1
|
Yu J, Yuasa H, Hirono I, Koiwai K, Mori T. Dielectrophoresis for Isolating Low-Abundance Bacteria Obscured by Impurities in Environmental Samples. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:64. [PMID: 40085294 PMCID: PMC11909046 DOI: 10.1007/s10126-025-10441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
Bacterial communities associated with living organisms play critical roles in maintaining health and ecological balance. While dominant bacteria have been widely studied, understanding the role of low-abundance bacteria has become increasingly important due to their unique roles, such as regulating bacterial community dynamics and supporting host-specific functions. However, detecting these bacteria remains challenging, as impurities in environmental samples mask signals and compromise the accuracy of analyses. This study explored the use of dielectrophoresis (DEP) as a practical approach to isolate low-abundance bacteria obscured by impurities, comparing its utility to conventional centrifugation methods. Using two shrimp species, Neocaridina denticulata and Penaeus japonicus, DEP effectively isolated bacterial fractions while reducing impurities, enabling the detection of bacteria undetected in centrifuged samples. These newly detected bacteria were potentially linked to diverse ecological and host-specific functions, such as nutrient cycling and immune modulation, highlighting DEP as a highly potential approach to support the study of host-microbial interactions. Overall, we believe that DEP offers a practical solution for detecting overlooked bacteria in conventional methods and exploring their diversity and functional roles, with potential contributions to aquaculture and environmental biotechnology.
Collapse
Affiliation(s)
- Jaeyoung Yu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei-Shi, Tokyo, 184-8588, Japan.
| | - Hajime Yuasa
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo, 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo, 108-8477, Japan
| | - Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo, 108-8477, Japan
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei-Shi, Tokyo, 184-8588, Japan.
| |
Collapse
|
2
|
El-Waziry IAK, Eissa AE, El-Tarabili RM, Abouelhassan EM, Ghetas HA, Ismail EM, Elnakeeb MA, Abdel Hady HA, Aboelnaga HS, Dessouki AA. Parasitic crustaceans as a potential vector of MDR Vibrio alginolyticus infection among farmed marine fish in some earthen-pond based Egyptian aquaculture facilities: Molecular, epidemiological and pathological evidences. Parasitol Int 2025; 108:103066. [PMID: 40064437 DOI: 10.1016/j.parint.2025.103066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Parasitic crustaceans affecting cultured marine fish in earthen-pond aquaculture facilities are nasty parasites that trigger cascades of microbial infections with consequent economic losses. In the current study, the role of some parasitic crustaceans in spread and transmission of bacterial infections among cultured marine fishes was investigated utilizing taxonomical, molecular, epidemiological, and pathological assays. A total of 400 marine fish involving Pomadasys stridens, Dicentrarchus labra, Sparus aurata, and Tilapia zilli have been randomly collected from some private earthen pond-based aquaculture facilities. Collected fishes were clinically examined for possible presence of disease symptoms, lesions and/or parasites. Three parasitic crustaceans were identified from gills, skin, and fins of examined marine fish species. The isopod Livoneca redmanii, Caligus, and Lernanthropus species were fully identified. Vibrio alginolyticus was concurrently isolated from both fish and isopod species with 99.76 % similarity between fish and isopod species upon molecular screening utilizing 16SrRNA with sequence alignment. Interestingly, 73.3 % of the isolated bacteria exhibited multi-drug resistance (MDR) with multiple antibiotic resistance (MAR index), values ≥0.2. Further, 56.7 % (17/30) of recovered isolates were resistant to four and five antimicrobials with MAR indices of 0.50 and 0.40. Histopathological examination has revealed remarkable damage of gill filaments and fins of affected fish.
