1
|
Shahidi F, Saeid A. Bioactivity of Marine-Derived Peptides and Proteins: A Review. Mar Drugs 2025; 23:157. [PMID: 40278278 PMCID: PMC12028762 DOI: 10.3390/md23040157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
The marine environment, covering over 70% of the Earth's surface, serves as a reservoir of bioactive molecules, including peptides and proteins. Due to the unique and often extreme marine conditions, these molecules exhibit distinctive structural features and diverse functional properties, making them promising candidates for therapeutic applications. Marine-derived bioactive peptides, typically consisting of 3 to 40 amino acid residues-though most commonly, 2 to 20-are obtained from parent proteins through chemical or enzymatic hydrolysis, microbial fermentation, or gastrointestinal digestion. Like peptides, protein hydrolysates from collagen, a dominant protein of such materials, play an important role. Peptide bioactivities include antioxidant, antihypertensive, antidiabetic, antimicrobial, anti-inflammatory, anticoagulant, and anti-cancer effects as well as immunoregulatory and wound-healing activities. These peptides exert their effects through mechanisms such as enzyme inhibition, receptor modulation, and free radical scavenging, among others. Fish, algae, mollusks, crustaceans, microbes, invertebrates, and marine by-products such as skin, bones, and viscera are some of the key marine sources of bioactive proteins and peptides. The advancements in the extraction and purification processes, e.g., enzymatic hydrolysis, ultrafiltration, ion-exchange chromatography, high-performance liquid chromatography (HPLC), and molecular docking, facilitate easy identification and purification of such bioactive peptides in greater purity and activity. Despite their colossal potential, their production, scale-up, stability, and bioavailability are yet to be enhanced for industrial applications. Additional work needs to be carried out for optimal extraction processes, to unravel the mechanisms of action, and to discover novel marine sources. This review emphasizes the enormous scope of marine-derived peptides and proteins in the pharmaceutical, nutraceutical, cosmeceutical, and functional food industries, emphasizing their role in health promotion and risk reduction of chronic diseases.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| | | |
Collapse
|
2
|
Li X, Chen K, Liu R, Zheng Z, Hou X. Antimicrobial neuropeptides and their therapeutic potential in vertebrate brain infectious disease. Front Immunol 2024; 15:1496147. [PMID: 39620214 PMCID: PMC11604648 DOI: 10.3389/fimmu.2024.1496147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
The defense mechanisms of the vertebrate brain against infections are at the forefront of immunological studies. Unlike other body parts, the brain not only fends off pathogenic infections but also minimizes the risk of self-damage from immune cell induced inflammation. Some neuropeptides produced by either nerve or immune cells share remarkable similarities with antimicrobial peptides (AMPs) in terms of size, structure, amino acid composition, amphiphilicity, and net cationic charge. These similarities extend to a wide range of antibacterial activities demonstrated in vitro, effectively protecting nerve tissue from microbial threats. This review systematically examines 12 neuropeptides, pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), α-melanocyte stimulating hormone (α-MSH), orexin-B (ORXB), ghrelin, substance P (SP), adrenomedullin (AM), calcitonin-gene related peptide (CGRP), urocortin-II (UCN II), neuropeptide Y (NPY), NDA-1, and catestatin (CST), identified for their antimicrobial properties, summarizing their structural features, antimicrobial effectiveness, and action mechanisms. Importantly, the majority of these antimicrobial neuropeptides (9 out of 12) also possess significant anti-inflammatory properties, potentially playing a key role in preserving immune tolerance in various disorders. However, the connection between this anti-inflammatory property and the brain's infection defense strategy has rarely been explored. Our review suggests that the combined antimicrobial and anti-inflammatory actions of neuropeptides could be integral to the brain's defense strategy against pathogens, marking an exciting direction for future research.
