gut microbiota. Meanwhile, this also provides the basis for the popularization and application of RPAP and alleviating oxidative stress from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Aoyun Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinxue Ding
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ting Shen
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yi Wu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Kun Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Kun Li,
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China,*Correspondence: Kunhua Wei,
| |
Collapse
|
6
|
Ghamry M, Zhao W, Li L. Impact of Lactobacillus apis on the antioxidant activity, phytic acid degradation, nutraceutical value and flavor properties of fermented wheat bran, compared to Saccharomyces cerevisiae and Lactobacillus plantarum. Food Res Int 2023; 163:112142. [PMID: 36596097 DOI: 10.1016/j.foodres.2022.112142] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
This study aimed to use a novel Lactobacillus strain (L. apis) isolated from the bee gut to develop a wheat bran (WB) deep-processing technology. Compared to the most popular strains (S. cerevisiae and L. plantarum), we found that L. apis had a greater ability to enhance the fermented WB antioxidant activity through hydroxyl radical scavenging, metal chelating ability, reducing power, and ferric reducing antioxidant power. While L. apis and L. plantarum had similar effects on DPPH• and ABTS•+ scavenging activities. This improvement in antioxidant activity has been associated with some metabolic compounds, such as sinapic acid, hydroferulic acid, pyruvic acid, neocostose, oxalic acid, salicylic acid, and schaftoside. Furthermore, L. apis degraded 48.33% of the phytic acid in WB, higher than S. cerevisiae (26.73%) and L. plantarum (35.89%). All strains improved the volatile profile of WB, and the fermented WB by each strain displayed a unique volatile composition. L. apis increased the level of conditional amino acids and branched-chain amino acids significantly. S. cerevisiae increased γ-aminobutyric acid the most, from 230.8 mg/L in unfermented samples to 609.8 mg/L in the fermented WB. While L. apis and L. plantarum also increased the level of γ-aminobutyric acid to 384.5 mg/L and 295.04 mg/L, respectively. Finally, we found that L. apis remarkably increased the content of organic acids and water-soluble vitamins in wheat bran.
Collapse
Affiliation(s)
- Mohamed Ghamry
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Food Technology Department, Faculty of Agriculture, 13736 Moshtohor, Benha University, Egypt
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Zhu L, Mu T, Ma M, Sun H, Zhao G. Nutritional composition, antioxidant activity, volatile compounds, and stability properties of sweet potato residues fermented with selected lactic acid bacteria and bifidobacteria. Food Chem 2021; 374:131500. [PMID: 34772572 DOI: 10.1016/j.foodchem.2021.131500] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/31/2023]
Abstract
The effects of four kinds of lactic acid bacteria (LAB) and one bifidobacteria on nutritional composition, antioxidant activity, volatile compounds and stability properties of fermented sweet potato residues (SPR) were investigated. The soluble dietary fiber (12.92-16.63 g/100 g DW), total polyphenols content (90.51-97.35 mg/100 g DW), organic acids, and stability of SPR were increased after fermentation. The DPPH radical scavenging capacity (39.49-62.04 mg AAE/100 g DW) and ferric reducing antioxidant power (47.14-71.87 mg TE/100 g DW) were also increased, of which SPR fermented with Lacticaseibacillus rhamnosus CICC 23119 exhibited the highest values. Meanwhile, the anti-nutritional compound (oxalic acid) was decreased from 0.46 to 0.08-0.30 mg/g DW. Also, the fermented SPR exhibited different flavors compared with SPR, due to the production of acids especially antiseptic hexanoic acid and sorbic acid. Therefore, these results can provide a theoretical basis for the high-value utilization of SPR.
Collapse
Affiliation(s)
- Lili Zhu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China; College of Food Science, Southwest University, No. 2 Tian Sheng Road, Beibei District, Chongqing 400715, PR China
| | - Taihua Mu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China.
| | - Mengmei Ma
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China.
| | - Hongnan Sun
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China.
