1
|
Guo X, Sulaiman M, Neumann A, Zheng SC, Cecil CAM, Teschendorff AE, Heijmans BT. Unified high-resolution immune cell fraction estimation in blood tissue from birth to old age. Genome Med 2025; 17:63. [PMID: 40426256 PMCID: PMC12108007 DOI: 10.1186/s13073-025-01489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Variations in immune-cell fractions can confound or hamper interpretation of DNAm-based biomarkers in blood. Although cell-type deconvolution can address this challenge for cord and adult blood, currently there is no method applicable to blood from other age groups, including infants and children. Here we construct and extensively validate a DNAm reference panel, called UniLIFE, for 19 immune cell-types, applicable to blood tissue of any age. We use UniLIFE to delineate the dynamics of immune-cell fractions from birth to old age, and to infer disease associated immune cell fraction variations in newborns, infants, children and adults. In a prospective longitudinal study of type-1 diabetes in infants and children, UniLIFE identifies differentially methylated positions that precede type-1 diabetes diagnosis and that map to diabetes related signaling pathways. In summary, UniLIFE will improve the identification and interpretation of blood-based DNAm biomarkers for any age group, but specially for longitudinal studies that include infants and children. The UniLIFE panel and algorithms to estimate cell-type fractions are available from our EpiDISH Bioconductor R-package: https://bioconductor.org/packages/release/bioc/html/EpiDISH.html.
Collapse
Affiliation(s)
- Xiaolong Guo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Mahnoor Sulaiman
- Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, Leiden, 2333 ZC, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia's Children Centre, Erasmus MC, Rotterdam, The Netherlands
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Sophia's Children Centre, Erasmus MC, Rotterdam, The Netherlands
| | - Shijie C Zheng
- Pfizer Research & Development, Pfizer Inc, Groton, CT, USA
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Sophia's Children Centre, Erasmus MC, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
| | - Andrew E Teschendorff
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| | - Bastiaan T Heijmans
- Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, Leiden, 2333 ZC, The Netherlands.
| |
Collapse
|
2
|
Marcante B, Marino L, Cattaneo NE, Delicati A, Tozzo P, Caenazzo L. Advancing Forensic Human Chronological Age Estimation: Biochemical, Genetic, and Epigenetic Approaches from the Last 15 Years: A Systematic Review. Int J Mol Sci 2025; 26:3158. [PMID: 40243941 PMCID: PMC11988829 DOI: 10.3390/ijms26073158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Forensic age estimation is crucial for identifying unknown individuals and narrowing suspect pools in criminal investigations. Over the past 15 years, significant progress has been made in using biochemical, genetic, and epigenetic markers to estimate chronological age. METHODS From research on PubMed a total of 155 studies, related to advancements in age prediction techniques, were selected following PRISMA guidelines. Studies considered eligible dealt with radiocarbon dating, aspartic acid racemization, mitochondrial DNA analysis, signal joint T-cell receptor excision circles, RNA analysis, telomeres, and DNA methylation in the last 15 years and were summarized in a table. RESULTS Despite these advancements, challenges persist, including variability in prediction accuracy, sample degradation, and the lack of standardization and reproducibility. DNA methylation emerged as the most promising approach capable of high accuracy across diverse populations and age ranges. Multimodal methods integrating several biomarkers show promise in improving reliability and addressing these limitations. CONCLUSION While significant progress has been made, further standardization, validation, and technological integration are needed to enhance forensic age estimation. These efforts are essential for meeting the growing demands of forensic science while addressing ethical and legal considerations.
Collapse
Affiliation(s)
- Beatrice Marcante
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (B.M.); (L.M.); (N.E.C.); (A.D.); (P.T.)
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35121 Padova, Italy
| | - Laura Marino
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (B.M.); (L.M.); (N.E.C.); (A.D.); (P.T.)
| | - Narjis Elisa Cattaneo
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (B.M.); (L.M.); (N.E.C.); (A.D.); (P.T.)
| | - Arianna Delicati
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (B.M.); (L.M.); (N.E.C.); (A.D.); (P.T.)
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35121 Padova, Italy
| | - Pamela Tozzo
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (B.M.); (L.M.); (N.E.C.); (A.D.); (P.T.)
| | - Luciana Caenazzo
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (B.M.); (L.M.); (N.E.C.); (A.D.); (P.T.)
| |
Collapse
|
3
|
Becker J, Bühren V, Schmelzer L, Reckert A, Eickhoff SB, Ritz S, Naue J. Molecular age prediction using skull bone samples from individuals with and without signs of decomposition: a multivariate approach combining analysis of posttranslational protein modifications and DNA methylation. Int J Legal Med 2025; 139:157-174. [PMID: 39256256 PMCID: PMC11732915 DOI: 10.1007/s00414-024-03314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024]
Abstract
The prediction of the chronological age of a deceased individual at time of death can provide important information in case of unidentified bodies. The methodological possibilities in these cases depend on the availability of tissues, whereby bones are preserved for a long time due to their mineralization under normal environmental conditions. Age-dependent changes in DNA methylation (DNAm) as well as the accumulation of pentosidine (Pen) and D-aspartic acid (D-Asp) could be useful molecular markers for age prediction. A combination of such molecular clocks into one age prediction model seems favorable to minimize inter- and intra-individual variation. We therefore developed (I) age prediction models based on the three molecular clocks, (II) examined the improvement of age prediction by combination, and (III) investigated if samples with signs of decomposition can also be examined using these three molecular clocks. Skull bone from deceased individuals was collected to obtain a training dataset (n = 86), and two independent test sets (without signs of decomposition: n = 44, with signs of decomposition: n = 48). DNAm of 6 CpG sites in ELOVL2, KLF14, PDE4C, RPA2, TRIM59 and ZYG11A was analyzed using massive parallel sequencing (MPS). The D-Asp and Pen contents were analyzed by high performance liquid chromatography (HPLC). Age prediction models based on ridge regression were developed resulting in mean absolute errors (MAEs)/root mean square errors (RMSE) of 5.5years /6.6 years (DNAm), 7.7 years /9.3 years (Pen) and 11.7 years /14.6 years (D-Asp) in the test set. Unsurprisingly, a general lower accuracy for the DNAm, D-Asp, and Pen models was observed in samples from decomposed bodies (MAE: 7.4-11.8 years, RMSE: 10.4-15.4 years). This reduced accuracy could be caused by multiple factors with different impact on each molecular clock. To acknowledge general changes due to decomposition, a pilot model for a possible age prediction based on the decomposed samples as training set improved the accuracy evaluated by leave-one-out-cross validation (MAE: 6.6-12 years, RMSE: 8.1-15.9 years). The combination of all three molecular age clocks did reveal comparable MAE and RMSE results to the pure analysis of the DNA methylation for the test set without signs of decomposition. However, an improvement by the combination of all three clocks was possible for the decomposed samples, reducing especially the deviation in case of outliers in samples with very high decomposition and low DNA content. The results demonstrate the general potential in a combined analysis of different molecular clocks in specific cases.
Collapse
Affiliation(s)
- J Becker
- Institute of Legal Medicine, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - V Bühren
- Institute of Legal Medicine, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - L Schmelzer
- Institute of Forensic Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - A Reckert
- Institute of Legal Medicine, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - S B Eickhoff
- Institute for Systems Neuroscience, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich, 52428, Juelich, Germany
| | - S Ritz
- Institute of Legal Medicine, University Hospital Duesseldorf, 40225, Duesseldorf, Germany.
| | - J Naue
- Institute of Forensic Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
4
|
Soedarsono N, Hanafi MGS, Hartomo BT, Auerkari EI. ELOVL2, PRKG2, and EDARADD DNA Methylation Strongly Estimate Indonesian Adolescents. Diagnostics (Basel) 2024; 14:1767. [PMID: 39202255 PMCID: PMC11353275 DOI: 10.3390/diagnostics14161767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Recently, there has been a growing interest in using DNA methylation analysis for age estimation. Despite this growing interest, there is a scarcity of research on the potential of DNA methylation as a biomarker for age estimation in Indonesia. This study aims to investigate the applicability of ELOVL2, PRKG2, and EDARADD genes for forensic identification in the 11-20 age group among Indonesians. This research utilizes 43 archived blood samples from healthy individuals who underwent blood tests at the Gatot Soebroto Army Hospital (RSPAD) in Central Jakarta, Indonesia. The methylation-specific PCR (MSP) technique assessed the DNA methylation level. The key findings of this study include (1) a strong positive correlation between methylation levels in the ELOVL2 gene and age; (2) a strong negative correlation between methylation levels in PRKG2 and EDARADD genes with age; (3) the development of three linear regression formulas for age prediction; and (4) mean absolute error (MAE) values derived from this research, which are ±0.48 for ELOVL2 gene regression formula, ±0.58 for PRKG2 gene regression formula, and ±0.72 for EDARADD gene regression formula. In summary, this study explores the potential of DNA methylation analysis for age estimation in Indonesia, focusing on ELOVL2, PRKG2, and EDARADD genes in the 11-20 age group. The findings underscore the applicability of DNA methylation analysis in forensic identification and age estimation, paving the way for future research in this field.
