1
|
Ren Z, Zheng Y, Liu J, Liu Z, Chen J, Liu H, Qi R, Ma H. Cadmium induces the secretion of SASP factors regulated by MAPK and NF-κB signaling pathways in HEK293 cells: A possible mechanism of acute kidney damage induced by cadmium. Toxicology 2025; 515:154166. [PMID: 40288561 DOI: 10.1016/j.tox.2025.154166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Cadmium (Cd) is a highly toxic environmental pollutant, which can accumulate in the kidney, induce cell damage and trigger inflammatory responses. However, the specific regulation mechanism of nephrotoxicity induced by Cd remains unclear. This study was conducted to investigate the toxic effects of Cd on human embryonic kidney 293 (HEK293) cells and explore its potential mechanisms. Cell viability was assessed with MTT assay. Reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were evaluated through DCFH-DA staining and Rhodamine staining. Apoptosis was detected with Hoechst 33258 staining. The expression of the DNA damage biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) was detected with the 8-OHdG ELISA kit. Senescence-associated secretory phenotype (SASP) factors and signaling pathways were analyzed by Western blot. The results showed that Cd exposure could induce oxidative stress and cellular inflammation. It could also impair MMP, contribute to cell apoptosis and activate MAPK and NF-κB signaling pathways. Finally, exposure to Cd triggered DNA damage and SASP production. However, NF-κB inhibitor BAY11-7082 and antioxidant NAC could inhibit these effects by suppressing NF-κB and MAPK signaling pathways. The present study revealed the specific mechanisms of Cd toxicity in HEK293 cells and provided useful information for elucidating the nephrotoxicity of Cd.
Collapse
Affiliation(s)
- Ziqi Ren
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang 110036, P.R. China
| | - Yuanchen Zheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang 110036, P.R. China
| | - Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang 110036, P.R. China.
| | - Zhicun Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang 110036, P.R. China
| | - Jiahe Chen
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang 110036, P.R. China
| | - Haotian Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang 110036, P.R. China
| | - Ruiquan Qi
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang 110036, P.R. China
| | - Huiping Ma
- Shenyang Women's and Children's Hospital, Center of Reproductive Medicine, Shenyang 110011, P.R. China.
| |
Collapse
|
2
|
Fuentes-Lopez K, Olivero-Verbel J, Caballero-Gallardo K. Presence of Nematodes, Mercury Concentrations, and Liver Pathology in Carnivorous Freshwater Fish from La Mojana, Sucre, Colombia: Assessing Fish Health and Potential Human Health Risks. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 88:189-209. [PMID: 39976684 PMCID: PMC11870952 DOI: 10.1007/s00244-025-01117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/24/2025] [Indexed: 03/03/2025]
Abstract
Fish provide high-quality protein and essential nutrients. However, environmental pollution can lead to the accumulation of toxic substances such as mercury (Hg), with known negative impacts on human consumers. The aim of this study was to assess fish health and potential human health risks by analyzing the presence of nematodes, Hg concentrations, and liver pathology in freshwater fish from La Mojana, Colombia. For this purpose, 326 specimens were collected. Parasitic infection was evaluated using parasitological indices. Total Hg (T-Hg) was quantified using a direct mercury analyzer. Liver pathology was assessed through histopathological examination. Risk-based fish consumption limits were established by calculating the hazard quotient (HQ) and safe consumption limits. The overall prevalence and abundance of nematodes (Contracaecum sp.) were 46% and 2.72 ± 0.47 parasites/fish, respectively. Sternopygus macrurus exhibited the highest prevalence (100%) and parasite abundance (13.5 parasites/fish) during the rainy season, whereas Hoplias malabaricus demonstrated the greatest prevalence (100%) and abundance (14.8 parasites/fish) in the dry season. The average T-Hg was 0.31 ± 0.01 µg/g ww. During the rainy season, S. macrurus had the highest T-Hg levels (0.46 ± 0.08 µg/g ww); in the dry season, Cynopotamus magdalenae showed the highest T-Hg concentration (0.54 ± 0.03 µg/g ww). Significant positive relationships were recorded between T-Hg and parasite abundance, while these were negative with the condition factor. All specimens exhibited hepatic alterations. The HQ and Hg values suggest potential health risks from frequent fish consumption, especially in fish-dependent communities. These findings highlight the need for precautionary measures by health and environmental authorities to safeguard human and ecosystem health.
Collapse
Affiliation(s)
- Katerin Fuentes-Lopez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia.
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia.
| |
Collapse
|
3
|
Kumari P, Nanda KP, Firdaus H. Adverse effects of cadmium on lymphoid organs, immune cells, and immunological responses. J Appl Toxicol 2025; 45:159-173. [PMID: 39044417 DOI: 10.1002/jat.4675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
Humans and animals possess robust immune systems to safeguard against foreign pathogens. However, recent reports suggest a greater incidence of immunity breakdown due to exposure to environmental pollutants, with heavy metals emerging as potential candidates in such immuno-toxicological studies. While we have extensive data on the general toxicity resulting from exposure to heavy metals, comprehensive documentation of their role as immune disruptors remains scarce. Cd (Cadmium) exerts immunomodulation by interfering with immune organs and cells, leading to altered structure, physiology, and function, thereby inducing symptoms of immune deregulation, inflammation and/or autoimmunity. This review aims to summarize the link between Cd exposure and immune dysfunction, drawing from case studies on exposed human subjects, as well as research conducted on various model organisms and in-vitro culture systems.
Collapse
Affiliation(s)
- Priyanka Kumari
- Department of Life Sciences, Central University of Jharkhand, Cheri-Manatu Campus, Kanke, Ranchi, Jharkhand, India
| | - Kumari Pragati Nanda
- Department of Life Sciences, Central University of Jharkhand, Cheri-Manatu Campus, Kanke, Ranchi, Jharkhand, India
| | - Hena Firdaus
- Department of Life Sciences, Central University of Jharkhand, Cheri-Manatu Campus, Kanke, Ranchi, Jharkhand, India
| |
Collapse
|
4
|
Yu YB, Lee JW, Jo AH, Choi YJ, Choi CY, Kang JC, Kim JH. Toxic Effects of Cadmium Exposure on Hematological and Plasma Biochemical Parameters in Fish: A Review. TOXICS 2024; 12:699. [PMID: 39453119 PMCID: PMC11510934 DOI: 10.3390/toxics12100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Cadmium (Cd) is a non-essential trace element that poses significant toxic effects on fish. This review focuses on hematological and plasma biochemical parameters as key indicators of fish health under Cd exposure. Hematological parameters, such as red blood cell (RBC) count, hemoglobin (Hb) concentration, and hematocrit (Ht), were selected for their critical role in oxygen transport and their sensitivity to Cd-induced disruptions, which often result in anemia and impaired oxygen delivery to tissues. Mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) provide further insights into erythropoiesis and hemoglobin synthesis, both of which are essential for assessing Cd toxicity. Plasma biochemical parameters, including calcium, magnesium, glucose, cholesterol, total protein, and liver enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP), are crucial for understanding ionic balance, metabolic regulation, and organ function, especially in fish exposed to Cd. These biomarkers offer a comprehensive view of the physiological stress and organ damage caused by Cd toxicity. This review synthesizes literature findings on the toxic effects of Cd on these parameters. It also discusses potential mitigation strategies, including dietary supplementation with antioxidants and trace elements, to counteract the harmful effects of Cd exposure.