Collapse
Affiliation(s)
- Islam A K El-Waziry
- Department of Aquaculture Diseases Control, Fish Farming and Technology Institute, Suez Canal University, Ismailia 41522, Egypt
| | - Alaa Eldin Eissa
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Eman M Abouelhassan
- Department of Parasitology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Hanan A Ghetas
- Department of Aquatic Animals Medicine and Management, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Eman M Ismail
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mahmoud A Elnakeeb
- Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Heba A Abdel Hady
- Department of Virology and Serology, Animal Health Research Institute, Alexandria Provincial Laboratory, Alexandria, Egypt
| | - Hadeer S Aboelnaga
- Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Amina A Dessouki
- Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
3
|
Chatkaewchai B, Surachetpong W, Thongyuan S, Kamklang M, Laopiem S, Pattanakunanan S, Boonyawiwat V, Pulpipat T. Distribution and Risk Factors Associated With Tilapia Parvovirus (TiPV) Presence in Red Hybrid Tilapia ( Oreochromis spp.) Farms in Thailand. Transbound Emerg Dis 2025; 2025:6618755. [PMID: 40302744 PMCID: PMC12016865 DOI: 10.1155/tbed/6618755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/10/2025] [Indexed: 05/02/2025]
Abstract
Emerging viral diseases, such as tilapia parvovirus (TiPV), are having a significant economic impact on global tilapia aquaculture. TiPV is responsible for the mass mortality of Nile tilapia (Oreochromis niloticus) and red hybrid tilapia (Oreochromis spp.) in China, India and Thailand. We, therefore, aimed to determine the current status of TiPV infection and distribution and the risk factors associated with TiPV infection in red hybrid tilapia farms in Thailand. In this cross-sectional study, a total of 101 samples, each comprising five moribund fish, were collected from 40 red hybrid tilapia farms across various provinces in Thailand between September 2022 and March 2024. The data on the farm characteristics and management practices were obtained via questionnaires and direct observation. A total of 23 factors were assessed, including six related to farm characteristics, 13 associated with farm management practices and four concerning the presence of other pathogens. The data from 101 samples were analysed using unconditional and mixed-effects logistic regression, revealing a percentage of TiPV infection was 11.88%. Two significant risk factors associated with TiPV infection were identified: the source of the fish (p=0.020) and the initial fish weight at the stocking date (p=0.026). Conversely, the feeding method (p=0.039) was found to be a protective factor against TiPV infection. This study is the first to investigate the epidemiology of TiPV infection in farmed red hybrid tilapia. Our findings are important for improving farm management practices, mitigating the risk of TiPV infection and developing effective disease control strategies.
Collapse
Affiliation(s)
- Benya Chatkaewchai
- Master of Science Program in Veterinary Clinical Studies, Faculty of Veterinary Medicine, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Suporn Thongyuan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Methanan Kamklang
- Kamphaeng Saen Veterinary Diagnostic Center, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Sudtisa Laopiem
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Sakuna Pattanakunanan
- Kamphaeng Saen Veterinary Diagnostic Center, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Visanu Boonyawiwat
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Theeraporn Pulpipat
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| |
Collapse
|
4
|
Ibrahim D, Shahin SE, Elnahriry SS, El-Badry SM, Eltarabili RM, Elazab ST, Ismail TA, Abd El-Hamid MI. Liposome encapsulating pine bark extract in Nile tilapia: Targeting interrelated immune and antioxidant defense to combat coinfection with Aeromonas hydrophila and Enterococcus faecalis. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110031. [PMID: 39566669 DOI: 10.1016/j.fsi.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/27/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Application of smart delivery systems for encapsulation of natural ingredients provides novel avenues and is being frequently developed. Thus, we aimed to highlight the effects of cyclosome liposomal pine bark extract (CL-PBE) on Nile tilapia growth, immunomodulation, antioxidant capacity and resistance against coinfection with Aeromonas hydrophila and Enterococcus faecalis and their associated virulence genes. The experiment was conducted on four fish groups receiving a control diet (control) along with three baseline meals supplemented with 200, 400 and 600 mg/kg diet of CL-PBE (CL-PBE 200, 400 and 600, respectively). At the end of the 12-weeks feeding trial, the tilapias were intraperitoneally challenged with virulent A. hydrophila strain and five days later, E. faecalis challenge was carried out. The results revealed that tilapias fed diets fortified with CL-PBE displayed significantly enhanced growth rate and feed conversion ratio in a dose-dependent manner. Moreover, we demonstrated that CL-PBE had potent antioxidant property presented by modulation of several markers of oxidative stress; substantial reductions in reactive oxygen species, hydrogen peroxide and malondialdehyde levels, an elevation in total antioxidant capacity and boosting glutathione peroxidase (GSH-Px), catalase (CAT) and superoxide dismutase (SOD) activities in fish serum and muscle tissues. This was also correlated with augmenting the expression of CAT, SOD, GSH-Px, Nrf2 and caspase-1 genes alongside reducing those of COX-2, HSP70 and iNOS genes in response to CL-PBE. Our data demonstrated that CL-PBE fortification counteracted the overly pronounced inflammatory response-mediated induction of IL-1β, TNF-α, MHCII and TLR2 genes at the transcriptional levels post coinfection together with promotion in MUC2 and IL-10 genes expression. Notably, our findings displayed optimal well-functioning fish immune system post dietary supplementation of CL-PBE for the protection against coinfection with A. hydrophila and E. faecalis. This was evident from the decline of their counts and hence encompassing the capacity to reduce cumulative mortality percentage in conjunction with interference with their virulence via the significant downregulatory effects of CL-PBE on E. faecalis esp and gelE and A. hydrophila act and fla virulence genes. Taken together, our study strongly suggested dietary inclusion of CL-PBE for Nile tilapias with superior growth performance and significant economic benefits coupled with potent stimulatory effects on antioxidant capacity and immune response expediting our detailed understanding of how coinfection with A. hydrophila and E. faecalis was controlled.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Sara E Shahin
- Department of Animal Wealth Development, Veterinary Economics and Farm Management, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Shimaa S Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Sara M El-Badry
- Department of Animal Wealth Development, Veterinary Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44519, Egypt.