Collapse
Affiliation(s)
- Nurtami Soedarsono
- Division of Forensic Odontology, Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Kota Depok, DKI, Jakarta 10430, Indonesia; (M.G.S.H.); (E.I.A.)
| | - Muhammad Garry Syahrizal Hanafi
- Division of Forensic Odontology, Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Kota Depok, DKI, Jakarta 10430, Indonesia; (M.G.S.H.); (E.I.A.)
| | - Bambang Tri Hartomo
- Department of Dental Medicine, Faculty of Medicine, Universitas Jenderal Soedirman, Purwokerto 53122, Indonesia;
| | - Elza Ibrahim Auerkari
- Division of Forensic Odontology, Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Kota Depok, DKI, Jakarta 10430, Indonesia; (M.G.S.H.); (E.I.A.)
| |
Collapse
|
5
|
Hodge KM, Burt AA, Camerota M, Carter BS, Check J, Conneely KN, Helderman J, Hofheimer JA, Hüls A, McGowan EC, Neal CR, Pastyrnak SL, Smith LM, DellaGrotta SA, Dansereau LM, O'Shea TM, Marsit CJ, Lester BM, Everson TM. Epigenetic associations with neonatal age in infants born very preterm, particularly among genes involved in neurodevelopment. Sci Rep 2024; 14:18147. [PMID: 39103365 PMCID: PMC11300786 DOI: 10.1038/s41598-024-68071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024] Open
Abstract
The time from conception through the first year of life is the most dynamic period in human development. This time period is particularly important for infants born very preterm (< 30 weeks gestation; VPT), as they experience a significant disruption in the normal developmental trajectories and are at heightened risk of experiencing developmental impairments and delays. Variations in the epigenetic landscape during this period may reflect this disruption and shed light on the interrelationships between aging, maturation, and the epigenome. We evaluated how gestational age (GA) and age since conception in neonates [post-menstrual age (PMA)], were related to DNA methylation in buccal cells collected at NICU discharge from VPT infants (n = 538). After adjusting for confounders and applying Bonferroni correction, we identified 2,366 individual CpGs associated with GA and 14,979 individual CpGs associated with PMA, as well as multiple differentially methylated regions. Pathway enrichment analysis identified pathways involved in axonogenesis and regulation of neuron projection development, among many other growth and developmental pathways (FDR q < 0.001). Our findings align with prior work, and also identify numerous novel associations, suggesting that genes important in growth and development, particularly neurodevelopment, are subject to substantial epigenetic changes during early development among children born VPT.
Collapse
Affiliation(s)
- Kenyaita M Hodge
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Amber A Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Marie Camerota
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Brown Center for the Study of Children at Risk, Women and Infants Hospital, Providence, RI, USA
| | - Brian S Carter
- Department of Pediatrics-Neonatology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Jennifer Check
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Karen N Conneely
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jennifer Helderman
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Julie A Hofheimer
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anke Hüls
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elisabeth C McGowan
- Department of Pediatrics, Warren Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
| | - Charles R Neal
- Department of Pediatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Steven L Pastyrnak
- Department of Pediatrics, Spectrum Health-Helen Devos Hospital, Grand Rapids, MI, USA
| | - Lynne M Smith
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sheri A DellaGrotta
- Brown Center for the Study of Children at Risk, Women and Infants Hospital, Providence, RI, USA
| | - Lynne M Dansereau
- Brown Center for the Study of Children at Risk, Women and Infants Hospital, Providence, RI, USA
| | - T Michael O'Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Barry M Lester
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Brown Center for the Study of Children at Risk, Women and Infants Hospital, Providence, RI, USA
- Department of Pediatrics, Warren Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA.
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Procopio N, Bonicelli A. From flesh to bones: Multi-omics approaches in forensic science. Proteomics 2024; 24:e2200335. [PMID: 38683823 DOI: 10.1002/pmic.202200335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Recent advancements in omics techniques have revolutionised the study of biological systems, enabling the generation of high-throughput biomolecular data. These innovations have found diverse applications, ranging from personalised medicine to forensic sciences. While the investigation of multiple aspects of cells, tissues or entire organisms through the integration of various omics approaches (such as genomics, epigenomics, metagenomics, transcriptomics, proteomics and metabolomics) has already been established in fields like biomedicine and cancer biology, its full potential in forensic sciences remains only partially explored. In this review, we have presented a comprehensive overview of state-of-the-art analytical platforms employed in omics research, with specific emphasis on their application in the forensic field for the identification of the cadaver and the cause of death. Moreover, we have conducted a critical analysis of the computational integration of omics approaches, and highlighted the latest advancements in employing multi-omics techniques for forensic investigations.
Collapse
Affiliation(s)
- Noemi Procopio
- Research Centre for Field Archaeology and Experimental Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK
| | - Andrea Bonicelli
- Research Centre for Field Archaeology and Experimental Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK
| |
Collapse
|
7
|
Bjørk MB, Bleka Ø, Kvaal SI, Sakinis T, Tuvnes FA, Eggesbø HB, Lauritzen PM. MRI segmentation of tooth tissue in age prediction of sub-adults - a new method for combining data from the 1st, 2nd, and 3rd molars. Int J Legal Med 2024; 138:939-949. [PMID: 38147158 PMCID: PMC11003927 DOI: 10.1007/s00414-023-03149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/09/2023] [Indexed: 12/27/2023]
Abstract
PURPOSE We aimed to establish a model combining MRI volume measurements from the 1st, 2nd and 3rd molars for age prediction in sub-adults and compare the age prediction performance of different combinations of all three molars, internally in the study cohort. MATERIAL AND METHOD We examined 99 volunteers using a 1.5 T MR scanner with a customized high-resolution single T2 sequence. Segmentation was performed using SliceOmatic (Tomovision©). Age prediction was based on the tooth tissue ratio (high signal soft tissue + low signal soft tissue)/total. The model included three correlation parameters to account for statistical dependence between the molars. Age prediction performance of different combinations of teeth for the three molars was assessed using interquartile range (IQR). RESULTS We included data from the 1st molars from 87 participants (F/M 59/28), 2nd molars from 93 (F/M 60/33) and 3rd molars from 67 (F/M 45/22). The age range was 14-24 years with a median age of 18 years. The model with the best age prediction performance (smallest IQR) was 46-47-18 (lower right 1st and 2nd and upper right 3rd molar) in males. The estimated correlation between the different molars was 0.620 (46 vs. 47), 0.430 (46 vs. 18), and 0.598 (47 vs. 18). IQR was the smallest in tooth combinations including a 3rd molar. CONCLUSION We have established a model for combining tissue volume measurements from the 1st, 2nd and 3rd molars for age prediction in sub-adults. The prediction performance was mostly driven by the 3rd molars. All combinations involving the 3rd molar performed well.
Collapse
Affiliation(s)
- Mai Britt Bjørk
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Postboks 1109, Blindern, 00317, Oslo, Norway.
| | - Øyvind Bleka
- Department of Forensic Sciences, Oslo University Hospital, Postboks 4950 Nydalen, OUS, Rikshospitalet, 0424, Oslo, Norway
| | - Sigrid Ingeborg Kvaal
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Postboks 1109, Blindern, 00317, Oslo, Norway
| | - Tomas Sakinis
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Postboks 4950 Nydalen, OUS, Ullevål, 0424, Oslo, Norway
| | - Frode Alexander Tuvnes
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Postboks 4950 Nydalen, OUS, Ullevål, 0424, Oslo, Norway
| | - Heidi Beate Eggesbø
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Postboks 4950 Nydalen, OUS, Ullevål, 0424, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 4950 Nydalen, OUS, 0424, Oslo, Norway
| | - Peter Mæhre Lauritzen
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Postboks 4950 Nydalen, OUS, Ullevål, 0424, Oslo, Norway
- Faculty of Health Sciences, Department of Life Sciences and Health, Oslo Metropolitan University, Postboks 4, St. Olavs Plass, 0130, Oslo, Norway
| |
Collapse
|
8
|
Castagnola MJ, Medina-Paz F, Zapico SC. Uncovering Forensic Evidence: A Path to Age Estimation through DNA Methylation. Int J Mol Sci 2024; 25:4917. [PMID: 38732129 PMCID: PMC11084977 DOI: 10.3390/ijms25094917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Age estimation is a critical aspect of reconstructing a biological profile in forensic sciences. Diverse biochemical processes have been studied in their correlation with age, and the results have driven DNA methylation to the forefront as a promising biomarker. DNA methylation, an epigenetic modification, has been extensively studied in recent years for developing age estimation models in criminalistics and forensic anthropology. Epigenetic clocks, which analyze DNA sites undergoing hypermethylation or hypomethylation as individuals age, have paved the way for improved prediction models. A wide range of biomarkers and methods for DNA methylation analysis have been proposed, achieving different accuracies across samples and cell types. This review extensively explores literature from the past 5 years, showing scientific efforts toward the ultimate goal: applying age prediction models to assist in human identification.