| | - Guohua Zhao
- College of Food Science, Southwest University, No. 2 Tian Sheng Road, Beibei District, Chongqing 400715, PR China
| |
Collapse
|
8
|
Nguyen Thi Truc L, Nguyen Thanh T, Tran Thi Hong T, Pham Van D, Vo Thi Tuyet M, Nguyen Trong N, Phan Cong M, Cao Ngoc D, Truong Quoc P. Effects of Feed Mixed with Lactic Acid Bacteria and Carbon, Nitrogen, Phosphorus Supplied to the Water on the Growth and Survival Rate of White Leg Shrimp ( Penaeus vannamei) Infected with Acute Hepatopancreatic Necrosis Disease Caused by Vibrio parahaemolyticus. BIOLOGY 2021; 10:biology10040280. [PMID: 33808280 PMCID: PMC8067269 DOI: 10.3390/biology10040280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/31/2023]
Abstract
Simple Summary This study aimed to evaluate the growth, survival rate, and resistance to Acute hepatopancreatic Necrosis Disease (AHPND) of white leg shrimp (Penaeus vannamei) by using Lactobacillus plantarum, Lactobacillus fermentum, and Pediococcus pentosaceus mixed with feed, and at the same time supplying CNP in a ratio of 15:1:0.1 to the water. The result showed that shrimps were fed with feed containing lactic acid bacteria (LAB), especially L. plantarum have an effective to increased shrimp growth, stimulated non-specific immune system such as total hemocyte cells, granulocyte cells, hyaline cells, and protected shrimp to ANPND. The supply of CNP to the water have increased the intensity of V. parahaemolyticus effects on shrimp health; significantly decreased non-specific immune parameters of shrimp by 30–50%, therefore increased the AHPND infected rate and mortality of shrimp compared with without CNP group. In summary, LAB has a good effect to shrimp and the supply of CNP had significantly reduced the shrimp’s immune response and increased the susceptibility of shrimp to AHPND in both cases of use with and without LAB-containing diets. Abstract This study aimed to evaluate the growth, survival rate, and resistance to acute hepatopancreatic necrosis disease (AHPND) of white leg shrimp (Penaeus vannamei) by using Lactobacillus plantarum, Lactobacillus fermentum, and Pediococcus pentosaceus mixed with feed, and at the same time supplying CNP in a ratio of 15:1:0.1 to the water. As a result, the treatments that shrimp were fed with feed containing lactic acid bacteria (LAB), especially L. plantarum, have increased shrimp growth, total hemocyte cells, granulocyte cells, and hyaline cells significantly (p < 0.05) in comparison to the control group. The supply of CNP to the water has promoted the intensity of V. parahaemolyticus effects on shrimp health and significantly decreased total hemocyte cells, granulocyte cells, and hyaline cells by 30–50% in the period after three days of the challenge, except in L. plantarum treatment, which had only a 20% decrease compared to other treatments. In CNP supplying treatments, the AHPND infected rate and mortality of shrimp were higher than those in other treatments. In summary, the supply of CNP had significantly reduced the shrimp’s immune response and promoted the susceptibility of shrimp to AHPND in both cases of use with and without LAB-containing diets.
Collapse
Affiliation(s)
- Linh Nguyen Thi Truc
- Tra Vinh University, 126, Nguyen Thien Thanh, Tra Vinh 87000, Vietnam; (L.N.T.T.); (T.N.T.); (T.T.T.H.); (D.P.V.); (M.V.T.T.)
| | - Tuu Nguyen Thanh
- Tra Vinh University, 126, Nguyen Thien Thanh, Tra Vinh 87000, Vietnam; (L.N.T.T.); (T.N.T.); (T.T.T.H.); (D.P.V.); (M.V.T.T.)
| | - To Tran Thi Hong
- Tra Vinh University, 126, Nguyen Thien Thanh, Tra Vinh 87000, Vietnam; (L.N.T.T.); (T.N.T.); (T.T.T.H.); (D.P.V.); (M.V.T.T.)
| | - Day Pham Van
- Tra Vinh University, 126, Nguyen Thien Thanh, Tra Vinh 87000, Vietnam; (L.N.T.T.); (T.N.T.); (T.T.T.H.); (D.P.V.); (M.V.T.T.)
| | - Minh Vo Thi Tuyet
- Tra Vinh University, 126, Nguyen Thien Thanh, Tra Vinh 87000, Vietnam; (L.N.T.T.); (T.N.T.); (T.T.T.H.); (D.P.V.); (M.V.T.T.)
| | - Nghia Nguyen Trong
- Aquaculture Pharmacy Company Limited, 149/41, Hoang Van Thu Street, An Cu Ward, Ninh Kieu District, Can Tho 94000, Vietnam; (N.N.T.); (M.P.C.)
| | - Minh Phan Cong
- Aquaculture Pharmacy Company Limited, 149/41, Hoang Van Thu Street, An Cu Ward, Ninh Kieu District, Can Tho 94000, Vietnam; (N.N.T.); (M.P.C.)