| | - Reham M Eltarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
5
|
Alsulami MN, Baowidan SK, Aljarari RM, Albohiri HH, Khan SA, Elkhawass EA. Food Safety: Pathological and Biochemical Responses of Nile Tilapia ( Oreochromis niloticus) to Parasitological Infestation and Heavy Metals Pollution in Aquaculture System, Jeddah, Saudi Arabia. Animals (Basel) 2024; 15:39. [PMID: 39794982 PMCID: PMC11718979 DOI: 10.3390/ani15010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
OBJECTIVE The study aims to assess the overall safety of cultured tilapias in Jeddah City, Saudi Arabia by assessing the impact of infection and anthropogenic pollution on farmed tilapias based on fish sex, body weight, length, and heavy metals contamination. MATERIALS AND METHODS A total of 111 fish were collected from an aquaculture farm in Hada Al-Sham, Jeddah, Saudi Arabia. Physicochemical parameters of water from the culture system were evaluated. Both ecto- and endoparasites were checked. Haematological, biochemical and histopathological investigations were evaluated. In addition, heavy metals, namely, cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were evaluated in different fish tissues and water samples from the aquaculture system. RESULTS The study revealed stressed aquaculture system. Tilapias were infested by both ectoparasites including Trichodina, Icthyophthirius multifiliis, Dactylogrus, and Cichlidogyrus, and endoparasites as Icthyophonus hoferi, the nematode Capillaria and coccidian protozoa. The study showed that male tilapias had greater infestation rates than females and longer and heavier male fish tended to be more susceptible to Dactylogyrus infection. Infected fish showed altered biochemical markers with subsequent increases in inflammatory and oxidative stress markers. The post-mortem lesion in the skin, gill lamellae, intestine, spleen, and liver showed significant pathological remarks. All investigated fish tissues revealed higher rates of heavy metals bioaccumulation compared to the surrounding waters. On the other hand, infected Nile tilapia tissues showed higher rate of metals accumulation compared to non-infected ones. Metals accumulated at a higher rate in the liver followed by kidney, intestine, gills, and muscles, respectively. CONCLUSIONS This study is recognized as the first to address the food safety of farmed tilapias in Jeddah, Saudi Arabia. The results emphasized a significant relation between parasites and heavy metal in disrupting fish defense systems and harming fish's physiological homeostasis and the histological state of tissues. The parasitized and polluted farmed fish pose health risk to humans due to possible zoonosis from parasitic infections and its subsequent bacterial infections with long-term exposure to toxic chemicals. Addressing the need for a combination of improved aquaculture practices, and stringent regulatory oversight.
Collapse
Affiliation(s)
- Muslimah N. Alsulami
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.A.); (S.K.B.); (R.M.A.); (H.H.A.); (S.A.K.)
| | - Sarah Khaled Baowidan
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.A.); (S.K.B.); (R.M.A.); (H.H.A.); (S.A.K.)
| | - Rabab M. Aljarari
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.A.); (S.K.B.); (R.M.A.); (H.H.A.); (S.A.K.)
| | - Haleema H. Albohiri
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.A.); (S.K.B.); (R.M.A.); (H.H.A.); (S.A.K.)
| | - Samar A. Khan
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.A.); (S.K.B.); (R.M.A.); (H.H.A.); (S.A.K.)
