1
|
Arciuch-Rutkowska M, Nowosad J, Gil Ł, Czarnik U, Kucharczyk D. Synergistic Effect of Dietary Supplementation with Sodium Butyrate, β-Glucan and Vitamins on Growth Performance, Cortisol Level, Intestinal Microbiome and Expression of Immune-Related Genes in Juvenile African Catfish ( Clarias gariepinus). Int J Mol Sci 2024; 25:4619. [PMID: 38731838 PMCID: PMC11083991 DOI: 10.3390/ijms25094619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
The effect of dietary supplementation with sodium butyrate, β-glucan and vitamins (A, D3, E, K, C) on breeding indicators and immune parameters of juvenile African catfish was examined. The fish were fed with unenriched (group C) and enriched feed with a variable proportion of sodium butyrate/β-glucan, and constant content of vitamins (W1-W3). After the experiment, blood and the middle gut were collected. The microbiome of the gut was determined using Next Generation Sequencing (NGS). Liver tissue was collected for determination of expression of immune-related genes (HSP70, IL-1β, TNFα). W2 and W3 were characterized by the most favorable values of breeding indicators (p < 0.05). The highest blood cortisol concentration was in group C (71.25 ± 10.45 ng/mL), and significantly the lowest in W1 (46.03 ± 7.01 ng/ mL) (p < 0.05). The dominance of Cetobacterium was observed in all study groups, with the largest share in W3 (65.25%) and W1 (61.44%). Gene expression showed an increased number of HSP70 genes in W1. IL-1β and TNFα genes peaked at W3. The W3 variant turns out to be the most beneficial supplementation, due to the improvement of breeding and immunological parameters. The data obtained can be used to create a preparation for commercial use in the breeding of this species.
Collapse
Affiliation(s)
- Martyna Arciuch-Rutkowska
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Al. Warszawska 117A, 10-957 Olsztyn, Poland; (M.A.-R.); (J.N.)
| | - Joanna Nowosad
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Al. Warszawska 117A, 10-957 Olsztyn, Poland; (M.A.-R.); (J.N.)
- Department of Research and Development, Chemprof, Gutkowo 54B, 11-041 Olsztyn, Poland;
- Department of Ichthyology, Hydrobiology and Aquatic Ecology, National Inland Fisheries Research Institute, ul. M. Oczapowskiego 10, 10-719 Olsztyn, Poland
| | - Łukasz Gil
- Department of Research and Development, Chemprof, Gutkowo 54B, 11-041 Olsztyn, Poland;
| | - Urszula Czarnik
- Department of Pig Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Dariusz Kucharczyk
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Al. Warszawska 117A, 10-957 Olsztyn, Poland; (M.A.-R.); (J.N.)
- Department of Research and Development, Chemprof, Gutkowo 54B, 11-041 Olsztyn, Poland;
| |
Collapse
|
2
|
Lima ECSDE, Souza FPDE, Furlan-Murari PJ, Pandolfi VCF, Leite NG, Mainardi RM, Chideroli RT, Pereira UP, Araújo EJA, Pupim ACE, Koch JFA, Lopera-Barrero NM. Effects of dietary β-glucans on the productive performance, blood parameters, and intestinal microbiota of angelfish (Pterophyllum scalare) juveniles. AN ACAD BRAS CIENC 2024; 96:e20231006. [PMID: 38451599 DOI: 10.1590/0001-3765202420231006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/29/2023] [Indexed: 03/08/2024] Open
Abstract
Among the potential feed additives, β-glucans are known to positively affect the growth performance, blood parameters, and intestinal microbiota of fish, even the ornamental species. Therefore, the present study evaluated the effects of the dietary supplementation of different Saccharomyces cerevisiae β-glucans concentrations (0, 0.05, 0.1, and 0.2%) in juvenile angelfish (Pterophyllum scalare) over a 42-day period. Regarding growth performance, no effects were observed on most parameters. However, 0.2% β-glucans supplementation produced higher condition factor values, indicating a better nutritional status. Furthermore, β-glucans supplementation did not affect blood parameters. Regarding intestinal microbiota, β-glucans supplementation increased the abundance of the potentially beneficial bacterial genus Phascolarctobacterium. The high abundance of bacteria from the phylum Bacteroidetes, which can degrade β-glucans, may be attributed to the increased abundance of Phascolarctobacterium spp. In addition, 0.2% β-glucans supplementation produced more operational taxonomic units and higher Sobs (observed species richness), indicating effects on the overall bacterial community structure. These results demonstrate the potential application of β-glucans as a dietary supplement to improve the performance and modulate the intestinal microbiota of angelfish.