Collapse
Affiliation(s)
- Xiaoke Li
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Kaiqi Chen
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining, China
| | - Zhaodi Zheng
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
3
|
Méndez LR, Soto-Dávila M, Wong-Benito V, Rodríguez-Ramos T, Carpio Y, Estrada MP, Dixon B. PACAP binds conserved receptors and modulates cytokine gene expression and protein secretion in trout cell lines. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109738. [PMID: 38971350 DOI: 10.1016/j.fsi.2024.109738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Antimicrobial peptides (AMPs) are an alternative to antibiotics for treatment and prevention of infections with a lower risk of bacterial resistance. Pituitary adenylate cyclase activating polypeptide (PACAP) is an outstanding AMP with versatile effects including antimicrobial activity and modulation of immune responses. The objective of this research was to study PACAP immunomodulatory effect on rainbow trout cell lines infected with Aeromonas salmonicida. PACAP from Clarias gariepinus (PACAP1) and a modified PACAP (PACAP5) were tested. RT-qPCR results showed that il1b and il8 expression in RTgutGC was significantly downregulated while tgfb expression was upregulated after PACAP treatment. Importantly, the concentration of IL-1β and IFN-γ increased in the conditioned media of RTS11 cells incubated with PACAP1 and exposed to A. salmonicida. There was a poor correlation between gene expression and protein concentration, suggesting a stimulation of the translation of IL-1β protein from previously accumulated transcripts or the cleavage of accumulated IL-1β precursor. In-silico studies of PACAP-receptor interactions showed a turn of the peptide characteristic of PACAP-PAC1 interaction, correlated with the higher number of interactions observed with this specific receptor, which is also in agreement with the higher PACAP specificity described for PAC1 compared to VPAC1 and VPACA2. Finally, the in silico analysis revealed nine amino acids related to the PACAP receptor-associated functionality.
Collapse
Affiliation(s)
- Laura Rivera Méndez
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Manuel Soto-Dávila
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Valentina Wong-Benito
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Yamila Carpio
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada.
| |
Collapse
|
4
|
Méndez LR, Rodríguez-Cornejo T, Rodríguez-Ramos T, Al-Hussinee L, Velázquez J, Campbell JH, Carpio Y, Estrada MP, Dixon B. PACAP sequence modifications modulate the peptide antimicrobial activity against bacterial pathogens affecting aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109512. [PMID: 38499216 DOI: 10.1016/j.fsi.2024.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
The global aquaculture industry has significant losses each year due to disease outbreaks. Antibiotics are one of the common methods to treat fish infections, but prolonged use can lead to the emergence of resistant strains. Aeromonas spp. Infections are a common and problematic disease in fish, and members of this genera can produce antibiotic resistant strains. Antimicrobial peptides (AMPs) have emerged as an alternative method to treat and prevent infections and pituitary adenylate cyclase activating polypeptide (PACAP) is a prominent member of this family. The objective of this research was to study PACAP's direct antimicrobial activity and its toxicity in fish cells. Four synthetic variants of the natural PACAP from Clarias gariepinus were tested in addition to the natural variant. The experimental results show a different antimicrobial activity against A. salmonicida and A. hydrophila of each PACAP variant, and for the first time show dependence on the culture broth used. Furthermore, the results suggest that the underlying mechanism of PACAP antimicrobial activity includes a bacterial membrane permeabilizing effect, classifying PACAP as a membrane disruptive AMP. This study also demonstrated that the five PACAP variants evaluated showed low toxicity in vitro, at concentrations relevant for in vivo applications. Therefore, PACAP could be a promising alternative to antibiotics in the aquaculture sector.
Collapse
Affiliation(s)
- Laura Rivera Méndez
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | | | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Lowia Al-Hussinee
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada; Animal Health Laboratory, OVC, Guelph University, Canada
| | - Janet Velázquez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - James Hugh Campbell
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Yamila Carpio
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada.
| |
Collapse
|
5
|
Zhou Y, Pang M, Ma Y, Lu L, Zhang J, Wang P, Li Q, Yang F. Cellular and Molecular Roles of Immune Cells in the Gut-Brain Axis in Migraine. Mol Neurobiol 2024; 61:1202-1220. [PMID: 37695471 DOI: 10.1007/s12035-023-03623-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Migraine is a complex and multi-system dysfunction. The realization of its pathophysiology and diagnosis is developing rapidly. Migraine has been linked to gastrointestinal disorders such as irritable bowel syndrome and celiac disease. There is also direct and indirect evidence for a relationship between migraine and the gut-brain axis, but the exact mechanism is not yet explained. Studies have shown that this interaction appears to be influenced by a variety of factors, such as inflammatory mediators, gut microbiota, neuropeptides, and serotonin pathways. Recent studies suggest that immune cells can be the potential tertiary structure between migraine and gut-brain axis. As the hot interdisciplinary subject, the relationship between immunology and gastrointestinal tract is now gradually clear. Inflammatory signals are involved in cellular and molecular responses that link central and peripheral systems. The gastrointestinal symptoms associated with migraine and experiments associated with antibiotics have shown that the intestinal microbiota is abnormal during the attacks. In this review, we focus on the mechanism of migraine and gut-brain axis, and summarize the tertiary structure between immune cells, neural network, and gastrointestinal tract.