| | - Elham Ali Elkhawass
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
6
|
Koll R, Hauten E, Theilen J, Bang C, Bouchard M, Thiel R, Möllmann C, Woodhouse JN, Fabrizius A. Spatio-temporal plasticity of gill microbiota in estuarine fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177505. [PMID: 39536868 DOI: 10.1016/j.scitotenv.2024.177505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Coastal marine and estuarine systems are subject to enormous endogenous and exogenous pressures, particularly climate change, while at the same time being highly productive sources and nurseries for fish populations. Interactions between host and microbiome are increasingly recognized for their importance for fish health, with growing evidence indicating that increasing environmental pressures impact host resilience and favor the raise of opportunistic bacterial taxa. The microbial composition of the gill mucus reflects environmental conditions and represents an entry route for pathogens into the fish body. High-throughput sequencing of prokaryotic populations from 250 samples of two fish species with highly different habitat preferences, as well as seasonal and spatial distributions in the Elbe estuary system, allowed us to describe the variation of the microbiota along a salinity gradient and under fluctuating environmental conditions. The analysis of estuarine fish core microbiota in relation to variable bacterial components indicated dysbiotic states under sustained hypoxia and high nutrient loads largely driven by increased prevalence of facultatively aerobic (Acinetobacter) and anaerobic heterotrophs (Shewanella, Aeromonas). By correlating bacterial abundances with environmental and physiological parameters in a co-occurrence network approach, we describe plasticity in microbiota composition, identify potential biomarkers for fish health monitoring and reconstruct movement patterns of the fish. Our results can help to shape future minimal-invasive and cost-effective monitoring programs, and identify factors that need to be controlled in the estuary to promote fish and stock health.
Collapse
Affiliation(s)
- Raphael Koll
- University of Hamburg; Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology;Germany.
| | - Elena Hauten
- University of Hamburg; Institute of Marine Ecosystem and Fishery Science, Marine ecosystem dynamics, Germany
| | - Jesse Theilen
- University of Hamburg; Department of Biology, Biodiversity Research; Germany
| | - Corinna Bang
- Kiel University, Institute of Clinical Molecular Biology, Germany
| | - Michelle Bouchard
- University of Hamburg; Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology;Germany
| | | | - Christian Möllmann
- University of Hamburg; Institute of Marine Ecosystem and Fishery Science, Marine ecosystem dynamics, Germany
| | - Jason Nicholas Woodhouse
- University of Hamburg; Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology;Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Microbial and phytoplankton Ecology, Germany
| | - Andrej Fabrizius
- University of Hamburg; Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology;Germany
| |
Collapse
|
7
|
Clols-Fuentes J, Nguinkal JA, Unger P, Kreikemeyer B, Palm HW. Bacterial Communities From Two Freshwater Aquaculture Systems in Northern Germany. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70062. [PMID: 39675344 DOI: 10.1111/1758-2229.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024]
Abstract
The microbial communities in aquaculture systems are primarily affected by changes in water quality, fish metabolism, feeding strategies and fish disease prevention treatments. Monitoring changes in aquatic microbiomes related to aquaculture activities is necessary to improve management strategies and reduce the environmental impact of aquaculture water discharge. This study assessed the effects of activities within two fish farms on water microbiome composition by analysing the water entering and leaving both systems. Additionally, pathogenic bacterial species associated with common fish diseases were identified. The abundance, diversity and identity of microorganisms were evaluated using 16S rRNA hypervariable gene region amplicon sequencing. Proteobacteria (38.2%) and Bacteroidetes (31.3%) were the most abundant phyla in all water samples. Changes in microbiome composition after passage through the fish tanks were observed in several taxa, such as Nitrospirae, Chloroflexi, Deferribacteres and Cyanobacteria. Flavobacterium sp. and Pseudomonas sp. were the predominant potential pathogens and heterotrophic bacteria detected in both farms. Several chemolithotrophic bacteria and archaea were found in the natural reservoir used for aquaculture activities, while water microbiomes in the aquaculture systems were generally dominated by heterotrophic organisms.
Collapse
Affiliation(s)
- Júlia Clols-Fuentes
- Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Julien A Nguinkal
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Patrick Unger
- Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene University Medicine Rostock (UMR), Rostock, Germany
| | - Harry W Palm
- Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
8
|
Sumon MAA, Meregildo-Rodriguez ED, Lee PT, Dinh-Hung N, Larson ET, Permpoonpattana P, Van Doan H, Jung WK, Linh NV. Droplet digital PCR for fish pathogen detection and quantification: A systematic review and meta-analysis. JOURNAL OF FISH DISEASES 2024; 47:e14019. [PMID: 39282714 DOI: 10.1111/jfd.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 11/10/2024]
Abstract
This study provides a comprehensive summary of the findings regarding the application and diagnostic efficacy of droplet digital PCR (ddPCR) in detecting viral and bacterial pathogens in aquaculture. Utilizing a systematic search of four databases up to 6 November 2023, we identified studies where ddPCR was deployed for pathogen detection in aquaculture settings, adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis of Diagnostic Test Accuracy guidelines. From the collected data, 16 studies retrieved, seven were included in a meta-analysis, encompassing 1121 biological samples from various fish species. The detection limits reported ranged markedly from 0.07 to 34 copies/μL. A direct comparison of the diagnostic performance between ddPCR with quantitative PCR (qPCR) proved challenging due to limited data, thus only a pooled sensitivity analysis was feasible. The results showed a pooled sensitivity of 0.750 (95% confidence interval [CI]: 0.487-0.944) for ddPCR, compared to 0.461 (95% CI: 0.294-0.632) for qPCR, with no statistically significant difference in sensitivity between the two methods (p = .5884). Notably, significant heterogeneity was observed among the studies (I2 = 93%-97%, p < .01), with the year of publication significantly influencing this heterogeneity (p < .001), but not the country of origin (p = .49). No publication bias was detected, and the studies generally exhibited a low risk of bias according to QUADAS-C criteria. While ddPCR and qPCR showed comparable sensitivities in pathogen detection, ddPCR's capability to precisely quantify pathogens without the need for standard curves highlights its potential utility. This characteristic could significantly enhance the accuracy and reliability of pathogen detection in aquaculture.