Collapse
Affiliation(s)
- Ed C S DE Lima
- Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina (UEL), Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Felipe P DE Souza
- Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina (UEL), Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Pâmela Juliana Furlan-Murari
- Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina (UEL), Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Victor César F Pandolfi
- Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina (UEL), Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Natália G Leite
- Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina (UEL), Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Raffaella M Mainardi
- Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina (UEL), Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Roberta T Chideroli
- Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina (UEL), Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Ulisses P Pereira
- Universidade Estadual de Londrina (UEL), Departamento de Medicina Veterinária Preventiva, Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Eduardo José A Araújo
- Universidade Estadual de Londrina (UEL), Departamento de Histologia, Centro de Ciência Biológicas (CCB), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Andréia Carla E Pupim
- Universidade Estadual de Londrina (UEL), Departamento de Histologia, Centro de Ciência Biológicas (CCB), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - João Fernando A Koch
- Biorigin Brasil, Rua Quinze de Novembro, 865, Centro, 18680-900 Lençóis Paulista, SP, Brazil
| | - Nelson Mauricio Lopera-Barrero
- Universidade Estadual de Londrina (UEL), Departamento de Zootecnia, Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| |
Collapse
|
3
|
Wang S, Xu G, Zou J. Soluble non-starch polysaccharides in fish feed: implications for fish metabolism. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1-22. [PMID: 36219350 DOI: 10.1007/s10695-022-01131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Because of their unique glycosidic bond structure, non-starch polysaccharides (NSP) are difficult for the stomach to break down. NSP can be classified as insoluble NSP (iNSP, fiber, lignin, etc.) and soluble NSP (sNSP, oligosaccharides, β-glucan, pectin, fermentable fiber, inulin, plant-derived polysaccharides, etc.). sNSP is viscous, fermentable, and soluble. Gut microbiota may catabolize sNSP, which can then control fish lipid, glucose, and protein metabolism and impact development rates. This review examined the most recent studies on the impacts of various forms of sNSP on the nutritional metabolism of various fish in order to comprehend the effects of sNSP on fish. According to certain investigations, sNSP can enhance fish development, boost the activity of digestive enzymes, reduce blood sugar and cholesterol, enhance the colonization of good gut flora, and modify fish nutrition metabolism. In-depth research on the mechanism of action is also lacking in most studies on the effects of sNSP on fish metabolism. It is necessary to have a deeper comprehension of the underlying processes by which sNSP induce host metabolism. This is crucial to address the main issue of the sensible use of carbohydrates in fish feed.
Collapse
Affiliation(s)
- Shaodan Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Early Immune Modulation in European Seabass (Dicentrarchus labrax) Juveniles in Response to Betanodavirus Infection. FISHES 2022. [DOI: 10.3390/fishes7020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The early host–pathogen interaction between European seabass (Dicentrarchus labrax) and Betanodavirus was examined by using juvenile fish infected intramuscularly with RGNNV (red-spotted grouper nervous necrosis virus). The time course selected for sampling (0–144 h post-infection (hpi)) covered the early stages of infection, with hematological, antioxidant and immunological responses examined. Early activation of the host’s immune system was seen in the first few hours post-infection (6 to 9 hpi), as evidenced by an increase in tnfα, cd28 and c3 expression in the head kidney of infected fish. Most hematological parameters that were examined showed significant differences between sampling times, including differences in the number of thrombocytes and various leukocyte populations. The plasma lysozyme concentration decreased significantly over the course of the trial, and most antioxidant parameters examined in the liver showed significant differences over the infection period. At 144 hpi, peak expression of tnfα and il-1β coincided with the appearance of disease symptoms, peak levels of virus in the brain and high levels of fish mortality. The results of the study show the importance of analyzing the early interactions between European seabass and Betanodavirus to establish early indicators of infection to prevent more severe outcomes of the infection from occurring.