| | - Diep Cao Ngoc
- Department of Aquatic Pathology, College of Aquaculture and Fisheries, Can Tho University, Ninh Kieu District, Can Tho 94000, Vietnam;
| | - Phu Truong Quoc
- Department of Aquatic Pathology, College of Aquaculture and Fisheries, Can Tho University, Ninh Kieu District, Can Tho 94000, Vietnam;
- Correspondence:
| |
Collapse
|
9
|
Replacement of Fish Meal by Solid State Fermented Lupin (Lupinus albus) Meal with Latobacillus plantarum 299v: Effect on Growth and Immune Status of Juvenile Atlantic Salmon (Salmo salar). ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
The aim of this study was to assess quality of SSF (Solid State Fermented) lupin with Lactobacillus plantarum 299v, and its effects (on growth, feed utilization, digestibility and immunity) of juvenile Atlantic salmon (S. salar), when used as fish meal replacer. Five experimental diets were formulated to provide 40% crude protein and 21% dietary lipid (dry matter basis) with the raw or fermented lupin meal-based protein source replacing fish meal at 15% and 30%. Triplicate groups of fish (averaging 3.53 ± 0.05 g) were fed with experimental diets for 8 weeks. Fermentation process modified nutrient profile of lupin meal and enriched it with lactic, citric and acetic acids. Fish in the FL15% group showed a higher (P < 0.05) final body weight, weight gain, FCR, SGR, and PER compared to those of C group. Apparent digestibility coefficient (ADC) of protein and Nitrogen-free extract showed a significantly higher values in FL15% experimental group, compared to those shown in C group. Fish in the FL15% group showed a higher (P<0.05) lysozyme activity and leucocyte respiratory burst compared to that shown by fish samples in the C experimental group; phagocytic activity did not record differences among experimental groups. In conclusion, replacement of fish meal by raw or fermented lupin meal did not compromise growth, apparent digestibility coefficients and immune status of juvenile Atlantic salmon and even improve fish performance when supplemented at 15%.
Collapse
|
10
|
Feng JC, Cai ZL, Zhang XP, Chen YY, Chang XL, Wang XF, Qin CB, Yan X, Ma X, Zhang JX, Nie GX. The Effects of Oral Rehmannia glutinosa Polysaccharide Administration on Immune Responses, Antioxidant Activity and Resistance Against Aeromonas hydrophila in the Common Carp, Cyprinus carpio L. Front Immunol 2020; 11:904. [PMID: 32457762 PMCID: PMC7225328 DOI: 10.3389/fimmu.2020.00904] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
The effects of the oral administration of Rehmannia glutinosa polysaccharide (RGP-1) on the immunoregulatory properties, antioxidant activity, and resistance against Aeromonas hydrophila in Cyprinus carpio L. were investigated. The purified RGP-1 (250, 500, and 1,000 μg/mL) was co-cultured with the head kidney cells of the common carp. The proliferation and phagocytosis activities of the head kidney cells, and the concentration of nitric oxide (NO) and cytokines in the culture medium were determined. Next, 300 common carps (47.66 ± 0.43 g) were randomly divided into five groups; the two control groups (negative and positive) were administered sterile PBS and the three treatment groups were administered different concentrations of RGP-1 (250, 500, and 1,000 μg/mL) for seven days. Subsequently, the positive and treatment groups were infected with A. hydrophila, and the negative group was administered sterile PBS for 24 h. The concentration of NO, cytokines, lysozyme (LZM), and alkaline phosphatase (AKP) in serum, the total antioxidant capacity (T-AOC), the levels of malonaldehyde (MDA) and glutathione (GSH), and the total activities of superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in the hepatopancreas of the common carp were tested. We observed that RGP-1 could significantly enhance the proliferation and phagocytosis activities (P < 0.05), besides inducing the production of NO, pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-12) and anti-inflammatory cytokines (IL-10, TGF-β) (P < 0.05) in vitro. The in vivo experimental results revealed that RGP-1 significantly enhanced NO production, protein levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-12), LZM and AKP activities, and the antioxidant content (T-AOC, SOD, CAT, GSH, GSH-Px, and MDA) compared to that observed in the negative group prior to A. hydrophila infection (P < 0.05). NO, pro-inflammatory cytokines, LZM and AKP activities were significantly lower than that in the positive group after infection (P < 0.05). However, whether infected or not, the expression of anti-inflammatory cytokines (IL-10, TGF-β) increased significantly in the RGP-1-treated groups (P < 0.05). Therefore, the results suggested that RGP-1 could enhance the non-specific immunity, antioxidant activity and anti-A. hydrophila activity of the common carp, and could be used as a safe and effective feed additive in aquaculture.