Collapse
Affiliation(s)
- Md Afsar Ahmed Sumon
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | | | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Nguyen Dinh-Hung
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Earl T Larson
- Department of Biological Sciences, St. Johns River State College, Orange Park, Florida, USA
| | - Patima Permpoonpattana
- Agricultural Science and Technology Program, Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agriculture, Functional Feed Innovation Center (FuncFeed), Chiang Mai University, Chiang Mai, Thailand
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Busan, Republic of Korea
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Tapela K, Prah DA, Tetteh B, Nuokpem F, Dosoo D, Coker A, Kumi-Ansah F, Amoako E, Assah KO, Kilba C, Nyakoe N, Quansah D, Languon S, Anyigba CA, Ansah F, Agyeman S, Owusu IA, Schneider K, Ampofo WK, Mutungi JK, Amegatcher G, Aniweh Y, Awandare GA, Quashie PK, Bediako Y. Cellular immune response to SARS-CoV-2 and clinical presentation in individuals exposed to endemic malaria. Cell Rep 2024; 43:114533. [PMID: 39052480 PMCID: PMC11372439 DOI: 10.1016/j.celrep.2024.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Ghana and other parts of West Africa have experienced lower COVID-19 mortality rates than other regions. This phenomenon has been hypothesized to be associated with previous exposure to infections such as malaria. This study investigated the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the influence of previous malaria exposure. Blood samples were collected from individuals with asymptomatic or symptomatic COVID-19 (n = 217). A variety of assays were used to characterize the SARS-CoV-2-specific immune response, and malaria exposure was quantified using Plasmodium falciparum ELISA. The study found evidence of attenuated immune responses to COVID-19 among asymptomatic individuals, with elevated proportions of non-classical monocytes and greater memory B cell activation. Symptomatic patients displayed higher P. falciparum-specific T cell recall immune responses, whereas asymptomatic individuals demonstrated elevated P. falciparum antibody levels. Summarily, this study suggests that P. falciparum exposure-associated immune modulation may contribute to reduced severity of SARS-CoV-2 infection among people living in malaria-endemic regions.
Collapse
Affiliation(s)
- Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Diana Ahu Prah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Becky Tetteh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Franklin Nuokpem
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Daniel Dosoo
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Amin Coker
- Accident and Emergency Unit, The Greater Accra Regional Hospital, Accra, Ghana
| | | | - Emmanuella Amoako
- Department of Pediatrics, Cape Coast Teaching Hospital, Cape Coast, Ghana; Yemaachi Biotech Inc., 222 Swaniker St., Accra, Ghana
| | - Kissi Ohene Assah
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Charlyne Kilba
- Department of Internal Medicine, Surgery, Pediatrics, and Emergency Medicine, Greater Accra Regional Hospital, Accra, Ghana
| | - Nancy Nyakoe
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Darius Quansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana; Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Sylvester Languon
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Claudia Adzo Anyigba
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Seth Agyeman
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana; Yemaachi Biotech Inc., 222 Swaniker St., Accra, Ghana
| | - Irene Amoakoh Owusu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Kristan Schneider
- Department of Mathematics, Hochschule Mittweida, University of Applied Sciences, Mittweida, Germany
| | - William K Ampofo
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Joe Kimanthi Mutungi
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Gloria Amegatcher
- Department of Medical Laboratory Science, School of Biomedical and Allied Sciences, University of Ghana, Accra, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Peter K Quashie
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK.
| | - Yaw Bediako
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Yemaachi Biotech Inc., 222 Swaniker St., Accra, Ghana; The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK.