Collapse
Affiliation(s)
- Young-Bin Yu
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea
| | - Ju-Wook Lee
- Incheon Regional Office of National Fishery Products Quality Management Service, Incheon 22346, Republic of Korea
| | - A-Hyun Jo
- Department of Aquatic Life Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Young Jae Choi
- Inland Fisheries Research Institute, National Institute of Fisheries Science, Geumsan 312844, Republic of Korea
| | - Cheol Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea
| | - Jun-Hwan Kim
- Department of Aquatic Life Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
5
|
Panigrahi AK, Pal PK, Sarkar Paria D. Melatonin as an Ameliorative Agent Against Cadmium- and Lead-Induced Toxicity in Fish: an Overview. Appl Biochem Biotechnol 2024; 196:5790-5820. [PMID: 38224395 DOI: 10.1007/s12010-023-04723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 01/16/2024]
Abstract
Diverse anthropogenic activities and lack of knowledge on its consequences have promoted serious heavy metal contaminations in different aquatic systems throughout the globe. The non-biodegradable nature of most of these toxic heavy metals has increased the concern on their possible bioaccumulation in aquatic organisms as well as in other vertebrates. Among these aquatic species, fish are most sensitive to such contaminated water that not only decreases their chance of survivability in the nature but also increases the probability of biomagnifications of these heavy metals in higher order food chain. After entering the fish body, heavy metals induce detrimental changes in different vital organs by impairing multiple physiological and biochemical pathways that are essential for the species. Such alterations may include tissue damage, induction of oxidative stress, immune-suppression, endocrine disorders, uncontrolled cell proliferation, DNA damage, and even apoptosis. Although uncountable reports have explored the toxic effects of different heavy metals in diverse fish species, but surprisingly, only a few attempts have been made to ameliorate such toxic effects. Since, oxidative stress seems to be the underlying common factor in such heavy metal-induced toxicity, therefore, a potent and endogenous antioxidant with no side effect may be an appropriate therapeutic solution. Apart from summarizing the toxic effects of two important toxicants, i.e., cadmium and lead in fish, the novelty of the present treatise lies in its arguments in favor of using melatonin, an endogenous free radical scavenger and indirect antioxidant, in ameliorating the toxic effects of heavy metals in any fish species.
Collapse
Affiliation(s)
- Ashis Kumar Panigrahi
- The University of Burdwan, Burdwan, West Bengal, 713104, India
- Eco-toxicology, Fisheries & Aquaculture Extension Laboratory, Department of Zoology, University of Kalyani, Kalyani, West Beng, al-741235, India
| | - Palash Kumar Pal
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Dipanwita Sarkar Paria
- Department of Zoology, Chandernagore College, The University of Burdwan, Chandernagore, West Beng, al-712136, India.
| |
Collapse
|
6
|
Giri SS, Kim HJ, Jung WJ, Bin Lee S, Joo SJ, Gupta SK, Park SC. Probiotics in addressing heavy metal toxicities in fish farming: Current progress and perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116755. [PMID: 39053044 DOI: 10.1016/j.ecoenv.2024.116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Heavy metal contamination of aquatic environments adversely affects the health of aquatic organisms and consumption of fish contaminated with heavy metals poses serious health risks to humans. Among various strategies, probiotics (living microorganisms known to have beneficial effects on the host), which have been extensively applied in the aquaculture industry, could be helpful for heavy metal detoxification and remediation. Several probiotics, including Lactobacillus strains, exhibit heavy metal binding, high heavy metal tolerance, and other beneficial characteristics for the host. Notably, numerous probiotics have been reported to bind heavy metals and excrete them from the host. Various probiotic strains (Lactobacillus, Bacillus, Lactococcus, etc.) show beneficial effects in alleviating heavy metal toxicity in cultured fish species. Certain probiotic bacteria reduce the absorption and bioavailability of heavy metals by enhancing heavy metal detoxification and sequestration while preserving gut barrier function. This review summarises the toxic effects of selected heavy metals on the health of farmed fish and discusses the role of probiotic strains in remediating the consequential exposure-induced immune toxicity and oxidative stress. Moreover, we discussed the protective strategies of probiotics against heavy metal accumulation in various tissues and gut dysbiosis in fish to alleviate heavy metal toxicity in fish farming, thereby promoting a sustainable blue economy worldwide.
Collapse
Affiliation(s)
- Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea.
| | - Hyoun Joong Kim
- Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University, Gunsan 54150, South Korea
| | - Won Joon Jung
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Su Jin Joo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Sanjay Kumar Gupta
- ICAR, Indian Institute of Agricultural Biotechnology, Ranchi 834003, India.