Collapse
Affiliation(s)
- Yichen Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Miaoyi Pang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiran Ma
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lingling Lu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiannan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Peipei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Velázquez J, Rodríguez-Cornejo T, Rodríguez-Ramos T, Pérez-Rodríguez G, Rivera L, Campbell JH, Al-Hussinee L, Carpio Y, Estrada MP, Dixon B. New Evidence for the Role of Pituitary Adenylate Cyclase-Activating Polypeptide as an Antimicrobial Peptide in Teleost Fish. Antibiotics (Basel) 2023; 12:1484. [PMID: 37887185 PMCID: PMC10604671 DOI: 10.3390/antibiotics12101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is a multifunctional neuropeptide that is widely distributed and conserved across species. We have previously shown that in teleost fish, PACAP not only possesses direct antimicrobial properties but also immunomodulatory effects against the bacterial pathogens Flavobacterium psychrophilum and Pseudomonas aeruginosa using in vitro and in vivo experiments. These previous results suggest PACAP can be used as an alternative to antibiotics to prevent and/or treat bacterial infections in the aquaculture industry. To accomplish this goal, more studies are needed to better understand the effect of PACAP on pathogens affecting fish in live infections. In the present study, the transcripts PACAP, PRP/PACAP, and VPAC2 receptor were examined in rainbow trout (Oncorhynchus mykiss) naturally infected with Yersinia ruckeri, which exhibited an increase in their expression in the spleen when compared to healthy fish. Synthetic Clarias gariepinus PACAP-38 has direct antimicrobial activity on Y. ruckeri and inhibits up to 60% of the bacterial growth when the peptide is at concentrations between 50 and 100 µM in TSB. The growth inhibition increased up to 90% in the presence of 12.5 µM of PACAP-38 when salt-free LB broth was used instead of TSB. It was also found to inhibit Y. ruckeri growth in a dose-dependent manner when the rainbow trout monocyte/macrophage-like cell line (RTS11) was pre-treated with lower concentrations of the peptide (0.02 and 0.1 µM) before going through infection. Differential gene expression was analyzed in this in vitro model. Overall, the results revealed new evidence to support the role of PACAP as an antimicrobial and immunomodulatory peptide treatment in teleosts.
Collapse
Affiliation(s)
- Janet Velázquez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba; (J.V.); (G.P.-R.)
| | - Tania Rodríguez-Cornejo
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - Geysi Pérez-Rodríguez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba; (J.V.); (G.P.-R.)
| | - Laura Rivera
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - James Hugh Campbell
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - Lowia Al-Hussinee
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - Yamila Carpio
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba; (J.V.); (G.P.-R.)
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba; (J.V.); (G.P.-R.)
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| |
Collapse
|
7
|
Lai Z, Chen H, Yuan X, Tian J, Dong N, Feng X, Shan A. Designing double-site lipidated peptide amphiphiles as potent antimicrobial biomaterials to combat multidrug-resistant bacteria. Front Microbiol 2022; 13:1074359. [PMID: 36569056 PMCID: PMC9780499 DOI: 10.3389/fmicb.2022.1074359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Rapidly evolving antimicrobial resistance and extremely slow development of new antibiotics have resulted in multidrug-resistant bacterial infections that present a serious threat to human health. Antimicrobial peptides (AMPs) provide promising substitutes, but more research is needed to address several of their present limitations, such as insufficient antimicrobial potency, high toxicity, and low stability. Here, we designed a series of novel double-site lipidated peptide amphiphiles based on a heptad repeat parent pentadecapeptide. The double-site lipidated peptide amphiphiles showed a broad spectrum of antimicrobial activities. Especially the double-site lipidated peptide amphiphile WL-C6 exhibited high potency to inhibit multidrug-resistant bacteria without significant toxicity toward mammalian cells. Furthermore, even at physiological salt ion concentrations, WL-C6 still exhibited outstanding antibacterial properties, and a sizeable fraction of it maintained its molecular integrity after being incubated with different proteases. Additionally, we captured the entire process of WL-C6 killing bacteria and showed that the rapid bacterial membrane disruption is the reason of bacterial death. Overall, WL-C6 shows great promise as a substitute for conventional antibiotics to combat the growing threat of multidrug-resistant bacterial infections.