Collapse
Affiliation(s)
- Jun-Chang Feng
- College of Fisheries, Henan Normal University, Xinxiang, China.,Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Zhong-Liang Cai
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Xuan-Pu Zhang
- School of Life Science, Central China Normal University, Wuhan, China
| | - Yong-Yan Chen
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Xu-Lu Chang
- College of Fisheries, Henan Normal University, Xinxiang, China.,Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Xian-Feng Wang
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Chao-Bin Qin
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Xiao Yan
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Jian-Xin Zhang
- College of Fisheries, Henan Normal University, Xinxiang, China.,Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Guo-Xing Nie
- College of Fisheries, Henan Normal University, Xinxiang, China.,Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| |
Collapse
|
11
|
Wang M, Lei M, Samina N, Chen L, Liu C, Yin T, Yan X, Wu C, He H, Yi C. Impact of Lactobacillus plantarum 423 fermentation on the antioxidant activity and flavor properties of rice bran and wheat bran. Food Chem 2020; 330:127156. [PMID: 32531631 DOI: 10.1016/j.foodchem.2020.127156] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Abstract
Rice bran (RB) and wheat bran (WB) fermented with L. plantarum 423 had enhanced odor intensity, especially for sulfides and aromatics. The hydroxyl radical-scavenging activity (73.28 ± 3.18%) and oxygen radical-scavenging activity (2.12 ± 0.08 mmol·TE/g) of RB fermentation broth were better than those of WB fermentation broth. Even at 2 μg/ml, the purified antioxidant fractions from the WB fermentation broth showed strong intracellular ROS-scavenging activity in human umbilical vein endothelial cells (HUVECs), and the purified antioxidant fractions (200 μg/ml) from the RB fermentation broth had a good antiaging effect. The dominant antioxidant components in the RB and WB fermentation broths were acids (70.21%) and ketones (10.64%), these components jointly give the RB and WB fermentation broths a variety of antioxidant properties. These results are beneficial for developing RB and WB deep-processing technology and laid the foundation for the preparation of antioxidant fractions with L. plantarum 423.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Science, Central South University, Changsha 410013, China
| | - Ming Lei
- School of Life Science, Central South University, Changsha 410013, China
| | - Noor Samina
- School of Life Science, Central South University, Changsha 410013, China
| | - LeiLei Chen
- Institute of Agro-Food Science and Technology & Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100037, China
| | - CongLing Liu
- School of Life Science, Central South University, Changsha 410013, China
| | - TingTing Yin
- School of Life Science, Central South University, Changsha 410013, China
| | - XiaoTao Yan
- School of Life Science, Central South University, Changsha 410013, China
| | - Cuiling Wu
- Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Hailun He
- School of Life Science, Central South University, Changsha 410013, China.
| | - CuiPing Yi
- School of Chemistry and Biology Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China.
| |
Collapse
|
12
|
Ringø E, Van Doan H, Lee SH, Soltani M, Hoseinifar SH, Harikrishnan R, Song SK. Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. J Appl Microbiol 2020; 129:116-136. [PMID: 32141152 DOI: 10.1111/jam.14628] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
Probiotics administration in aquafeed is known to increase feed consumption and absorption due to their capacity to release a wide range of digestive enzymes and nutrients which can participate in digestion process and feed utilization, along with the absorption of diet components led to an increase in host's health and well-being. Furthermore, probiotics improve gut maturation, prevention of intestinal disorders, predigestion of antinutrient factors found in the feed ingredients, gut microbiota, disease resistance against pathogens and metabolism. The beneficial immune effects of probiotics are well established in finfish. However, in comparison, similar studies are less abundant in the shellfish. In this review, the discussions will mainly focus on studies reported the last 2 years. In recent studies, native probiotic bacteria were isolated and fed back to their hosts. Although beneficial effects were demonstrated, some studies showed adverse effects when treated with a high concentration. This adverse effect may be due to the imbalance of the gut microbiota caused by the replenished commensal probiotics. Probiotics revealed greatest effect on the shrimp digestive system particularly in the larval and early post-larval stages, and stimulate the production of endogenous enzymes in shrimp and contribute with improved the enzyme activities in the gut, as well as disease resistance.
Collapse
Affiliation(s)
- E Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - H Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - S H Lee
- School of Life Science, Handong University, Pohang, Republic of Korea
| | - M Soltani
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, WA, Australia.,Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - S H Hoseinifar
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - R Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Tamil Nadu, Kanchipuram, India
| | - S K Song
- School of Life Science, Handong University, Pohang, Republic of Korea
| |
Collapse
|
13
|