Collapse
Affiliation(s)
- María Josefina Castagnola
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
| | - Francisco Medina-Paz
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
| | - Sara C. Zapico
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
- Department of Anthropology and Laboratories of Analytical Biology, National Museum of Natural History, MRC 112, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
9
|
Dias HC, Manco L. Predicting age from blood by droplet digital PCR using a set of three DNA methylation markers. Forensic Sci Int 2024; 356:111950. [PMID: 38301433 DOI: 10.1016/j.forsciint.2024.111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/02/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Evaluation of DNA methylation (DNAm) patterns is a promising tool for age estimation. The duplex droplet digital PCR (ddPCR) method has been recently investigated for DNAm evaluation, revealing to be a potential methodology for DNAm evaluation and molecular age estimation. In this study, we evaluated DNAm levels of CpGs located at the three age-associated genes ELOVL2, FHL2 and PDE4C using ddPCR to develop an age prediction model. Blood-derived DNA samples from 58 healthy individuals (42 women and 16 men; aged 1-93 years old) were submitted to bisulfite conversion followed by ddPCR using dual-labeled probes targeting methylated and unmethylated DNA sequences. Simple linear regression statistics revealed a strong correlation between DNAm levels and chronological age for FHL2 (R = 0.948; P = 1.472 × 10-29) and PDE4C (R = 0.819; P = 3.917 × 10-15), addressing only one CpG for each gene. For the ELOVL2 gene, evaluating five CpG sites in simultaneous, revealed a strong age correlation (R = 0.887; P = 2.099 × 10-20) in a simple linear regression statistics and very strong age correlation (R = 0.926; P = 2.202 × 10-25) when using quadratic regression statistics. The multivariable regression analysis, using methylation information captured on ELOVL2 (squared), FHL2 and PDE4C genes, revealed a very strong age correlation (R = 0.970; P = 5.356 ×10-33), explaining 93.7 % of age variance, displaying a mean absolute deviation (MAD) between chronological and predicted age of 4.657 years (RMSE = 6.044). We postulate that the ddPCR method should be further investigated for DNAm-based age prediction, because it is a relatively simple and an accurate method that can be routinely used in forensic laboratories for testing a few numbers of markers.
Collapse
Affiliation(s)
- Helena Correia Dias
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, 3000-456 Coimbra, Portugal
| | - Licínio Manco
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, 3000-456 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
10
|
Naue J. Getting the chronological age out of DNA: using insights of age-dependent DNA methylation for forensic DNA applications. Genes Genomics 2023; 45:1239-1261. [PMID: 37253906 PMCID: PMC10504122 DOI: 10.1007/s13258-023-01392-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/15/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND DNA analysis for forensic investigations has a long tradition with important developments and optimizations since its first application. Traditionally, short tandem repeats analysis has been the most powerful method for the identification of individuals. However, in addition, epigenetic changes, i.e., DNA methylation, came into focus of forensic DNA research. Chronological age prediction is one promising application to allow for narrowing the pool of possible individuals who caused a trace, as well as to support the identification of unknown bodies and for age verification of living individuals. OBJECTIVE This review aims to provide an overview of the current knowledge, possibilities, and (current) limitations about DNA methylation-based chronological age prediction with emphasis on forensic application. METHODS The development, implementation and application of age prediction tools requires a deep understanding about the biological background, the analysis methods, the age-dependent DNA methylation markers, as well as the mathematical models for age prediction and their evaluation. Furthermore, additional influences can have an impact. Therefore, the literature was evaluated in respect to these diverse topics. CONCLUSION The numerous research efforts in recent years have led to a rapid change in our understanding of the application of DNA methylation for chronological age prediction, which is now on the way to implementation and validation. Knowledge of the various aspects leads to a better understanding and allows a more informed interpretation of DNAm quantification results, as well as the obtained results by the age prediction tools.
Collapse
Affiliation(s)
- Jana Naue
- Institute of Forensic Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Kayser M, Branicki W, Parson W, Phillips C. Recent advances in Forensic DNA Phenotyping of appearance, ancestry and age. Forensic Sci Int Genet 2023; 65:102870. [PMID: 37084623 DOI: 10.1016/j.fsigen.2023.102870] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Forensic DNA Phenotyping (FDP) comprises the prediction of a person's externally visible characteristics regarding appearance, biogeographic ancestry and age from DNA of crime scene samples, to provide investigative leads to help find unknown perpetrators that cannot be identified with forensic STR-profiling. In recent years, FDP has advanced considerably in all of its three components, which we summarize in this review article. Appearance prediction from DNA has broadened beyond eye, hair and skin color to additionally comprise other traits such as eyebrow color, freckles, hair structure, hair loss in men, and tall stature. Biogeographic ancestry inference from DNA has progressed from continental ancestry to sub-continental ancestry detection and the resolving of co-ancestry patterns in genetically admixed individuals. Age estimation from DNA has widened beyond blood to more somatic tissues such as saliva and bones as well as new markers and tools for semen. Technological progress has allowed forensically suitable DNA technology with largely increased multiplex capacity for the simultaneous analysis of hundreds of DNA predictors with targeted massively parallel sequencing (MPS). Forensically validated MPS-based FDP tools for predicting from crime scene DNA i) several appearance traits, ii) multi-regional ancestry, iii) several appearance traits together with multi-regional ancestry, and iv) age from different tissue types, are already available. Despite recent advances that will likely increase the impact of FDP in criminal casework in the near future, moving reliable appearance, ancestry and age prediction from crime scene DNA to the level of detail and accuracy police investigators may desire, requires further intensified scientific research together with technical developments and forensic validations as well as the necessary funding.
Collapse
Affiliation(s)
- Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Wojciech Branicki
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland,; Institute of Forensic Research, Kraków, Poland
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, PA, USA
| | - Christopher Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| |
Collapse
|
12
|
Bjørk MB, Kvaal SI, Bleka Ø, Sakinis T, Tuvnes FA, Haugland MA, Lauritzen PM, Eggesbø HB. Age prediction in sub-adults based on MRI segmentation of 3rd molar tissue volumes. Int J Legal Med 2023; 137:753-763. [PMID: 36811675 PMCID: PMC10085921 DOI: 10.1007/s00414-023-02977-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/12/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE Our aim was to investigate tissue volumes measured by MRI segmentation of the entire 3rd molar for prediction of a sub-adult being older than 18 years. MATERIAL AND METHOD We used a 1.5-T MR scanner with a customized high-resolution single T2 sequence acquisition with 0.37 mm iso-voxels. Two dental cotton rolls drawn with water stabilized the bite and delineated teeth from oral air. Segmentation of the different tooth tissue volumes was performed using SliceOmatic (Tomovision©). Linear regression was used to analyze the association between mathematical transformation outcomes of the tissue volumes, age, and sex. Performance of different transformation outcomes and tooth combinations were assessed based on the p value of the age variable, combined or separated for each sex depending on the selected model. The predictive probability of being older than 18 years was obtained by a Bayesian approach. RESULTS We included 67 volunteers (F/M: 45/22), range 14-24 years, median age 18 years. The transformation outcome (pulp + predentine)/total volume for upper 3rd molars had the strongest association with age (p = 3.4 × 10-9). CONCLUSION MRI segmentation of tooth tissue volumes might prove useful in the prediction of age older than 18 years in sub-adults.
Collapse
Affiliation(s)
- Mai Britt Bjørk
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Postboks 1109, Blindern, N-00317, Oslo, Norway.
| | - Sigrid Ingeborg Kvaal
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Postboks 1109, Blindern, N-00317, Oslo, Norway
| | - Øyvind Bleka
- Department of Forensic Sciences, Oslo University Hospital, Postboks 4950 Nydalen, OUS, Rikshospitalet, 0424, Oslo, Norway
| | - Tomas Sakinis
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Postboks 4950 Nydalen, OUS, Ullevål, 0424, Oslo, Norway
| | - Frode Alexander Tuvnes
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Postboks 4950 Nydalen, OUS, Ullevål, 0424, Oslo, Norway
| | - Mari-Ann Haugland
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Postboks 4950 Nydalen, OUS, Ullevål, 0424, Oslo, Norway
| | - Peter Mæhre Lauritzen
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Postboks 4950 Nydalen, OUS, Ullevål, 0424, Oslo, Norway.,Faculty of Health Sciences, Department of Life Sciences and Health, Oslo Metropolitan University, Postboks 4, St. Olavs plass. 0130, Oslo, Norway
| | - Heidi Beate Eggesbø
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Postboks 4950 Nydalen, OUS, Ullevål, 0424, Oslo, Norway.,Department of Radiology and Nuclear Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 4950 Nydalen, OUS, Rikshospitalet, 0424, Oslo, Norway
| |
Collapse
|
13
|
Ye Z, Jiang L, Zhao M, Liu J, Dai H, Hou Y, Wang Z. Epigenome-wide screening of CpG markers to develop a multiplex methylation SNaPshot assay for age prediction. Leg Med (Tokyo) 2022; 59:102115. [PMID: 35810521 DOI: 10.1016/j.legalmed.2022.102115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/05/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022]
Abstract
Age prediction can provide important information about the contributors of biological evidence left at crime scenes. DNA methylation has been regarded as the most promising age-predictive biomarker. Measuring themethylation level at the genome-wide scaleis an important step to screen specific markers for forensic age prediction. In present study, we screened out five age-related CpG sites from the public EPIC BeadChip data and evaluated them in a training set (115 blood) by multiplex methylation SNaPshot assay. Through full subset regression, the five markers were narrowed down to three, namely cg10501210 (C1orf132), cg16867657 (ELOVL2), and cg13108341 (DNAH9), of which the last one was a newly discovered age-related CpG site. An age prediction model was built based on these three markers, explaining 86.8% of the variation of age with a mean absolute deviation (MAD) of 4.038 years. Then, the multiplex methylation SNaPshot assay was adjusted according to the age prediction model. Considering that bloodstains are one of the most common biological samples in practical cases, three validation sets composed of 30 blood, 30 fresh bloodstains and 30 aged bloodstains were used for evaluation of the age prediction model. The MAD of each set was estimated as 4.734, 4.490, and 5.431 years, respectively, suggesting that our age prediction model was applicable for age prediction for blood and bloodstains in Chinese Han population of 11-71 age. In general, this study describes a workflow of screening CpG markers from public chip data and presents a 3-CpG markers model for forensic age prediction.