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
7
|
Zhang Q, Xie Y, Tang J, Meng L, Huang E, Liu D, Tong T, Liu Y, Guo Z. Effects of Dietary Chitosan on Growth Performance, Serum Biochemical Indices, Antioxidant Capacity, and Immune Response of Juvenile Tilapia ( Oreochromis niloticus) under Cadmium Stress. Animals (Basel) 2024; 14:2259. [PMID: 39123784 PMCID: PMC11311066 DOI: 10.3390/ani14152259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The objective of this study was to examine the effects of varying levels of dietary chitosan supplementation on mitigating cadmium stress and its influence on growth performance, serum biochemical indices, antioxidant capacity, immune response, inflammatory response, and the expression of related genes in juvenile Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus). Five groups of juvenile tilapias (initial body weight 21.21 ± 0.24 g) were fed five diets with different levels (0%, 0.5%, 1.0%, 1.5%, and 2.0%) of chitosan supplementation for 60 days under cadmium stress (0.2 mg/L Cd2+). The findings indicated that, compared with the 0% chitosan group, dietary chitosan could significantly increase (p < 0.05) the final weight (Wf), weight gain rate (WGR), specific growth rate (SGR), daily growth index (DGI), and condition factor (CF), while the feed conversion ratio (FCR) expressed the opposite trend in juvenile GIFT. Dietary chitosan could significantly increase (p < 0.05) the activities (contents) of cholinesterase (CHE), albumin (ALB), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), acid phosphatase (ACP), and lysozyme (LZM), while glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), and complement 3 (C3) in the serum of juvenile GIFT expressed the opposite trend. Dietary chitosan could significantly increase (p < 0.05) the activities of superoxide dismutase (SOD) and catalase (CAT) and significantly decrease (p < 0.05) the activities (contents) of glutathione S-transferase (GST), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) in the serum of juvenile GIFT. Dietary chitosan could significantly increase (p < 0.05) the activities (contents) of CAT, GST, GSH-Px, and total antioxidant capacity (T-AOC) and significantly decrease (p < 0.05) the contents of MDA in the liver of juvenile GIFT. Dietary chitosan could significantly increase (p < 0.05) the activities (contents) of SOD, GSH-Px, T-AOC, Na+-K+-ATPase, and Ca2+-ATPase and significantly decrease (p < 0.05) the activities (contents) of CAT, GST, and MDA in the gills of juvenile GIFT. Dietary chitosan could significantly up-regulate (p < 0.05) the gene expression of cat, sod, gst, and gsh-px in the liver of juvenile GIFT. Dietary chitosan could significantly up-regulate (p < 0.05) the gene expression of interferon-γ (inf-γ) in the gills and spleen and significantly down-regulate (p < 0.05) the gene expression of inf-γ in the liver and head kidney of juvenile GIFT. Dietary chitosan could significantly down-regulate (p < 0.05) the gene expression of interleukin-6 (il-6), il-8, and tumor necrosis factor-α (tnf-α) in the liver, gills, head kidney, and spleen of juvenile GIFT. Dietary chitosan could significantly up-regulate (p < 0.05) the gene expression of il-10 in the liver, gills, head kidney, and spleen of juvenile GIFT. Dietary chitosan could significantly up-regulate (p < 0.05) the gene expression of transforming growth factor-β (tgf-β) in the liver and significantly down-regulate (p < 0.05) the gene expression of tgf-β in the head kidney and spleen of juvenile GIFT. In conclusion, dietary chitosan could mitigate the impact of cadmium stress on growth performance, serum biochemical indices, antioxidant capacity, immune response, inflammatory response, and related gene expression in juvenile GIFT. According to the analysis of second-order polynomial regression, it was found that the optimal dietary chitosan levels in juvenile GIFT was approximately 1.42% to 1.45%, based on its impact on Wf, WGR, SGR, and DGI.
Collapse
Affiliation(s)
- Qin Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (Y.X.); (J.T.); (L.M.); (E.H.); (D.L.); (T.T.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Yi Xie
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (Y.X.); (J.T.); (L.M.); (E.H.); (D.L.); (T.T.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Jiaqiong Tang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (Y.X.); (J.T.); (L.M.); (E.H.); (D.L.); (T.T.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Liuqing Meng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (Y.X.); (J.T.); (L.M.); (E.H.); (D.L.); (T.T.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Enhao Huang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (Y.X.); (J.T.); (L.M.); (E.H.); (D.L.); (T.T.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Dongsheng Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (Y.X.); (J.T.); (L.M.); (E.H.); (D.L.); (T.T.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Tong Tong
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (Y.X.); (J.T.); (L.M.); (E.H.); (D.L.); (T.T.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Yongqiang Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (Y.X.); (J.T.); (L.M.); (E.H.); (D.L.); (T.T.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Zhongbao Guo
- Guangxi Academy of Fishery Science, 8 Qingshan Road, Nanning 530021, China
| |
Collapse
|
8
|
Lucky IO, Aisuhuehien II, Adejoke ME. Renoprotective effect of hyperin against CdCl 2 prompted renal damage by activation of Nrf-2/Keap-1 ARE pathway in male mice. Toxicol Mech Methods 2024; 34:717-726. [PMID: 38468376 DOI: 10.1080/15376516.2024.2329655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVES This study explored the mitigating properties of hyperin (HYP) on renotoxicity induced by cadmium chloride (CdCl2). METHODS Four groups of seven male albino mice each were used in this experiment. Group 1 served as the control, receiving no treatment. Group 2 received daily oral gavage of CdCl2 at 0.3 mg/kg body weight for 28 d. Group 3 received both CdCl2 (0.3 mg/kg) and HYP (100 mg/kg) daily using the same administration method. Finally, Group 4 received only HYP (100 mg/kg) daily. RESULTS Cd exposure significantly increased kidney dysfunction markers (blood urea nitrogen and creatinine) and oxidative stress (reactive oxygen species [ROS] and malondialdehyde [MDA]). Conversely, it decreased antioxidant enzyme activities (glutathione peroxidase (GPx] and catalase [CAT]) and glutathione (GSH) levels. Nuclear factor erythroid 2-related factor 2 (Nrf-2) and antioxidant gene expression decreased, while Kelch-like ECH-associated protein 1 expression increased. Additionally, Cd exposure increased inflammatory mediators (nuclear factor kappa B, tumor necrosis factor alpha [TNF-α], interleukin-1β [IL-1β], and cyclooxygenase-2) and apoptotic markers (Bax and caspase-3), alongside decreased Bcl-2 expression and renal tissue abnormalities. Mitochondrial dysfunction manifested with diminished activities of Krebs cycle and respiratory chain enzymes, and reduced mitochondrial membrane potential. Co-treatment with HYP significantly attenuated these detrimental effects through its anti-apoptotic, antioxidant, and anti-inflammatory properties. CONCLUSION HYP co-treatment significantly attenuated CdCl2-induced renal damage in mice, suggesting its potential as a protective agent against Cd-induced kidney toxicity.
Collapse
Affiliation(s)
- Iserhienrhien O Lucky
- Department of Biochemistry, College of Basic Medical Sciences, Edo State University, Uzairue, Nigeria
| | - Iyoha I Aisuhuehien
- Department of Biological Sciences, College of Science and Computing, Wellspring University, Benin, Nigeria
| | - Memudu E Adejoke
- Department of Anatomy, College of Basic Medical Sciences, Edo State University, Uzairue, Nigeria
| |
Collapse
|
9
|
Imade O, Ilesanmi BV, Ogunwole GO, Elekofehinti OO, Souza MCO, Barbosa F, Adedire CO, Adeyemi JA. Effects of 2,4-dichlorophenol on non-specific immunity, histopathological lesions, and redox balance in African Catfish, clarias gariepinus (Burchell, 1822). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:480-495. [PMID: 38591921 DOI: 10.1080/15287394.2024.2339538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The toxic effects of 2, 4-dichlorophenol (2, 4-DCP) on aquatic organisms are well-established; however, the details regarding the mechanisms underlying the toxicity, especially immunotoxicity are poorly understood. Consequently, the aim of this study was to investigate the histopathologic, oxidative stress and immunotoxic effects attributed to exposure to sublethal concentrations of 2,4-DCP in the African catfish, Clarias gariepinus. Juvenile C. gariepinus were exposed to 0.4, 0.8, or 1.6 mg/L 2, 4-DCP for 28 days after which blood and head kidney were extracted for the determination of various nonspecific innate immune parameters while the liver was excised for histopathology examination and measurement of oxidative stress biomarkers. Control fish were maintained in water spiked 10 µL/L ethanol, representing the solvent control. A significant increase was noted in the activities of lactate dehydrogenase and superoxide dismutase as well as in levels of lipid peroxidation and DNA fragmentation in a dose-dependent manner, with higher adverse effects observed at the highest concentration tested (1.6 mg/L). The total white blood cells (WBC) count was significantly elevated in fish exposed to 2,4-DCP compared to control. Myeloperoxidase content was decreased significantly in fish exposed to 2,4-DCP especially at the highest concentration (1.6 mg/L) compared to controls. The respiratory burst activity did not differ markedly amongst groups. Histopathological lesions noted included edema, leucocyte infiltration, and depletion of hemopoietic tissue in the head kidney of exposed fish. There was significant upregulation in the mRNA expression of tumor necrosis factor (TNF-α) and heat shock protein 70 (HSP 70) but downregulation of major histocompatibility complex 2 (MHC 2) in exposed fish. Data demonstrated that exposure to 2,4-DCP resulted in histopathological lesions, oxidative stress, and compromised immune system in C. gariepinus.