Feng J, Cai Z, Chen Y, Zhu H, Chang X, Wang X, Liu Z, Zhang J, Nie G. Effects of an exopolysaccharide from Lactococcus lactis Z-2 on innate immune response, antioxidant activity, and disease resistance against Aeromonas hydrophila in Cyprinus carpio L. FISH & SHELLFISH IMMUNOLOGY 2020; 98:324-333. [PMID: 31981775 DOI: 10.1016/j.fsi.2020.01.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/04/2020] [Accepted: 01/19/2020] [Indexed: 05/16/2023]
Abstract
Microbial exopolysaccharides (EPS) from Lactococcus have been found to have an important role in the probiotic activity of this bacterium; however, the immunomodulatory and antioxidant activities have not been fully explored in aquaculture. In the present study, we investigated EPS-2 from Lactococcus lactis Z-2, isolated from healthy common carp, for its immunomodulatory and antioxidant effects and disease resistance against Aeromonas hydrophila in Cyprinus carpio L. We found that the molecular weight of EPS-2 was 18.65 KDa. The monosaccharide composition of this polymer was rhamnose, xylose, mannose, glucose, and galactose at a molar percentage of 13.3%, 14.1%, 18.5%, 27.4%, and 26.7%, respectively. EPS-2 treatment could modulate the immune responses in vitro and in vivo. In vitro tests showed that EPS-2 could significantly enhance the proliferation and phagocytosis activities (P < 0.05) as well as induce the production of nitic oxide (NO), pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), and anti-inflammatory cytokines (IL-10, TGF-β) (P < 0.05) in head kidney cells. When the fish were gavaged with three different concentrations of EPS-2 (250, 500, 1000 μg/mL) for 7 days and infected with A. hydrophila, different expression patterns of the NO, cytokines, lysozyme (LZM), and alkaline phosphatase (AKP) in the serum and of antioxidants (T-AOC, SOD, CAT, GSH, GSH-Px and MDA) in hepatopancreas were observed. Before infection with A. hydrophila, EPS-2 supplementation significantly up-regulated the NO production, protein levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), LZM and AKP activities, and levels of antioxidant molecules compared to those in the negative (G1) group (P < 0.05), whereas levels of NO and pro-inflammatory cytokines and LZM and AKP activities were significantly lower than those in the positive (G2) group after infection (P < 0.05). However, whether infected or not, the expression levels of anti-inflammatory cytokines (IL-10, TGF-β) were significantly increased in the EPS-2 treatment groups (P < 0.05). These results indicate that EPS-2 has immunomodulatory and antioxidant effects on common carp, both in vitro and/or in vivo, and can be applied as a common carp feed supplement to enhance fish immunity and disease resistance against A. hydrophila.
Collapse
Affiliation(s)
- Junchang Feng
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Department of Biological and Environmental Engineering, Changsha University, Changsha, 410003, PR China.
| | - Zhongliang Cai
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Yongyan Chen
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Haoyong Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xianfeng Wang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Zhen Liu
- Department of Biological and Environmental Engineering, Changsha University, Changsha, 410003, PR China
| | - Jianxin Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
14
|
He P, Jiang WD, Liu XA, Feng L, Wu P, Liu Y, Jiang J, Tan BP, Yang QH, Kuang SY, Tang L, Zhou XQ. Dietary biotin deficiency decreased growth performance and impaired the immune function of the head kidney, spleen and skin in on-growing grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2020; 97:216-234. [PMID: 31857225 DOI: 10.1016/j.fsi.2019.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate the effects of dietary biotin deficiency on the growth performance and immune function of the head kidney, spleen and skin in on-growing grass carp (Ctenopharyngodon idella). A total of 540 on-growing grass carp (117.11 ± 0.48 g) were fed six diets containing increasing levels of biotin (0.012, 0.110, 0.214, 0.311, 0.427 and 0.518 mg/kg diet) for 70 days. Subsequently, a challenge experiment was performed by infecting them with Aeromonas hydrophila for six days. Our results showed that compared with the appropriate biotin level, (1) biotin deficiency (0.012 mg/kg diet) reduced the activities of lysozyme (LZ) and acid phosphatase (ACP), decreased the contents of complement 3 (C3), C4 and immunoglobulin M (IgM), as well as reduced the mRNA levels of antimicrobial peptides in the head kidney, spleen and skin of on-growing grass carp; (2) biotin deficiency reduced the mRNA levels of anti-microbial substances: liver-expressed antimicrobial peptide (LEAP) -2A, LEAP-2B, hepcidin, β-defensin-1 and mucin 2 in the head kidney, spleen and skin of on-growing grass carp; (3) biotin deficiency increased the mRNA levels of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, IL-8, IL-12p40, IL-15, IL-17D, tumour necrosis factor α (TNF-α) and interferon γ2 (IFN-γ2) partially in association with nuclear factor-kappa B (NF-κB) signalling and reduced anti-inflammatory IL-4/13A, IL-10, IL-11 and transforming growth factor β1 (TGF-β1) mRNA levels partially in association with target of rapamycin (TOR) signalling in the head kidney, spleen and skin of on-growing grass carp. Interestingly, biotin deficiency had no effect on the expression of IL-12p35, IL-4/13B, TGF-β2, 4E-BP1 (skin only) or IKKα in the head kidney, spleen and skin of on-growing grass carp. In conclusion, the results indicated that biotin deficiency impaired the immune function of the head kidney, spleen and skin in fish. Finally, based on the percent weight gain (PWG), the ability to prevent skin haemorrhages and lesions, the LZ activity in the head kidney and the C4 content in the spleen, the optimal dietary biotin levels for on-growing grass carp (117-534 g) were estimated as 0.210, 0.230, 0.245 and 0.238 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Peng He
