1
|
Bridgeman L, Cimbalo A, López-Rodríguez D, Pamies D, Frangiamone M. Exploring toxicological pathways of microplastics and nanoplastics: Insights from animal and cellular models. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137795. [PMID: 40043388 DOI: 10.1016/j.jhazmat.2025.137795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) and nanoplastics (NPs) represent an emerging issue for human and animal health. This review critically examines in vitro and in vivo studies to elucidate their mechanisms of action and toxicological effects. Key objectives included: providing a comprehensive overview of MP-NPs studies in literature, assessing experimental conditions relative to real environmental scenarios, and identifying toxicological pathways at the molecular level. The findings revealed significant progress in understanding MP-NPs impacts. In particular, it has been observed the promotion of inflammation, oxidative stress, apoptosis, autophagy, and endoplasmic reticulum (ER) stress via specific signaling axes. Reproductive toxicity emerged as the primary research focus, particularly in male models, whereas effects on gastrointestinal, neurological, and cardiovascular systems were insufficiently studied, especially for the molecular pathways affected. Most studies disproportionately focused on polystyrene particles, neglecting other prevalent polymers such as polyethylene and polypropylene. Furthermore, reliance on synthetic microspheres and non-realistic experimental concentrations limits relevance to real-world conditions. Limited long-term exposure studies further constrain the understanding of MP-NPs persistence and risks. In view of this, future research should integrate environmentally relevant conditions for particles doses, size and composition, long-term exposure assessments, and advanced methodologies such as omics and computational modeling. In addition, therapeutic interventions targeting oxidative and ER stress, inflammation and apoptosis may be an excellent solution to mitigate MP-NPs toxicity. At the same time, a standardized global approach is needed to fully understand the risks posed by MP-NPs, attempting to safeguard public and environmental health.
Collapse
Affiliation(s)
- Luna Bridgeman
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Burjassot, València 46100, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Burjassot, València 46100, Spain
| | - David López-Rodríguez
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, Lausanne 1005, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland; Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Switzerland
| | - David Pamies
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, Lausanne 1005, Switzerland; Stem Cell & Organoid Facility. University of Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland
| | - Massimo Frangiamone
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, Lausanne 1005, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland.
| |
Collapse
|
2
|
Ghosh T. Microplastics bioaccumulation in fish: Its potential toxic effects on hematology, immune response, neurotoxicity, oxidative stress, growth, and reproductive dysfunction. Toxicol Rep 2025; 14:101854. [PMID: 39802604 PMCID: PMC11720882 DOI: 10.1016/j.toxrep.2024.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
After being exposed, microplastics mostly bioaccumulated in guts and gills of fish, then, through circulation, spread and bioaccumulated in other tissues. Circulatory system of fish is impacted by the microplastic bioaccumulation in their tissues, influencing a number of hematological indices that are connected with immunity, osmotic pressure, blood clotting, molecular transport and fat metabolism. Variables like size, dose, duration, food consumption and species, all affect the bioaccumulation and toxicity of the microplastic, rather than the exposure routes. Microplastics lead to an imbalance in the generation of ROS and antioxidant defense of fish, which resulting in oxidative injury. Moreover, microplastics affect immunological responses through physico-chemical damage, hence produce neurotoxicity and modifies the activity of the acetylcholine esterase. Exposure to microplastics caused damage to the hepatic and gut tissue, affect intestinal barrier function and dysbiosis of microbial composition, altered the metabolism of host, affecting the activities of the digestive enzymes, eventually affecting the growth performance of fish. Microplastics exposure target the HPG axis and interfere with the process of steroidogenesis, apoptosis of the gonadal tissue, ultimately causing reproductive dysfunction. Fish exposed to microplastics have a range of toxic effects viz. alteration to immune, antioxidant and hematological indices, bioaccumulation, neurotoxicity, growth and reproductive dysfunction, all were examined in this present review by using different indicators.
Collapse
Affiliation(s)
- Tapas Ghosh
- Department of Zoology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
- Department of Zoology, Scottish Church College, Kolkata, West Bengal 700006, India
| |
Collapse
|
3
|
Ahmadi P, Doyle D, Mojarad N, Taherkhani S, Janzadeh A, Honardoost M, Gholami M. Effects of Micro- and Nanoplastic Exposure on Macrophages: A Review of Molecular and Cellular Mechanisms. Toxicol Mech Methods 2025:1-40. [PMID: 40323219 DOI: 10.1080/15376516.2025.2500546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Micro- and nanoplastics (MNPs), pervasive environmental pollutants, contaminate water, soil, air, and the food chain and ultimately accumulate in living organisms. Macrophages are the main immune cells that gather around MNPs and engulf them through the process of phagocytosis. This internalization triggers M1 polarization and the secretion of inflammatory cytokines, including IL-1, IL-18, IL-12, TNF-α, and IFN-γ. Furthermore, MNPs damage mitochondria and lysosomes, causing overactivation of iNOS and excessive production of ROS. This results in cellular stress and induce apoptosis, necroptosis, and, in some cases, metosis in macrophages. The internalization of MNPs also increases the expression of receptors, involving CD36, SR-A, LOX-1, and the macrophage receptor with a collagenous structure (MARCO) while decreasing ABCA-1 and ABCG-1. MNPs in adipose tissue macrophages trigger proinflammatory cytokine secretion, causing adipogenesis, lipid accumulation, insulin resistance, and the secretion of inflammatory cytokines in adipocytes. Various factors influence the rate of MNP internalization by macrophages, including size, charge, and concentration, which affect internalization through passive diffusion. Receptor-mediated phagocytosis of MNPs occurs directly via receptors like T-cell immunoglobulin and mucin domain containing 4 (TIM-4) and MARCO. The attachment of biomolecules, including proteins, antibodies, opsonins, or microbes to MNPs (forming corona structures) promotes indirect receptor-mediated endocytosis, as macrophages possess receptors like TLRs and FcγRIII. MNPs also cause gut dysbiosis, a risk factor for proinflammatory microenvironment and M1 polarization. Here, we review the mechanisms and consequences of MNP macrophage exposure, which is linked to autoimmunity, inflammation, and cardiometabolic syndrome manifestations, including atherosclerosis and obesity, highlighting the immunotoxicity of MNPs.