Collapse
Affiliation(s)
- Ziwei Ye
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing 100088, China
| | - Lirong Jiang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Mengyao Zhao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hao Dai
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing 100088, China.
| |
Collapse
|
14
|
Manco L, Dias HC. DNA methylation analysis of ELOVL2 gene using droplet digital PCR for age estimation purposes. Forensic Sci Int 2022; 333:111206. [DOI: 10.1016/j.forsciint.2022.111206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
|
15
|
Ho Lee M, Hee Hwang J, Min Seong K, Jin Ahn J, Jun Kim S, Yong Hwang S, Lim SK. Application of droplet digital PCR method for DNA methylation-based age prediction from saliva. Leg Med (Tokyo) 2021; 54:101992. [PMID: 34814096 DOI: 10.1016/j.legalmed.2021.101992] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/12/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
The recent studies reported that DNA methylation markers show changes with age, and expected that the DNA methylation markers can be effectively used for estimation of age in forensic genetics. In this study, we applied droplet digital PCR (ddPCR) method to investigate the DNA methylation pattern in the CpG sites, and we constructed an age prediction model based on the ddPCR method. The ddPCR is capable of highly sensitive quantitation of nucleic acid and detection of sequence variations in gene by separating the sample into large number of partitions and clonally amplifying nucleic acids in each partition. We extracted DNA from saliva samples collected from several age groups. The DNA was bisulfite converted and subjected to ddPCR using specifically designed primers and probes. The methylation ratio of each sample was calculated and correlation between the methylation ratio and the chronological age was analyzed. In the results, methylated DNA ratio at the 4 CpG sites (cg14361627, cg14361627, cg08928145 and cg07547549) showed strong correlation with chronological age. Percent-methylation values at 4 CpG markers and chronological ages of the 76 individuals were analyzed by multiple regression analysis, and we constructed an age prediction model. We observed a strong correlation (Spearman's rho = 0.922) between predicted and chronological ages of 76 individuals with a MAD from chronological age of 3.3 years. Collectively, the result in this study showed the potential applicability of ddPCR to predict age from saliva.
Collapse
Affiliation(s)
- Min Ho Lee
- Forensic DNA Division, National Forensic Service, Wonju, Gangwon-do, South Korea
| | - Jung Hee Hwang
- DNA Analysis Division, National Forensic Service Daejeon Institute, Daejeon, South Korea
| | - Ki Min Seong
- Forensic DNA Division, National Forensic Service, Wonju, Gangwon-do, South Korea
| | | | | | - Seung Yong Hwang
- Department of Bio-Nanotechnology, Hanyang University, Ansan, Gyeonggi-do, South Korea
| | - Si-Keun Lim
- Department of Forensic Sciences, Graduate School of Sungkyunkwan University, Suwon, Gyeongi-do, South Korea.
| |
Collapse
|
16
|
Lehmann-Leo CD, Ramsthaler F, Birngruber CG, Verhoff MA. Assessment of renal glomerulosclerosis and thickness of the carotid intima-media complex as a means of age estimation in Western European bodies. Int J Legal Med 2021; 136:753-763. [PMID: 34773496 PMCID: PMC9005432 DOI: 10.1007/s00414-021-02705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The estimation of age-at-death of unidentified cadavers is a central aspect of the identification process. With increasing age, the incidence of glomerulosclerosis and the thickness of the carotid wall have been observed to also increase. This correlation has been demonstrated in various international histological studies. The aim of our study was to assess whether these correlations also apply to a Western European population. METHODOLOGY In this retrospective observational study, kidney and common carotid artery samples from 216 cases autopsied at the Institute of Legal Medicine at the Justus-Liebig University in Giessen, Germany, were examined. Only cases with available tissue samples from both body sides were included. Exclusion criteria were poor sample quality and an age younger than 21 years. After histological processing, the tissue samples were assessed and digitally evaluated. Regression and classification analyses were used to investigate the correlation between age-at-death and intima-media thickness and age-at-death and the incidence of renal glomerular sclerosis. RESULTS Of the 216 autopsy cases, 183 were included for evaluation. Analysis of the carotid artery segments showed a strong correlation (Pearson correlation coefficient r = 0.887) between the intima-media-complex thickness and chronological age. Classification of the glomerulosclerotic incidence showed a correlation of 37.7-43.1% with the predicted age group. DISCUSSION Both the intima-media thickness and the proportion of sclerotic glomeruli can be used to estimate age in Western European cadavers. On the basis of these results, both methods are suited to supplement other already established methods for age-at-death estimation in the identification of an unknown cadaver.
Collapse
Affiliation(s)
- Carl Daniel Lehmann-Leo
- Institute of Legal Medicine, University Hospital of Frankfurt, Goethe University, Kennedyallee 104, 60596, Frankfurt/Main, Germany
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, University Hospital Gießen and Marburg, Gießen, Germany
| | - Frank Ramsthaler
- Institute of Legal Medicine, University of Saarland, HomburgSaar, Germany
| | - Christoph G Birngruber
- Institute of Legal Medicine, University Hospital of Frankfurt, Goethe University, Kennedyallee 104, 60596, Frankfurt/Main, Germany
| | - Marcel A Verhoff
- Institute of Legal Medicine, University Hospital of Frankfurt, Goethe University, Kennedyallee 104, 60596, Frankfurt/Main, Germany.
| |
Collapse
|
17
|
Planterose Jiménez B, Kayser M, Vidaki A. Revisiting genetic artifacts on DNA methylation microarrays exposes novel biological implications. Genome Biol 2021; 22:274. [PMID: 34548083 PMCID: PMC8454075 DOI: 10.1186/s13059-021-02484-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Illumina DNA methylation microarrays enable epigenome-wide analysis vastly used for the discovery of novel DNA methylation variation in health and disease. However, the microarrays' probe design cannot fully consider the vast human genetic diversity, leading to genetic artifacts. Distinguishing genuine from artifactual genetic influence is of particular relevance in the study of DNA methylation heritability and methylation quantitative trait loci. But despite its importance, current strategies to account for genetic artifacts are lagging due to a limited mechanistic understanding on how such artifacts operate. RESULTS To address this, we develop and benchmark UMtools, an R-package containing novel methods for the quantification and qualification of genetic artifacts based on fluorescence intensity signals. With our approach, we model and validate known SNPs/indels on a genetically controlled dataset of monozygotic twins, and we estimate minor allele frequency from DNA methylation data and empirically detect variants not included in dbSNP. Moreover, we identify examples where genetic artifacts interact with each other or with imprinting, X-inactivation, or tissue-specific regulation. Finally, we propose a novel strategy based on co-methylation that can discern between genetic artifacts and genuine genomic influence. CONCLUSIONS We provide an atlas to navigate through the huge diversity of genetic artifacts encountered on DNA methylation microarrays. Overall, our study sets the ground for a paradigm shift in the study of the genetic component of epigenetic variation in DNA methylation microarrays.
Collapse
Affiliation(s)
- Benjamin Planterose Jiménez
- Erasmus MC, University Medical Center Rotterdam, Department of Genetic Identification, Rotterdam, the Netherlands
| | - Manfred Kayser
- Erasmus MC, University Medical Center Rotterdam, Department of Genetic Identification, Rotterdam, the Netherlands
| | - Athina Vidaki
- Erasmus MC, University Medical Center Rotterdam, Department of Genetic Identification, Rotterdam, the Netherlands
| |
Collapse
|
18
|
Schwender K, Fleckhaus J, Schneider PM, Vennemann M. DNA-Methylierungsanalyse – Neues Verfahren der forensischen Altersschätzung. Rechtsmedizin (Berl) 2021. [DOI: 10.1007/s00194-021-00488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Nutzung von Altersinformationen aus posttranslationalen Proteinmodifikationen und DNA-Methylierung zur postmortalen Lebensaltersschätzung. Rechtsmedizin (Berl) 2021. [DOI: 10.1007/s00194-021-00489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ZusammenfassungMit der Identifikation und Beschreibung „molekularer Uhren“ (posttranslationale Proteinmodifikationen, DNA-Methylierung) eröffnen sich neue Möglichkeiten zur Entwicklung von Verfahren zur postmortalen Lebensaltersschätzung. Bislang werden diese Ansätze aber nur unabhängig voneinander eingesetzt. Ihre Verknüpfung verspricht eine bessere Erfassung hochkomplexer Alterungsprozesse und damit die Möglichkeit zur Entwicklung optimierter Verfahren zur Altersschätzung für verschiedenste Szenarien der forensischen Praxis.In Vorbereitung umfangreicher Untersuchungen zur Überprüfung dieser Hypothese wurden verschiedene molekulare Uhren (Akkumulation von D‑Asparaginsäure, Akkumulation von Pentosidin und DNA-Methylierungsmarker [RPA2, ZYG11A, F5, HOXC4, NKIRAS2, TRIM59, ELOVL2, DDO, KLF14 und PDE4C]) in 4 fäulnisresistenten Geweben (Knochen, Sehne, Bandscheibe, Epiglottis) von 15 Individuen untersucht.In allen untersuchten Geweben fand sich eine starke Korrelation beider Proteinmarker sowie jeweils mehrerer DNA-Methylierungsmarker mit dem Lebensalter. Dabei zeigten die untersuchten Parameter gewebsspezifische Veränderungen mit dem Alter.Die Ergebnisse der Pilotstudie belegen das Potenzial der Verknüpfung molekularer Verfahren für die postmortale Altersschätzung. Weitere Untersuchungen werden zeigen, wie genau postmortale Altersschätzungen sein können, wenn Altersinformationen aus posttranslationalen Proteinmodifikationen und DNA-Methylierung aus verschiedenen Geweben in multivariaten Modellen verknüpft werden.