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Xiang-An Liu
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Bei-Ping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qi-Hui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
15
|
|
16
|
Bunnoy A, Na-Nakorn U, Kayansamruaj P, Srisapoome P. Acinetobacter Strain KUO11TH, a Unique Organism Related to Acinetobacter pittii and Isolated from the Skin Mucus of Healthy Bighead Catfish and Its Efficacy Against Several Fish Pathogens. Microorganisms 2019; 7:microorganisms7110549. [PMID: 31717696 PMCID: PMC6920915 DOI: 10.3390/microorganisms7110549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
The bacterial strain KU011TH was isolated from the skin mucus of healthy bighead catfish. The strain is a Gram-negative coccobacillus that is nonmotile, aerobic, catalase positive, oxidase negative, and nonhemolytic. Sequence analyses of the housekeeping genes 16S rRNA, gyrB and rpoB indicate that this strain is a new member of the Acb complex of the genus Acinetobacter and is closely related to Acinetobacter pittii and Acinetobacter lactucae. In addition, the genome relatedness-associated ANIb (<95–96%) and in silico DDH (<70%) values clearly supported the new member of the genus Acinetobacter and the Acb complex. The genome of the strain KU011TH was approximately 3.79 Mbp in size, comprising 3619 predicted genes, and the DNA G+C content was 38.56 mol%. The major cellular fatty acids were C18:1ω9c, C16:0, C16:1, C20:2, C18:2ω6c and C18:1ω9t. The whole-genome sequences and phenotypic, phylogenetic, and chemotaxonomic data clearly support the classification of the strain KU011TH as a new member in the genus Acinetobacter which is closest to A. pittii. Additionally, the new bacterial strain exhibited strong activity against a broad range of freshwater fish pathogens in vitro.
Collapse
Affiliation(s)
- Anurak Bunnoy
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (A.B.); (P.K.)
| | - Uthairat Na-Nakorn
- Laboratory of Aquatic Animal Genetics, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand;
| | - Pattanapon Kayansamruaj
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (A.B.); (P.K.)
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (A.B.); (P.K.)
- Correspondence:
| |
Collapse
|
17
|
Meng X, Yang X, Lin G, Fang Y, Ruan Z, Liu M, Liu G, Li M, Yang D. Mannan oligosaccharide increases the growth performance, immunity and resistance capability against Vibro Parahemolyticus in juvenile abalone Haliotis discus hannai Ino. FISH & SHELLFISH IMMUNOLOGY 2019; 94:654-660. [PMID: 31561025 DOI: 10.1016/j.fsi.2019.09.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
This trial was conducted to investigate the effect of mannose oligosaccharides (MOS) on the growth performance, antioxidation, immunity and disease resistance of Vibro Parahemolyticus in juvenile abalone Haliotis discus hannai Ino. Four formulated diets were produced to contain 0.00 g/kg, 0.40 g/kg, 0.80 g/kg and 1.60 g/kg Actigen®, with functional ingredients of MOS, respectively. Accordingly, the experimental diets were named as A0, A4, A8 and A16. After 120-days feeding trial, the best growth performance was observed in A8 group (P < 0.05) and there was no significant difference in A0, A4 and A16 groups. With the increase of dietary MOS, the activity of the total antioxidant capacity in hepatopancreas is increasingly elevated (P < 0.05) while no significant difference was observed on activity of glutathione S-transferase (P > 0.05). The activities of superoxide dismutase and glutathione peroxidase were firstly increased and then decreased, with the highest values in A8 group (P < 0.05). Immune-related parameters were significantly affected by dietary MOS inclusion. Specifically, the activities of alkaline phosphatase and acid phosphatase in hepatopancreas and serum of abalone fed diets containing MOS were significantly higher than those of control A0 group (P < 0.05). Moreover, the highest values of both enzymes were observed in hepatopancreas of A8 group but in serum of A16 group, respectively. The lysozyme activities in hepatopancreas and serum of A4 group were significantly higher than those of other groups (P < 0.05) and there was no significant difference in A0, A8 and A16 groups (P > 0.05). The activities of cytophagy and respiratory burst in serum of abalone were not significantly affected by dietary MOS content (P > 0.05). The mRNA levels of focal adhesion kinase and integrin-linked kinase were gradually elevated with the increase of dietary MOS, with the highest value recorded in A16 group (P < 0.05). The gene expression of caspse-3 in A8 group was dramatically higher than those of other groups (P < 0.05) and there was no significant difference in A0, A4 and A16 groups (P > 0.05). The mRNA level of nuclear factor-κB was not significantly affected by dietary MOS (P > 0.05). During 56 h of V. Parahemolyticus challenge period, the accumulated mortality rate of abalone fed diets containing MOS were significantly lower than that of control A0 group in each time point (P < 0.05). Overall, the lowest rate was happened in A8 group (P < 0.05). In conclusion, MOS inclusion in diet has obviously positive effect on growth, immunity and disease resistance capability of abalone, with the optimal level of Actigen® at 0.80 g/kg in diet.