Collapse
Affiliation(s)
- Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - David Doyle
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859 USA
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859 USA
| | - Negin Mojarad
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859 USA
| | - Soroush Taherkhani
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Honardoost
- Breast Health and Cancer Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Dan KB, Yoo JY, Min H. The Emerging Threat of Micro- and Nanoplastics on the Maturation and Activity of Immune Cells. Biomol Ther (Seoul) 2025; 33:95-105. [PMID: 39663987 PMCID: PMC11704408 DOI: 10.4062/biomolther.2024.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 12/13/2024] Open
Abstract
With the increasing use of plastics worldwide, the amount of plastic waste being discarded has also risen. This plastic waste undergoes physical and chemical processes, breaking down into smaller particles known as microplastics (MPs) or nanoplastics (NPs). Advances in technology have enhanced our ability to detect these smaller particles, and it has been confirmed that plastics can be found in marine organisms as well as within the human body. However, research on the effects of MPs or NPs on living organisms has only recently been started, and our understanding remains limited. Studies on the immunological impacts are still ongoing, revealing that MPs and NPs can differentially affect various immune cells based on the material, size, and shape of the plastic particles. In this review, we aim to provide a comprehensive understanding of the effects of MPs and NPs on the immune system. We will also explore the methods for plastic removal through physicochemical, microbial, or biological means.
Collapse
Affiliation(s)
- Kang-Bin Dan
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji Yoon Yoo
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Ghosh A, Gorain B. Mechanistic insight of neurodegeneration due to micro/nano-plastic-induced gut dysbiosis. Arch Toxicol 2025; 99:83-101. [PMID: 39370473 DOI: 10.1007/s00204-024-03875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Despite offering significant conveniences, plastic materials contribute substantially in developing environmental hazards and pollutants. Plastic trash that has not been adequately managed may eventually break down into fragments caused by human or ecological factors. Arguably, the crucial element for determining the biological toxicities of plastics are micro/nano-forms of plastics (MPs/NPs), which infiltrate the mammalian tissue through different media and routes. Infiltration of MPs/NPs across the intestinal barrier leads to microbial architectural dysfunction, which further modulates the population of gastrointestinal microbes. Thereby, it triggers inflammatory mediators (e.g., IL-1α/β, TNF-α, and IFN-γ) by activating specific receptors located in the gut barrier. Mounting evidence indicates that MPs/NPs disrupt host pathophysiological function through modification of junctional proteins and effector cells. Moreover, the alteration of microbial diversity by MPs/NPs causes the breakdown of the blood-brain barrier and translocation of metabolites (e.g., SCFAs, LPS) through the vagus nerve. Potent penetration affects the neuronal networks, neuronal protein accumulation, acceleration of oxidative stress, and alteration of neurofibrillary tangles, and hinders distinctive communicating pathways. Conclusively, alterations of these neurotoxic factors are possibly responsible for the associated neurodegenerative disorders due to the exposure of MPs/NPs. In this review, the hypothesis on MPs/NPs associated with gut microbial dysbiosis has been interlinked to the distinct neurological impairment through the gut-brain axis.
Collapse
Affiliation(s)
- Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
6
|
Shang Q, Wu H, Wang K, Zhang M, Dou Y, Jiang X, Zhao Y, Zhao H, Chen ZJ, Wang J, Bian Y. Exposure to polystyrene microplastics during lactational period alters immune status in both male mice and their offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175371. [PMID: 39137849 DOI: 10.1016/j.scitotenv.2024.175371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The widespread use of microplastics and their harmful effects on the environment have emerged as serious concerns. However, the effect of microplastics on the immune system of mammals, particularly their offspring, has received little attention. In this study, polystyrene microplastics (PS-MPs) were orally administered to male mice during lactation. Flow cytometry was used to assess the immune cells in the spleens of both adult male mice and their offspring. The results showed that mice exposed to PS-MPs exhibited an increase in spleen weight and an elevated number of B and regulatory T cells (Tregs), irrespective of dosage. Furthermore, the F1 male offspring of the PS-MPs-exposed group had enlarged spleens; an increased number of B cells, T helper cells (Th cells), and Tregs; and an elevated ratio of T helper cells 17 (Th17 cells) to Tregs and T helper cells 1 (Th1 cells) to T helper cells 2 (Th2 cells). These results suggested a pro-inflammatory state in the spleen. In contrast, in the F1 female offspring exposed to PS-MPs, the changes in splenic immune cells were less pronounced. In the F2 generation of mice with exposed to PS-MPs, minimal alterations were observed in spleen immune cells and morphology. In conclusion, our study demonstrated that exposure to real human doses of PS-MPs during lactation in male mice altered the immune status, which can be passed on to F1 offspring but is not inherited across generations.
Collapse
Affiliation(s)
- Qian Shang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Han Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Ke Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Mengge Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Yunde Dou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China.
| | - Xiaohong Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Yueran Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China.
| | - Yuehong Bian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China.
| |
Collapse
|
7
|
Choi KM, Mun SH, Shin D, Kim CH, Kim TH, Jung JH. The toxic effects of exposure to fibrous and fragmented microplastic in juvenile rockfish based on two omics approach. CHEMOSPHERE 2024; 367:143541. [PMID: 39419335 DOI: 10.1016/j.chemosphere.2024.143541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Although the hazards of environmental microplastics (MPs) are well known, it is unclear which of their characteristics have the greatest effects on organism. We investigated the toxic effects of oral administration according to physical properties, including the shape of fragmented polyethylene terephthalate (PET) (FrPET) and fibrous PET (FiPET) MPs. After 72 h of exposure, apoptosis and phagocytic activity varied significantly among juvenile rockfish (Sebastes schlegeli) exposed to both FrPET and FiPET. The levels of immune-related genes and hepatic metabolic activity also increased after exposure to both shapes of MPs, but the variation in responses was greater in fish exposed to FiPET compared with those exposed to FrPET. The transcriptomic and metabolomics analysis results indicated that the maintenance and homeostasis of immune system was affected by oral exposure to FrPET and FiPET. The amino acid metabolic processes were identified in rockfish exposed to FrPET, but the notch signaling pathway were evident in the FiPET exposure group. Metabolomics analysis revealed that oral ingestion of MP fibers led to a stronger inflammatory response and greater oxidative stress in juvenile rockfish. These results can be used to understand environmentally dominant MP toxic effects such as type, size, shapes, as well as to prioritize ecotoxicological management.