| |
Collapse
|
10
|
Carril G, Morales-Lange B, Løvoll M, Inami M, Winther-Larsen HC, Øverland M, Sørum H. Salmonid Rickettsial Septicemia (SRS) disease dynamics and Atlantic salmon immune response to Piscirickettsia salmonis LF-89 and EM-90 co-infection. Vet Res 2024; 55:102. [PMID: 39152462 PMCID: PMC11328376 DOI: 10.1186/s13567-024-01356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/27/2024] [Indexed: 08/19/2024] Open
Abstract
In Chile, Piscirickettsia salmonis contains two genetically isolated genogroups, LF-89 and EM-90. However, the impact of a potential co-infection with these two variants on Salmonid Rickettsial Septicemia (SRS) in Atlantic salmon (Salmo salar) remains largely unexplored. In our study, we evaluated the effect of P. salmonis LF-89-like and EM-90-like co-infection on post-smolt Atlantic salmon after an intraperitoneal challenge to compare changes in disease dynamics and host immune response. Co-infected fish had a significantly lower survival rate (24.1%) at 21 days post-challenge (dpc), compared with EM-90-like single-infected fish (40.3%). In contrast, all the LF-89-like single-infected fish survived. In addition, co-infected fish presented a higher presence of clinical lesions than any of the single-infected fish. The gene expression of salmon immune-related biomarkers evaluated in the head kidney, spleen, and liver showed that the EM-90-like isolate and the co-infection induced the up-regulation of cytokines (e.g., il-1β, ifnγ, il8, il10), antimicrobial peptides (hepdicin) and pattern recognition receptors (PRRs), such as TLR5s. Furthermore, in serum samples from EM-90-like and co-infected fish, an increase in the total IgM level was observed. Interestingly, specific IgM against P. salmonis showed greater detection of EM-90-like antigens in LF-89-like infected fish serum (cross-reaction). These data provide evidence that P. salmonis LF-89-like and EM-90-like interactions can modulate SRS disease dynamics in Atlantic salmon, causing a synergistic effect that increases the severity of the disease and the mortality rate of the fish. Overall, this study contributes to achieving a better understanding of P. salmonis population dynamics.
Collapse
Affiliation(s)
- Gabriela Carril
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Byron Morales-Lange
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1433, Ås, Norway.
| | | | | | - Hanne C Winther-Larsen
- Department of Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316, Oslo, Norway
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432, Ås, Norway.
| |
Collapse
|
11
|
Vallarino MC, Dagen SL, Costelloe E, Oyenekan SI, Tinsley J, Valdenegro V, Król E, Noguera P, Martin SAM. Dynamics of Gill Responses to a Natural Infection with Neoparamoeba perurans in Farmed Tasmanian Atlantic Salmon. Animals (Basel) 2024; 14:2356. [PMID: 39199891 PMCID: PMC11350870 DOI: 10.3390/ani14162356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Gill health has become a significant global challenge for Atlantic salmon (Salmo salar) aquaculture, particularly during the marine phase of farming. The increasing prevalence of gill pathologies has been linked to rising seawater temperatures, underscoring the need to evaluate existing tools for monitoring gill health and to develop novel approaches for early detection. In this study, we investigated the gill responses of commercially farmed Atlantic salmon to natural infection with Neoparamoeba perurans during an outbreak of amoebic gill disease (AGD) in Tasmania. Our focus spanned the low AGD prevalence, high AGD prevalence, and post-freshwater treatment stages of the outbreak. Evaluations of gill tissue included assessments of the gross AGD score, histopathological score, abundance of N. perurans (measured by 18S rRNA gene expression), and expression levels of inflammation-related transcripts. We demonstrated a strong correlation between different measures of AGD-related gill pathology and significant differences between distinct stages of the N. perurans outbreak. Post-treatment, fish exhibited considerable variability in their responses to the freshwater bath, highlighting the necessity for personalized management strategies that consider genetic, environmental, and health status factors. The expression patterns of angiogenin-1 (ANG1) and complement C1q tumour necrosis factor-related protein 3-like (C1QTNF3) emphasize their potential as biomarkers for early detection of gill damage in salmon aquaculture worldwide.