Collapse
|
8
|
Rodríguez A, Velázquez J, González L, Rodríguez-Ramos T, Dixon B, Miyares FH, Morales A, González O, Estrada MP, Carpio Y. PACAP modulates the transcription of TLR-1/TLR-5/MyD88 pathway genes and boosts antimicrobial defenses in Clarias gariepinus. FISH & SHELLFISH IMMUNOLOGY 2021; 115:150-159. [PMID: 34146673 DOI: 10.1016/j.fsi.2021.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 06/12/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide that belongs to the secretin/glucagon/GHRH/VIP superfamily. Some of these molecules have antimicrobial activity and they are capable of stimulating the immune system. The present work studied the antibacterial and immunostimulatory activity of PACAP-38 from African catfish Clarias gariepinus against the Gram-negative bacterium Pseudomonas aeruginosa in an in vivo test. PACAP-38 improved antimicrobial activity of skin mucus molecules against P. aeruginosa. The peptide modulates the gene expression profile of TLR-1, TLR-5, MyD88, IL-1β, TNF-ɑ, IL-8, pardaxin, hepcidin and G/C-type lysozymes in skin, spleen and head kidney. The influenced exerted depended on the time after infection and tissue analyzed. This study provides the first evidence of a link between PACAP and antimicrobial peptides hepcidin and pardaxin. Our results suggest further use of PACAP as antimicrobial agent that could potentially be used to control disease in aquaculture.
Collapse
Affiliation(s)
- Alianet Rodríguez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Janet Velázquez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Luis González
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Fidel Herrera Miyares
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Antonio Morales
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Osmany González
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mario Pablo Estrada
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Yamila Carpio
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| |
Collapse
|
9
|
Velázquez J, Rodríguez A, Aragón H, Haidar A, González M, Valdés R, Garay HE, Abreu DD, Ramos Y, Cabrales A, Morales A, González O, Herrera F, Estrada MP, Carpio Y. Monoclonal antibody against Nile tilapia (Oreochromis niloticus) IgM heavy chain: A valuable tool for detection and quantification of IgM and IgM + cells. FISH & SHELLFISH IMMUNOLOGY 2021; 110:44-54. [PMID: 33348037 DOI: 10.1016/j.fsi.2020.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is a freshwater fish, which is extensively cultivated worldwide and constitutes one of the model species for the study of fish immunology. Monoclonal antibodies are very advantageous molecular tools for studying teleost immune system. Specifically, monoclonal antibodies that react with immunoglobulins are used successfully in the study of the humoral immune response of several fish species. In the present study, we produced and characterized a monoclonal antibody against tilapia IgM heavy chain using a peptide-based strategy. The peptide sequence was selected from the surface-exposed region between CH3-CH4 domains. The specificity of the polyclonal serum and the hybridoma culture supernatant obtained by immunization with the peptide conjugated to keyhole limpet hemocyanin were evaluated by western blotting, both showing reactivity against tilapia serum IgM. The purified mAb was able to recognize secreted IgM by western blotting and ELISA and membrane IgM by flow cytometry. We also demonstrated that the antibody doesn't cross-react with a recombinant IgT fragment. This tool allowed us to study for the first time the stimulation of mucosal immunity after Pituitary Adenylate Cyclase Activating Polypeptide administration. Overall, the results demonstrated the utility of this mAb to characterize humoral immune response in O. niloticus.
Collapse
Affiliation(s)
- Janet Velázquez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Alianet Rodríguez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Hasel Aragón
- Monoclonal Antibodies Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Arlette Haidar
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Marcos González
- Monoclonal Antibodies Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Rodolfo Valdés
- Monoclonal Antibodies Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Hilda Elsa Garay
- Peptides Synthesis Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - David Diago Abreu
- Peptides Synthesis Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Yassel Ramos
- Proteomics Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Ania Cabrales
- Analytic and Purification Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Antonio Morales
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Osmany González
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Fidel Herrera
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba.
| | - Yamila Carpio
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba.