Collapse
Affiliation(s)
- Osayimwen Imade
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure, Nigeria
| | - Bobola V Ilesanmi
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure, Nigeria
| | - Germaine O Ogunwole
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure, Nigeria
| | - Olusola O Elekofehinti
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, Nigeria
| | - Marília Cristina Oliveira Souza
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Chris O Adedire
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure, Nigeria
| | - Joseph A Adeyemi
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure, Nigeria
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Paschoalini AL, Ribeiro YM, Thuller B, Soares CLG, Rizzo E, Bazzoli N. Histopathology and changes in the expression of metallothioneins, heat shock proteins and inducible nitric oxide synthase in Prochilodus costatus from a neotropical river contaminated by heavy metals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104473. [PMID: 38759846 DOI: 10.1016/j.etap.2024.104473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
The most recent dam rupture in Brazil released tons of mining tailings into the upper course of the Paraopeba River, affecting this river in an unprecedented way. The present study aimed to evaluate the influence of heavy metals on Prochilodus costatus, an important commercial species in Brazil, four years after the dam colapse. To this end, biomarkers of heavy metals, oxidative stress, and environmental stress were analyzed, and histological analyses of target organs were performed. The results demonstrated critical contamination of fish from the Paraopeba River. Increased expression of Metallothioneins - MTs, Heat Shock Protein - HSP70, and inducible nitric oxide synthase - iNOS, as well as greater rates of histological changes in the liver, spleen, and gonads, were observed in P. costatus. These findings demonstrate that, despite past contamination, the metals present in mining tailings have significantly increased the contamination of the Paraopeba River basin.
Collapse
Affiliation(s)
- Alessandro Loureiro Paschoalini
- Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais 30535-610, Brazil.
| | - Yves Moreira Ribeiro
- Laboratório de Ictiohistologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais 30161-970, Brazil
| | - Breno Thuller
- Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais 30535-610, Brazil
| | - Camila Leandro Gomes Soares
- Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais 30535-610, Brazil
| | - Elizete Rizzo
- Laboratório de Ictiohistologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais 30161-970, Brazil
| | - Nilo Bazzoli
- Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais 30535-610, Brazil
| |
Collapse
|
11
|
Zhang Q, Xie Y, Zhang Y, Huang E, Meng L, Liu Y, Tong T. Effects of Dietary Supplementation with Chitosan on the Muscle Composition, Digestion, Lipid Metabolism, and Stress Resistance of Juvenile Tilapia ( Oreochromis niloticus) Exposed to Cadmium-Induced Stress. Animals (Basel) 2024; 14:541. [PMID: 38396509 PMCID: PMC10886040 DOI: 10.3390/ani14040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to investigate the effects of dietary chitosan supplementation on the muscle composition, digestion, lipid metabolism, and stress resistance, and their related gene expression, of juvenile tilapia (Oreochromis niloticus) subjected to cadmium (Cd2+) stress. Juvenile tilapia with an initial body weight of 21.21 ± 0.24 g were fed with a formulated feed containing five different levels (0%, 0.5%, 1.0%, 1.5%, and 2.0%) of chitosan for 60 days, while the water in all experimental groups contained a Cd2+ concentration of 0.2 mg/L. The results showed that, compared with the control group (0% chitosan), the contents of crude fat and crude protein in the muscle, the activities of lipase, trypsin, and amylase in the intestine, as well as the relative expression levels of metallothionein (mt), cytochrome P450 1A (cyp1a), carnitine palmitoyltransferase-1 (cpt-1), peroxisome proliferator-activated receptor alpha (pparα), peroxisome proliferator-activated receptor gamma (pparγ), hormone-sensitive lipase (hsl), lipoprotein lipase (lpl), malate dehydrogenase (mdh), leptin (lep), fatty acid synthase (fas), sterol regulatory element-binding protein 1 (srebp1), and stearoyl-CoA desaturase (scd) genes in the liver of juveniles were significantly increased (p < 0.05). In conclusion, dietary chitosan supplementation could alleviate the effects of Cd2+ stress on the muscle composition, digestive enzymes, lipid metabolism, and stress resistance, and their related gene expression, of juvenile tilapia, and to some extent reduce the toxic effect of Cd2+ stress on tilapia.
Collapse
Affiliation(s)
- Qin Zhang
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (Q.Z.); (Y.X.); (Y.Z.); (E.H.); (L.M.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530008, China
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Nanning 530008, China
| | - Yi Xie
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (Q.Z.); (Y.X.); (Y.Z.); (E.H.); (L.M.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530008, China
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Nanning 530008, China
| | - Yuanhui Zhang
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (Q.Z.); (Y.X.); (Y.Z.); (E.H.); (L.M.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530008, China
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Nanning 530008, China
| | - Enhao Huang
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (Q.Z.); (Y.X.); (Y.Z.); (E.H.); (L.M.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530008, China
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Nanning 530008, China
| | - Liuqing Meng
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (Q.Z.); (Y.X.); (Y.Z.); (E.H.); (L.M.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530008, China
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Nanning 530008, China
| | - Yongqiang Liu
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (Q.Z.); (Y.X.); (Y.Z.); (E.H.); (L.M.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530008, China
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Nanning 530008, China
| | - Tong Tong
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (Q.Z.); (Y.X.); (Y.Z.); (E.H.); (L.M.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530008, China
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Nanning 530008, China
| |
Collapse
|
12
|
Liu P, Wan Y, Zhang Z, Ji Q, Lian J, Yang C, Wang X, Qin B, Zhu L, Yu J. Toxic effects of combined exposure to cadmium and nitrate on intestinal morphology, immune response, and microbiota in juvenile Japanese flounder (Paralichthys olivaceus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106704. [PMID: 37813047 DOI: 10.1016/j.aquatox.2023.106704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Cadmium (Cd2+) and nitrate (NO3-) are important environmental pollutants in the offshore marine ecological environment. However, limited research has explored their combined effects, particularly regarding their impact on the microbiota and intestinal health of marine fish. In this study, juvenile Japanese flounders (P. olivaceus) were immersed in seawater samples with different combinations of Cd2+ (0, 0.2, and 2 mg/L) and NO3- (0 and 80 mg/L NO3N) for 30 days to explore their toxic impacts on intestinal morphology, tight junction (TJ) barrier, immune response, and microbiota. Our results showed that Cd2+ or NO3- exposure alone led to histopathological damage of the gut, while their co-exposure aggravated intestinal damage. Moreover, co-exposure substantially decreased TJ-related gene expression, including occludin, claudin-10, and ZO-2, suggesting increased TJ permeability in the gut. Regarding the immune response, we observed upregulated expression of immune-related markers such as HSP40, IL-1β, TNF-α, and MT, suggesting the onset of intestinal inflammation. Furthermore, Cd2+ and NO3- exposure led to changes in intestinal microflora, characterized by decreased the abundance of Sediminibacterium and NS3a_marine_group while increasing the prevalence of pathogens or opportunistic pathogens such as Ralstonia, Proteus, and Staphylococcus. This alteration in microbiota composition increased network complexity and α-diversity, ultimately causing dysbiosis in the fish gut. Additionally, combined exposure resulted in metabolic disorders that affected the predicted functions of the intestinal microbiota. Overall, our study demonstrates that Cd2+-NO3- co-exposure amplifies the deleterious effects compared to single exposure. These findings enhance our understanding of the ecological risks posed by Cd2+-NO3- co-exposure in marine ecosystems.