Collapse
Affiliation(s)
- Kwang-Min Choi
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea
| | - Seong Hee Mun
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea
| | - Dongju Shin
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea
| | - Chae Hwa Kim
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| | - Tae Hee Kim
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| | - Jee-Hyun Jung
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea; Ocean Science, University of Science and Technology, 217 Gajeong-ro, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
8
|
Minaz M, Ipek ZZ, Bayçelebi E, Oral M, Mutlu T, Karsli B, Kayis S. Effect of parasitic infection on microplastic ingestion in a native leuciscid hybrid species (Alburnus derjugini x Squalius orientalis) from Kürtün Dam Lake, Türkiye. CHEMOSPHERE 2024; 363:142978. [PMID: 39084304 DOI: 10.1016/j.chemosphere.2024.142978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Microplastic (MP) pollution is currently one of the most serious environmental issues. MPs were investigated in the Kürtün Dam Lake in healthy individuals of the native leuciscid hybrid (Alburnus derjugini x Squalius orientalis) species and individuals infected with the Ligula intestinalis parasite. Although MP abundance appeared to be higher in non-infected fish (NIF) than in L. intestinalis (L) and infected fish (IF), the MP abundance in IF was higher, because the parasite theoretically belongs to IF. In addition to the observation of MPs in the gastrointestinal tract (GIT) of fish, the diffusion of MPs by parasites settled in the body cavity indicates that MPs are not only present in the GIT. Therefore, predation on existing fish by birds causes MP dispersion. In the present study, the most common MP shape was fiber (100% for NIF and IF, 85.7% for L), the MP color was black (57.1% for IF and L) and orange (50% for NIF), and the polymer type was polyamide (57.1% for IF, 50% for NIF) and polyethylene terephthalate (28.5% for L). These MP compositions led us to believe that textile effluents and aquaculture operations in dam lakes could be sources of pollution. Therefore, this study provides insights for future research to elucidate the connection between MP consumption and parasite infection.
Collapse
Affiliation(s)
- Mert Minaz
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey.
| | - Zeynep Zehra Ipek
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| | - Esra Bayçelebi
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| | - Munevver Oral
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| | - Tanju Mutlu
- Vocational School of Technical Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Baris Karsli
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| | - Sevki Kayis
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| |
Collapse
|
9
|
Mukhopadhyay P, Valsalan SA. Incidence of microplastic translocation in freshwater fish eggs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123529. [PMID: 38341061 DOI: 10.1016/j.envpol.2024.123529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The issue of microplastic contamination in seafood is progressively recognised as a significant global issue. This study presents novel findings regarding the detection of microplastics within the eggs of commercially available fish intended for consumption by humans. Eggs of Ompok bimaculatus, Heteropneustes fossilis, Mystus vittatus and Anabas testudineus collected from the Periyar River, Kerala, India were subjected to analysis for the potential presence of microplastics. Out of the 91 fishes (containing eggs) examined, microplastics were observed in the eggs of 2 species, i.e., Ompok bimaculatus and Mystus vittatus. The polymers recorded were polyethylene and polypropylene. Fish eggs are commonly consumed by humans and are highly esteemed as a delectable food. Considering the widespread consumption of fish eggs as a delicacy among humans, there exists a potential route for human exposure to microplastics, which raises concerns regarding public health.
Collapse
Affiliation(s)
- Patralika Mukhopadhyay
- School of Industrial Fisheries, Cochin University of Science and Technology, Lakeside Campus, Kochi, Kerala, India.
| | - Shibu Arkkakadavil Valsalan
- School of Industrial Fisheries, Cochin University of Science and Technology, Lakeside Campus, Kochi, Kerala, India
| |
Collapse
|
10
|
Yan L, Yao X, Wang P, Zhao C, Zhang B, Qiu L. Effect of polypropylene microplastics on virus resistance in spotted sea bass (Lateolabrax maculatus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123054. [PMID: 38043770 DOI: 10.1016/j.envpol.2023.123054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Microplastics (MPs) pollution is a hot issue of global concern. Polypropylene microplastics (PP-MPs) age quickly in the marine environment and break down into smaller particles because of their relatively low temperature resistance, poor ultraviolet resistance, and poor antioxidant capacity, making them one of the major pollutants in the ocean. We assessed whether long-term exposure to micron-sized PP-MPs influences fish susceptibility to viral diseases. We found that exposure to PP-MPs (1-6 μm and 10-30 μm) at concentrations of 500 and 5000 μg/L resulted in uptake into spleen and kidney tissues of Lateolabrax maculatus. Increased activation of melanomacrophage centers was visible in histopathological sections of spleen from fish exposed to PP-MPs, and greater deterioration was observed in the spleen of fish infected by largemouth bass ulcerative syndrome virus after PP-MPs exposure. Additionally, exposure to PP-MPs led to significant cytotoxicity and a negative impact on the antiviral ability of cells. PP-MPs exposure had inhibitory or toxic effects on the immune system in spotted sea bass, which accelerated virus replication in vivo and decreased the expression of the innate immune- and acquired immune related genes in spleen and kidney tissues, thus increasing fish susceptibility to viral diseases. These results indicate that the long-term presence of micron-sized PP-MPs might impact fish resistance to disease, thereby posing a far-reaching problem for marine organisms.