| |
Collapse
|
10
|
An ancient neuropeptide defends the brain against infection. Proc Natl Acad Sci U S A 2021; 118:2023990118. [PMID: 33436393 DOI: 10.1073/pnas.2023990118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Lee EY, Chan LC, Wang H, Lieng J, Hung M, Srinivasan Y, Wang J, Waschek JA, Ferguson AL, Lee KF, Yount NY, Yeaman MR, Wong GCL. PACAP is a pathogen-inducible resident antimicrobial neuropeptide affording rapid and contextual molecular host defense of the brain. Proc Natl Acad Sci U S A 2021; 118:e1917623117. [PMID: 33372152 PMCID: PMC7817161 DOI: 10.1073/pnas.1917623117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Defense of the central nervous system (CNS) against infection must be accomplished without generation of potentially injurious immune cell-mediated or off-target inflammation which could impair key functions. As the CNS is an immune-privileged compartment, inducible innate defense mechanisms endogenous to the CNS likely play an essential role in this regard. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide known to regulate neurodevelopment, emotion, and certain stress responses. While PACAP is known to interact with the immune system, its significance in direct defense of brain or other tissues is not established. Here, we show that our machine-learning classifier can screen for immune activity in neuropeptides, and correctly identified PACAP as an antimicrobial neuropeptide in agreement with previous experimental work. Furthermore, synchrotron X-ray scattering, antimicrobial assays, and mechanistic fingerprinting provided precise insights into how PACAP exerts antimicrobial activities vs. pathogens via multiple and synergistic mechanisms, including dysregulation of membrane integrity and energetics and activation of cell death pathways. Importantly, resident PACAP is selectively induced up to 50-fold in the brain in mouse models of Staphylococcus aureus or Candida albicans infection in vivo, without inducing immune cell infiltration. We show differential PACAP induction even in various tissues outside the CNS, and how these observed patterns of induction are consistent with the antimicrobial efficacy of PACAP measured in conditions simulating specific physiologic contexts of those tissues. Phylogenetic analysis of PACAP revealed close conservation of predicted antimicrobial properties spanning primitive invertebrates to modern mammals. Together, these findings substantiate our hypothesis that PACAP is an ancient neuro-endocrine-immune effector that defends the CNS against infection while minimizing potentially injurious neuroinflammation.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Liana C Chan
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Infectious Diseases, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Huiyuan Wang
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Juelline Lieng
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Mandy Hung
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Yashes Srinivasan
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Jennifer Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior, Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| | - Kuo-Fen Lee
- Peptide Biology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Nannette Y Yount
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Michael R Yeaman
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509;
- Division of Infectious Diseases, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
- Semel Institute for Neuroscience and Human Behavior, Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
12
|
Zandsalimi F, Talaei S, Noormohammad Ahari M, Aghamiri S, Raee P, Roshanzamiri S, Yarian F, Bandehpour M, Zohrab Zadeh Z. Antimicrobial peptides: a promising strategy for lung cancer drug discovery? Expert Opin Drug Discov 2020; 15:1343-1354. [PMID: 32749935 DOI: 10.1080/17460441.2020.1791080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Antimicrobial peptides (AMPs), also called host defense peptides (HDPs), are identified in almost any form of life, which play an important role in innate immune systems. They have a broad spectrum of antifungal, antiviral, antibacterial, and anticancer activities. Lung cancer remains the leading cause of global cancer-related death. Unfortunately, lung cancer chemotherapy is accompanied by serious side effects, nonspecific toxicity, and multidrug resistance. Hence, to overcome these drawbacks, anticancer peptides (ACPs) derived from AMPs may represent a potential promising synergistic treatment strategy for lung cancer. AREAS COVERED In this review, the authors provide the recent advancements in the use of AMPs for the treatment of lung cancer. Furthermore, the anti-lung cancer modes of action of these peptides have been fully reviewed. Importantly, various strategies for increasing the efficiency and safety of AMPs have been discussed. EXPERT OPINION The combination of AMPs and other cancer treatment approaches such as chemotherapy, nanoparticle-based delivery systems, and photodynamic therapy can be used as a promising revolutionary strategy for the treatment of lung cancer. The most significant limitations of this strategy that need to be focused on are low efficiency and off-target events.