Collapse
|
20
|
Siahaan T, Reckert A, Becker J, Eickhoff SB, Koop B, Gündüz T, Böhme P, Mayer F, Küppers L, Wagner W, Ritz-Timme S. Molecular and morphological findings in a sample of oral surgery patients: What can we learn for multivariate concepts for age estimation? J Forensic Sci 2021; 66:1524-1532. [PMID: 33942892 DOI: 10.1111/1556-4029.14704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 01/15/2023]
Abstract
It has already been proposed that a combined use of different molecular and morphological markers of aging in multivariate models may result in a greater accuracy of age estimation. However, such an approach can be complex and expensive, and not every combination may be useful. The significance and usefulness of combined analyses of D-aspartic acid in dentine, pentosidine in dentine, DNA methylation in buccal swabs at five genomic regions (PDE4C, RPA2, ELOVL2, DDO, and EDARADD), and third molar mineralization were tested by investigating a sample of 90 oral surgery patients. Machine learning models for age estimation were trained and evaluated, and the contribution of each parameter to multivariate models was tested by assessment of the predictor importance. For models based on D-aspartic acid, pentosidine, and the combination of both, mean absolute errors (MAEs) of 2.93, 3.41, and 2.68 years were calculated, respectively. The additional inclusion of the five DNAm markers did not improve the results. The sole DNAm-based model revealed a MAE of 4.14 years. In individuals under 28 years of age, the combination of the DNAm markers with the third molar mineralization stages reduced the MAE from 3.85 to 2.81 years. Our findings confirm that the combination of parameters in multivariate models may be very useful for age estimation. However, the inclusion of many parameters does not necessarily lead to better results. It is a task for future research to identify the best selection of parameters for the different requirements in forensic practice.
Collapse
Affiliation(s)
- Tatjana Siahaan
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Alexandra Reckert
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Julia Becker
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, University Hospital Duesseldorf, Duesseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich, Juelich, Germany
| | - Barbara Koop
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Tanju Gündüz
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Petra Böhme
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Felix Mayer
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Lisa Küppers
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Stefanie Ritz-Timme
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
21
|
|
22
|
Planterose Jiménez B, Liu F, Caliebe A, Montiel González D, Bell JT, Kayser M, Vidaki A. Equivalent DNA methylation variation between monozygotic co-twins and unrelated individuals reveals universal epigenetic inter-individual dissimilarity. Genome Biol 2021; 22:18. [PMID: 33402197 PMCID: PMC7786996 DOI: 10.1186/s13059-020-02223-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although the genomes of monozygotic twins are practically identical, their methylomes may evolve divergently throughout their lifetime as a consequence of factors such as the environment or aging. Particularly for young and healthy monozygotic twins, DNA methylation divergence, if any, may be restricted to stochastic processes occurring post-twinning during embryonic development and early life. However, to what extent such stochastic mechanisms can systematically provide a stable source of inter-individual epigenetic variation remains uncertain until now. RESULTS We enriched for inter-individual stochastic variation by using an equivalence testing-based statistical approach on whole blood methylation microarray data from healthy adolescent monozygotic twins. As a result, we identified 333 CpGs displaying similarly large methylation variation between monozygotic co-twins and unrelated individuals. Although their methylation variation surpasses measurement error and is stable in a short timescale, susceptibility to aging is apparent in the long term. Additionally, 46% of these CpGs were replicated in adipose tissue. The identified sites are significantly enriched at the clustered protocadherin loci, known for stochastic methylation in developing neurons. We also confirmed an enrichment in monozygotic twin DNA methylation discordance at these loci in whole genome bisulfite sequencing data from blood and adipose tissue. CONCLUSIONS We have isolated a component of stochastic methylation variation, distinct from genetic influence, measurement error, and epigenetic drift. Biomarkers enriched in this component may serve in the future as the basis for universal epigenetic fingerprinting, relevant for instance in the discrimination of monozygotic twin individuals in forensic applications, currently impossible with standard DNA profiling.
Collapse
Affiliation(s)
- Benjamin Planterose Jiménez
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
- University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Soedarsono N, Hanafi MS, Auerkari E. Biological age estimation using DNA methylation analysis: A systematic review. SCIENTIFIC DENTAL JOURNAL 2021. [DOI: 10.4103/sdj.sdj_27_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
Madan S, Gandhi T, Chaudhury S. Bone Age Assessment for Lower Age Groups Using Triplet Network in Small Dataset of Hand X-Rays. INTELLIGENT HUMAN COMPUTER INTERACTION 2021:142-153. [DOI: 10.1007/978-3-030-68449-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
25
|
Han Y, Nikolić M, Gobs M, Franzen J, de Haan G, Geiger H, Wagner W. Targeted methods for epigenetic age predictions in mice. Sci Rep 2020; 10:22439. [PMID: 33384442 PMCID: PMC7775437 DOI: 10.1038/s41598-020-79509-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Age-associated DNA methylation reflects aspect of biological aging—therefore epigenetic clocks for mice can elucidate how the aging process in this model organism is affected by specific treatments or genetic background. Initially, age-predictors for mice were trained for genome-wide DNA methylation profiles and we have recently described a targeted assay based on pyrosequencing of DNA methylation at only three age-associated genomic regions. Here, we established alternative approaches using droplet digital PCR (ddPCR) and barcoded bisulfite amplicon sequencing (BBA-seq). At individual CG dinucleotides (CpGs) the correlation of DNA methylation with chronological age was slightly higher for pyrosequencing and ddPCR as compared to BBA-seq. On the other hand, BBA-seq revealed that neighboring CpGs tend to be stochastically modified at murine age-associated regions. Furthermore, the binary sequel of methylated and non-methylated CpGs in individual reads can be used for single-read predictions, which may reflect heterogeneity in epigenetic aging. In comparison to C57BL/6 mice the single-read age-predictions using BBA-seq were also accelerated in the shorter-lived DBA/2 mice, and in C57BL/6 mice with a lifespan quantitative trait locus of DBA/2 mice. Taken together, we describe alternative targeted methods for epigenetic age predictions that provide new perspectives for aging-intervention studies in mice.
Collapse
Affiliation(s)
- Yang Han
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Miloš Nikolić
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Michael Gobs
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Julia Franzen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Gerald de Haan
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, the Netherlands
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, 89081, Ulm, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany. .,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany.
| |
Collapse
|
26
|
Kling T, Wenger A, Carén H. DNA methylation-based age estimation in pediatric healthy tissues and brain tumors. Aging (Albany NY) 2020; 12:21037-21056. [PMID: 33168783 PMCID: PMC7695434 DOI: 10.18632/aging.202145] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/03/2020] [Indexed: 12/20/2022]
Abstract
Several DNA methylation clocks have been developed to reflect chronological age of human tissues, but most clocks have been trained on adult samples. The rapid methylome changes in children and the role of epigenetics in pediatric tumors calls for tools accurately estimating methylation age in children. We aimed to evaluate seven methylation clocks in multiple tissues from healthy children to inform future studies on the optimal clock for pediatric cohorts, and analyzed the methylation age in brain tumors. We found that clocks trained on pediatric samples were the best in all tested tissues, highlighting the need for dedicated clocks. For blood samples, the Skin and blood clock had the best correlation with chronological age, while PedBE was the most accurate for saliva and buccal samples, and Horvath for brain tissue. Horvath methylation age was accelerated in pediatric brain tumors and the acceleration was subtype-specific for atypical teratoid rhabdoid tumor (ATRT), ependymoma, medulloblastoma and glioma. The subtypes with the highest acceleration corresponded to the worst prognostic categories in ATRT, ependymoma and glioma, whereas the relationship was reversed in medulloblastoma. This suggests that methylation age has potential as a prognostic biomarker in pediatric brain tumors and should be further explored.