Collapse
Affiliation(s)
- Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Xiaoxiao Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Beijing, China.
| |
Collapse
|
11
|
Zhang Z, Chen W, Chan H, Peng J, Zhu P, Li J, Jiang X, Zhang Z, Wang Y, Tan Z, Peng Y, Zhang S, Lin K, Yung KKL. Polystyrene microplastics induce size-dependent multi-organ damage in mice: Insights into gut microbiota and fecal metabolites. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132503. [PMID: 37717443 DOI: 10.1016/j.jhazmat.2023.132503] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Particle size is one of the most important factors in determining the biological toxicity of microplastics (MPs). In this study, we attempted to examine the systemic toxicity of polystyrene MPs of different sizes (0.5 µm MP1 and 5 µm MP2) in C57BL/6 J mice. After the mice were given oral gavage of MPs for 8 consecutive weeks, histopathology and molecular biology assays, 16 S rRNA sequencing of the gut microbiota, and untargeted metabolomics were performed. The results showed that MPs were distributed in the organs in a size-dependent manner, with smaller particles demonstrating greater biodistribution. Further analysis indicated that exposure to MPs caused multi-organ damage through distinct toxicity pathways. Specifically, exposure to 0.5 µm MP1 led to excessive accumulation and induced more serious inflammation and mechanical damage in the spleen, kidney, heart, lung, and liver. However, 5 µm MP2 led to more severe intestinal barrier dysfunction, as well as gut dysbiosis and metabolic disorder in association with neuroinflammation. These results are helpful in expanding our knowledge of the toxicity of MPs of different sizes in mammalian models.
Collapse
Affiliation(s)
- Zhu Zhang
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Wenqing Chen
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Hiutung Chan
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Junjie Peng
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Peili Zhu
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Junkui Li
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Xiaoli Jiang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Zhang Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Ying Wang
- Key Laboratory of Cellular Physiology, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zicong Tan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Yungkang Peng
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou, China.
| | - Ken Kin-Lam Yung
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
12
|
Choi JH, Lee JH, Jo AH, Choi YJ, Choi CY, Kang JC, Kim JH. Microplastic polyamide toxicity: Neurotoxicity, stress indicators and immune responses in crucian carp, Carassius carassius. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115469. [PMID: 37742571 DOI: 10.1016/j.ecoenv.2023.115469] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/26/2023]
Abstract
This study aimed to determine the toxicity standard and potential risks and effects of polyamide (PA) exposure on neurotoxicity, stress indicators, and immune responses in juvenile crucian carp Carassius carassius. Numerous microplastics (MPs) exists within aquatic environments, leading to diverse detrimental impacts on aquatic organisms. The C. carassius (mean weight, 23.7 ± 1.6 g; mean length, 13.9 ± 1.4 cm) were exposed to PA concentrations of 0, 4, 8, 16, 32 and 64 mg/L for 2 weeks. Among the neurotransmitters, the acetylcholinesterase (AChE) activity in the liver, gill, and intestine of C. carassius was significantly inhibited by PA exposure. Stress indicators such as cortisol and heat shock protein 70 (HSP70) in the liver, gill, and intestine of C. carassius were significantly increased, while immune responses to lysozyme and immunoglobulin M (IgM) were significantly decreased. Our study demonstrates the toxic effects of MP exposure on crucian carp's neurotoxicity, stress indicators, and immune responses.
Collapse
Affiliation(s)
- Jae-Ho Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, the Republic of Korea
| | - Ju-Hyeong Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, the Republic of Korea
| | - A-Hyun Jo
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si, the Republic of Korea
| | - Young Jae Choi
- Inland Fisheries Research Institute, National Institute of Fisheries Science, Geumsan 32762, the Republic of Korea.
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, the Republic of South Korea.
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, the Republic of Korea.
| | - Jun-Hwan Kim
- Department of Aquatic Life Medicine, College of Ocean Sciences, Jeju National University.
| |
Collapse
|
13
|
Terzi Y. Microplastic ingestion by invasive Prussian carp (Carassius gibelio) used in fishmeal production in Türkiye. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1232. [PMID: 37728656 DOI: 10.1007/s10661-023-11844-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
MP contamination in the gastrointestinal tract (GIT) of Prussian carp (Carassius gibelio) used in fishmeal production was examined. The samples were collected from Balık Lake, Karaboğaz Lake, and Liman Lake located in Kızılırmak Delta, Türkiye. The overall average abundance was 3.20±0.18 MP per fish and 0.036±0.002 MP per g. No significant correlation was determined between the MP abundance in the fish, fish length, and fish weight. The polymers were composed of 56.91% PET, 25.20% PP, 9.76% PE, and 8.13% PA. The determined shapes were fiber (78.0%), fragment (13.46%), and film (8.54%). The size ranged between 112 and 4775 μm with an average of 1341.41±66.07 μm. Depending on the occurrence frequency and abundance, it can be concluded that Carassius gibelio can be considered a MP vector in fishmeal. The results provide an essential baseline for future MP studies on the potential effects of MPs on aquatic organisms, fate, and impact on the fishmeal production process, aquaculture practices, and human health.
Collapse
Affiliation(s)
- Yahya Terzi
- Department of Fisheries Technology Engineering, Faculty of Marine Sciences, Karadeniz Technical University, 61530, Trabzon, Türkiye.
| |
Collapse
|
14
|
Farag AA, Youssef HS, Sliem RE, El Gazzar WB, Nabil N, Mokhtar MM, Marei YM, Ismail NS, Radwaan SE, Badr AM, Sayed AEDH. Hematological consequences of polyethylene microplastics toxicity in male rats: Oxidative stress, genetic, and epigenetic links. Toxicology 2023; 492:153545. [PMID: 37169321 DOI: 10.1016/j.tox.2023.153545] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Microplastics (MPs) pollution is a newly emerging environmental issue. MPs can accumulate within animals and humans, which can pose a serious health threat. Petroleum-based polyethylene (PE) is one of the most popular plastics. Accordingly, its exposure rates have steadily increased over the years. This study aimed to analyze the effects of PE-MPs on the hematological system of albino rats and the epigenetic effect. Five groups of adult male eight-weeks-old rats received either distilled water, corn oil, 3.75 mg/kg PE-MPs, 15 mg/kg PE-MPs, or 60 mg/kg of PE-MPs, daily by oral gavage for 35 days. PE-MPs significantly increased the body weights of the rats and lipid peroxidation, with concomitant reduction of superoxide dismutase activity and depletion of reduced glutathione, thus adversely affecting oxidants/antioxidants balance. Moreover, PE-MPs increased the % of abnormal RBCs, irregular cells, tear drop cells, Schistocyte cells, and folded cells. The genotoxic effects on DNA were evident by increased DNA damage, confirmed by the comet assay, in addition to increased DNA methylation. The effects of PE-MPs have been shown to be dose correlated. In conclusion, this study provides evidence of dose-related PE-MPs-induced hematological, genotoxic, and epigenetic effects in mammals, and thus emphasizes the potentially hazardous health effects of environmental PE-MPs.