Collapse
Affiliation(s)
- Farshid Zandsalimi
- Students' Scientific Research Center, Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Sam Talaei
- School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mehdi Noormohammad Ahari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Soheil Roshanzamiri
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Fatemeh Yarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Zeinab Zohrab Zadeh
- Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| |
Collapse
|
13
|
Velázquez J, Pérez G, Semple SL, Rodríguez-Ramos T, Díaz-Rosales P, Ordás MDC, Lugo JM, Dixon B, Tafalla C, Estrada MP, Carpio Y. First in vivo evidence of pituitary adenylate cyclase-activating polypeptide antiviral activity in teleost. FISH & SHELLFISH IMMUNOLOGY 2020; 103:58-65. [PMID: 32334130 DOI: 10.1016/j.fsi.2020.04.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/02/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide belonging to the glucagon/secretin superfamily. In teleost fish, PACAP has been demonstrated to have an immunomodulatory role. Although previous studies have shown that viral/bacterial infections can influence the transcription of PACAP splicing variants and associated receptors in salmonids, the antiviral activity of PACAP has never been studied in teleost. Thus, in the present work, we investigated in vitro the influence of synthetic Clarias gariepinus PACAP-38 on the transcription of genes related to viral immunity using the rainbow trout monocyte/macrophage-like cell line RTS11 as a model. Positive transcriptional modulation of interferon gamma (IFNγ), interferon alpha (FNα1,2), interleukin 8 (IL-8), Mx and Toll-like receptor 3 (TLR3) genes was found in a dose and time dependent manner. We also explored how a pre-treatment with PACAP could enhance antiviral immune response using poly (I:C) as viral mimic. Interferons and IL-8 transcription levels were enhanced when PACAP was added 24 h previous to poly (I:C) exposure. With these evidences, we tested in vivo how PACAP administration by immersion bath affected the survival of rainbow trout fry to a challenge with viral hemorrhagic septicemia virus (VHSV). After challenge, PACAP-treated fish had increased survival compared to non-treated/challenge fish. Furthermore, PACAP was able to decrease the viral load in spleen/kidney and stimulate the transcription of IFNs and Mx when compared to untreated infected fish. Altogether, the results of this work provide valuable insights regarding the role of teleost PACAP in antiviral immunity and point to a potential application of this peptide to reduce the impact of viral infections in aquaculture.
Collapse
Affiliation(s)
- Janet Velázquez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Geysi Pérez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Shawna L Semple
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - María Del Camino Ordás
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Juana María Lugo
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain.
| | - Mario Pablo Estrada
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Yamila Carpio
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| |
Collapse
|
14
|
Wei P, Keller C, Li L. Neuropeptides in gut-brain axis and their influence on host immunity and stress. Comput Struct Biotechnol J 2020; 18:843-851. [PMID: 32322366 PMCID: PMC7160382 DOI: 10.1016/j.csbj.2020.02.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023] Open
Abstract
In recent decades, neuropeptides have been found to play a major role in communication along the gut-brain axis. Various neuropeptides are expressed in the central and peripheral nervous systems, where they facilitate the crosstalk between the nervous systems and other major body systems. In addition to being critical to communication from the brain in the nervous systems, neuropeptides actively regulate immune functions in the gut in both direct and indirect ways, allowing for communication between the immune and nervous systems. In this mini review, we discuss the role of several neuropeptides, including calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), corticotropin-releasing hormone (CRH) and phoenixin (PNX), in the gut-brain axis and summarize their functions in immunity and stress. We choose these neuropeptides to highlight the diversity of peptide communication in the gut-brain axis.