Collapse
Affiliation(s)
- Pengfei Liu
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yingying Wan
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ziyi Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qing Ji
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Lian
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chuanzheng Yang
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xingqiang Wang
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China
| | - Bo Qin
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Long Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China
| | - Jiachen Yu
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China.
| |
Collapse
|
13
|
Zhu Y, Chai XX, Zhao Y, Feng Q, Dong R, Shi MJ, Zhou J, Zhao Y, Peng J, Tian Y, Chen G, Luo C, Sheng J. Saturated fatty acids synergizes cadmium to induce macrophages M1 polarization and hepatic inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115040. [PMID: 37235898 DOI: 10.1016/j.ecoenv.2023.115040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Exposure to the toxic metal cadmium (Cd) is a well-established risk factor for hepatic inflammation, but it remains unclear how metabolic components, such as different fatty acids (FAs), interact with Cd to influence this process. Understanding these interactions is essential for identifying potential preventative and therapeutic targets for this disorder. To address this question, we conducted in vitro and in vivo studies to investigate the combinatorial effect of Cd and saturated FAs on hepatic inflammation. Specifically, we assessed the cytotoxicity of Cd on macrophages and their polarization and inflammatory activation upon co-exposure to Cd and saturated FAs. Our results showed that while saturated FAs had minimal impact on the cytotoxicity of Cd on macrophages, they significantly collaborated with Cd in predisposing macrophages towards a pro-inflammatory M1 polarization, thereby promoting inflammatory activation. This joint effect of Cd and saturated FAs resulted in persistent inflammation and hepatic steatohepatitis in vivo. In summary, our study identified macrophage polarization as a novel mechanism by which co-exposure to Cd and saturated lipids induces hepatic inflammation. Our findings suggest that intervening in macrophage polarization may be a potential approach for mitigating the adverse hepatic effects of Cd.
Collapse
Affiliation(s)
- Yi Zhu
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Xin Chai
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Zhao
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiao Feng
- Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Dong
- NHC Key Laboratory of Pulmonary Immunological Diseases (Guizhou Provincial People's Hospital), Guiyang, China
| | - Meng-Jie Shi
- MD-PhD Program, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiang Zhou
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yurong Zhao
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxuan Peng
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Youjia Tian
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangdi Chen
- Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Chi Luo
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jinghao Sheng
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Liu Y, Wang F, Guo H, Zhang D, Zhang X, Wu Z, Li H, Xian Y, Yue P, Yang M. Effect of molecular distillation on the anti-inflammatory activity and neurotoxicity of Asarum essential oil. Front Pharmacol 2023; 14:1196137. [PMID: 37284321 PMCID: PMC10239799 DOI: 10.3389/fphar.2023.1196137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
Asarum essential oil (AEO) has been shown to have good pharmacological activities for the anti-inflammatory and analgesic effects, but increasing the dose may cause toxicity. Therefore, we studied the toxic and pharmacodynamic components of AEO by molecular distillation (MD). Anti-inflammatory activity was assessed using RAW264.7 cells. Neurotoxicity was assessed in PC12 cells and the overall toxicity of AEO was evaluated in the mouse acute toxicity assay. The results showed that AEO is primarily composed of safrole, methyl eugenol, and 3,5-dimethoxytoluene. After MD, three fractions were obtained and contained different proportions of volatile compounds relative to the original oil. The heavy fraction had high concentrations of safrole and methyl eugenol, while the light fraction contained high concentrations of α-pinene and β- pinene. The original oil and all three fractions exhibited anti-inflammatory effects, but the light fraction demonstrated more excellent anti-inflammatory activity than the other fractions. Asarum virgin oil and MD products are all neurotoxic. The exposure of PC12 cells to high concentrations of AEO resulted in abnormal nuclei, an increased number of apoptotic cells, increased ROS formation, and decreased SOD levels. Moreover, the results of acute toxicity tests in mice revealed that the light fractions were less toxic than virgin oils and other fractions. In summary, the data suggest that the MD technology enables the enrichment and separation of essential oil components and contributes to the selection of safe concentrations of AEO.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fang Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - HuiWen Guo
- College of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Dingkun Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yang Xian
- College of Continuing Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
15
|
Choudhury C, Giri S, Mazumder R, Das R, Barhoi D, Sengupta M. Heavy metal bioaccumulation triggers oxystress, genotoxicity and immunomodulation in head kidney macrophages of Channa punctatus Bloch. ECOTOXICOLOGY (LONDON, ENGLAND) 2023:10.1007/s10646-023-02659-2. [PMID: 37173532 DOI: 10.1007/s10646-023-02659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Studies on heavy metal induced toxicity have been conducted in many water bodies across the globe and such effects have been evaluated in various fish species. The present study was designed to determine the load of some heavy metals in select sites in Southern Assam, India, along with estimating their concentration in tissues of Channa punctatus Bloch. inhabiting those niches. The effect of heavy metals in oxystress generation, genotoxicity and subsequent immune response in fish was also evaluated. In all of these sites, the concentration of Hg, Cd, Pb and Cr were above the permissible ranges while their concentrations were several folds higher in the piscine tissues due to bioaccumulation and possible biomagnification. Kidney showed the highest metal pollution index followed by liver and gills. Generation of ROS was significantly elevated and that in turn triggered oxystress, as is evident from enhanced lipid peroxidation, protein carbonylation and respiratory burst activity. These were in association with the compromised antioxidant enzyme levels with concomitant damage to DNA as evident from Comet parameters. The innate immune potential was significantly impaired as evident from the compromised cell adhesion, phagocytosis, intracellular killing activity in head kidney macrophages (HKM) along with decreased release of nitric oxide (NO) and myeloperoxidase (MPO). Immunosuppression was further validated at protein levels where compromised release of cytokines viz. TNF-α, IL-1β, IL-6, IL-10 and IL-12 and cell signaling molecules iNOS and NF-κβ were noted. Thus the present study indicates genotoxicity along with a compromise in immune status of Channa punctatus Bloch. living in a habitat laden with heavy metals.