Collapse
Affiliation(s)
- Amina A Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, 13518, Egypt
| | - Heba S Youssef
- Department of Physiology, Faculty of Medicine, Benha University, 13518, Egypt
| | - Rania E Sliem
- Department of Zoology, Faculty of Science, Benha University, 13518, Egypt
| | - Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan; Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, 13518, Egypt
| | - Nashwa Nabil
- Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Benha University, 13518, Egypt
| | - Maha M Mokhtar
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, 13518, Egypt
| | - Yasmin M Marei
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, 13518, Egypt
| | - Nesma S Ismail
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, 13518, Egypt
| | - Shaimaa E Radwaan
- Department of Zoology, Faculty of Science, Benha University, 13518, Egypt
| | - Amira M Badr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Alaa El-Din Hamid Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516, Egypt; Molecular Biology Research & Studies Institute, Assiut University, 71516 Assiut, Egypt.
| |
Collapse
|
15
|
Jalaudin Basha NN, Adzuan Hafiz NB, Osman MS, Abu Bakar NF. Unveiling the noxious effect of polystyrene microplastics in aquatic ecosystems and their toxicological behavior on fishes and microalgae. FRONTIERS IN TOXICOLOGY 2023; 5:1135081. [PMID: 37215383 PMCID: PMC10192689 DOI: 10.3389/ftox.2023.1135081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Microplastic (MP) particles are considered noxious pollutants due to their presence in aquatic habitats at almost every level of the food chain. Thus, the entry of MP particles into marine waterbodies has triggered a common research interest. Until recently, the toxicity of polystyrene towards aquatic creatures in comparison to other polymers has not been widely investigated. This article provides an extensive overview of the occurrence of microplastic particles, the route of polystyrene (PS) in the aquatic ecosystem, the PS properties characterization, and its noxious effects on the aquatic biota, particularly fishes and microalgae. Alarming high levels of polystyrene were found in urban, coastal, and rural surface waters and sediments. The fast-screening technique began with a stereoscope to determine the polystyrene particles' shape, size, and color on the organism. SEM and complemented by micro FTIR or Raman spectroscopy were used to evaluate MP's polymer structures. The findings present evidence suggesting that polystyrene buildup in fish can have long-term and unknown consequences. Meanwhile, the presence of polystyrene on microalgae causes a decrease in chlorophyll concentration and photosynthetic activity, which may disrupt photosynthesis by interfering with the electron characters and leading to the production of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Nurin Nabilah Jalaudin Basha
- EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, Pulau Pinang, Malaysia
| | - Nurfarwizah Binti Adzuan Hafiz
- EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, Pulau Pinang, Malaysia
| | - Mohamed Syazwan Osman
- EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, Pulau Pinang, Malaysia
| | - Noor Fitrah Abu Bakar
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA Shah Alam, Shah Alam, Malaysia
| |
Collapse
|
16
|
Zhu L, Xie C, Chen L, Dai X, Zhou Y, Pan H, Tian K. Transport of microplastics in the body and interaction with biological barriers, and controlling of microplastics pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114818. [PMID: 36958263 DOI: 10.1016/j.ecoenv.2023.114818] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/05/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are one novel environmental pollutant sized < 5 mm that is ubiquitously present in numerous environmental media and particularly susceptible to interact with various toxic chemicals. Importantly, MPs can enter the food chain, and are bio-enriched and bio-accumulated with trophic levels, eventually endangering ecosystems and human health. However, there need to be more understanding regarding the bio-interaction of MPs with the host, particularly for biological barriers. This review aimed to summarize the latest findings regarding the main exposure routes of MPs that generated health burdens on humans. Furthermore, their interactions with biological barriers that generate adverse health effects and the underlying mechanisms were also reviewed. Additionally, we provided a comprehensive overview of recent advances regarding the removing and controlling of MPs. Finally, we discussed the future directions for MPs hazard prevention to provide helpful information for regulating decision-making and guiding safer plastics applications.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China
| | - Caiyan Xie
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingyu Dai
- Department of Clinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yuanzhong Zhou
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China
| | - Hong Pan
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China.
| | - Kunming Tian
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
17
|
Seeley ME, Hale RC, Zwollo P, Vogelbein W, Verry G, Wargo AR. Microplastics exacerbate virus-mediated mortality in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161191. [PMID: 36592912 DOI: 10.1016/j.scitotenv.2022.161191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Microplastics are a persistent and increasing environmental hazard. They have been reported to interact with a variety of biotic and abiotic environmental stressors, but the ramifications of such interactions are largely unknown. We investigated virus-induced mortalities in a commercially important salmonid following exposure to microplastics, plastic microfibers, and natural (non-plastic) microparticles. Microplastics or microparticles alone were not lethal. Mortality increased significantly when fish were co-exposed to virus and microplastics, particularly microfibers, compared to virus alone. This presents the unique finding that microplastics (not natural microparticulate matter) may have a significant impact on population health when presented with another stressor. Further, we found that mortality correlated with host viral load, mild gill inflammation, immune responses, and transmission potential. We hypothesize that microplastics can compromise host tissues, allowing pathogens to bypass defenses. Further research regarding this mechanism and the interplay between microplastics and infectious disease are paramount, considering microplastics increasing environmental burden.