Collapse
Affiliation(s)
- Xiaoxue Meng
- College of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Xiyun Yang
- College of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Gang Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yan Fang
- College of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Zeli Ruan
- College of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Mingfang Liu
- College of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Guoxu Liu
- College of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Mingzhu Li
- College of Agriculture, Ludong University, Yantai, 264025, PR China.
| | - Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
18
|
Niederle MV, Bosch J, Ale CE, Nader-Macías ME, Aristimuño Ficoseco C, Toledo LF, Valenzuela-Sánchez A, Soto-Azat C, Pasteris SE. Skin-associated lactic acid bacteria from North American bullfrogs as potential control agents of Batrachochytrium dendrobatidis. PLoS One 2019; 14:e0223020. [PMID: 31560707 PMCID: PMC6764794 DOI: 10.1371/journal.pone.0223020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
Abstract
The fungal pathogen Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis and has been a key driver in the catastrophic decline of amphibians globally. While many strategies have been proposed to mitigate Bd outbreaks, few have been successful. In recent years, the use of probiotic formulations that protect an amphibian host by killing or inhibiting Bd have shown promise as an effective chytridiomycosis control strategy. The North American bullfrog (Lithobates catesbeianus) is a common carrier of Bd and harbours a diverse skin microbiota that includes lactic acid bacteria (LAB), a microbial group containing species classified as safe and conferring host benefits. We investigated beneficial/probiotic properties: anti-Bd activity, and adhesion and colonisation characteristics (hydrophobicity, biofilm formation and exopolysaccharide-EPS production) in two confirmed LAB (cLAB-Enterococcus gallinarum CRL 1826, Lactococcus garvieae CRL 1828) and 60 presumptive LAB (pLAB) [together named as LABs] isolated from bullfrog skin.We challenged LABs against eight genetically diverse Bd isolates and found that 32% of the LABs inhibited at least one Bd isolate with varying rates of inhibition. Thus, we established a score of sensitivity from highest (BdGPL AVS7) to lowest (BdGPL C2A) for the studied Bd isolates. We further reveal key factors underlying host adhesion and colonisation of LABs. Specifically, 90.3% of LABs exhibited hydrophilic properties that may promote adhesion to the cutaneous mucus, with the remaining isolates (9.7%) being hydrophobic in nature with a surface polarity compatible with colonisation of acidic, basic or both substrate types. We also found that 59.7% of LABs showed EPS synthesis and 66.1% produced biofilm at different levels: 21% weak, 29% moderate, and 16.1% strong. Together all these properties enhance colonisation of the host surface (mucus or epithelial cells) and may confer protective benefits against Bd through competitive exclusion. Correspondence analysis indicated that biofilm synthesis was LABs specific with high aggregating bacteria correlating with strong biofilm producers, and EPS producers being correlated to negative biofilm producing LABs. We performed Random Amplified Polymorphic DNA (RAPD)-PCR analysis and demonstrated a higher degree of genetic diversity among rod-shaped pLAB than cocci. Based on the LAB genetic analysis and specific probiotic selection criteria that involve beneficial properties, we sequenced 16 pLAB which were identified as Pediococcus pentosaceus, Enterococcus thailandicus, Lactobacillus pentosus/L. plantarum, L. brevis, and L. curvatus. Compatibility assays performed with cLAB and the 16 species described above indicate that all tested LAB can be included in a mixed probiotic formula. Based on our analyses, we suggest that E. gallinarum CRL 1826, L. garvieae CRL 1828, and P. pentosaceus 15 and 18B represent optimal probiotic candidates for Bd control and mitigation.
Collapse
Affiliation(s)
- M. V. Niederle
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - J. Bosch
- Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- Research Unit of Biodiversity (CSIC, UO, PA), Oviedo University—Campus Mieres, Spain
| | - C. E. Ale
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - M. E. Nader-Macías
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| | - C. Aristimuño Ficoseco
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| | - L. F. Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - A. Valenzuela-Sánchez
- Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Organización No Gubernamental (ONG) Ranita de Darwin, Santiago, Chile
- Organización No Gubernamental (ONG) Ranita de Darwin, Valdivia, Chile
| | - C. Soto-Azat
- Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - S. E. Pasteris
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| |
Collapse
|
19
|
Wang A, Ran C, Wang Y, Zhang Z, Ding Q, Yang Y, Olsen RE, Ringø E, Bindelle J, Zhou Z. Use of probiotics in aquaculture of China-a review of the past decade. FISH & SHELLFISH IMMUNOLOGY 2019; 86:734-755. [PMID: 30553887 DOI: 10.1016/j.fsi.2018.12.026] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/16/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
China is the largest aquaculture producer in the world. Antibiotics were extensively used to ensure the development of the intensive aquaculture; however, the use of antibiotics causes safety- and environment-associated problems. As an alternative strategy to antibiotics, aquatic probiotics have attracted attention. The microbial organisms used as probiotics or tested as potential probiotics in Chinese aquaculture belong to various taxonomic divisions, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and yeast. Moreover, the mixture of probiotic strains and synbiotics are also widely used. Studies on the mode of action of aquatic probiotics have extended our understanding of the probiotic effects, and novel mechanisms have been discovered, such as interference of quorum sensing. However, use of probiotics in Chinese aquaculture is still at an initial stage, and there are potential risks for some probiotic applications in aquaculture. Further regulation and management are required to normalize the production and usage of aquatic probiotics. In this review, we discuss species, effects, and mode of actions of probiotics in Chinese aquaculture since 2008. Challenges and future directions for research are also discussed.