Collapse
Affiliation(s)
- Max Charles Vallarino
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK; (M.C.V.); (S.L.D.); (E.C.); (S.I.O.); (E.K.)
| | - Sarah L. Dagen
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK; (M.C.V.); (S.L.D.); (E.C.); (S.I.O.); (E.K.)
| | - Eoin Costelloe
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK; (M.C.V.); (S.L.D.); (E.C.); (S.I.O.); (E.K.)
| | - Shalom Inioluwa Oyenekan
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK; (M.C.V.); (S.L.D.); (E.C.); (S.I.O.); (E.K.)
| | | | | | - Elżbieta Król
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK; (M.C.V.); (S.L.D.); (E.C.); (S.I.O.); (E.K.)
| | - Patricia Noguera
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK; (M.C.V.); (S.L.D.); (E.C.); (S.I.O.); (E.K.)
- Aquaculture and Marine Environment, Marine Scotland Science, Aberdeen AB11 9DB, Scotland, UK
| | - Samuel A. M. Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK; (M.C.V.); (S.L.D.); (E.C.); (S.I.O.); (E.K.)
| |
Collapse
|
12
|
Agyei FK, Scharf B, Duodu S. Vibrio cholerae Bacteremia: An Enigma in Cholera-Endemic African Countries. Trop Med Infect Dis 2024; 9:103. [PMID: 38787036 PMCID: PMC11125774 DOI: 10.3390/tropicalmed9050103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 05/25/2024] Open
Abstract
Cholera is highly endemic in many sub-Saharan African countries. The bacterium Vibrio cholerae is responsible for this severe dehydrating diarrheal disease that accounts for over 100,000 deaths each year globally. In recent years, the pathogen has been found to invade intestinal layers and translocate into the bloodstream of humans. The non-toxigenic strains of V. cholerae (non-O1/O139), also known as NOVC, which do not cause epidemic or pandemic cases of cholera, are the major culprits of V. cholerae bacteremia. In non-cholera-endemic regions, clinical reports on NOVC infection have been noted over the past few decades, particularly in Europe and America. Although low-middle-income countries are most susceptible to cholera infections because of challenges with access to clean water and inappropriate sanitation issues, just a few cases of V. cholerae bloodstream infections have been reported. The lack of evidence-based research and surveillance of V. cholerae bacteremia in Africa may have significant clinical implications. This commentary summarizes the existing knowledge on the host risk factors, pathogenesis, and diagnostics of NOVC bacteremia.
Collapse
Affiliation(s)
- Foster K. Agyei
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra LG54, Ghana;
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Birgit Scharf
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Samuel Duodu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra LG54, Ghana;
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra LG54, Ghana
| |
Collapse
|
13
|
Vega-Heredia S, Giffard-Mena I, Reverter M. Bacterial and viral co-infections in aquaculture under climate warming: co-evolutionary implications, diagnosis, and treatment. DISEASES OF AQUATIC ORGANISMS 2024; 158:1-20. [PMID: 38602294 DOI: 10.3354/dao03778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Climate change and the associated environmental temperature fluctuations are contributing to increases in the frequency and severity of disease outbreaks in both wild and farmed aquatic species. This has a significant impact on biodiversity and also puts global food production systems, such as aquaculture, at risk. Most infections are the result of complex interactions between multiple pathogens, and understanding these interactions and their co-evolutionary mechanisms is crucial for developing effective diagnosis and control strategies. In this review, we discuss current knowledge on bacteria-bacteria, virus-virus, and bacterial and viral co-infections in aquaculture as well as their co-evolution in the context of global warming. We also propose a framework and different novel methods (e.g. advanced molecular tools such as digital PCR and next-generation sequencing) to (1) precisely identify overlooked co-infections, (2) gain an understanding of the co-infection dynamics and mechanisms by knowing species interactions, and (3) facilitate the development multi-pathogen preventive measures such as polyvalent vaccines. As aquaculture disease outbreaks are forecasted to increase both due to the intensification of practices to meet the protein demand of the increasing global population and as a result of global warming, understanding and treating co-infections in aquatic species has important implications for global food security and the economy.