Collapse
Affiliation(s)
- Meredith Evans Seeley
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, United States of America.
| | - Robert C Hale
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, United States of America
| | - Patty Zwollo
- William & Mary, Department of Biology, Williamsburg, VA 23187, United States of America
| | - Wolfgang Vogelbein
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, United States of America
| | - Gaelan Verry
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, United States of America
| | - Andrew R Wargo
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, United States of America
| |
Collapse
|
18
|
Sahabuddin ES, Noreen A, Daabo HMA, Kandeel M, Saleh MM, Al-Qaim ZH, Jawad MA, Sivaraman R, Fenjan MN, Mustafa YF, Heidary A, Abarghouei S, Norbakhsh M. Microplastic and oil pollutant agglomerates synergistically intensify toxicity in the marine fish, Asian seabass, Lates calcalifer. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104059. [PMID: 36603608 DOI: 10.1016/j.etap.2022.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Asian seabass, Lates calcarifer frys were exposed to polystyrene (MP: 0.5 mg/l), oil (0.83 ml/l) and agglomerates (MP + oil + Corexit) as eight treatments in three replicates, and fresh synthetic marine water (control) for 15 days. The synergistic effect was confirmed (P ˂ 0.05) by bio-indicators including RBC count, total plasma protein, aspartate aminotransferase (AST), catalase (CAT), glutathione S-transferase (GST), basophils, thrombocyte and eosinophils percentages. Most of the significant and synergistic effects were observed in the highest doses (5 mg/l MP and 5 mg/l MP-oil-dispersant). Exposure to MP and a combination of MP+ oil caused tissue lesions in gill, liver and intestine. Our results suggest there are no critical health issues for Asian seabass in natural environments. However, the bioaccumulation of MPs, oil, and their agglomerates in consumers' bodies may remain a concern.
Collapse
Affiliation(s)
- Erma Suryani Sahabuddin
- Population and Enviromental Education Studies, Universitas Negeri Makassar, Makassar, Indonesia
| | - Ayesha Noreen
- Department of Social Environmental Sciences, Graduate School of Social Sciences, Ankara University, Ankara, Turkey.
| | | | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, 31982 Al-Ahsa, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh 33516, Egypt
| | | | | | | | | | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Aadel Heidary
- Environmental Expert of Farsan Municipality, Shahrekord, Iran
| | - Safoura Abarghouei
- Bahar Avaran Nastaran Agricultural University of Applied Sciences Qom, Qom, Iran
| | - Maryam Norbakhsh
- Department of Microbiology, Faculty of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| |
Collapse
|
19
|
Parker B, Britton JR, Green ID, Amat-Trigo F, Andreou D. Parasite infection but not chronic microplastic exposure reduces the feeding rate in a freshwater fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121120. [PMID: 36682615 DOI: 10.1016/j.envpol.2023.121120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (plastics <5 mm) are an environmental contaminant that can negatively impact the behaviour and physiology of aquatic biota. Although parasite infection can also alter the behaviour and physiology of their hosts, few studies have investigated how microplastic and parasite exposure interact to affect hosts. Accordingly, an interaction experiment tested how exposure to environmentally relevant microplastic concentrations and the trophically transmitted parasite Pomphorhynchus tereticollis affected the parasite load, condition metrics and feeding rate of the freshwater fish final host chub Squalius cephalus. Microplastic exposure was predicted to increase infection susceptibility, resulting in increased parasite loads, whereas parasite and microplastic exposure were expected to synergistically and negatively impact condition indices and feeding rates. Following chronic (≈170 day) dietary microplastic exposure, fish were exposed to a given number of gammarids (4/8/12/16/20), with half of the fish presented with parasite infected individuals, before a comparative functional response experiment tested differences in feeding rates on different live prey densities. Contrary to predictions, dietary microplastic exposure did not affect parasite abundance at different levels of parasite exposure, specific growth rate was the only condition index that was lower for exposed but unexposed fish, with no single or interactive effects of microplastic exposure detected. However, parasite infected fish had significantly lower feeding rates than unexposed fish in the functional response experiment, with exposed but unexposed fish also showing an intermediate decrease in feeding rates. Thus, the effects of parasitism on individuals were considerably stronger than microplastic exposure, with no evidence of interactive effects. Impacts of environmentally relevant microplastic levels might thus be relatively minor versus other stressors, with their interactive effects difficult to predict based on their single effects.
Collapse
Affiliation(s)
- Ben Parker
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK.
| | - J Robert Britton
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK
| | - Iain D Green
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK
| | - Fátima Amat-Trigo
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK
| | - Demetra Andreou
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK
| |
Collapse
|
20
|
Adegoke KA, Adu FA, Oyebamiji AK, Bamisaye A, Adigun RA, Olasoji SO, Ogunjinmi OE. Microplastics toxicity, detection, and removal from water/wastewater. MARINE POLLUTION BULLETIN 2023; 187:114546. [PMID: 36640497 DOI: 10.1016/j.marpolbul.2022.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The world has witnessed massive and preeminent microplastics (MPs) pollution in water bodies due to the inevitable continuous production of plastics for various advantageous chemical and mechanical features. Plastic pollution, particularly contamination by MPs (plastic particles having a diameter lesser than 5 mm), has been a rising environmental concern in recent years due to the inappropriate disposal of plastic trash. This study presents the recent advancements in different technologies for MPs removal in order to gain proper insight into their strengths and weaknesses, thereby orchestrating the preparation for innovation in the field. The production, origin, and global complexity of MPs were discussed. This study also reveals MPs' mode of transportation, its feedstock polymers, toxicities, detection techniques, and the conventional removal strategies of MPs from contaminated systems. Modification of conventional methods vis-à-vis new materials/techniques and other emerging technologies, such as magnetic extraction and sol-gel technique with detailed mechanistic information for the removal of MPs are presented in this study. Conclusively, some future research outlooks for advancing the MPs removal technologies/materials for practical realization are highlighted.
Collapse
Affiliation(s)
- Kayode Adesina Adegoke
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria; Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Folasade Abimbola Adu
- Discipline of Microbiology, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Abel Kolawole Oyebamiji
- Department of Chemistry and Industrial Chemistry, Bowen University, Iwo, Osun State, Nigeria.
| | - Abayomi Bamisaye
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria.
| | - Rasheed Adewale Adigun
- Department of Chemical Sciences, Fountain University, P. M. B. 4491, Osogbo, Osun State, Nigeria.