Collapse
Affiliation(s)
- Teresia Kling
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Wenger
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
De Tobel J, Bauwens J, Parmentier GIL, Franco A, Pauwels NS, Verstraete KL, Thevissen PW. Magnetic resonance imaging for forensic age estimation in living children and young adults: a systematic review. Pediatr Radiol 2020; 50:1691-1708. [PMID: 32734341 DOI: 10.1007/s00247-020-04709-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 03/03/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022]
Abstract
The use of MRI in forensic age estimation has been explored extensively during the last decade. The authors of this paper synthesized the available MRI data for forensic age estimation in living children and young adults to provide a comprehensive overview that can guide age estimation practice and future research. To do so, the authors searched MEDLINE, Embase and Web of Science, along with cited and citing articles and study registers. Two authors independently selected articles, conducted data extraction, and assessed risk of bias. They considered study populations including living subjects up to 30 years old. Fifty-five studies were included in qualitative analysis and 33 in quantitative analysis. Most studies had biases including use of relatively small European (Caucasian) populations, varying MR approaches and varying staging techniques. Therefore, it was not appropriate to pool the age distribution data. The authors found that reproducibility of staging was remarkably lower in clavicles than in any other anatomical structure. Age estimation performance was in line with the gold standard, radiography, with mean absolute errors ranging from 0.85 years to 2.0 years. The proportion of correctly classified minors ranged from 65% to 91%. Multifactorial age estimation performed better than that based on a single anatomical site. The authors found that more multifactorial age estimation studies are necessary, together with studies testing whether the MRI data can safely be pooled. The current review results can guide future studies, help medical professionals to decide on the preferred approach for specific cases, and help judicial professionals to interpret the evidential value of age estimation results.
Collapse
Affiliation(s)
- Jannick De Tobel
- Department of Diagnostic Sciences-Radiology, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Imaging and Pathology-Forensic Odontology, KU Leuven, Leuven, Belgium.
- Department of Oral Diseases and Maxillofacial Surgery, Maastricht UMC+, Maastricht, The Netherlands.
| | - Jeroen Bauwens
- Department of Diagnostic Sciences-Radiology, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Griet I L Parmentier
- Department of Diagnostic Sciences-Radiology, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Ademir Franco
- Department of Imaging and Pathology-Forensic Odontology, KU Leuven, Leuven, Belgium
| | - Nele S Pauwels
- Ghent Knowledge Centre for Health, Ghent University, Ghent, Belgium
| | - Koenraad L Verstraete
- Department of Diagnostic Sciences-Radiology, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Patrick W Thevissen
- Department of Imaging and Pathology-Forensic Odontology, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Age estimation using bloodstain miRNAs based on massive parallel sequencing and machine learning: A pilot study. Forensic Sci Int Genet 2020; 47:102300. [DOI: 10.1016/j.fsigen.2020.102300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/19/2020] [Accepted: 04/12/2020] [Indexed: 12/23/2022]
|
29
|
Han Y, Franzen J, Stiehl T, Gobs M, Kuo CC, Nikolić M, Hapala J, Koop BE, Strathmann K, Ritz-Timme S, Wagner W. New targeted approaches for epigenetic age predictions. BMC Biol 2020; 18:71. [PMID: 32580727 PMCID: PMC7315536 DOI: 10.1186/s12915-020-00807-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background Age-associated DNA methylation changes provide a promising biomarker for the aging process. While genome-wide DNA methylation profiles enable robust age-predictors by integration of many age-associated CG dinucleotides (CpGs), there are various alternative approaches for targeted measurements at specific CpGs that better support standardized and cost-effective high-throughput analysis. Results In this study, we utilized 4647 Illumina BeadChip profiles of blood to select CpG sites that facilitate reliable age-predictions based on pyrosequencing. We demonstrate that the precision of DNA methylation measurements can be further increased with droplet digital PCR (ddPCR). In comparison, bisulfite barcoded amplicon sequencing (BBA-seq) gave slightly lower correlation between chronological age and DNA methylation at individual CpGs, while the age-predictions were overall relatively accurate. Furthermore, BBA-seq data revealed that the correlation of methylation levels with age at neighboring CpG sites follows a bell-shaped curve, often associated with a CTCF binding site. We demonstrate that within individual BBA-seq reads the DNA methylation at neighboring CpGs is not coherently modified, but reveals a stochastic pattern. Based on this, we have developed a new approach for epigenetic age predictions based on the binary sequel of methylated and non-methylated sites in individual reads, which reflects heterogeneity in epigenetic aging within a sample. Conclusion Targeted DNA methylation analysis at few age-associated CpGs by pyrosequencing, BBA-seq, and particularly ddPCR enables high precision of epigenetic age-predictions. Furthermore, we demonstrate that the stochastic evolution of age-associated DNA methylation patterns in BBA-seq data enables epigenetic clocks for individual DNA strands.
Collapse
Affiliation(s)
- Yang Han
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Julia Franzen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Thomas Stiehl
- Interdisciplinary Center for Scientific Computing (IWR), Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany
| | - Michael Gobs
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Chao-Chung Kuo
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Miloš Nikolić
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Jan Hapala
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | | | - Klaus Strathmann
- Institute for Transfusion Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Stefanie Ritz-Timme
- Institute for Legal Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany. .,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany.
| |
Collapse
|
30
|
Márquez-Ruiz AB, González-Herrera L, Luna JDD, Valenzuela A. DNA methylation levels and telomere length in human teeth: usefulness for age estimation. Int J Legal Med 2020; 134:451-459. [PMID: 31897670 DOI: 10.1007/s00414-019-02242-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/19/2019] [Indexed: 01/26/2023]
Abstract
In the last decade, increasing knowledge of epigenetics has led to the development of DNA methylation-based models to predict age, which have shown high predictive accuracy. However, despite the value of teeth as forensic samples, few studies have focused on this source of DNA. This study used bisulfite pyrosequencing to measure the methylation levels of specific CpG sites located in the ELOVL2, ASPA, and PDE4C genes, with the aim of selecting the most age-informative genes and determining their associations with age, in 65 tooth samples from individuals 15 to 85 years old. As a second aim, methylation data and measurements of relative telomere length in the same set of samples were used to develop preliminary age prediction models to evaluate the accuracy of both biomarkers together and separately in estimating age from teeth for forensic purposes. In our sample, several CpG sites from ELOVL2 and PDE4C genes, as well as telomere length, were significantly associated with chronological age. We developed age prediction quantile regression models based on DNA methylation levels, with and without telomere length as an additional variable, and adjusted for type of tooth and sex. Our results suggest that telomere length may have limited usefulness as a supplementary marker for DNA methylation-based age estimation in tooth samples, given that it contributed little improvement in the prediction errors of the models. In addition, even at older ages, DNA methylation appeared to be more informative in predicting age than telomere length when both biomarkers were evaluated separately.
Collapse
Affiliation(s)
- Ana Belén Márquez-Ruiz
- Department of Forensic Medicine, Faculty of Medicine, University of Granada, Avda. de la Investigación, 11, 18016, Granada, Spain.
| | - Lucas González-Herrera
- Department of Forensic Medicine, Faculty of Medicine, University of Granada, Avda. de la Investigación, 11, 18016, Granada, Spain
| | - Juan de Dios Luna
- Department of Statistics, Faculty of Medicine, University of Granada, Avda. de la Investigación, 11, 18016, Granada, Spain
| | - Aurora Valenzuela
- Department of Forensic Medicine, Faculty of Medicine, University of Granada, Avda. de la Investigación, 11, 18016, Granada, Spain
| |
Collapse
|
31
|
De Tobel J, Fieuws S, Hillewig E, Phlypo I, van Wijk M, de Haas MB, Politis C, Verstraete KL, Thevissen PW. Multi-factorial age estimation: A Bayesian approach combining dental and skeletal magnetic resonance imaging. Forensic Sci Int 2019; 306:110054. [PMID: 31778924 DOI: 10.1016/j.forsciint.2019.110054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 10/19/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE To study age estimation performance of combined magnetic resonance imaging (MRI) data of all four third molars, the left wrist and both clavicles in a reference population of females and males. To study the value of adding anthropometric and sexual maturation data. MATERIALS AND METHODS Three Tesla MRI of the three anatomical sites was prospectively conducted from March 2012 to May 2017 in 14- to 26-year-old healthy Caucasian volunteers (160 females, 138 males). Development was assessed by allocating stages, anthropometric measurements were taken, and self-reported sexual maturation data were collected. All data was incorporated in a continuation-ratio model to estimate age, applying Bayes' rule to calculate point and interval predictions. Two performance aspects were studied: (1) accuracy and uncertainty of the point prediction, and (2) diagnostic ability to discern minors from adults (≥18 years). RESULTS Combining information from different anatomical sites decreased the mean absolute error (MAE) compared to incorporating only one site (P<0.0001). By contrast, adding anthropometric and sexual maturation data did not further improve MAE (P=0.11). In females, combining all three anatomical sites rendered a MAE equal to 1.41 years, a mean width of the 95% prediction intervals of 5.91 years, 93% correctly classified adults and 91% correctly classified minors. In males, the corresponding results were 1.36 years, 5.49 years, 94%, and 90%, respectively. CONCLUSION All aspects of age estimation improve when multi-factorial MRI data of the three anatomical sites are incorporated. Anthropometric and sexual maturation data do not seem to add relevant information.