Collapse
Affiliation(s)
- Chohelee Choudhury
- Immunobiology and Nanobiotechnology Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, 788011, India
| | - Sarbani Giri
- Laboratory of Molecular and Cell Biology, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Ritwik Mazumder
- Department of Economics, Assam University, Silchar, Assam, 788011, India
| | - Rajkamal Das
- Immunobiology and Nanobiotechnology Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, 788011, India
| | - Dharmeswar Barhoi
- Laboratory of Molecular and Cell Biology, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Mahuya Sengupta
- Immunobiology and Nanobiotechnology Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
16
|
Huang J, Zhang Y, Lin T, Yin H, Pan Y, Zhu M, Zhang M. A cell-permeable peptide inhibitor of p55PIK signaling alleviates suture-induced corneal neovascularization and inflammation. Heliyon 2023; 9:e14869. [PMID: 37095989 PMCID: PMC10121607 DOI: 10.1016/j.heliyon.2023.e14869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
To prepare an ophthalmic solution with a cell-permeable TAT peptide (TAT-N24) as the main cell-permeable peptide inhibitor of p55PIK signaling and observe its therapeutic effect on suture-induced corneal neovascularization (CNV) in rats. Sprague-Dawley rats were used to establish a corneal suture (CS) model of CNV. The vehicle and 0.9% TAT-N24 ophthalmic solution was topically administered. CNV induction was assessed on the basis of the clinical performance of each group. Hematoxylin-eosin staining was used to observe pathological changes, and immunohistochemical staining and confocal immunofluorescence were used to determine the localization of factors associated with corneal tissue. The mRNA expression levels of hypoxia-inducible factor (HIF-1α), vascular endothelial growth factor (VEGF-A), nuclear transcription factor κB (NF-κB p65), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and interleukin (IL)-6 were determined using real-time quantitative polymerase chain reaction. Western blotting was performed to detect the protein expression levels of HIF-1α and NF-κB p65. TAT-N24 slowed CNV production and reduced the expression of HIF-1α and inflammatory factors in CS models. The mRNA levels of HIF-1α, VEGF-A, NF-kB, TNF-α, IL-1β, and IL-6 significantly decreased. Moreover, the protein levels of HIF-1α and NF-κB p65 were significantly decreased. TAT-N24 can treat CNV and ocular inflammation by inhibiting the HIF-1α/NF-κB signaling pathway in CS. In the early treatment of corneal foreign body trauma, topical application of TAT-N24 can not only reduce the inflammatory response but also inhibit corneal neovascularization.
Collapse
|
17
|
Omar UM, Elmorsy EM, Al-Ghafari AB. Mitochondrial disruption in isolated human monocytes: an underlying mechanism for cadmium-induced immunotoxicity. J Immunotoxicol 2022; 19:81-92. [PMID: 36067115 DOI: 10.1080/1547691x.2022.2113840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cadmium (Cd) is an immunotoxic metal frequently found in the environment. The in vitro study undertaken here evaluated the immunotoxic effects of Cd in isolated human peripheral blood monocytes (hPBM). The results of the studies of exposures to varying doses of Cd (0, 0.1, 1, 10, and 100 µM, as cadmium dichloride [CdCl2]) for 3, 6, 12, 24, 48, and 72 hr showed the test agent was cytotoxic to the cells in time- and concentration-related manners. Thereafter, using only those doses found to not cause extreme cell lethality a 48-hr period, the impact of 0.1 or 1 µM CdCl2 on the cells was evaluated. Functionally, CdCl2 treatment led to time- and concentration-related decreases in hPBM phagocytic activities as well as in the ability of the cells to form/release cytokines (including tumor necrosis factor [TNF]-α and interleukin [IL]-6 and -8). The CdCl2 also led to significantly decreased ATP production (in part, via inhibition of mitochondrial complexes I and III) as well as in mitochondrial membrane potentials (MMP) and oxygen consumption rates (OCR; associated with parallel increases in cell lactate production) in the cells. In addition, CdCl2 treatment resulted in significant increases in mitochondrial membrane fluidity (MMF) and cell unsaturated fatty acid content. Based on the results here, one might conclude that some of the effects that arose during the CdCl2-induced dysfunction of the isolated hPBM (i.e. changes phagocytic activity, cytokine formation/secretion) could have evolved secondary to CdCl2-induced disruptions of hPBM cell bioenergetics - an effect that itself was a culmination of an overall toxicity from CdCl2 upon the mitochondria within these cells.
Collapse
Affiliation(s)
- Ulfat M Omar
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ekramy M Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Pathology Department, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Ayat B Al-Ghafari
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Research Center, Dar Al-Hekma University, Jeddah, Saudi Arabia
| |
Collapse
|
18
|
Liu Y, Chen Q, Li Y, Bi L, Jin L, Peng R. Toxic Effects of Cadmium on Fish. TOXICS 2022; 10:622. [PMID: 36287901 PMCID: PMC9608472 DOI: 10.3390/toxics10100622] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Large amounts of enriched cadmium (Cd) in the environment seriously threatens the healthy and sustainable development of the aquaculture industry and greatly restricts the development of the food processing industry. Studying the distribution and toxic effects of Cd in fish, as well as the possible toxic effects of Cd on the human body, is very significant. A large number of studies have shown that the accumulation and distribution of Cd in fish are biologically specific, cause tissue differences, and seriously damage the integrity of tissue structure and function, the antioxidant defense system, the reproductive regulation system, and the immune system. The physiological, biochemical, enzyme, molecular, and gene expression levels change with different concentrations and times of Cd exposure, and these changes are closely related to the target sites of Cd action and tissues in fish. Therefore, the toxic effects of Cd on fish occur with multiple tissues, systems, and levels.