| | | | | |
Collapse
|
21
|
Hollerova A, Hodkovicova N, Blahova J, Faldyna M, Franc A, Pavlokova S, Tichy F, Postulkova E, Mares J, Medkova D, Kyllar M, Svobodova Z. Polystyrene microparticles can affect the health status of freshwater fish - Threat of oral microplastics intake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159976. [PMID: 36347295 DOI: 10.1016/j.scitotenv.2022.159976] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Plastic waste pollution is considered one of the biggest problems facing our planet. The production and use of these materials has led to huge amounts of plastic waste entering the aquatic environment and affecting aquatic life. In our experiment, the effect of polystyrene microparticles (PS-MPs; 52.5 ± 11.5 μm) on individual juvenile rainbow trout (Oncorhynchus mykiss) was tested at three different dietary concentrations of 0.5, 2 and 5 % for six weeks. At the end of the experiment, various health parameters of exposed organisms were compared with the control group. The haematological profile revealed an immune response by a decrease in lymphocyte count with a concurrent increase in the number of neutrophil segments at the highest concentration of PS-MPs (5 %). Biochemical analysis showed significant reductions in plasma ammonia in all tested groups, which may be related to liver and gill damage, as determined by histopathological examination and analysis of inflammatory cytokines expression. In addition, liver damage can also cause a significant decrease in the plasma protein ceruloplasmin, which is synthesized in the liver. PS-MPs disrupted the antioxidant balance in the caudal kidney, gill and liver, with significant changes observed only at the highest concentration. In summary, PS-MPs negatively affect the health status of freshwater fish and represent a huge burden on aquatic ecosystems.
Collapse
Affiliation(s)
- A Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic; Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic.
| | - N Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - J Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - M Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - A Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - S Pavlokova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - F Tichy
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic
| | - E Postulkova
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
| | - J Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
| | - D Medkova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic; Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
| | - M Kyllar
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic; Institute of Morphology, University of Veterinary Medicine, Vienna, Austria
| | - Z Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
22
|
Fu X, Guo M, Liu J, Li C. circRNA432 enhances the coelomocyte phagocytosis via regulating the miR-2008-ELMO1 axis in Vibrio splendidus-challenged Apostichopus japonicus. Commun Biol 2023; 6:115. [PMID: 36709365 PMCID: PMC9884281 DOI: 10.1038/s42003-023-04516-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Circular RNAs (circRNAs) are a kind of extensive and diverse covalently closed circular endogenous RNA, which exert crucial functions in immune regulation in mammals. However, the functions and mechanisms of circRNAs in invertebrates are largely unclarified. In our previous work, 261 differentially expressed circRNAs including circRNA432 (circ432) were identified from skin ulcer syndrome (SUS) diseased sea cucumber Apostichopus japonicus by RNA-seq. To better address the functional role of sea cucumber circRNAs, circ432 was first found to be significantly induced by Vibrio splendidus challenge and LPS exposure in this study. Knock-down circ432 could depress the V. splendidus-induced coelomocytes phagocytosis. Moreover, circ432 is validated to serve as the sponge of miR-2008, a differential expressed miRNA in SUS-diseased sea cucumbers, by Argonaute 2-RNA immunoprecipitation (AGO2-RIP) assay, luciferase reporter assay and RNA fluorescence in situ hybridization (FISH) in vitro. Engulfment and cell motility protein 1 (AjELMO1) is further demonstrated to be the target of miR-2008, and silencing AjELMO1 inhibits the V. splendidus-induced coelomocytes phagocytosis, and this phenomenon could be further suppressed by supplementing with miR-2008 mimics, suggesting that circ432 might regulate coelomocytes phagocytosis via miR-2008-AjELMO1 axis. We further confirm that the depressed coelomocytes' phagocytosis by circ432 silencing is consistent with the decreased abundance of AjELMO1, and could be recovered by miR-2008 inhibitors transfection. All our results provide the evidence that circ432 is involved in regulating pathogen-induced coelomocyte phagocytosis via sponge miR-2008 and promotes the abundance of AjELMO1. These findings will enrich the regulatory mechanism of phagocytosis in echinoderm and provide theoretical data for SUS disease prevention and control in sea cucumbers.
Collapse
Affiliation(s)
- Xianmu Fu
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211 Ningbo, P. R. China
| | - Ming Guo
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211 Ningbo, P. R. China
| | - Jiqing Liu
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211 Ningbo, P. R. China
| | - Chenghua Li
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211 Ningbo, P. R. China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266071 Qingdao, P. R. China
| |
Collapse
|
23
|
Yuan Y, Sepúlveda MS, Bi B, Huang Y, Kong L, Yan H, Gao Y. Acute polyethylene microplastic (PE-MPs) exposure activates the intestinal mucosal immune network pathway in adult zebrafish (Danio rerio). CHEMOSPHERE 2023; 311:137048. [PMID: 36419273 DOI: 10.1016/j.chemosphere.2022.137048] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Polyethylene is one of the most important plastic types with the highest consumption in the world. Plastics are prone to photodegradation and turn into microplastics, which are magnified as they move across trophic levels. Microplastics would be able to penetrate into lymph even cross cell membranes, causing harm to the lymphatic and/or circulatory systems, accumulating in secondary organs, and impacting the immune system and cell health. The objective of this study was to test that the activation of the intestinal immune network might be caused by disruption of intestinal microbiota after exposure to different polyethylene microplastics (PE-MPs) concentrations (1, 10, 100, and 1000 μg/mL) in adult zebrafish (Danio rerio) for 7 days. The concentrations of PE-MPs (100 and 1000 μg/mL) exposure decreased the goblet cell coverage. The intestinal microbial diversity index (Shannon and Simpson) was increased at 100 and 1000 μg/mL PE-MPs concentrations. The relative abundance of intestinal dominant microbiota phylum Proteobacteria and Actinobacteria increased significantly (P < 0.05); however, phylum Fusobacteria decreased significantly (P < 0.05). The relative abundance of intestinal microbiota at level of genera showed varying degrees of elevation such as Acinetobacter (6.31-fold), Plesiomonas (4.80-fold), Flavobacterium (10.54-fold) and Pseudomonas (5.17-fold) in 1000 μg/mL PE-MPs. Intestinal innate immunity-complement C3 and C4 content first increased and then declined in a dose-dependent manner. Expression of genes from the intestinal immune network for mucosal immunoglobulin production were increased also in a dose-dependent manner. The expression of immune-related genes (pigr, il10 and ighv4-5) were positively correlated with the relative abundance of genera Plesiomonas. In conclusion, PE-MPs increase the infection probability in the intestinal mucosa by altering the abundance of intestinal dominant microbiota at the level of phylum. PE-MPs exposure activated the intestinal immune network pathway for mucosal immunoglobulin production at a concentration of 100 or 1000 μg/mL for 7 days.