Collapse
|
5
|
The Effects of Silkworm-Derived Polysaccharide (Silkrose) on Ectoparasitic Infestations in Yellowtail (Seriola quinqueradiata) and White Trevally (Pseudocaranx dentex). FISHES 2022. [DOI: 10.3390/fishes7010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of silkworm-derived polysaccharide silkrose on fish ectoparasites was investigated. When juvenile yellowtail (Seriola quinqueradiata) fed diets containing silkrose were artificially infected with Benedenia seriolae, a fish ectoparasite, the numbers of parasitized B. seriolae were significantly lower compared to that in fish in the control group without silkrose treatment. Furthermore, when juvenile yellowtails were severely infected with B. seriolae, no mortality was observed in the silkrose-treated group, compared to more than 60% in the control group. In field studies carried out at a fish farm with yellowtail and white trevally (Pseudocaranx dentex), oral treatment with silkrose significantly reduced B. seriolae parasitism in yellowtail and Caligus longipedis and Neobenedenia girellae parasitism in white trevally. Silkrose treatment also reduced blood levels of cortisol, a stress hormone in both species. The changes in gene expression in the epidermis of yellowtail by silkrose treatment were also investigated, showing that the expression of various genes, including factors involved in immunity, stress response, and wound healing, was changed by the treatment. These findings indicate that silkworm-derived silkrose effectively prevents infection by external parasites in yellowtail and white trevally.
Collapse
|
6
|
β-glucan as a promising food additive and immunostimulant in aquaculture industry. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
The use of antibiotics in aquatic feed reduces the incidence of disease and enhances growth performance, although it presents harmful effects, such as development of resistant bacteria and accumulation in the natural environment. A variety of immune stimulants including probiotics, prebiotics, synbiotics, phytobiotics, organic acids, nucleotides, antioxidants, microalgae, yeast and enzymes have been used in the aquaculture industry. In recent decades, much attention has been paid on finding a variety of immunostimulants with lower cost which also affect specific and non-specific immunity and improve fish resistance against a wide range of pathogens. These stimulants strengthen the fish’s immune system by increasing the number of phagocytes, lysozyme activity and level of immunoglobulin. The use of immune stimulants as an effective tool to overcome diseases and strengthen the immune system of farmed species, leads to the promotion of cellular and humoral defense mechanisms and increases resistance to infectious diseases. Among these immunostimulants used in aquaculture, β-glucans are of particular importance. Glucans are complex polysaccharide compounds extracted from the cell wall of yeasts and fungi. These compounds can stimulate fish growth, survival, and immune function. Therefore, this review discusses the role and importance of β-glucan as a food additive in aquaculture and examines the impact of these compounds on the growth performance, immunity and biochemical parameters of farmed species.
Collapse
|
7
|
Koch JFA, de Oliveira CAF, Zanuzzo FS. Dietary β-glucan (MacroGard®) improves innate immune responses and disease resistance in Nile tilapia regardless of the administration period. FISH & SHELLFISH IMMUNOLOGY 2021; 112:56-63. [PMID: 33640538 DOI: 10.1016/j.fsi.2021.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
The effects of dietary β-glucan on innate immune responses have been shown in a number of different vertebrate species. However, there is conflicting information about the period of administration (shorter vs. longer), and it is also unclear to what extent β-glucan's effects can be observed post-treatment in fish. Thus, we fed Nile tilapia for 0 (control group; 45 days of control diet), 15 (30 days of control followed by 15 days of β-glucan), 30 (15 days of control followed by 30 days of β-glucan) or 45 days with a diet containing 0.1% of β-glucan (MacroGard®). We evaluated the growth performance at the end of the β-glucan feeding trial and the innate immune function immediately after the feeding trial and 7 and 14 days post-feeding trial. In addition, at day 10 post-feeding trial, we assessed the tilapia's resistance against a bacterial infection. No significant differences were observed in growth performance between the groups; however, fish fed with β-glucan for 30 and 45 days had higher (approx. 8%) relative weight gain compared to the control. Regardless of the administration period, fish fed with β-glucan had higher innate immune responses immediately after the feeding trial such as lysozyme activity in plasma, liver and intestine and respiratory burst compared to the control, and in general these differences were gradually reduced over the withdrawal period (up to 14 days). No differences were observed in the plasma hemolytic activity of the complement or myeloperoxidase activity in plasma or intestine. Moreover, fish from the control group had early mortalities (2 vs. 4-5 days post-infection, respectively) and a lower survival rate (60 vs. 80%, respectively) compared to fish fed with β-glucan for 15 or 30 days, and, interestingly, fish fed for 45 days with β-glucan had no mortality. This study indicates that regardless of the administration period (i.e., 15 up to 45 days), the β-glucan improved the innate immune responses and the tilapia's resistance to disease, and this protection could be observed up to 10 days post-feeding trial, adding in vivo evidence that β-glucan may contribute to a trained innate immunity. Additionally, we showed that a longer period of administration did not cause immunosuppression as previously hypothesized but promoted further growth and immune performance. These findings are relevant to the aquaculture industry and demonstrate that a longer β-glucan feeding protocol may be considered to achieve better results.