Collapse
|
19
|
Yang L, Zeng J, Gao N, Zhu L, Feng J. Elucidating the Differences in Metal Toxicity by Quantitative Adverse Outcome Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13233-13244. [PMID: 36083827 DOI: 10.1021/acs.est.2c03828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Numerous studies have reported that the toxicity differences among metals are widespread; however, little is known about the mechanism of differences in metal toxicity to aquatic organisms due to the lack of quantitative understanding of their adverse outcome pathway. Here, we investigated the effects of Cd and Cu on bioaccumulation, gene expression, physiological responses, and apical effects in zebrafish larvae. RNA sequencing was conducted to provide supplementary mechanistic information for the effects of Cd and Cu exposure. On this basis, we proposed a quantitative adverse outcome pathway (qAOP) suitable for metal risk assessment of aquatic organisms. Our work provides a mechanistic explanation for the differences in metal toxicity where the strong bioaccumulation of Cu enables the newly accumulated Cu to reach the threshold that causes different adverse effects faster than Cd in zebrafish larvae, resulting in a higher toxicity of Cu than that of Cd. Furthermore, we proposed a parameter CIT/BCF (the ratio of internal threshold concentration and bioaccumulation factor) that helps to understand the toxicity differences by combining the information of bioaccumulation and internal threshold of adverse effects. This work demonstrated that qAOP is an effective quantitative tool for understanding the toxicity mechanism and highlight the importance of toxicokinetics and toxicodynamics at different biological levels in determining the metal toxicity.
Collapse
Affiliation(s)
- Lanpeng Yang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Jing Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410004, P. R. China
| | - Ning Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
20
|
Lan W, Wang X, Kong X, Nie C. In‐depth study of the heme‐binding ability to five heavy metals: Hg, Cd, Pb, Cr, and As. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenbo Lan
- School of Public Health Xiangnan University Chenzhou Hunan China
| | - Xiaofeng Wang
- School of Public Health Xiangnan University Chenzhou Hunan China
| | - Xianghe Kong
- School of Chemistry and Chemical Engineering University of South China Hengyang China
| | - Changming Nie
- School of Chemistry and Chemical Engineering University of South China Hengyang China
| |
Collapse
|
21
|
Gu Y, Chen K, Xi B, Xie J, Bing X. Protective effects of paeonol against lipopolysaccharide-induced liver oxidative stress and inflammation in gibel carp (Carassius auratus gibelio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109339. [PMID: 35378299 DOI: 10.1016/j.cbpc.2022.109339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Paeonol (2'-hydroxy-4'-methoxyacetophenone) is a phenol that exhibits antioxidant and anti-inflammatory capabilities. In this study, the underlying mechanism of paeonol against LPS-induced oxidative stress and inflammatory responses in gibel carp was investigated. Three hundred healthy gibel carp were divided into five groups (n = 9), intraperitoneally injected with LPS and thereafter treated with paeonol (16 mg/kg and 64 mg/kg). Fish were anesthetized with MS-222 (100 mg/L), and samples were collected at 72 h to investigate plasma biochemical indexes, liver histopathology, antioxidant enzymatic activity, and TLR receptor-related gene expression. Fish injected with LPS (20 mg/kg) exhibited significantly increased plasma aminotransferase (ALT), aminotransferase (AST), lactate dehydrogenase (LDH), glucose (GLU), diamine oxidase (DAO), and alkaline phosphatase (ALP) levels (P < 0.05). In addition, LPS challenge significantly enhanced myeloperoxidase (MPO) and malondialdehyde (MDA) contents, whereas those of catalase (CAT) and glutathione peroxidase (GSH-Px) decreased (P < 0.05). However, treatment with paeonol attenuated these LPS-induced changes (P < 0.05). The mRNA expression of TLR4, TIRAP, MyD88, TRAF6, NF-κB, TNF-α, IL-1β, and IL-8, which were activated by LPS challenge (P < 0.05), were downregulated by paeonol. Additionally, histopathological examination demonstrated that paeonol alleviates LPS-induced hepatic tissue lesions in fish. Taken together, the results suggest that paeonol mitigates LPS-induced liver oxidative stress and inflammation in gibel carp.
Collapse
Affiliation(s)
- Yipeng Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Kai Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Xuwen Bing
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
22
|
Li Y, Liu H, He J, Shen X, Zhao K, Wang Y. The Effects of Oral Administration of Molybdenum Fertilizers on Immune Function of Nanjiang Brown Goat Grazing on Natural Pastures Contaminated by Mixed Heavy Metal. Biol Trace Elem Res 2022; 200:2750-2757. [PMID: 34482497 DOI: 10.1007/s12011-021-02901-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022]
Abstract
Mineral development and metal smelting seriously polluted the surrounding groundwater and soil, threatening human health through the food chain. To investigate the effects of different sources of molybdenum (Mo) fertilizers on immune function of Nanjiang brown goats grazing on natural pastures under compound pollutions, fertilizing experiment was carried out in Liangshan Yi Nationality Prefecture of the Western Sichuan Plateau, China. Eighteen square hectometers of polluted meadows were fenced and were randomly divided into three groups (3 replications/group and 2 hm2/replication). A total of 54 healthy Nanjiang brown goats with an average BW of 31.6 ± 1.5 kg (1 year old) were used to this 30-day test (18 goats per group). The goats from CON group, AM group, and PM group were orally supplemented with deionized water, 15 mg Mo/BW·d (ammonium molybdate tetrahydrate), and 15 mg Mo/BW·d (potassium molybdate), respectively. Compared to CON group, the serum Fe content of grazing animals from AM group and PM group was 10.05% and 3.45% higher (P < 0.05), and the serum Cu content of grazing animals from AM group and PM group was 69.05% and 67.86% lower, respectively (P < 0.05). Mo fertilization significantly increased the levels of blood Hb, RBC, and PCV, and the activities of serum SOD, GSH-Px, CAT, and Cp of grazing goats (P < 0.05), and also extremely decreased the MDA content of experimental goats fed Mo compared to the control goats (P < 0.05). Compared to CON group, the activities of serum IgG, IgA, IgM, IL-2, and TNF-α of grazing animals from AM group and PM group were significantly increased (P < 0.05), and the levels of serum IL-6 and IL-1β of grazing goats from AM group and PM group were extremely decreased (P < 0.05). In summary, oral Mo fertilizers can alter the contents of serum mineral elements, reduce oxidative stress, improve immune function, and relieve the toxic damage of goats grazing on contaminated natural grasslands.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Swine Research Institute, Tie Qi Li Shi Group Co., Mianyang, 621006, China
| | - Hongwei Liu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jian He
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xiaoyun Shen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China.
| | - Kui Zhao
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, 550025, China
| | - Yachao Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
23
|
Chen J, Dong Z, Lei Y, Yang Y, Guo Z, Ye J. β-glucan mitigation on toxicological effects in monocytes/macrophages of Nile tilapia (Oreochromis niloticus) following copper exposure. FISH & SHELLFISH IMMUNOLOGY 2022; 121:124-134. [PMID: 34998984 DOI: 10.1016/j.fsi.2022.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The protective effect of β-glucan against toxicological effects caused by copper oxide nanoparticles (Cu NPs) and copper ions (Cu ions) were studied in monocytes/macrophages (MO/MФ) of Nile tilapia (Oreochromis niloticus). Our results demonstrated that CuO NPs and Cu ions exposure aroused strong oxidative lesion in MO/MФ by detection of cellular reactive oxygen species (ROS) and reduced glutathione (GSH), as well as identification of several antioxidant-related cytokines. Meanwhile, the serious pro-inflammatory responses were accompanied during the processes of oxidative lesion by TNFα, IL-1β, and IL-6 genes validation. Copper induced MO/MФ underwent apoptosis through mitochondrial signaling pathway by mitochondrial membrane potential (ΔΨm) detection and Bax, Bcl-2, Cyt-c, Apaf-1, Caspase 9, Caspase 3 genes validation. Furthermore, the phagocytic abilities were inhibition in MO/MФ by evaluation of microspheres (0.5 and 1.0 μm beads) and bioparticles (S. agalactiae and A. hydrophila) uptake and LPS-induced NO production. However, β-glucan might participate in immunomodulation through C-type lectin receptor (CLR) and complement receptor 3 (CR3) to suppress pro-inflammatory responses, thereby revered all the copper induced aforementioned adverse effects in MO/MΦ. Taken together, our results provide insights on the mechanisms through β-glucan administration to mitigate toxicological effects of CuO NPs and Cu ions exposure to the MO/MΦ, which will benefit aspects related to fish farming and aquaculture production.