Collapse
Affiliation(s)
- Anran Wang
- Liege University, Gembloux Agro-Bio Tech, AgroBioChem/TERRA, Precision Livestock and Nutrition Unit/AgricultureIsLife, Passage des Deportes, 2, 5030, Gembloux, Belgium; Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Chao Ran
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yanbo Wang
- Marine Resource & Nutritional Biology, Food Quality and Safety Department, Zhejiang Gongshang University, Hangzhou, China
| | - Zhen Zhang
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Qianwen Ding
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yalin Yang
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Rolf Erik Olsen
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Ringø
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jérôme Bindelle
- Liege University, Gembloux Agro-Bio Tech, AgroBioChem/TERRA, Precision Livestock and Nutrition Unit/AgricultureIsLife, Passage des Deportes, 2, 5030, Gembloux, Belgium
| | - Zhigang Zhou
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
20
|
Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D. Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Front Microbiol 2019; 10:57. [PMID: 30804896 PMCID: PMC6378274 DOI: 10.3389/fmicb.2019.00057] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Resistance to antibiotics is escalating and threatening humans and animals worldwide. Different countries have legislated or promoted the ban of antibiotics as growth promoters in livestock and aquaculture to reduce this phenomenon. Therefore, to improve animal growth and reproduction performance and to control multiple bacterial infections, there is a potential to use probiotics as non-antibiotic growth promoters. Lactic acid bacteria (LAB) offer various advantages as potential probiotics and can be considered as alternatives to antibiotics during food-animal production. LAB are safe microorganisms with abilities to produce different inhibitory compounds such as bacteriocins, organic acids as lactic acid, hydrogen peroxide, diacetyl, and carbon dioxide. LAB can inhibit harmful microorganisms with their arsenal, or through competitive exclusion mechanism based on competition for binding sites and nutrients. LAB endowed with specific enzymatic functions (amylase, protease…) can improve nutrients acquisition as well as animal immune system stimulation. This review aimed at underlining the benefits and inputs from LAB as potential alternatives to antibiotics in poultry, pigs, ruminants, and aquaculture production.
Collapse
Affiliation(s)
- Nuria Vieco-Saiz
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Yanath Belguesmia
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| | - Ruth Raspoet
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Eric Auclair
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Frédérique Gancel
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| | - Isabelle Kempf
- Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Djamel Drider
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| |
Collapse
|
21
|
Zhang Y, Wang Q, Wang YD, Sun B, Leng XW, Li Q, Ren LQ. Effect of rutin on cisplatin-induced damage in human mesangial cells via apoptotic pathway. Hum Exp Toxicol 2018; 38:118-128. [DOI: 10.1177/0960327118785233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cisplatin (CP) is one of the most effective and widely used compounds in the treatment of disease, including cancer, but is known to induce toxicity in patients. Rutin (RUT) is a flavonoid glycoside from Sophora japonica L. that has been shown to possess antioxidative, anti-inflammatory, and antiviral properties. RUT is also known to attenuate cardiotoxicity, isoproterenol-induced cardiac fibrosis, and ischemia/reperfusion-associated hemodynamic alteration, and prevents high glucose-induced renal glomerular endothelial hyperpermeability. In this study, we investigated the effect of RUT on CP-induced nephrotoxicity. CP was used to induce toxicity in human mesangial cells (HMCs), HMCs were pretreated with different concentrations of RUT before being exposed to 10 μg/mL of CP. A positive group was pretreated with antioxidant agent N-acetylcysteine prior to CP administration. At doses between 12.5 and 25 μM, RUT prevented CP-induced reduction in cell viability. Treatment with RUT suppressed intracellular reactive oxygen species and malonic dialdehyde levels and inhibited cell apoptosis. RUT reversed the CP-induced upregulation of p53, cleaved-caspase-3, and increased pro-caspase-3 and pro-caspase-9 levels. In conclusion, the RUT can relieve CP-induced nephrotoxicity by inhibiting the p53/caspase signaling pathway.
Collapse
Affiliation(s)
- Y Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin Province, China
| | - Q Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Y-D Wang
- Department of Oncology, Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - B Sun
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin Province, China
| | - X-W Leng
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin Province, China
| | - Q Li
- Department of Pathology, The Third Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - L-Q Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|