Collapse
|
8
|
Development of Fish Immunity and the Role of β-Glucan in Immune Responses. Molecules 2020; 25:molecules25225378. [PMID: 33213001 PMCID: PMC7698520 DOI: 10.3390/molecules25225378] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Administration of β-glucans through various routes, including immersion, dietary inclusion, or injection, have been found to stimulate various facets of immune responses, such as resistance to infections and resistance to environmental stress. β-Glucans used as an immunomodulatory food supplement have been found beneficial in eliciting immunity in commercial aquaculture. Despite extensive research involving more than 3000 published studies, knowledge of the receptors involved in recognition of β-glucans, their downstream signaling, and overall mechanisms of action is still lacking. The aim of this review is to summarize and discuss what is currently known about of the use of β-glucans in fish.
Collapse
|
9
|
Jami MJ, Abedian Kenari A, Paknejad H, Mohseni M. Effects of dietary b-glucan, mannan oligosaccharide, Lactobacillus plantarum and their combinations on growth performance, immunity and immune related gene expression of Caspian trout, Salmo trutta caspius (Kessler, 1877). FISH & SHELLFISH IMMUNOLOGY 2019; 91:202-208. [PMID: 31085328 DOI: 10.1016/j.fsi.2019.05.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/05/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the effect of individual and combination of dietary pre- and probiotics (β-glucan, 3 mg/g; mannan oligosaccharide (MOS), 4 mg/g; and Lactobacillus plantarum; 108 CFU/mg diet) on growth performance, blood immune parameters, expression of immune related genes, and intestinal microbial of Caspian trout (Salmo trutta caspius). On the basis of feeding with immunostimulant diets, the fish were assigned into eight groups denoted as: control (basal diet), bβ (basal diet + β-glucan), bM (basal diet + MOS), bLp (basal diet + L. plantarum), bβLp (basal diet + β-glucan + L. plantarum), bMLp (basal diet + MOS + L. plantarum), bMβ (basal diet + MOS + β-glucan), and bMβLp (basal diet + MOS + β-glucan + L. plantarum). All of the immunostimulant diets, in general, reduced feed intake (FI) and food conversion ratio (FCR) and increased WG, PER, and final weight. Condition factor (CF) demonstrated the lowest level in the experimental group received bMβLp. Total lipid increased in the fish received the additives, especially bM and bMβ. Ash content demonstrated significant increase in the fish fed on bβ and bMβLp, whereas moisture content was reduced in the group fed with L. plantarum-supplemented diet. All immunostimulant diets enhanced the activity and levels of lysozyme, Immunoglobulin M (IgM), and serum alternative complement activity (ACH50); the highest value for these indices was observed in the groups fed with bMβ, bMβLp, and bβLp. bMβ-treated fish group displayed the highest cortisol and glucose levels. bM diet induced the highest mRNA transcription of TNF-α1 in head kidney, whereas bLp, bMβ, and bMβLp showed no effect. IL1β exhibited the greatest up-regulation, about 8.75 fold change, in response to the diet supplemented only with β-glucan. bβLp and bβ significantly enhanced the relative IL-8 mRNA expression in the head kidney (about 2.75 and 1.9 folds, respectively), yet in response to bMβLp treatment it showed a decrease of about 5.7 times lower than the control group. In addition, intestinal population of L. plantarum showed the highest loads in the groups fed on the diets which were treated with the probiotic. Taken together, combinational use of these immunostimulants enhanced humoral innate immune system, whereas their individual and combinational application could increase and decrease the transcription of inflammation-related genes, respectively.
Collapse
Affiliation(s)
- Mohammad Javad Jami
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares, University, Mazandaran, Noor, P.O. Box 64414-356, Iran
| | - Abdolmohammad Abedian Kenari
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares, University, Mazandaran, Noor, P.O. Box 64414-356, Iran.
| | - Hamed Paknejad
- Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahmoud Mohseni
- Cold Water Fishes Research Center (CFRC), Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Eduction and Extension Organization (AREEO), Dohezar, Tonekabon, Mazandaran, Iran
| |
Collapse
|