Collapse
Affiliation(s)
- Jannick De Tobel
- Department of Diagnostic Sciences - Radiology, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Department of Imaging and Pathology - Forensic Odontology, KU Leuven, Kapucijnenvoer 7 blok a bus 7001, 3000 Leuven, Belgium; Department of Oral and Maxillofacial Surgery, Leuven University Hospitals, Kapucijnenvoer 33, 3000 Leuven, Belgium.
| | - Steffen Fieuws
- KU Leuven - Leuven University & Hasselt University, Department of Public Health and Primary Care, l-BioStat, Leuven, Kapucijnenvoer 35 blok d bus 7001, 3000 Leuven, Belgium.
| | - Elke Hillewig
- Department of Diagnostic Sciences - Radiology, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Inès Phlypo
- Department of Oral Health Sciences - Special Needs in Dentistry, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Mayonne van Wijk
- Division of Special Services and Expertise, Section of Forensic Anthropology, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, the Netherlands.
| | - Michiel Bart de Haas
- Division of Special Services and Expertise, Section of Forensic Anthropology, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, the Netherlands.
| | - Constantinus Politis
- Department of Oral and Maxillofacial Surgery, Leuven University Hospitals, Kapucijnenvoer 33, 3000 Leuven, Belgium.
| | - Koenraad Luc Verstraete
- Department of Diagnostic Sciences - Radiology, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Patrick Werner Thevissen
- Department of Imaging and Pathology - Forensic Odontology, KU Leuven, Kapucijnenvoer 7 blok a bus 7001, 3000 Leuven, Belgium.
| |
Collapse
|
32
|
Li L, Song F, Lang M, Hou J, Wang Z, Prinz M, Hou Y. Methylation-Based Age Prediction Using Pyrosequencing Platform from Seminal Stains in Han Chinese Males. J Forensic Sci 2019; 65:610-619. [PMID: 31498434 DOI: 10.1111/1556-4029.14186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/10/2023]
Abstract
Various methods have been performed to predict an unknown individual's age from biological traces in forensic investigations. A considerably accurate age prediction for the semen donor can help narrow down the search in a sexual assault case. The aim of this study was to develop an assay for age prediction from seminal stains in Han Chinese males. We built a sperm-specific linear regression model using bisulfite pyrosequencing. Validations were conducted with a Mean Absolute Deviation from the chronological age (MAD) of 4.219 years in liquid semen, 4.158 years in fresh seminal stains, 4.393 years in aged seminal stains, and 3.880 years in mixed stains, respectively. Furthermore, our strategy enables accurate age prediction using a forensic casework sample. The strategy indicated that we produced an accurate and reliable age prediction tool for the semen donors in Han Chinese males for forensic purposes.
Collapse
Affiliation(s)
- Luyao Li
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feng Song
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Min Lang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiayi Hou
- Institute for Genomic Medicine, University of California, La Jolla, San Diego, CA, 92093
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mechthild Prinz
- Department of Sciences, John Jay College of Criminal Justice, New York, NY, 10019
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
33
|
Dallora AL, Anderberg P, Kvist O, Mendes E, Diaz Ruiz S, Sanmartin Berglund J. Bone age assessment with various machine learning techniques: A systematic literature review and meta-analysis. PLoS One 2019; 14:e0220242. [PMID: 31344143 PMCID: PMC6657881 DOI: 10.1371/journal.pone.0220242] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/11/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The assessment of bone age and skeletal maturity and its comparison to chronological age is an important task in the medical environment for the diagnosis of pediatric endocrinology, orthodontics and orthopedic disorders, and legal environment in what concerns if an individual is a minor or not when there is a lack of documents. Being a time-consuming activity that can be prone to inter- and intra-rater variability, the use of methods which can automate it, like Machine Learning techniques, is of value. OBJECTIVE The goal of this paper is to present the state of the art evidence, trends and gaps in the research related to bone age assessment studies that make use of Machine Learning techniques. METHOD A systematic literature review was carried out, starting with the writing of the protocol, followed by searches on three databases: Pubmed, Scopus and Web of Science to identify the relevant evidence related to bone age assessment using Machine Learning techniques. One round of backward snowballing was performed to find additional studies. A quality assessment was performed on the selected studies to check for bias and low quality studies, which were removed. Data was extracted from the included studies to build summary tables. Lastly, a meta-analysis was performed on the performances of the selected studies. RESULTS 26 studies constituted the final set of included studies. Most of them proposed automatic systems for bone age assessment and investigated methods for bone age assessment based on hand and wrist radiographs. The samples used in the studies were mostly comprehensive or bordered the age of 18, and the data origin was in most of cases from United States and West Europe. Few studies explored ethnic differences. CONCLUSIONS There is a clear focus of the research on bone age assessment methods based on radiographs whilst other types of medical imaging without radiation exposure (e.g. magnetic resonance imaging) are not much explored in the literature. Also, socioeconomic and other aspects that could influence in bone age were not addressed in the literature. Finally, studies that make use of more than one region of interest for bone age assessment are scarce.
Collapse
Affiliation(s)
- Ana Luiza Dallora
- Department of Health, Blekinge Institute of Technology, Karlskrona, Sweden
| | - Peter Anderberg
- Department of Health, Blekinge Institute of Technology, Karlskrona, Sweden
| | - Ola Kvist
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Emilia Mendes
- Department of Computer Science, Blekinge Institute of Technology, Karlskrona, Sweden
| | - Sandra Diaz Ruiz
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
34
|
Transcriptome analysis identifies a robust gene expression program in the mouse intestinal epithelium on aging. Sci Rep 2019; 9:10410. [PMID: 31320724 PMCID: PMC6639340 DOI: 10.1038/s41598-019-46966-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelium undergoes constant regeneration driven by intestinal stem cells. How old age affects the transcriptome in this highly dynamic tissue is an important, but poorly explored question. Using transcriptomics on sorted intestinal stem cells and adult enterocytes, we identified candidate genes, which change expression on aging. Further validation of these on intestinal epithelium of multiple middle-aged versus old-aged mice highlighted the consistent up-regulation of the expression of the gene encoding chemokine receptor Ccr2, a mediator of inflammation and several disease processes. We observed also increased expression of Strc, coding for stereocilin, and dramatically decreased expression of Rps4l, coding for a ribosome subunit. Ccr2 and Rps4l are located close to the telomeric regions of chromosome 9 and 6, respectively. As only few genes were differentially expressed and we did not observe significant protein level changes of identified ageing markers, our analysis highlights the overall robustness of murine intestinal epithelium gene expression to old age.
Collapse
|
35
|
Becker J, Mahlke NS, Reckert A, Eickhoff SB, Ritz-Timme S. Age estimation based on different molecular clocks in several tissues and a multivariate approach: an explorative study. Int J Legal Med 2019; 134:721-733. [DOI: 10.1007/s00414-019-02054-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022]
|
36
|
Aref-Eshghi E, Bend EG, Colaiacovo S, Caudle M, Chakrabarti R, Napier M, Brick L, Brady L, Carere DA, Levy MA, Kerkhof J, Stuart A, Saleh M, Beaudet AL, Li C, Kozenko M, Karp N, Prasad C, Siu VM, Tarnopolsky MA, Ainsworth PJ, Lin H, Rodenhiser DI, Krantz ID, Deardorff MA, Schwartz CE, Sadikovic B. Diagnostic Utility of Genome-wide DNA Methylation Testing in Genetically Unsolved Individuals with Suspected Hereditary Conditions. Am J Hum Genet 2019; 104:685-700. [PMID: 30929737 DOI: 10.1016/j.ajhg.2019.03.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Conventional genetic testing of individuals with neurodevelopmental presentations and congenital anomalies (ND/CAs), i.e., the analysis of sequence and copy number variants, leaves a substantial proportion of them unexplained. Some of these cases have been shown to result from DNA methylation defects at a single locus (epi-variants), while others can exhibit syndrome-specific DNA methylation changes across multiple loci (epi-signatures). Here, we investigate the clinical diagnostic utility of genome-wide DNA methylation analysis of peripheral blood in unresolved ND/CAs. We generate a computational model enabling concurrent detection of 14 syndromes using DNA methylation data with full accuracy. We demonstrate the ability of this model in resolving 67 individuals with uncertain clinical diagnoses, some of whom had variants of unknown clinical significance (VUS) in the related genes. We show that the provisional diagnoses can be ruled out in many of the case subjects, some of whom are shown by our model to have other diseases initially not considered. By applying this model to a cohort of 965 ND/CA-affected subjects without a previous diagnostic assumption and a separate assessment of rare epi-variants in this cohort, we identify 15 case subjects with syndromic Mendelian disorders, 12 case subjects with imprinting and trinucleotide repeat expansion disorders, as well as 106 case subjects with rare epi-variants, a portion of which involved genes clinically or functionally linked to the subjects' phenotypes. This study demonstrates that genomic DNA methylation analysis can facilitate the molecular diagnosis of unresolved clinical cases and highlights the potential value of epigenomic testing in the routine clinical assessment of ND/CAs.