Collapse
Affiliation(s)
- Yin Yuan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Marisol S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| | - Baoliang Bi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Plateau Fishery Resources Conservation and Sustainable Utilization of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yadong Huang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lingfu Kong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Plateau Fishery Resources Conservation and Sustainable Utilization of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Hui Yan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Plateau Fishery Resources Conservation and Sustainable Utilization of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yu Gao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Plateau Fishery Resources Conservation and Sustainable Utilization of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
24
|
Toxic Chemicals and Persistent Organic Pollutants Associated with Micro-and Nanoplastics Pollution. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
25
|
Miccoli A, Mancini E, Saraceni PR, Della Ventura G, Scapigliati G, Picchietti S. First evidence of in vitro cytotoxic effects of marine microlitter on Merluccius merluccius and Mullus barbatus, two Mediterranean commercial fish species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152618. [PMID: 34968612 DOI: 10.1016/j.scitotenv.2021.152618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Marine litter is composed mainly of plastics and is recognized as a serious threat to marine ecosystems. Ecotoxicological approaches have started elucidating the potential severity of microplastics (MPs) in controlled laboratory studies with pristine materials but no information exists on marine environmental microlitter as a whole. Here, we characterized the litter in the coastal Northern Tyrrhenian sea and in the stomach of two fish species of socio-economic importance, and exposed primary cell cultures of mucosal and lymphoid organs to marine microlitter for evaluating possible cytotoxic effects. An average of 0.30 ± 0.02 microlitter items m-3 was found in water samples. μFT-IR analysis revealed that plastic particles, namely HDPE, polyamide and polypropylene were present in 100% and 83.3% of Merluccius merluccius and Mullus barbatus analyzed, which overall ingested 14.67 ± 4.10 and 5.50 ± 1.97 items/individual, respectively. Moreover, microlitter was confirmed as a vector of microorganisms. Lastly, the apical end-point of viability was found to be significantly reduced in splenic cells exposed in vitro to two microlitter conditions. Considering the role of the spleen in the mounting of adaptive immune responses, our results warrant more in-depth investigations for clarifying the actual susceptibility of these two species to anthropogenic microlitter.
Collapse
Affiliation(s)
- A Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy.
| | - E Mancini
- Italian Fishery Research and Studies Center, Rome 00184, Italy
| | - P R Saraceni
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy
| | - G Della Ventura
- Department of Science, Roma 3 University, Rome 00146, Italy; INFN Laboratori Nazionali di Frascati, Via E. Fermi 54, Frascati 00044, Italy
| | - G Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy
| | - S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy
| |
Collapse
|
26
|
Segner H, Rehberger K, Bailey C, Bo J. Assessing Fish Immunotoxicity by Means of In Vitro Assays: Are We There Yet? Front Immunol 2022; 13:835767. [PMID: 35296072 PMCID: PMC8918558 DOI: 10.3389/fimmu.2022.835767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022] Open
Abstract
There is growing awareness that a range of environmental chemicals target the immune system of fish and may compromise the resistance towards infectious pathogens. Existing concepts to assess chemical hazards to fish, however, do not consider immunotoxicity. Over recent years, the application of in vitro assays for ecotoxicological hazard assessment has gained momentum, what leads to the question whether in vitro assays using piscine immune cells might be suitable to evaluate immunotoxic potentials of environmental chemicals to fish. In vitro systems using primary immune cells or immune cells lines have been established from a wide array of fish species and basically from all immune tissues, and in principal these assays should be able to detect chemical impacts on diverse immune functions. In fact, in vitro assays were found to be a valuable tool in investigating the mechanisms and modes of action through which environmental agents interfere with immune cell functions. However, at the current state of knowledge the usefulness of these assays for immunotoxicity screening in the context of chemical hazard assessment appears questionable. This is mainly due to a lack of assay standardization, and an insufficient knowledge of assay performance with respect to false positive or false negative signals for the different toxicant groups and different immune functions. Also the predictivity of the in vitro immunotoxicity assays for the in vivo immunotoxic response of fishes is uncertain. In conclusion, the currently available database is too limited to support the routine application of piscine in vitro assays as screening tool for assessing immunotoxic potentials of environmental chemicals to fish.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Kristina Rehberger
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen, China
| |
Collapse
|
27
|
Zhao L, Shi W, Hu F, Song X, Cheng Z, Zhou J. Prolonged oral ingestion of microplastics induced inflammation in the liver tissues of C57BL/6J mice through polarization of macrophages and increased infiltration of natural killer cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112882. [PMID: 34700168 DOI: 10.1016/j.ecoenv.2021.112882] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (< 5 mm diameter) are one of most important environmental pollutants and contaminants worldwide. However, how microplastics affect liver immune microenvironment in not well understood. Microplastics (0.5 µm) were administered orally to C57BL/6J mice for 4 consecutive weeks at the rate of 0.5 mg/day. Non-parenchymal cells were isolated from of the mice through fractionation of fresh hepatic tissues. The immune landscape for four cell populations of B cells, T cells, NK cells and macrophages in the liver tissues was then evaluated using flow cytometry. The secretion level of inflammatory cytokines and associated signaling pathway were investigated using quantitative real-time polymerase chain reaction and western blot. Oral ingestion of microplastics increases liver weight, general liver index as well as expression of serum, liver function-related indicators. Microplastics also increased the infiltration of natural killer cells and macrophages to non-parenchymal liver cells, but reduced that of B cells to the same tissues. However, microplastics had no effect on the infiltration of T cell to non-parenchymal liver cells. Ingestion of MPs also up-regulated the expression of IFN-γ, TNF-α, IL-1β, IL-6 and IL-33 mRNA, but down-regulated that of IL-4, IL-5, IL-10, IL-18 and TGF-β1. Overall, the aforementioned processes were regulated via the NF-κB pathway in the hepatic non-parenchymal cells. Microplastics disrupts inflammatory process in liver tissues via the NF-κB signaling pathway. These findings provide a strong foundation on immune processes in hepatic tissues following prolonged ingestion of microplastics.
Collapse
Affiliation(s)
- Liangtao Zhao
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wenyuan Shi
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fangfang Hu
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xujun Song
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhangjun Cheng
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Jiahua Zhou
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|