Collapse
Affiliation(s)
- Sarahí Vega-Heredia
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, México, Egresada del Programa de Ecología Molecular y Biotecnología, carretera transpeninsular Ensenada-Tijuana No. 3917, C.P. 22860, México
| | - Ivone Giffard-Mena
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, México
| | - Miriam Reverter
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Devon PL4 8AA, UK
| |
Collapse
|
14
|
Wise AL, LaFrentz BR, Kelly AM, Liles MR, Griffin MJ, Beck BH, Bruce TJ. Coinfection of channel catfish (Ictalurus punctatus) with virulent Aeromonas hydrophila and Flavobacterium covae exacerbates mortality. JOURNAL OF FISH DISEASES 2024. [PMID: 38214100 DOI: 10.1111/jfd.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Flavobacterium covae and virulent Aeromonas hydrophila are prevalent bacterial pathogens within the US catfish industry that can cause high mortality in production ponds. An assessment of in vivo bacterial coinfection with virulent A. hydrophila (ML09-119) and F. covae (ALG-00-530) was conducted in juvenile channel catfish (Ictalurus punctatus). Catfish were divided into seven treatments: (1) mock control; (2) and (3) high and low doses of virulent A. hydrophila; (4) and (5) high and low doses of F. covae; (6) and (7) simultaneous challenge with high and low doses of virulent A. hydrophila and F. covae. In addition to the mortality assessment, anterior kidney and spleen were collected to evaluate immune gene expression, as well as quantify bacterial load by qPCR. At 96 h post-challenge (hpc), the high dose of virulent A. hydrophila infection (immersed in 2.3 × 107 CFU mL-1 ) resulted in cumulative percent mortality (CPM) of 28.3 ± 9.5%, while the high dose of F. covae (immersed in 5.2 × 106 CFU mL-1 ) yielded CPM of 23.3 ± 12.9%. When these pathogens were delivered in combination, CPM significantly increased for both the high- (98.3 ± 1.36%) and low-dose combinations (76.7 ± 17.05%) (p < .001). Lysozyme activity was found to be different at 24 and 48 hpc, with the high-dose vAh group demonstrating greater levels than unexposed control fish at each time point. Three proinflammatory cytokines (tnfα, il8, il1b) demonstrated increased expression levels at 48 hpc. These results demonstrate the additive effects on mortality when these two pathogens are combined. The synthesis of these mortality and health metrics advances our understanding of coinfections of these two important catfish pathogens and will aid fish health diagnosticians and channel catfish producers in developing therapeutants and prevention methods to control bacterial coinfections.
Collapse
Affiliation(s)
- Allison L Wise
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, Alabama, USA
| | | | - Anita M Kelly
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Matt J Griffin
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - Benjamin H Beck
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, Alabama, USA
| | - Timothy J Bruce
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
15
|
Cantillo Villa Y, Triga A, Katharios P. Polyinfection in Fish Aeromoniasis: A Study of Co-Isolated Aeromonas Species in Aeromonas veronii Outbreaks. Pathogens 2023; 12:1337. [PMID: 38003801 PMCID: PMC10674900 DOI: 10.3390/pathogens12111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
We studied the phenotypic and genomic characteristics related to the virulence and antibiotic resistance of two Aeromonas strains, which were co-isolated before an outbreak of Aeromonas veronii among diseased seabass on Agathonisi Island, Greece, in April 2015. The first strain, AG2.13.2, is a potentially pathogenic mesophilic variant of Aeromonas salmonicida, and the second, AG2.13.5, corresponds to an Aeromonas rivipollensis related to A. rivipollensis KN-Mc-11N1 with an ANI value of 97.32%. AG2.13.2 lacks the type III secretion system just like other mesophilic strains of A. salmonicida. This characteristic has been associated with lower virulence. However, the genome of AG2.13.2 contains other important virulence factors such as type II and type VI secretion systems, and toxins such as rtxA, aerolysin aer/act, and different types of hemolysins. The strain also carries several genes associated with antibiotic resistance such as the tetE efflux pump, and exhibits resistance to tetracycline, ampicillin, and oxolinic acid. In an in vivo challenge test with gilthead seabream larvae, the A. veronii bv sobria strain AG5.28.6 exhibited the highest virulence among all tested strains. Conversely, both A. salmonicida and A. rivipollensis showed minimal virulence when administered alone. Interestingly, when A. veronii bv sobria AG5.28.6 was co-administered with A. rivipollensis, the larvae survival probability increased compared to those exposed to A. veronii bv sobria AG5.28.6 alone. This finding indicates an antagonistic interaction between A. veronii bv sobria AG5.28.6 and A. rivipollensis AG2.13.5. The co-administration of A. veronii bv sobria AG5.28.6 with Aeromonas salmonicida did not yield distinct survival probabilities. Our results validate that the primary pathogen responsible for European seabass aeromoniasis is Aeromonas veronii bv sobria.
Collapse
Affiliation(s)
- Yanelys Cantillo Villa
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), 71500 Gournes, Greece; (Y.C.V.); (A.T.)
- Department of Biology, University of Crete, 71110 Heraklion, Greece
| | - Adriana Triga
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), 71500 Gournes, Greece; (Y.C.V.); (A.T.)
- Department of Biology, University of Crete, 71110 Heraklion, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), 71500 Gournes, Greece; (Y.C.V.); (A.T.)
- Aquatic Biologicals, Thalassocosmos, 71500 Gournes, Greece
| |
Collapse
|