Collapse
Affiliation(s)
- Jianlin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China
| | - Zijiong Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China
| | - Yang Lei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China
| | - Yanjian Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China
| | - Zheng Guo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China.
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China.
| |
Collapse
|
24
|
Harikrishnan R, Devi G, Van Doan H, Vijay S, Balasundaram C, Ringø E, Hoseinifar SH, Jaturasithaf S. Dietary plant pigment on blood-digestive physiology, antioxidant-immune response, and inflammatory gene transcriptional regulation in spotted snakehead (Channa punctata) infected with Pseudomonas aeruginosa. FISH & SHELLFISH IMMUNOLOGY 2022; 120:716-736. [PMID: 34968713 DOI: 10.1016/j.fsi.2021.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The current study addressed to investigate the effect of lycopene (LYC) on blood physiology, digestive-antioxidant enzyme activity, specific-nonspecific immune response, and inflammatory gene transcriptional regulation (cytokines, heat shock proteins, vitellogenins) in spotted snakehead (Channa punctata) against Pseudomonas aeruginosa. In unchallenged and challenged fish treated with 200 mg LYC enriched diet the growth performance and digestive-antioxidant enzymes increased after 30 days, whereas with inclusion of 100 or 400 mg LYC in the diets, the increase manifested on or after 45 days. No mortality in fish treated with any LYC diet against P. aeruginosa was revealed. In the unchallenged and challenged fish the phagocytic (PC) activity in head kidney (HK) and spleen were significantly enhanced when fed the control diet or other LYC diets, whereas the respiratory burst (RB) activity and nitric oxide (NO) production significantly increased when fed the 200 mg diet for 45 and 60 days. Similarly, the lysozyme (Lyz) activity in the HK and spleen, and total Ig content in serum were significantly higher in both groups fed the 200 mg LYC diet for 15, 45, and 60 days. Heat shock protein (Hsp 70) was significantly improved in the uninfected group fed the 200 mg LYC diet for 45 and 60 days, but Hsp27 did not significantly change among the experimental groups at any time points. TNF-α and IL-6 mRNA pro-inflammatory cytokine expression significantly increased in both groups fed the 200 mg LYC diet after 45 and 60 days, while the IL-12 mRNA expression was moderate in both groups fed the same diet for 60 days. The IL-10 did not significant mRNA expression between groups at any sampling. The iNOS and NF-κB mRNA expression was pointedly high in both groups fed the 200 mg LYC diet on day 45 and 60. Vitellogenin A (VgA) mRNA was significantly higher in the uninfected fish fed the 100 and 200 mg LYC diets for 45 and 60 days, but VgB did not reveal significant difference between the treatment groups at any time points. The present results suggest that supplementation of LYC at 200 mg significantly modulate the blood physiology, digestive-antioxidant enzymes, specific-nonspecific immune parameters, and cytokines, Hsp, and vitellogenins in spotted snakehead against P. aeruginosa.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd, Suthep, Muang, Chiang Mai, 50200, Thailand.
| | - S Vijay
- Department of Biotechnology, Bharath College of Science and Management, Thanjavur, 613-005, Tamil Nadu, India
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT, The Arctic University of Norway, Tromsø, 9037, Norway
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Sanchai Jaturasithaf
- Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd, Suthep, Muang, Chiang Mai, 50200, Thailand
| |
Collapse
|
25
|
Wang Z, Sun Y, Yao W, Ba Q, Wang H. Effects of Cadmium Exposure on the Immune System and Immunoregulation. Front Immunol 2021; 12:695484. [PMID: 34354707 PMCID: PMC8330548 DOI: 10.3389/fimmu.2021.695484] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cadmium (Cd), a biologically non-essential heavy metal, is widespread in the environment, including the air, water, and soil, and is widely present in foods and quantum dot preparations. Cd enters the body primarily through inhalation and ingestion. Its biological half-life in humans is 10-35 years; therefore, Cd poses long-term health risks. While most studies on Cd toxicity have focused on organ and tissue damage, the immunotoxicity of Cd has drawn increasing attention recently. Cd accumulates in immune cells, modulates the function of the immune system, triggers immunological responses, and leads to diverse health problems. Cd acts as an immunotoxic agent by regulating the activity and apoptosis of immune cells, altering the secretion of immune cytokines, inducing reactive oxygen species (ROS) production and oxidative stress, changing the frequency of T lymphocyte subsets, and altering the production of selective antibodies in immune cells. This review summarizes the immunological toxicity of Cd, elucidates the mechanisms underlying Cd toxicity in terms of innate immunity and adaptive immunity, and discusses potential strategies to alleviate the adverse effects of Cd on the immune system.
Collapse
Affiliation(s)
- Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Ying Sun
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Correlation between Heavy Metal-Induced Histopathological Changes and Trophic Interactions between Different Fish Species. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study assessed the distribution of heavy metals in the gills, kidney, and liver, correlated with the severity of histopathological changes, of three fish species with different feeding habitats (Barbus barbus, Squalius cephalus, and Chondrostoma nasus) from the Crișul Negru river, Romania. The levels of copper (Cu), chromium (Cr), cadmium (Cd), lead (Pb), and zinc (Zn) in fish tissues were measured by atomic absorption spectrophotometry. Histopathology and the expressions of TNF-α and proliferation cell nuclear antigen (PCNA) were investigated by immunohistochemistry and Western blot. Our data suggest a significant correlation between the bioconcentration level of metals and structural changes. The carnivorous species was the most affected compared to the omnivorous and herbivorous ones, and the most affected organ was the kidney. Moreover, the correlation of tissue damage with the PCNA and TNF-α expression levels revealed that the herbivorous species presented less extended lesions, likely due to higher activated repair mechanisms and lower levels of inflammation. In conclusion, our data and the subsequent statistical analysis suggest that feeding behavior could be correlated with the histopathological alterations and might be used for a more profound evaluation of aquatic environment safety and analysis of aquatic ecosystems.
Collapse
|