Collapse
Key Words
- ACTH, adrenocorticotrophic hormone
- Antimicrobial peptides
- CGRP, calcitonin gene-related peptide
- CNS, central nervous system
- CRH, corticotropin-releasing hormone
- CRLR, calcitonin receptor like receptor
- Gut-brain axis
- HPA axis, hypothalamic–pituitary–adrenal axis
- Hypothalamic–pituitary–adrenal axis
- Immunity
- LPS, lipopolysaccharides
- NPY, neuropeptide Y
- Neuropeptide
- PACAP, pituitary adenylate cyclase-activating polypeptide
- PNX, phoenixin
- RAMP1, receptor activity-modifying protein1
- SP, substance P
- Stress
- TRPV1, transient receptor potential vanilloid receptor-1
- VIP, vasoactive intestinal peptide
- α-MSH, α-melanocyte-stimulating hormone
Collapse
Affiliation(s)
- Pingli Wei
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Corresponding author at: School of Pharmacy & Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
15
|
Abdel-Shafi S, Osman A, Al-Mohammadi AR, Enan G, Kamal N, Sitohy M. Biochemical, biological characteristics and antibacterial activity of glycoprotein extracted from the epidermal mucus of African catfish (Clarias gariepinus). Int J Biol Macromol 2019; 138:773-780. [PMID: 31351952 DOI: 10.1016/j.ijbiomac.2019.07.150] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023]
Abstract
Catfish glycoprotein (CFG) was extracted from the cutaneous mucus of Egyptian catfish by ammonium sulphate precipitation and purified on gel filtration column (sephadex G-50). After purification, CFG produced one band on SDS-PAGE (22 kDa). Urea-PAGE and the pH-solubility of CFG indicated its positive charge (IEP 8). CFG contained 12 saccharides. FTIR spectrum shows 3 groups of bands at 1800-2900, 1100-1700 and 700-1100 cm-1. CFG exhibited antibacterial activity against 9 pathogenic bacteria with low MIC (50 μg/mL), where two Gram+ bacteria, i.e.; Streptococcus pyogenes (St. pyogenes) and Listeria ivanovii (L. ivanovii) were the most sensitive. The growth curves of the bacteria subjected to 1 MIC of CFG during 30 h showed general growth inhibition, particularly in case of Gram- bacteria such as E. coli. TEM images showed evidently reduced relative content of the intact cells and clear incurred cellular malformations. Combining CFG with specific antibiotic at equal ratios induced synergistic antibacterial actions, amounting to 40% of the mathematical sum of the combination. Substituting the antibiotic chloramphenicol with gradual increasing ratios of CFG of its starting concentration (30 μg/mL), produced proportionally bigger antibacterial actions against St. pyogenes growth and increasing synergistic effect up to 37% at 80% of CFG substitution.
Collapse
Affiliation(s)
- Seham Abdel-Shafi
- Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | | | - Gamal Enan
- Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Nehal Kamal
- Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
16
|
Semple SL, Rodríguez-Ramos T, Carpio Y, Lumsden JS, Estrada MP, Dixon B. PACAP Is Lethal to Flavobacterium psychrophilum Through Either Direct Membrane Permeabilization or Indirectly, by Priming the Immune Response in Rainbow Trout Macrophages. Front Immunol 2019; 10:926. [PMID: 31105711 PMCID: PMC6498415 DOI: 10.3389/fimmu.2019.00926] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/10/2019] [Indexed: 01/26/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide that is widely distributed in mammals and is capable of performing roles as a neurotransmitter, neuromodulator, and vasodilator. This polypeptide belongs to the glucagon/secretin superfamily, of which some members have been shown to act as antimicrobial peptides in both mammalian and aquatic organisms. In teleosts, PACAP has been demonstrated to have direct antimicrobial activity against several aquatic pathogens, yet this phenomenon has never been studied throughout a live bacterial challenge. The present study focuses on the influence of synthetic Clarias gariepinus 38 amino acid PACAP on the rainbow trout monocyte/macrophage-like cell line, RTS11, when exposed to the coldwater bacterial pathogen Flavobacterium psychrophilum. PACAP was shown to have direct antimicrobial activity on F. psychrophilum when grown in both cytophaga broth and cell culture media (L-15). Further, the ability of teleostean PACAP to permeabilize the membrane of an aquatic pathogen, F. psychrophilum, was demonstrated for the first time. The viability of RTS11 when exposed to PACAP was also observed using a trypan blue exclusion assay to determine optimal experimental doses of the antimicrobial peptide. This displayed that only concentrations higher than 0.1 μM negatively impacted RTS11 survival. Interestingly, when RTS11 was pre-treated with PACAP for 24 h before experiencing infection with live F. psychrophilum, growth of the pathogen was severely inhibited in a dose-dependent manner when compared to cells receiving no pre-treatment with the polypeptide. Relative expression of pro-inflammatory cytokines (IL-1β, TNFα, and IL-6) and PACAP receptors (VPAC1 and PAC1) was also analyzed in RTS11 following PACAP exposure alone and in conjunction with live F. psychrophilum challenge. These qRT-PCR findings revealed that PACAP may have a synergistic effect on RTS11 immune function. The results of this study provide evidence that PACAP has immunostimulatory activity on rainbow trout immune cells as well as antimicrobial activity against aquatic bacterial pathogens such as F. psychrophilum. As there are numerous pathogens that plague the aquaculture industry, PACAP may stimulate the teleost immune system while also providing an efficacious alternative to antibiotic use.
Collapse
Affiliation(s)
- Shawna L Semple
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - John S Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Mario P Estrada
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|