Collapse
|
37
|
Lagacé F, Verna E, Adalian P, Baccino E, Martrille L. Testing the accuracy of a new histomorphometric method for age-at-death estimation. Forensic Sci Int 2019; 296:48-52. [DOI: 10.1016/j.forsciint.2019.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/14/2018] [Accepted: 01/09/2019] [Indexed: 11/27/2022]
|
38
|
Aref-Eshghi E, Bend EG, Hood RL, Schenkel LC, Carere DA, Chakrabarti R, Nagamani SCS, Cheung SW, Campeau PM, Prasad C, Siu VM, Brady L, Tarnopolsky MA, Callen DJ, Innes AM, White SM, Meschino WS, Shuen AY, Paré G, Bulman DE, Ainsworth PJ, Lin H, Rodenhiser DI, Hennekam RC, Boycott KM, Schwartz CE, Sadikovic B. BAFopathies' DNA methylation epi-signatures demonstrate diagnostic utility and functional continuum of Coffin-Siris and Nicolaides-Baraitser syndromes. Nat Commun 2018; 9:4885. [PMID: 30459321 PMCID: PMC6244416 DOI: 10.1038/s41467-018-07193-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/18/2018] [Indexed: 01/16/2023] Open
Abstract
Coffin–Siris and Nicolaides–Baraitser syndromes (CSS and NCBRS) are Mendelian disorders caused by mutations in subunits of the BAF chromatin remodeling complex. We report overlapping peripheral blood DNA methylation epi-signatures in individuals with various subtypes of CSS (ARID1B, SMARCB1, and SMARCA4) and NCBRS (SMARCA2). We demonstrate that the degree of similarity in the epi-signatures of some CSS subtypes and NCBRS can be greater than that within CSS, indicating a link in the functional basis of the two syndromes. We show that chromosome 6q25 microdeletion syndrome, harboring ARID1B deletions, exhibits a similar CSS/NCBRS methylation profile. Specificity of this epi-signature was confirmed across a wide range of neurodevelopmental conditions including other chromatin remodeling and epigenetic machinery disorders. We demonstrate that a machine-learning model trained on this DNA methylation profile can resolve ambiguous clinical cases, reclassify those with variants of unknown significance, and identify previously undiagnosed subjects through targeted population screening. Mutations in genes encoding subunits of the BAF complex can cause Coffin–Siris and Nicolaides–Baraitser syndromes. Here the authors identify overlapping DNA methylation signatures in individuals with subtypes of these two syndromes that suggest a functional link and can be used to diagnose subjects with unclear clinical presentations.
Collapse
Affiliation(s)
- Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5W9, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada
| | - Eric G Bend
- Prevention Genetics, Marshfield, 54449, WI, USA
| | - Rebecca L Hood
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, K1H 8L1, ON, Canada
| | - Laila C Schenkel
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5W9, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada
| | - Deanna Alexis Carere
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada
| | - Rana Chakrabarti
- Children's Health Research Institute, London, N6A 5W9, ON, Canada
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, TX, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, TX, USA
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal, Montreal, H3C 3J7, QC, Canada
| | - Chitra Prasad
- Children's Health Research Institute, London, N6A 5W9, ON, Canada
| | - Victoria Mok Siu
- Children's Health Research Institute, London, N6A 5W9, ON, Canada
| | - Lauren Brady
- Department of Pediatrics, McMaster University, Hamilton, L8P 1A2, ON, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, L8P 1A2, ON, Canada
| | - David J Callen
- Department of Pediatrics, McMaster University, Hamilton, L8P 1A2, ON, Canada
| | - A Micheil Innes
- Department of Medical Genetics, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, T3B 6A8, AB, Canada
| | - Susan M White
- Department of Paediatrics, University of Melbourne, Melbourne, 3052, VIC, Australia
| | - Wendy S Meschino
- Genetics Program, North York General Hospital, Toronto, M2K 1E1, ON, Canada
| | - Andrew Y Shuen
- Children's Health Research Institute, London, N6A 5W9, ON, Canada
| | - Guillaume Paré
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, L8P 1A2, ON, Canada
| | - Dennis E Bulman
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, K1H 8L1, ON, Canada
| | - Peter J Ainsworth
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5W9, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada
| | - Hanxin Lin
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5W9, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada
| | - David I Rodenhiser
- Children's Health Research Institute, London, N6A 5W9, ON, Canada.,Department of Pediatrics, Biochemistry and Oncology, Western University, London, N6A 5W9, ON, Canada
| | - Raoul C Hennekam
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, 1012 WX, The Netherlands
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, K1H 8L1, ON, Canada
| | | | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5W9, ON, Canada. .,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada.
| |
Collapse
|
39
|
Recent progress, methods and perspectives in forensic epigenetics. Forensic Sci Int Genet 2018; 37:180-195. [PMID: 30176440 DOI: 10.1016/j.fsigen.2018.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 01/19/2023]
Abstract
Forensic epigenetics, i.e., investigating epigenetics variation to resolve forensically relevant questions unanswerable with standard forensic DNA profiling has been gaining substantial ground over the last few years. Differential DNA methylation among tissues and individuals has been proposed as useful resource for three forensic applications i) determining the tissue type of a human biological trace, ii) estimating the age of an unknown trace donor, and iii) differentiating between monozygotic twins. Thus far, forensic epigenetic investigations have used a wide range of methods for CpG marker discovery, prediction modelling and targeted DNA methylation analysis, all coming with advantages and disadvantages when it comes to forensic trace analysis. In this review, we summarize the most recent literature on these three main topics of current forensic epigenetic investigations and discuss limitations and practical considerations in experimental design and data interpretation, such as technical and biological biases. Moreover, we provide future perspectives with regard to new research questions, new epigenetic markers and recent technological advances that - as we envision - will move the field towards forensic epigenomics in the near future.
Collapse
|
40
|
Kumagai A, Willems G, Franco A, Thevissen P. Age estimation combining radiographic information of two dental and four skeletal predictors in children and subadults. Int J Legal Med 2018; 132:1769-1777. [DOI: 10.1007/s00414-018-1910-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/31/2018] [Indexed: 11/27/2022]
|
41
|
Freire-Aradas A, Phillips C, Girón-Santamaría L, Mosquera-Miguel A, Gómez-Tato A, Casares de Cal MÁ, Álvarez-Dios J, Lareu MV. Tracking age-correlated DNA methylation markers in the young. Forensic Sci Int Genet 2018; 36:50-59. [PMID: 29933125 DOI: 10.1016/j.fsigen.2018.06.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 01/03/2023]
Abstract
DNA methylation is the most extensively studied epigenetic signature, with a large number of studies reporting age-correlated CpG sites in overlapping genes. However, most of these studies lack sample coverage of individuals under 18 years old and therefore little is known about the progression of DNA methylation patterns in children and adolescents. In the present study we aimed to select candidate age-correlated DNA methylation markers based on public datasets from Illumina BeadChip arrays and previous publications, then to explore the resulting markers in 209 blood samples from donors aged between 2 to 18 years old using the EpiTYPER® DNA methylation analysis system. Results from our analyses identified six genes highly correlated with age in the young, in particular the gene KCNAB3, which indicates its potential as a highly informative and specific age biomarker for childhood and adolescence. We outline a preliminary age prediction model based on quantile regression that uses data from the six CpG sites most strongly correlated with age ranges extended to include children and adolescents.
Collapse
Affiliation(s)
- Ana Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain.
| | - Christopher Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - Lorena Girón-Santamaría
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - Ana Mosquera-Miguel
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front Med (Lausanne) 2018; 5:61. [PMID: 29662881 PMCID: PMC5890129 DOI: 10.3389/fmed.2018.00061] [Citation(s) in RCA: 552] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
Geroscience, the new interdisciplinary field that aims to understand the relationship between aging and chronic age-related diseases (ARDs) and geriatric syndromes (GSs), is based on epidemiological evidence and experimental data that aging is the major risk factor for such pathologies and assumes that aging and ARDs/GSs share a common set of basic biological mechanisms. A consequence is that the primary target of medicine is to combat aging instead of any single ARD/GSs one by one, as favored by the fragmentation into hundreds of specialties and sub-specialties. If the same molecular and cellular mechanisms underpin both aging and ARDs/GSs, a major question emerges: which is the difference, if any, between aging and ARDs/GSs? The hypothesis that ARDs and GSs such as frailty can be conceptualized as accelerated aging will be discussed by analyzing in particular frailty, sarcopenia, chronic obstructive pulmonary disease, cancer, neurodegenerative diseases such as Alzheimer and Parkinson as well as Down syndrome as an example of progeroid syndrome. According to this integrated view, aging and ARDs/GSs become part of a continuum where precise boundaries do not exist and the two extremes are represented by centenarians, who largely avoided or postponed most ARDs/GSs and are characterized by decelerated aging, and patients who suffered one or more severe ARDs in their 60s, 70s, and 80s and show signs of accelerated aging, respectively. In between these two extremes, there is a continuum of intermediate trajectories representing a sort of gray area. Thus, clinically different, classical ARDs/GSs are, indeed, the result of peculiar combinations of alterations regarding the same, limited set of basic mechanisms shared with the aging process. Whether an individual will follow a trajectory of accelerated or decelerated aging will depend on his/her genetic background interacting lifelong with environmental and lifestyle factors. If ARDs and GSs are manifestations of accelerated aging, it is urgent to identify markers capable of distinguishing between biological and chronological age to identify subjects at higher risk of developing ARDs and GSs. To this aim, we propose the use of DNA methylation, N-glycans profiling, and gut microbiota composition to complement the available disease-specific markers.
Collapse
Affiliation(s)
- Claudio Franceschi
- Institute of Neurological Sciences, University of Bologna, Bellaria Hospital, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden.,Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy.,CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy
| | - Cristina Morsiani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Andrea Grignolio
- Unit and Museum of History of Medicine, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|